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Preface

Satellite Orbits – Models, Methods, and Applications has been written as a compre-
hensive textbook that guides the reader through the theory and practice of satellite
orbit prediction and determination. Starting from the basic principles of orbital
mechanics, it covers elaborate force models as well as precise methods of satellite
tracking and their mathematical treatment. A multitude of numerical algorithms
used in present-day satellite trajectory computation is described in detail, with
proper focus on numerical integration and parameter estimation. The wide range of
levels provided renders the book suitable for an advanced undergraduate or gradu-
ate course on spaceflight mechanics, up to a professional reference in navigation,
geodesy and space science. Furthermore, we hope that it is considered useful by
the increasing number of satellite engineers and operators trying to obtain a deeper
understanding of flight dynamics.

The idea for this book emerged when we realized that documentation on the
methods, models and tools of orbit determination was either spread over numerous
technical and scientific publications, or hidden in software descriptions that are not,
in general, accessible to a wider community. Having worked for many years in the
field of spaceflight dynamics and satellite operations, we tried to keep in close touch
with questions and problems that arise during daily work, and to stress the practical
aspects of orbit determination. Nevertheless, our interest in the underlying physics
motivated us to present topics from first principles, and make the book much more
than just a cookbook on spacecraft trajectory computation.

With the availability of powerful onground and onboard computers, as well as
increasing demands for precision, the need for analytical perturbation theories has
almost been replaced by a purely numerical treatment of the equations of motion.
We therefore focus on models and methods that can be applied within a numerical
reconstruction of the satellite orbit and its forecast. As a consequence, topics like
orbit design, long-term orbit evolution and orbital decay are not addressed specifi-
cally, although the required fundamentals are provided. Geodesic satellite missions,
on the other hand, have reached an unprecedented level of position accuracy with a
need for very complex force and measurement models, which could not always be
covered in full detail. In any case, references to background information are given,
so as to allow the reader easy access to these specific areas.

Each chapter includes exercises at varying levels of complexity, which aim at
an additional practice of the presented material, or address supplementary topics
of practical interest. Where possible, we have tried to focus on problems that high-
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light the underlying physicals models or algorithmic methods, rather than relying
on purely numerical reference examples. In most cases, the exercises include a
comprehensive description of the suggested solution, as well as the numerical re-
sults. These are either derived directly from equations given in the text, or based
on sample computer programs.

The CD-ROM that was provided with previous printings of this edition has
been replaced by a zip-archive made available on Springer’s Extra Materials server
http://extra.springer.com/. This archive contains the C++ source code of all
sample programs and applications, as well as relevant data files. The software is
built around a powerful spaceflight dynamics library, which is likewise provided as
source code. For the sake of simplicity we have restricted the library to basic mod-
els, but emphasized transparent programming and in-code documentation. This, in
turn, allows for an immediate understanding of the code, and paves the way for easy
software extensions by the user. Free use of the entire software package including
the right for modifications is granted for non-commercial purposes. Readers, stu-
dents and lecturers are, therefore, encouraged to apply it in further studies, and
to develop new applications. We assume that the reader is familiar with computer
programming, but even inexperienced readers should be able to use the library func-
tions as black boxes. All source code is written in C++, nowadays a widely used
programming language and one which is readily available on a variety of different
platforms and operating systems.

We would like to thank Springer-Verlag for their cordial cooperation and in-
terest during the process of publishing this book. Our thanks are also due to all our
friends and colleagues, who, with their ideas and advice, and their help in correct-
ing the manuscript and in testing the programs, have played an important role in
the successful completion of this book. Real mission data sets for the application
programs have kindly been provided by the GPS/MET project and the Flight Dy-
namics Analysis Branch of the Goddard Space Flight Center. Numerous agencies
and individuals have contributed images for the introduction of this book, which is
gratefully acknowledged.

May 2000 and August 2012 Oliver Montenbruck and Eberhard Gill
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1. Around the World in a Hundred Minutes

Even though the first man-made spacecraft was only launched in 1957, satellite
orbits had already been studied two centuries before this. Starting from Newton’s
formulation of the law of gravity, scientists sought continuously to develop and
refine analytical theories describing the motion of the Earth’s only natural satellite,
the Moon. Today, several thousand man-made satellites orbit the Earth, together
with countless pieces of space debris (Fig. 1.1). Much as celestial mechanics studied
the laws of motion of solar system bodies, the branch of astrodynamics is concerned
with the mathematical and physical description of artificial satellite orbits, as well
as their control. Here, the term orbit refers to a trajectory that is essentially periodic
in nature, and does not consider the special case of objects leaving the realm of the
Earth towards interplanetary space.

Fig. 1.1. A snapshot of orbiting satellites
and known pieces of space debris resem-
bles a swarm of mosquitoes dancing around
a bulb. Most objects stay in low-Earth
orbits with altitudes typically less than
1500 km. Aside from that, many satellites
populate the geostationary ring at a height
of 36 000 km. The cloud of satellites in
the northern hemisphere mainly comprises
navigation and science satellites (photo
courtesy ESA/ESOC)

1.1 A Portfolio of Satellite Orbits

Aside from the eternal dream of mankind to overcome the two-dimensional surface
of the Earth, there are a number of other compelling reasons to launch a satellite
into orbit (Fig. 1.2). Satellites are the only means of obtaining in-situ measurements
of the upper atmosphere or the Earth’s magnetosphere. Astronomical telescopes in
orbit provide an uncorrupted, diffraction-limited view of the sky at all regions of
the electromagnetic spectrum. By the very nature of things, one has to leave the
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Earth to collect large-scale images of its continents, oceans, and atmosphere. Like-
wise, satellites are able to communicate with a large number of places on Earth
simultaneously, thus forming the basis for worldwide telephone and data networks
as well as TV transmissions. Finally, constellations of navigation satellites nowa-
days provide the means for precision localization and aircraft navigation around
the world.

Fig. 1.2. An album of ESA’s space missions: manned and microgravity (Space station, Spacelab,
Eureca), Earth observation (ERS, Meteosat, Envisat), telecommunications (Olympus, ECS, DRS)
and science (Hipparcos, ISO). Photo credit ESA

1.1.1 Low-Earth Orbits

The applications just mentioned and the technical (and commercial) constraints
of existing launch vehicles have led to certain commonalities among the orbits of
present satellites. The great majority of satellites are launched into near-circular or-
bits with altitudes of 300–1500 km. Below that level, a satellite’s orbit would rapidly
decay due to the resistance of the Earth’s atmosphere, thus restricting extremely
low-altitude orbits to short-term ballistic missions or powered trajectories. Higher
altitudes, on the other hand, are neither required nor desirable for many missions.
A space observatory (like the Hubble Space Telescope or the XMM X-ray satellite)
already has an unobstructed view at 600 km altitude, where the atmospheric distor-
tion and absorption is wholly negligible. Remote sensing satellites benefit from a
higher spatial resolution at lower altitudes and, last but not least, a higher altitude
requires more powerful launchers.

Among the low-Earth satellites there is a wide range of orbital inclinations. The
inclination describes the angle between the orbital plane and the equator, which is
often determined by the geographical latitude of the launch site. Making use of the
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Earth’s rotation, one achieves the highest orbital velocity by launching a satellite
in an easterly direction. The orbital plane, which is spanned by the instantaneous
inertial position and velocity vector, thus exhibits an inclination that is equal to
the geographical latitude at separation of the spacecraft from the launcher. Any
change in inclination – to either higher or lower values – requires a different launch
direction, with an associated loss in performance.

1.1.2 Orbits of Remote Sensing Satellites

Irrespective of the launch site restrictions, however, there is a pronounced inter-
est in injecting spacecraft into highly inclined polar orbits, to obtain a maximum
coverage of the Earth’s surface. Remote sensing satellites are designed to collect
high-resolution images of the Earth in a variety of spectral bands (Kramer 1996).
These comprise both optical frequencies (visible and infrared) as well as radio
frequencies (radar) that provide an unobstructed view independent of clouds and
weather phenomena. Resolutions presently provided by civil satellites and sensors
(SPOT, Landsat, MOMS-2P) are in the order of 5–10 m for panchromatic images
and 10–30 m for multispectral sensors. Synthetic aperture radar (SAR) images, ob-
tained by e.g. the European ERS satellite (Fig. 1.3) from an altitude of 750 km,
achieve a resolution of roughly 20 m.

Fig. 1.3. The ERS-1 remote sensing satellite as seen by an artist (left; courtesy ESA) and imaged
in orbit by the French Spot-4 satellite on May 6, 1998 over the Tenere Desert of Niger from 41 km
altitude (right; photo credit CNES)

Besides the global or near-global coverage, there are other requirements that
affect the selection of remote sensing orbits. The ground track should be repetitive
but free from gaps, to ensure that each point on Earth can be imaged again and
again. Clearly the orbits should be circular, to achieve a constant spacecraft altitude
when taking repeated images of the same area. Furthermore, identical illumination
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conditions are a prerequisite for comparative studies and analysis of images from
different areas. Fortunately these requirements may simultaneously be met by a
specific set of orbits, known as sun-synchronous repeat orbits.

Here use is made of the fact that the Earth’s oblateness causes a secular pre-
cession of the orbital plane. For orbital inclinations of 97◦–102◦ and associated
altitudes of 500–1500 km, the nodal line of the orbital plane on the equator is
shifted by almost 1◦ per day in a clockwise direction. This value matches the ap-
parent mean motion of the Sun along the equator, and results in a (near-)constant
alignment of the orbital plane and the projected direction of the Sun. Accordingly,
the mean local time when the satellite crosses the equator is the same for each or-
bit (typically 10:00 a.m. at the ascending node), giving optimum and reproducible
illumination conditions for image data takes.

By making a proper choice of the orbital altitude, one may further achieve an
orbital period in resonance with the Earth’s rotation. At 900 km, for example, the
satellite performs exactly 14 orbits per day, after which period the ground track is
repeated again and again. To avoid inherent gaps in the ground coverage, a rational
ratio is preferable, however, as is e.g. the case for the orbit of the ERS satellites.
They performs a total of 43 orbits in a period of 3 days, which results in a ground
track separation of about 1000 km at the equator. In order to maintain the orbital
characteristics of a remote sensing satellite, regular adjustments of its semi-major
axis are required, which compensate the perturbations due to atmospheric drag.

1.1.3 Geostationary Orbits

The idea of geosynchronous telecommunication satellites was addressed by Arthur
C. Clarke in his 1945 article on Extra-Terrestrial Relays (Clarke 1945), i.e. more
than a decade before the first satellite, Sputnik 1, was launched. Even earlier, K. E.
Tsiolkovsky (1918) and H. Noordung (1929) had pointed out that a satellite placed at
an altitude of 35 800 km above the equator would have an orbital period matching
the period of the Earth’s rotation. The two writers may not have anticipated the
future significance of their ideas.

Starting with the first geostationary satellite Syncom 2, launched in 1963, and
the transmission of the 1964 Olympic games in Tokyo via Syncom 3, geostation-
ary satellites quickly formed the basis for a commercial utilization of space. Today
some 300 active satellites are flying in a geosynchronous orbit, serving as a platform
for all kinds of telecommunications activities (Fig. 1.4). The exceptional charac-
teristics of the geostationary belt and the associated space limitations have resulted
in international regulations governing the assignment of individual longitude slots
to interested countries and agencies. The assigned windows usually cover a range
of ±0.1◦ in longitude, which the satellite should not violate, to avoid signal inter-
ference (or even physical contact) with neighboring spacecraft. To do so, regular
station keeping maneuvers are required, typically once a week, to counteract the
perturbations of the Sun, Earth, and Moon, which would otherwise drive the satellite
out of its assigned slot (Soop 1983, 1994).
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Fig. 1.4. Orbital positions of geostationary satellites controlled by the European telecommunications
organization Eutelsat (photo courtesy Eutelsat)

Increasing communication needs could only partly be fulfilled by more and
more powerful satellites, which has resulted in a need to co-position (or colocate)
multiple satellites in a single control window. At present, a total of 7 ASTRA
satellites are actively controlled in a box of ±0.1◦ × ±0.1◦ size in longitude and
latitude at 19.2◦ East, giving the owners of a single antenna the opportunity to
receive an ever-increasing number of TV and radio programs.

Aside from telecommunications, the geostationary orbit is also of interest for
weather satellites like Goes and Meteosat. A single satellite can provide an almost
hemispherical coverage of the Earth at low resolution, thus making it particularly
useful for the study of global weather phenomena. Finally, geostationary satel-
lites are of growing importance as a complement to traditional satellite navigation
systems. The European EGNOS system, for example, makes use of an auxiliary
navigation payload onboard the Inmarsat III satellites to provide users with real-
time corrections to the existing GPS system, which increase the available navigation
accuracy and reliability to the level required for precision aircraft landing.

A more specialized application of geostationary satellites is given by the United
States’ Tracking and Data Relay Satellite System (TDRSS). It offers the possibility
of continuous communication with the Space Shuttle and satellites in low-Earth
orbit. Furthermore, it can provide tracking data with full orbital coverage, which
would not be possible with conventional ground stations, due to their limited visi-
bility.
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1.1.4 Highly Elliptical Orbits

When a satellite is brought into geostationary orbit, it is first injected into an eccen-
tric transfer orbit, which is later circularized by a suitable apogee boost maneuver.
Here, the highly elliptic trajectory mainly serves as an intermediate orbit. There are
a couple of other applications, however, that intentionally select an eccentric orbit
for a spacecraft.

Fig. 1.5. Since 1965 Molniya satellites have provided telephone communications and television
within the USSR as well as to western states. Photo by Karl D. Dodenhoff, USAF Museum

Among these, the Russian Molniya and Tundra satellites (Fig. 1.5) are most
common. Considering the fact that geostationary satellites provide unfavorable
visibility for users in polar regions (e.g. Siberia), an alternative concept of telecom-
munications satellites was devised in the former Soviet Union. It is based on syn-
chronous 12-hour orbits of 1000×40000 km altitude that are inclined at an angle
of 63.4◦ to the equator. The apocenter, i.e. the point farthest away from the Earth,
is located above the northern hemisphere, thus providing visibility of the satellite
from high latitudes for most of its orbit. Contact is lost for only a few hours, while
the satellite passes rapidly through its pericenter, before it becomes visible again to
the user. This gap is overcome by additional satellites in a similar, but rotated orbit.
Despite the larger number of satellites required, the concept provides a well-suited
and cost-effective solution for the communication needs of polar countries.

The second application of elliptic orbits is primarily of scientific interest. In
order to explore the magnetosphere of the Earth and the solar-terrestrial interaction,
spacecraft orbits that cover a large range of geocentric distances up to 15 or 20
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Earth radii are useful. Examples of related missions are the joint US/European
ISEE-1 satellite, with an apocenter height of 140 000 km, or ESA’s Cluster mission
with four satellites flying in highly eccentric orbits in a tetrahedron formation
(Schoenmaekers 1991).

1.1.5 Constellations

Constellations consist of multiple satellites that orbit the Earth in similar, but suit-
ably shifted or rotated trajectories. A famous example is the Global Positioning
System (GPS), which allows users to accurately determine their location based on
measuring the delays of ranging signals received from at least four GPS satellites.
The fully operational GPS system comprises a total of 24 satellites in six orbital
planes at 55◦ inclination. Four satellites each share the same orbit of 20 200 km alti-
tude, but are offset from their neighbors by a 90◦ longitudinal phase shift. Likewise
the nodal lines of the six orbital planes are separated by 60◦ in right ascension.
This configuration ensures that a minimum of six satellites are continuously visible
from any point except the polar regions. Due to the orbital period of 12 hours, the
configuration of all satellites relative to the Earth is exactly repeated twice every
(sidereal) day. GLONASS, the Russian counterpart of the United States’ Global Po-
sitioning System, utilizes a similar constellation of 24 satellites evenly distributed
in three planes, with an orbital inclination of 64.8◦ (Ivanov & Salischev 1992). At
an altitude of 19 100 km, the orbital period of 11.25 hours is somewhat less than
that of the GPS satellites.

Within the past decade, the high potential of low-Earth satellite constellations
for global mobile communication has been realized. In contrast to geostationary

Fig. 1.6. The IRIDIUM constellation (Graph-
ics by SaVi, The Geometry Center, Univ. of
Minnesota)

Fig. 1.7. The Globalstar constellation (Graph-
ics by SaVi, The Geometry Center, Univ. of
Minnesota)
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satellites, which require bulky user antennas, communication with low-Earth satel-
lites can be established from a hand-held phone, due to the much shorter signal paths.
At least one satellite is always visible from any location. Making use of intersatellite
links, telephone calls can then be routed around the world to other mobile-phone
users or to a suitable ground network terminal. Following IRIDIUM, a 66 satellite
constellation at an altitude of 700 km, which was put into operation in 1999 (Fig. 1.6,
Pizzicaroli 1998), a couple of other constellations have been designed and partly
implemented. These include Globalstar with 48 satellites at 1 414 km altitude (Fig.
1.7), ICO with 10 satellites at 10 400 km, ORBCOMM (Evans & Maclay 1998) and
Teledesic with 288 satellites at 1 350 km (Matossian 1998). Constellations require
regular orbital control maneuvers to avoid a change in the relative configuration
and alignment of satellites.

1.2 Navigating in Space

Irrespective of the level of autonomy that may be achieved with present-day satel-
lites, any spacecraft would rapidly become useless if one were unable to locate it
and communicate with it. Furthermore, many of the spacecraft described earlier
necessitate an active control of their orbit in accordance with specific mission re-
quirements. Navigation is therefore an essential part of spacecraft operations. It
comprises the planning, determination, prediction, and correction of a satellite’s
trajectory in line with the established mission goals.

1.2.1 Tracking Systems

A variety of tracking systems may be used to obtain measurements related to the
instantaneous position of a satellite or its rate of change. Most of these systems are
based on radio signals transmitted to or from a ground antenna (Fig. 1.8). Com-
mon radio tracking systems are able to perform angle measurements by locating the
direction of a radio signal transmitted by a satellite. The resolution of these measure-
ments depends on the angular diameter of the antenna cone, which is determined
by the ratio of the carrier wavelength to the antenna diameter. Given a frequency
of 2 GHz as applied in common antenna systems, a diameter of 15 m is required to
achieve a beam width of 0.5◦. Distance and velocity information can be obtained
by measuring the turn-around delay or Doppler-shift of a radio signal sent to the
spacecraft and returned via a transponder. Representative ranging systems achieve
an accuracy between 2 m and 20 m, depending on the frequency band used and the
type of ranging signal applied. Doppler measurements can provide the range rate of
an Earth-orbiting satellite with an accuracy of typically 1 mm/s. In the absence of an
active transmitter or transponder onboard the spacecraft, sufficiently powerful radar
may also be applied for spacecraft tracking. Its use, however, is mainly restricted
to emergency cases or space surveillance tasks (Pensa & Sridharan 1997).

For low-Earth satellites, a purely ground-based tracking suffers from the lim-
ited station contacts that constrain the available tracking measurements to a small
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Fig. 1.8. The ground station complex at Redu, Belgium, provides telemetry, tracking, and telecom-
mand operations for low-Earth and geostationary satellites (courtesy ESA)

fraction of the orbit. To overcome this restriction, geostationary satellites like the
United Sates’ Tracking and Data Relay Satellite (TDRS) can be used to track a
user satellite via a relay transponder. Going even further, GPS ranging signals of-
fer the opportunity to obtain position measurements onboard a satellite completely
independently of a ground station.

Aside from radiometric tracking, optical sensors may likewise be used to lo-
cate a satellite, as illustrated both by the early days’ Baker–Nunn cameras (Henize
1957) and today’s high-precision satellite laser ranging systems (Fig. 1.9). Imaging
telescopes are well suited for detecting unknown spacecraft and space debris up
to geostationary distances, which makes them a vital part of the United States’
space surveillance network. Instead of photographic films employed in former
Baker–Nunn cameras, the Ground-Based Electro-Optical Deep Space Surveillance
(GEODSS) telescopes are equipped with electronic sensors that allow online im-
age processing and removal of background stars. Other applications of optical tele-
scopes include the monitoring of colocated geostationary satellites, which are not
controlled in a coordinated way by a single control center. Besides being completely
passive, telescopic images can provide the plane-of-sky position of geostationary
satellites to much better accuracies (typically 1′′ ≈ 200 m) than angle measure-
ments of common tracking antennas.
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Fig. 1.9. Satellite laser ranging
facility of the Natural Environ-
ment Research Council (photo: D.
Calvert)

Satellite laser ranging (SLR) systems provide highly accurate distance mea-
surements by determining the turn-around light time of laser pulses transmitted
to a satellite and returned by a retro-reflector. Depending on the distance and the
resulting strength of the returned signal, accuracies of several centimeters may be
achieved. Satellite laser ranging is mainly used for scientific and geodetic missions
that require an ultimate precision. In combination with dedicated satellites like
Starlet and Lageos (Rubincam 1981, Smith & Dunn 1980), satellite laser ranging
has contributed significantly to the study of the Earth’s gravitational field. Other
applications of SLR include independent calibrations of radar tracking systems like
GPS or PRARE (Zhu et al. 1997).

1.2.2 A Matter of Effort

A discussion on spacecraft navigation sooner or later ends up with a question on
the achieved accuracy. As illustrated in Fig. 1.10, widely varying levels of accuracy
apply for the knowledge of a satellite’s orbit, depending on the particular goals of a
space project. In accord with these requirements, widely varying tracking systems
are employed in present space projects.
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Fig. 1.10. Representative tracking and orbit determination accuracies employed in current space
missions (pictures courtesy DLR, DSS, NASA, SES)
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An upper threshold to the permissible position uncertainty is generally given by
the need for safe communication with the spacecraft from the ground. Considering,
for example, an orbital altitude of 800 km and the 0.3◦ (0.005 rad) half-beam width
of a 15 m S-band antenna, the spacecraft trajectory must be predicted to within
an accuracy of 4 km to permit accurate antenna pointing throughout an entire sta-
tion pass. A similar level of accuracy is required for many scheduling functions.
Spacecraft-specific events like shadows, station contacts, or payload activation are
commonly considered in the operations timeline with a one-second resolution. Con-
sidering an orbital velocity of 3–7 km/s, the spacecraft position must be known to
within several kilometers in order to predict an orbit-related event with the de-
sired accuracy. An angle tracking system locating the direction of the downlink
signal is generally sufficient to meet these types of basic operational requirements.
Aside from a transmitter, which is employed anyway for ground communication,
no specific onboard equipment is required for this type of tracking.

Quite a different accuracy can be achieved by ground-based or space-based
range and Doppler measurements. Their use is typically considered for missions
requiring active orbital control. Colocated geostationary satellites, for example,
may experience intentional proximities down to the level of several kilometers.
Accordingly, the position knowledge and the associated tracking accuracy must at
least be one order of magnitude better. Similar considerations hold for remote sens-
ing satellites. In order to enable a reliable geocoding of images with a resolution of
up to 10 m, a consistent orbit determination accuracy is mandatory. Considering the
visibility restrictions of common ground stations for low-Earth orbits, space-based
tracking systems like TDRSS, GPS, or DORIS are often preferred to achieve the
specific mission requirements. While ground-based tracking requires a conventional
transponder, the use of the other systems necessitates specialized onboard equip-
ment like steerable antennas (TDRSS) or a Doppler measurement unit (DORIS).
Utilization of GPS, in contrast, offers position accuracies of 100 m (navigation so-
lution) to 25 m (with dynamical filtering) even for simple C/A code receivers. GPS
tracking is therefore considered to be the sole source of orbit information for more
and more spacecraft.

Leaving the field of traditional spacecraft operations, one enters the domain
of scientific satellite missions with even more stringent accuracy requirements.
Among these, geodetic satellite missions like Starlet and Lageos have long been
the most challenging. Using satellite laser ranging systems, their orbits have been
tracked with an accuracy in the centimeter to decimeter region, thus allowing a
consistent improvement in trajectory models and Earth orientation parameters. For
other Earth exploration missions like TOPEX (Bath et al. 1989, 1998), ERS, or
JERS, the use of satellite altimeters has been a driving factor for the refinement of
orbital models and tracking techniques. Besides selected laser ranging campaigns,
these missions are mainly supported by space-based radio tracking systems like
TDRSS, GPS, DORIS, and PRARE. Their use has enabled the achievement of or-
bital accuracies in the decimeter region, with focus on the exact restitution of the
radial component. In the case of GPS usage, the differential processing of space-
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based and concurrent ground-based pseudorange and carrier phase measurements
provides for the required increase in precision over the Standard Positioning Ser-
vice. The GPS satellite orbits themselves are determined with position accuracies
of several centimeters, using GPS measurements collected by a global network of
geodetic reference stations (Springer et al. 1999).

A new era has been opened by the US/German GRACE mission (Davis et
al. 1999, Tapley et al. 2004a). Making use of a K/Ka-band intersatellite link that
provides dual one-way range measurements, changes in the distance of the two
spacecraft can be established with an accuracy of about 0.01 mm. In combination
with GPS and supplementary onboard accelerometers, this allows the detection of
temporal variations in the cumulative gravity field of the solid Earth, the oceans
and the atmosphere.



2. Introductory Astrodynamics

Even though elaborate models have been developed to compute the motion of
artificial Earth satellites to the high level of accuracy required for many applications
today, the main features of their orbits may still be described by a reasonably simple
approximation. This is due to the fact that the force resulting from the Earth’s central
mass outrules all other forces acting on the satellite by several orders of magnitude,
in much the same way as the attraction of the Sun governs the motion of the planets.
The laws of planetary motion, which were found empirically by Kepler about 400
years ago, may, therefore, equally well be applied to a satellite’s orbit around the
Earth.

In the sequel, the basic laws of orbital motion are derived from first principles.
For this purpose, a satellite is considered whose mass is negligible compared to the
Earth’s massM⊕. Assuming the Earth to be spherically symmetric, the acceleration
r̈ of the satellite is given by Newton’s law of gravity:

r̈ = −GM⊕
r3

r . (2.1)

Here the fraction −r/r in (2.1) denotes a unit vector pointing from the satellite
to the center of the Earth, which forms the origin of the coordinate system. The
magnitude of the acceleration is proportional to the inverse square of the satellite’s
distance r from the Earth’s center.

By measuring the mutual attraction of two bodies of known mass, the gravi-
tational constant G can directly be determined from torsion balance experiments.
Due to the small size of the gravitational force, these measurements are extremely
difficult, however, and G is presently only known with limited accuracy:

G = (6.67259 ± 0.00085)·10−11 m3kg−1s−2 (2.2)

(Cohen & Taylor 1987). Independent of the measurement of G itself, the gravita-
tional coefficientGM⊕, i.e. the product of the gravitational constant and the Earth’s
mass, has been determined with considerable precision from the analysis of laser
distance measurements of artificial Earth satellites:

GM⊕ = 398 600.4405 ± 0.001 km3s−2 (2.3)

(Ries et al. 1989). The corresponding value of the Earth’s mass is given by

M⊕ = 5.974·1024 kg . (2.4)
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2.1 General Properties of the Two-Body Problem

The study of the motion of a satellite in the spherically symmetric 1/r2 force field
of a central mass is usually referred to as Kepler’s problem, or as two-body problem.
It was first solved in the second half of the 17th century by Isaac Newton, who was
thus able to prove the validity of Kepler’s laws of planetary motion.

2.1.1 Plane Motion and the Law of Areas

The fact that the force exerted on the satellite always points to the Earth’s center
in the two-body problem has the immediate consequence that the orbit is confined
to a fixed plane for all times. The satellite cannot leave the orbital plane, since the
force is always anti-parallel to the position vector and, therefore, does not give rise
to any acceleration perpendicular to the plane.

Earth

Orbital plane

ΔA

F

r(t+Δt)

r(t)

r Δt

Fig. 2.1. The central force does
not alter the plane of the satel-
lite’s orbit

For a mathematical description of this fact, one forms the cross product of (2.1)
with the position vector r:

r × r̈ = −GM⊕
r3

(r × r)

= 0 .

(2.5)

The right-hand side in this equation is equal to zero since the cross product of a
vector with itself vanishes. The left-hand side may further be written as

r × r̈ = r × r̈ + ṙ × ṙ = d

dt
(r × ṙ) . (2.6)

Since the time derivative of r × ṙ equals zero, the quantity itself must be a constant,
i.e.

r × ṙ = h = const . (2.7)

Geometrically, the cross product of two vectors is a vector at right angles to both
of them. Therefore, the position vector r as well as the velocity vector ṙ are always
perpendicular to h, or – in other words – the orbit is confined to a plane. The vector
h is the angular momentum per unit mass or the specific angular momentum. It is
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related to the angular momentum vector l by l = mh, where m is the mass of the
satellite.

Equation (2.7), furthermore, implies Kepler’s second law or the law of areas.
Considering the satellite’s motion as linear over a small time step Δt , then

ΔA = 1

2
|r × ṙΔt | = 1

2
|h|Δt (2.8)

is just the area swept by the radius vector during the time Δt (see Fig. 2.1). The
absolute value h = |h| is therefore known as areal velocity and since h and h

remain constant, the radius vector sweeps over equal areas in equal time intervals
(Kepler’s second law).

2.1.2 The Form of the Orbit

Some other properties of the orbit may be found by multiplying both sides of the
equation of motion (2.1) with the vector h:

h × r̈ = −GM⊕
r3

(h × r)

= −GM⊕
r3

((r × ṙ)× r)

= −GM⊕
r3 (ṙ(r · r)− r(r · ṙ)) .

(2.9)

Now, since

d

dt

(r

r

)
= 1

r
ṙ − ṙ

r2
r

= 1

r3
(ṙ(r · r)− r(r · ṙ))

(2.10)

one finds that

h × r̈ = −GM⊕
d

dt

(r

r

)
. (2.11)

Integrating both sides with respect to time yields

h × ṙ = −GM⊕
(r

r

)
− A (2.12)

where −A means an additive constant of integration that is determined by the initial
position and velocity. A is called the Runge–Lenz or Laplace vector (Goldstein
1980, Battin 1987). Note that the negative sign of A is just a matter of convention,
which facilitates the geometrical interpretation.

The vector h × ṙ is part of the orbital plane since it is perpendicular to the
angular momentum vector, and the same is true for the unit position vector r/r .
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Therefore, A lies in the orbital plane, too. Some further properties may be revealed
by multiplying the last equation with r , which results in

(h × ṙ) · r = −GM⊕r − A · r . (2.13)

Introducing ν, the true anomaly, as the angle between A and the position vector r ,
one arrives at

h2 = GM⊕r + Ar cos ν , (2.14)

where the identity

(a × b) · c = −(c × b) · a (2.15)

has been used to simplify the left-hand side of (2.13). One may now define two
(positive) auxiliary quantities

p = h2

GM⊕
, e = A

GM⊕
(2.16)

to finally obtain the conic section equation

r = p

1 + e cos ν
. (2.17)

This equation relates the satellite’s distance r to the angle between its position vector
and the reference direction given by A, and thus defines the satellite’s path in the
orbital plane. It may further be seen that the distance varies between a minimum
value of

rmin = p

1 + e
(2.18)

for ν = 0, and a maximum value of

rmax =
{ p

1 − e
for 0 ≤ e < 1

∞ for 1 ≤ e .
(2.19)

The corresponding points of the orbit are known as perigee and apogee and their
connection is the line of apsides. The mean value of the minimum and the maximum
distance is the semi-major axis a, which is found to be

a = 1

2
(rmin + rmax) = p

1 − e2
= h2

GM⊕(1 − e2)
(2.20)

for an orbit with a finite apogee distance. The constant e is called eccentricity, since
it is a measure of the orbit’s deviation from a circle (which corresponds to e = 0).
The parameter p, which denotes the distance of the satellite from the Earth’s center
at right angles to perigee and apogee, is called semi-latus rectum (see Fig. 2.2).

Equation (2.17) is known as the equation of a conic section in polar coordinates.
It is an extension of Kepler’s first law, stating that planetary orbits are ellipses. In
general, three distinct types of curves may be obtained from intersecting a plane
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p p pr r rν ν ν

Ellipse (e=0.5) Parabola (e=1.0) Hyperbola (e=1.5)

Fig. 2.2. Conic sections with eccentricities e = 0.5, e = 1.0, and e = 1.5 with the same semi-latus
rectum p

with a cone. They are known as ellipses, parabolas, and hyperbolas, and have eccen-
tricities smaller than, equal to, and larger than one, respectively. In the following, the
discussion is confined to the elliptic motion of Earth-orbiting satellites in contrast
to deep space probes, which leave the Earth’s gravity field on hyperbolic orbits. A
general discussion of the geometry of conic sections may be found in Montenbruck
(1989) together with formulas for calculating parabolic or hyperbolic orbits.

2.1.3 The Energy Integral

Last but not least, another interesting law of Keplerian motion may be derived,
which relates the satellite’s velocity to the distance from the center of the Earth.
For this purpose one forms the square of both sides of (2.12) and obtains

(h × ṙ)2 = (GM⊕)2 + 2GM⊕
r ·A
r

+ A2

= (GM⊕)2(1 + 2e cos ν + e2)

= (GM⊕)2(2(1 + e cos ν)− (1 − e2)) .

(2.21)

Since the vectors h and ṙ are perpendicular, the value of the left-hand side is equal
to h2v2, using v = |ṙ | to denote the satellite’s velocity. Substituting the value
1/a = GM⊕(1 − e2)/h2 of the reciprocal semi-major axis, and making use of the
conic section equation, finally yields the equation

v2 = GM⊕
(

2

r
− 1

a

)
, (2.22)
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which is called the vis-viva law. It is equivalent to the energy law, which states that
the sum of the kinetic energy

Ekin = 1

2
mv2 (2.23)

and the potential energy

Epot = −GmM⊕
r

(2.24)

is constant during motion:

Etot = 1

2
mv2 − GmM⊕

r
= −1

2

GmM⊕
a

. (2.25)

As may be seen from this expression, the total energy depends only on the reciprocal
semi-major axis, not on the eccentricity of the orbit. The energy of an elliptic satellite
orbit which is always bound to the Earth, is negative, since the semi-major axis is a
positive quantity. Parabolic (1/a = 0) and hyperbolic (1/a < 0) orbits, on the other
hand, have a zero or positive energy, which allows a satellite to reach an infinite
distance from the Earth.
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orbits

For a satellite on a circular orbit (r = a) the vis-viva law yields a velocity of

vcirc =
√√
GM⊕
a

, (2.26)

which evaluates to 7.71 km/s for a low-Earth orbit at an altitude of 320 km, and
corresponds to an orbital period

Tcirc = 2πa

v
= 2π

√√
a3

GM⊕
(2.27)
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of 91 minutes (Fig. 2.3). For a satellite at a distance of 42 164 km from the center of
the Earth (i.e. at an altitude of 35 786 km) the velocity is only 3.07 km/s, and the time
of revolution amounts to 23h56m. Since this is just the period of the Earth’s rotation,
a satellite at this height appears stationary with respect to the Earth, if it is placed
above the equator and orbits the Earth in an easterly direction. Due to this fact,
geostationary orbits are of special interest for e.g. telecommunications satellites,
which may provide a continuous transmission from one continent to another.

Geostationary orbit

Transfer 
orbit

Low−Earth 
orbit

v=1.61 km/s

v=7.71 km/s

v=3.07 km/s

v=10.13 km/s

Fig. 2.4. An application of the vis-viva law:
the velocity requirement for orbital transfer
from a circular low-Earth orbit to geosta-
tionary orbit

For an eccentric orbit the satellite’s velocity varies between a maximum of

vper =
√√
GM⊕
a

√√
1 + e

1 − e
(2.28)

at perigee and a minimum of

vapo =
√√
GM⊕
a

√√
1 − e

1 + e
(2.29)

at apogee according to the vis-viva law. Considering, for example, an orbit with
its perigee at an altitude of 320 km and its apogee at an altitude of 35786 km
(a = 24430 km, e = 0.726), these velocities amount to 10.13 km/s and 1.61 km/s,
respectively. As may be concluded from these figures, a velocity increment of
2.42 km/s is required to transfer a satellite on a low-Earth orbit onto an elliptic orbit
with its apogee near the geostationary orbit. An additional 1.46 km/s is, further-
more, required in the apogee to circularize the orbit by raising the perigee to the
same altitude (Fig. 2.4).
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2.2 Prediction of Unperturbed Satellite Orbits

2.2.1 Kepler’s Equation and the Time Dependence of Motion

So far the discussion of Keplerian orbits has mainly been concerned with the geo-
metrical form of a satellite’s orbit in space. From the law of gravity it has been
concluded that the motion may not follow an arbitrary curve in space, but is con-
fined to an ellipse or another conic section. However, no information on the time
dependence of the motion has yet been derived, i.e. the orbital position at a specific
time is still unknown.

Orbital ellipse

Auxiliary circle

Apogee Perigee

r

E

y

xa ea

ν

Fig. 2.5. The definition of the ec-
centric anomaly E

For this purpose an auxiliary variableE, which is called the eccentric anomaly,
is defined via the equations

x̂ = r cos ν =: a (cosE − e)

ŷ = r sin ν =: a
√√

1 − e2 sinE
(2.30)

or equivalently

r = a(1 − e cosE) . (2.31)

The geometrical meaning of E is illustrated by Fig. 2.5.
Using the coordinates x̂ and ŷ, which denote the satellite’s position in the orbital

plane with respect the center of the Earth, one may express the areal velocityh=|h|
as a function of E:

h = x̂ · ˙̂y − ŷ · ˙̂x
= a (cos(E)− e) · a

√√
1−e2 cos(E)Ė

+ a
√√

1−e2 sin(E) · a sin(E)Ė

= a2
√√

1 − e2Ė(1 − e cos(E)) .

(2.32)

This equation may further be simplified using

h =
√√
GM⊕a(1 − e2) (2.33)
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to give the following differential equation for the eccentric anomaly:

(1 − e cosE)Ė = n . (2.34)

Here the mean motion

n =
√√
GM⊕
a3

(2.35)

has been introduced to simplify the notation. Integrating with respect to time finally
yields Kepler’s Equation

E(t)− e sinE(t) = n(t − tp) , (2.36)

where tp denotes the time of perigee passage at which the eccentric anomaly van-
ishes. The right hand side

M = n(t − tp) (2.37)

is called the mean anomaly. It changes by 360◦ during one revolution but – in
contrast to the true and eccentric anomalies – increases uniformly with time. Instead
of specifying the time of perigee passage to describe the orbit, it is customary to
introduce the valueM0 of the mean anomaly at some reference epoch t0. The mean
anomaly at an arbitrary instant of time may then be found from

M = M0 + n(t − t0) . (2.38)

The orbital period, i.e. the time during which the mean anomaly changes by 2π or
360◦, is proportional to the inverse of the mean motion n and is given by

T = 2π

n
= 2π

√√
a3

GM⊕
. (2.39)

This relation is essentially Kepler’s third law, which states that the second power
of the orbital period is proportional to the third power of the semi-major axis. The
same result that was earlier derived for circular orbits from the vis-viva law (see
(2.27)) is therefore valid for periodic orbits of arbitrary eccentricity.

2.2.2 Solving Kepler’s Equation

Kepler’s equation relates the time t to the coordinates x̂ and ŷ in the orbital plane
via the eccentric anomaly. In order to obtain the position of the satellite at time t
one has to know the time of perigee passage and the semi-major axis to calculate
the mean anomaly. One may then find the value of E that fulfils (2.36) and finally
obtain x̂ and ŷ from (2.30).

Kepler’s equation can, however, be solved by iterative methods only. A common
way is to start with an approximation of

E0 = M or E0 = π (2.40)
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and employ Newton’s method to calculate successive refinementsEi until the result
changes by less than a specified amount from one iteration to the next. Defining an
auxiliary function

f (E) = E − e sinE − M , (2.41)

the solution of Kepler’s equation is equivalent to finding the root of f (E) for a
given value of M . Applying Newton’s method for this purpose, an approximate
root Ei of f may be improved by computing

Ei+1 = Ei − f (Ei)

f ′(Ei)
= Ei − Ei − e sinEi − M

1 − e cosEi

. (2.42)

Note that this expression has to be evaluated with E in radians (1 rad = 180◦/π )
and not in degrees, to avoid erroneous results.

The starting value E0 = M recommended above is well suited for small ec-
centricities, since E only differs from M by a term of order e. For highly eccentric
orbits (e.g. e > 0.8) the iteration should be started from E0 = π to avoid any
convergence problems during the iteration.

A more general discussion of starting values and iteration procedures for solv-
ing Kepler’s equation can be found in the literature (see Smith 1979, Danby &
Burkardt 1983, Taff & Brennan 1989, and references therein). Great efforts have
been made to develop methods that require a minimum of iterations and may safely
be applied for all values of e andM . Since the critical case of eccentricities close to
unity is rarely encountered in the practical computation of periodic Earth satellite
orbits, the discussion is somewhat academic, however. Unless one has to solve Ke-
pler’s equation exceedingly often or in a real-time application, there is little need
to look for methods converging faster than Newton’s method.

2.2.3 The Orbit in Space

So far the satellite’s motion has been discussed in its natural orbital-plane reference
system, which allows the most simple description. More general expressions can
be obtained by introducing the unit vector P = A/|A|, which points towards the
perigee (cf. (2.12)) and the perpendicular unit vector Q, corresponding to a true
anomaly of ν = 90◦. Using these vectors one may express the three-dimensional
position by

r = x̂P + ŷQ

= r cos ν P + r sin νQ

= a(cosE − e)P + a
√√

1 − e2 sinEQ

(2.43)

and the velocity by

ṙ = ˙̂xP + ˙̂yQ

=
√√
GM⊕a
r

(− sinE P +
√√

1 − e2 cosEQ) ,
(2.44)

since aĖ = √√
GM⊕a/r according to (2.34).
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+z (North)

δ

+x (Equinox ϒ)

+y

α

Fig. 2.6. The equatorial coordinate system

The most common coordinate system for describing Earth-bound satellite orbits
is the geocentric equatorial coordinate system, which is aligned with the Earth’s
rotation axis and equator. Its origin is the center of the Earth, the z-axis points to
the north pole and the equatorial plane forms the x-y reference plane. The x-axis
is aligned with the vernal equinox (ϒ), which describes the direction of the Sun
as seen from Earth at the beginning of spring time or, equivalently, the intersection
of the equatorial plane with the Earth’s orbital plane (cf. Chap. 5). As illustrated
in Fig. 2.6, the position of a point in the equatorial coordinate system may be
specified by either the Cartesian coordinates (x, y, z) or the polar coordinates right
ascensionα, declination δ, and geocentric distance r . The conversion from spherical
to Cartesian coordinates and vice versa may be accomplished via the basic relations

r =
⎛
⎝

x

y

z

⎞
⎠ = r

⎛
⎝

cos δ cos α
cos δ sin α
sin δ

⎞
⎠ (2.45)

and

α = arctan
y

x
δ = arctan

z√√
x2 + y2

r =
√√
x2 + y2 + z2 . (2.46)

Here the quadrant ofαmust be chosen in such a way that the sign of the denominator
(x) is equal to the sign of cos α, i.e. −90◦ < α < +90◦ for x > 0 and +90◦ <
α < +270◦ for x < 0.

In order to describe the orientation of the orbital plane and the perigee with
respect to the equatorial coordinate system, three angles are commonly employed
(see Fig. 2.7):

i The inclination gives the angle of intersection between the orbital plane and
the equator. An inclination of more than 90◦ means that the satellite’s motion
is retrograde, its direction of revolution around the Earth being opposite to
that of the Earth’s rotation.
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Fig. 2.7. The orbital elements i,Ω ,
and ω of a satellite

Ω The right ascension of the ascending node indicates the angle between the
vernal equinox and the point on the orbit at which the satellite crosses the
equator from south to north.

ω The argument of perigee is the angle between the direction of the ascending
node and the direction of the perigee.

The satellite’s position in space may be expressed as a function of these angles
by a sequence of three elementary transformations. In the orbital plane system,
which is defined by the unit vectors P , Q and W = h/h, the coordinates are given
by

(x̂, ŷ, ẑ) = (r cos ν, r sin ν, 0) . (2.47)

In a coordinate system that is rotated around W by an angle of −ω (i.e. with an
x ′-axis pointing to the ascending node), the coordinates are

(x ′, y ′, z′) = (r cos(ν + ω), r sin(ν + ω), 0) (2.48)

and the corresponding transformation is written as

r

⎛
⎝

cos(ν + ω)

sin(ν + ω)

0

⎞
⎠ = Rz(−ω) r

⎛
⎝

cos ν
sin ν
0

⎞
⎠ . (2.49)

In order to express the satellite’s position in equatorial coordinates, two further
rotations are required. First, a rotation around the x ′-axis by an angle −i is used
to obtain equatorial coordinates counted from the line of nodes. A final rotation
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around the new z′′-axis by −Ω then yields the equatorial coordinates counted from
the direction of the equinox1:

⎛
⎝

x

y

z

⎞
⎠ = Rz(−Ω)Rx(−i)Rz(−ω) r

⎛
⎝

cos ν
sin ν
0

⎞
⎠ . (2.50)

Evaluating this expression one finds
⎛
⎝

x

y

z

⎞
⎠ = r

⎛
⎝

cos u cosΩ − sin u cos i sinΩ
cos u sinΩ + sin u cos i cosΩ
sin u sin i

⎞
⎠ (2.51)

with u = ω+ν (argument of latitude) as the angle between r and the line of nodes.
Similar considerations lead to the coordinate representation of the vectors P and
Q that correspond to points at unit distance with a true anomaly of 0◦ and 90◦:

P =
⎛
⎝

+ cosω cosΩ − sinω cos i sinΩ
+ cosω sinΩ + sinω cos i cosΩ
+ sinω sin i

⎞
⎠ (2.52)

and

Q =
⎛
⎝

− sinω cosΩ − cosω cos i sinΩ
− sinω sinΩ + cosω cos i cosΩ
+ cosω sin i

⎞
⎠ . (2.53)

The third vector W may finally be expressed as

W =
⎛
⎝

+ sin i sinΩ
− sin i cosΩ
+ cos i

⎞
⎠ . (2.54)

It is noted that P , Q, and W are just the column vectors of the matrix

(P ,Q,W ) = Rz(−Ω)Rx(−i)Rz(−ω) , (2.55)

which is especially useful when coordinates have to be transformed between the
equatorial and the orbital-plane coordinate system. The three vectors are usually
referred to as Gaussian vectors.

1The elementary matrices

Rx(φ)=
⎛
⎝

1 0 0
0 +cosφ +sinφ
0 −sinφ +cosφ

⎞
⎠ Ry(φ)=

⎛
⎝

+cosφ 0 −sinφ
0 1 0

+sinφ 0 +cosφ

⎞
⎠ Rz(φ)=

⎛
⎝

+cosφ +sinφ 0
−sinφ +cosφ 0

0 0 1

⎞
⎠

are employed to describe rotations around the x, y and z-axes. The signs are chosen in such a way
that a positive angle φ corresponds to a positive (counterclockwise) rotation of the reference axes
as viewed from the positive end of the rotation axis towards the origin (Goldstein 1980, Mueller
1969).



28 2. Introductory Astrodynamics

2.2.4 Orbital Elements from Position and Velocity

As has been shown, a total of six independent parameters are required to describe
the motion of a satellite around the Earth. Two of these orbital elements (a and e)
describe the form of the orbit, one element (M) defines the position along the orbit
and the three others (Ω , i, and ω) finally define the orientation of the orbit in space.
Given these six elements, it is always possible to uniquely calculate the position
and velocity vector.

Vice versa there is exactly one set of orbital elements that corresponds to given
initial values of r and v, and one may ask how to find these elements. Part of the
answer is already evident from the solution of the two-body problem presented
above. First of all the areal velocity vector

h = r × ṙ =
⎛
⎝

yż− zẏ

zẋ − xż

xẏ − yẋ

⎞
⎠ (2.56)

and its modulus h can be obtained from the position and velocity. Then, from the
representation of h or W = h/h as a function of i and Ω in (2.54), it follows that

⎛
⎝

sin i sinΩ
sin i cosΩ
cos i

⎞
⎠ =

⎛
⎝

+hx/h
−hy/h
+hz/h

⎞
⎠ =

⎛
⎝

+Wx

−Wy

+Wz

⎞
⎠ . (2.57)

Hence the inclination and the right ascension of the ascending node are given by2

i = arctan

⎛
⎝
√√
W 2
x +W 2

y

Wz

⎞
⎠ Ω = arctan

(
Wx

−Wy

)
. (2.58)

The areal velocity can further be used to derive the semi-latus rectum

p = h2

GM⊕
. (2.59)

Next, the vis-viva law yields the semi-major axis

a =
(

2

r
− v2

GM⊕

)−1

(2.60)

and consequently the mean motion

n =
√√
GM⊕
a3

. (2.61)

2In evaluating expressions of the form α = arctan(y/x) the quadrant of α must be chosen in such
a way that the sign of the denominator (x) is equal to the sign of cosα, i.e. −90◦ < α < +90◦ for
x > 0 and +90◦ < α < +270◦ for x < 0.
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For elliptic orbits a will always be positive. The eccentricity e follows from

e =
√√

1 − p

a
. (2.62)

Considering (2.31) and the identity

r ·ṙ = −a (cos(E)− e) · a sin(E)Ė

+a√√1 − e2 sin(E) · a√√1 − e2 cos(E)Ė

= a2ne sin(E)

(2.63)

one may solve for e sin(E) and e cos(E) to find the eccentric anomaly from

E = arctan

(
r ·ṙ/(a2n)

1 − r/a

)
. (2.64)

The eccentric anomaly may now be used to obtain the mean anomaly from Kepler’s
equation

M(t) = E(t)− e sinE(t) (in radians) (2.65)

with t being the epoch of r and ṙ .
In order to find the remaining orbital element ω, one has to determine the

argument of latitude u first. Solving (2.51) for cosu and sin u yields

u = arctan

(
z/ sin i

x cosΩ + y sinΩ

)
= arctan

(
z

−xWy + yWx

)
. (2.66)

Furthermore, the true anomaly is given by

ν = arctan

(√√
1 − e2 sinE

cosE − e

)
(2.67)

taking proper care of the correct quadrant (cf. (2.30)). The result may finally be
used to obtain the argument of perigee from

ω = u− ν . (2.68)

2.2.5 Non-Singular Elements

In many applications, satellite orbits are chosen to be near-circular, to provide a
constant distance from the surface of the Earth or a constant relative velocity. Typ-
ical examples are low-altitude remote sensing satellites or geostationary satellites,
which are furthermore required to orbit the Earth in a near-equatorial plane.

While there is no inherent difficulty in calculating position and velocity from
known orbital elements with e and i close to zero, the reverse task may cause prac-
tical and numerical problems. These problems are due to singularities arising from
the definition of some of the classical orbital elements. The argument of perigee,
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for example, is not a meaningful orbital element for small eccentricities, since the
perigee itself is not well defined for an almost circular orbit. Small changes of the
orbit may change the perigee location by a large amount, and small numerical er-
rors may lead to enhanced errors in the computation of ω since the equation for E
becomes almost singular in this case. Similar considerations apply to small incli-
nations where the line of nodes is no longer well defined and where the equations
for Ω become singular. Several attempts have therefore been made to substitute
other parameters for the classical Keplerian elements. These elements are usually
referred to as non-singular, regular or equinoctial elements (see e.g. Broucke &
Cefola 1972).

A possible set of regular elements that may be used for both low eccentricities
and inclinations is defined by3

a h = e sin(Ω + ω) p = sin(i/2) sinΩ

l = Ω + ω +M k = e cos(Ω + ω) q = sin(i/2) cosΩ .
(2.69)

Geometrically, k and h closely approximate the projection of the Runge–Lenz
vector A into the equatorial plane for orbits of small inclination, and are likewise
used to define the eccentricity and the direction of perigee. Similarly p and −q give
the approximate projection of the orbital-plane normal vector W onto the equator,
if one neglects the factor 1/2, which has been introduced to allow use of these
elements for high inclinations, and to avoid a singularity at i = 90◦. The mean
longitude l, which is defined as the sum of the right ascension of the ascending
node, the argument of perigee and the mean anomaly, may further be interpreted
as the approximate right ascension of the satellite for near-circular orbits of small
inclination.

An alternative set of non-singular elements defined by

a h = e sin(Ω + ω) p = tan(i/2) sinΩ

l = Ω + ω +M k = e cos(Ω + ω) q = tan(i/2) cosΩ
(2.70)

is due to Broucke & Cefola (1972). While (2.69) is preferable, due to the sim-
plified structure of the associated partial derivatives of the position and velocity
vector (Dow 1975), the second set (2.70) is more convenient when working with
perturbational equations (see Battin 1987).

Adopting the convention of equinoctial elements by Broucke & Cefola (1972),
the satellite position and velocity vector may be expressed as

r = X1f + Y1g ṙ = Ẋ1f + Ẏ1g (2.71)

in analogy with (2.43) and (2.44). The orthogonal unit vectors

f = cos(ω+Ω)P − sin(ω+Ω)Q = 1

1+p2+q2

⎛
⎝

1−p2+q2

2pq
−2p

⎞
⎠ (2.72)

3For consistency with the notation commonly employed in the literature, the symbols h and p

are used to denote non-singular elements throughout this section. They should not be confused with
the areal velocity and the semi-latus used elsewhere.
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and

g = sin(ω+Ω)P + cos(ω+Ω)Q = 1

1+p2+q2

⎛
⎝

2pq
1+p2−q2

2q

⎞
⎠ (2.73)

span the orbital plane like the Gaussian vectors, but are rotated by an angle ofΩ+ω

with respect to P and Q. For small inclinations, f and g almost coincide with the
x- and y-axis of the equatorial coordinate system, respectively.

After proper rearrangement of (2.43) and (2.44), the Cartesian coordinates with
respect to f and g, and the corresponding time derivatives, can be expressed as

X1 = a ((1−h2β) cos(F )+ hkβ sin(F )− k)

Y1 = a ((1−k2β) sin(F )+ hkβ cos(F )− h)

Ẋ1 = a2n

r
(+hkβ cos(F )− (1−h2β) sin(F ))

Ẏ1 = a2n

r
(−hkβ sin(F )+ (1−k2β) cos(F ))

(2.74)

making use of the auxiliary quantity

β = 1

1 + √√
1−h2−k2

(2.75)

(Cefola 1972). The eccentric longitude

F = E + ω +Ω (2.76)

replaces the eccentric anomaly when working with non-singular elements, and is
found by solving a modified version of Kepler’s equation given by

F − k sin(F )+ h cos(F ) = l = M + ω +Ω . (2.77)

Finally, the radius r is expressed as

r=a (1 − k cos(F )− h sin(F )) (2.78)

in terms of the equinoctial elements.
The equinoctial elements defining the orientation of the orbital plane are related

to the orbital plane normal vector W = (r × ṙ)/|r × ṙ | by

p = +Wx

1 +Wz

q = −Wy

1 +Wz

, (2.79)

which may be used to determine the vectors f and g corresponding to a given
position and velocity. Projection of the Runge–Lenz vector

A = ṙ × (r × ṙ)−GM⊕
r

r
(2.80)
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onto these reference vectors then yields the eccentricity components

k = A·f
GM⊕

h = A·g
GM⊕

. (2.81)

Inserting the in-plane coordinates

X1 = r ·f Y1 = r ·g , (2.82)

into (2.74), and solving for the sine and cosine of F , furthermore yields the expres-
sions

cos(F ) = k + (1−k2β)X1 − hkβY1

a
√√

1−h2−k2

sin(F ) = h + (1−h2β)Y1 − hkβX1

a
√√

1−h2−k2

(2.83)

for determining the eccentric longitude, from which the mean longitude l can be
obtained via Kepler’s equation (2.77).

2.3 Ground-Based Satellite Observations

2.3.1 Satellite Ground Tracks

At each instant of time, the intersection of the orbital plane of a satellite with the
surface of the Earth yields a great circle, which depends only on the inclination
of the orbital plane and the position of the ascending node (Fig. 2.8). This great
circle intersects the Earth’s equator at an angle that is equal to the inclination i of the
orbital plane, and covers geographical latitudes between a minimum of ϕ = −i and
a maximum of ϕ = i. The geographical latitude ϕ of the satellite and its ground
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������

��

Fig. 2.8. The ground projection of a satellite orbit
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projection is equal to its declination δ, both of which denote the angle between
the geocentric radius vector and the equatorial plane4. The geographical longitude
λ, on the other hand, denotes the angle between the Greenwich meridian and the
meridian through the point. It is counted positively towards the east, and differs
from the right ascension α by the right ascension Θ(t) of the Greenwich meridian
at time t :

λ = α −Θ(t) . (2.84)

Denoting by d the time in days5 since 12h on 1 January 2000, the angle Θ(t) is
given by

Θ = 280.4606◦ + 360.9856473◦·d , (2.85)

where small secular changes have been neglected. Θ increases by 360◦ during one
revolution of the Earth, which lasts approximately 23h56m, i.e. somewhat less than
one day. SinceΘ(t) is a measure of the time between subsequent meridian crossings
of a star for an observer on Earth, it is also known as sidereal time or Greenwich
Hour Angle.
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Fig. 2.9. Sample ground track of the circular low-Earth orbit of Echo 1 (a = 7978 km, i = 47.2◦,
T = 118.m3)

As a result of the Earth’s rotation, the actual ground track of a satellite differs
from the simple great circle that results from the intersection of the orbital plane
with the surface of the Earth at a specific instant of time. For a satellite with an

4For the sake of simplicity the small polar flattening of the Earth is neglected throughout this
section.

5Making use of the Modified Julian Date MJD (see Annex A.1), the number of days since J2000
is given by d = MJD − 51544.5.
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orbital period T , the geographic longitude λΩ = Ω − Θ at which the satellite
crosses the equator, is shifted by

ΔλΩ = −Θ̇ ·T = −0.2507◦/min·T (2.86)

from one revolution to the next. This westwards shift of ground tracks from subse-
quent orbits is clearly visible in the projection of three sample orbits of Echo 1 that
is illustrated in Fig. 2.9 (Bohrmann 1963). After its launch in August 1960, Echo 1
orbited the Earth once every two hours at a nearly constant altitude of 1300 km and
an inclination of i = 47.2◦. The corresponding ground tracks cover South America
and Australia in the southern hemisphere, as well as North America, Europe and
parts of Asia in the northern hemisphere. While the general direction of motion is
from west to east (left to right in Fig. 2.9), the ground track is subject to a superposed
westwards shift of almost 30◦ per orbit as a consequence of the Earth’s rotation.

The ground track of Echo 1 is typical of all near-circular low-altitude Earth or-
bits, which differ only in the inclination and the resulting coverage of high northern
and southern latitudes. In the case of eccentric orbits, the resulting ground track
pattern may be quite different, however, for a geostationary transfer orbit and a
Molniya orbit, as illustrated in Figs. 2.10 and 2.11.
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Fig. 2.10. Ground track of a sample geostationary transfer orbit (a = 24 400 km, e = 0.7307,
i = 7.0◦, T = 10.h5)

Transfer orbits similar to the one shown in Fig. 2.10 are commonly used to
raise a communications satellite to a geostationary orbit above the Earth’s equator,
where it orbits the Earth once every 23h56m and maintains a nearly fixed position
with respect to the surface of the Earth (see also Fig. 2.3). The inclination of 7◦,
which is typical for a launch with an Ariane rocket from French Guyana, gives rise
to small oscillations of the ground track around the equator. In contrast to low-Earth
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orbits, however, the ground track exhibits an S-shaped pattern, which is due to the
small angular speed of the satellite at high altitudes. Near apogee, at a distance
of roughly 42 000 km, the satellite’s inertial velocity amounts to 1.6 km/s, which
corresponds to an angular velocity of only 190◦/d. As a consequence, the satellite
falls back behind the Earth’s rotation and appears to move in a westward direction
opposite to the general direction of motion.
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Fig. 2.11. 24h ground track of a sample Molniya type orbit (a = 26 555 km, e = 0.7222, i = 63.4◦,
ω = 270.0◦, T = 12.h0)

Molniya orbits, named after a series of spacecraft built in the former Soviet
Union, are of special interest for satellite telecommunications in high northern (or
southern) latitudes that cannot properly be reached by geostationary satellites. The
orbital period of Molniya-type satellites is adjusted to be half that of the Earth’s
rotation, which results in a constant ground track pattern that is continuously re-
peated (Fig. 2.11). In order to achieve an optimum coverage of a particular country
in the northern hemisphere (e.g. Russia or Canada), the perigee of the inclined orbit
is located at southern latitudes near ω = −90◦. Since the satellite spends most
of the time near the apogee of its highly eccentric orbit (e ≈ 0.72), it is usually
visible for at least eight hours per orbit (and day) from that country. A set of three
satellites sharing the same Molniya-type orbit, but passing perigee eight hours apart
is therefore sufficient to ensure full-time telecommunications services.

A common feature of all Molniya-type satellites is the orbital inclination of
i ≈ 63◦. It ensures a good coverage of the northern hemisphere and, at the same
time, minimizes the impact of orbital perturbations caused by the Earth’s oblateness.
Due the attraction exerted by the Earth’s equatorial bulge, each satellite is subject
to small periodic deviations from a purely Keplerian orbit. The right ascension of
the ascending node, and the argument of perigee are further affected by a long-term
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change that amounts to

ΔΩ = −0.584◦
(
R⊕
p

)2

cos(i) (2.87)

and

Δω = +0.292◦
(
R⊕
p

)2

(5 cos2(i)− 1) (2.88)

per orbit (see e.g. Bohrmann 1963, Escobal 1965). HereR⊕ stands for the equatorial
Earth radius of 6378 km, while p = a(1−e2) is the orbital parameter or semi-latus
rectum. As can be seen from these equations, the secular drift of the perigee vanishes
for an inclination of i = 63.4◦, which is also known as the critical inclination. By
choosing this particular value for the orbital inclination of the Molniya satellites,
it can easily be assured that the perigee and apogee remain at the desired position
even without active correction maneuvers.

 
eE

eZ

eN

Fig. 2.12. Satellite motion in the local
tangent coordinate system. Only the part
of the orbit which is marked by a bold
line, and the corresponding ground track,
are visible from the given station

2.3.2 Satellite Motion in the Local Tangent Coordinate System

A natural coordinate system for describing the motion of a satellite with respect to
an observer or ground station is the topocentric or local tangent coordinate system.
For a given point on Earth, it is aligned with the local horizontal plane, i.e. with
the plane that is tangential to the surface of the Earth at that point. Commonly,
three orthogonal unit vectors eE, eN and eZ pointing in the east, north and zenith
direction, are employed to define the reference axes of the local tangent coordinate
system for a given station. As illustrated in Fig. 2.12, the vectors eN and eE are
aligned with the meridian and the parallel of latitude passing through the station,
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while eZ is perpendicular to the horizontal plane in the direction away from the
center of the Earth.

In order to express a satellite’s position in the local tangent coordinate system,
a three-step transformation is required. Denoting the geocentric equatorial coordi-
nates by r , a rotation by the Greenwich hour angle Θ around the z-axis yields the
position

ref = Rz(Θ)r (2.89)

in an Earth-fixed coordinate system that is aligned with the equatorial plane and
the Greenwich meridian. The corresponding coordinates of a ground station at
longitude λ and latitude ϕ are given by

R = R⊕

⎛
⎝

cos ϕ cos λ
cosϕ sin λ

sin ϕ

⎞
⎠ , (2.90)

and the difference

sef = ref − R (2.91)

then yields the topocentric station-satellite vector in Earth-fixed, equatorial coor-
dinates. The east, north and zenith unit vectors in the same coordinate system are
given by

eE =
⎛
⎝

− sin λ
+ cosλ

0

⎞
⎠ eN =

⎛
⎝

− sin ϕ cos λ
− sin ϕ sin λ

cosϕ

⎞
⎠ eZ =

⎛
⎝

cosϕ cosλ
cos ϕ sin λ

sin ϕ

⎞
⎠ . (2.92)

Defining the orthogonal transformation matrix

E = (eE eN eZ)
T , (2.93)

the satellite’s local tangent coordinates may finally be written as

s =
⎛
⎝
sE

sN

sZ

⎞
⎠ = E (Rz(Θ)r − R) . (2.94)

Here sE, sN and sZ are the projection of the station-satellite vector onto the east,
north and zenith unit vectors.

For the description of antenna pointing directions the Cartesian coordinates are
commonly supplemented by the azimuth and elevation angles

A = arctan

(
sE

sN

)
E = arctan

⎛
⎝ sZ√√

s2
E + s2

N

⎞
⎠ . (2.95)

The azimuthA gives the angle between the projection of the station-satellite vector
on the horizontal plane and the north direction. It is counted positively from the north
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Fig. 2.13. Variation of topocentric distance, line-of-sight velocity, azimuth and elevation as a func-
tion of time for the sample satellite orbit and ground station shown in Fig. 2.12

to the east as illustrated in Fig. 2.12. The elevation E, on the other hand, describes
the angle between the topocentric satellite vector and the horizontal plane.

As an example, Fig. 2.13 illustrates the variation of the topocentric distance and
the pointing direction for the satellite orbit and ground station shown in Fig. 2.12.
The satellite moves around the Earth in a circular orbit at an altitude of h = 960 km
and an inclination of i = 97◦. It appears above the horizon some six minutes after its
passage through the ascending node, which is assumed to lie above central Africa.

The complete pass over the ground station lasts about 17 minutes, during which
the distance s = |s| varies between a minimum of 1100 km and a maximum of
3600 km. When the satellite appears above the horizon, it approaches the station
at a maximum velocity of 6 km/s, and a similar velocity in the opposite direction
is attained at the end of the visibility. At the time of closest approach, which more
or less coincides with the maximum elevation, the line-of-sight velocity ṡ passes
through zero. The S-shaped pattern in the variation of ṡ shown in Fig. 2.13 is typical
for circular low-Earth orbits, and may be used to derive the distance and altitude
of a satellite passing over a ground station (Mass & Vassy 1962). The elevation
shows a steep maximum of nearly 55◦ when the satellite passes next to the station.
At the same time, the azimuth value changes rapidly from its initial value of 150◦
(south-south-east) to near 0◦ (north) at the end of the visibility. A maximum angular
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velocity of Ȧ ≈ 0.5◦/s is required to follow the spacecraft with a ground station
antenna, in this particular case.

2.4 Preliminary Orbit Determination

Ground-based satellite observations like angle, distance or velocity measurements
depend directly on the satellite’s motion with respect to the center of the Earth. They
may therefore be used to deduce the orbital elements of a satellite, if its orbit is not
known from other sources. Situations in which a satellite orbit must be determined
from a small set of available measurements without additional information are likely
to occur during tracking of foreign spacecraft, in the case of unforeseen launcher
injection errors, or after detection of pieces of space debris from former satellites
and rocket upper stages.

At least six independent measurements are required to uniquely determine an
orbit if no further assumptions on the form or size of the orbit are made. Deriving the
six orbital elements from this minimum set of observations is commonly referred to
as preliminary orbit determination, since techniques like the least-squares method
(cf. Chap. 8) can later be employed to further refine the orbit determination as more
and more observations become available.

Based on the formulation of the unperturbed two-body problem, a variety of
different analytical orbit determination methods has been developed. They are gen-
erally divided into Laplacian and Gaussian type methods, referring to the two
scientists that devised the prototypes of these methods in the late 18th and early
19th centuries for orbit determination of solar system bodies. Laplacian orbit deter-
mination methods are generally designed to derive the inertial position and velocity
at an instant of time in the middle of the observation interval, which can then be
converted to orbital elements according to Sect. 2.2.4. Laplacian type orbit determi-
nations can be formulated for various combinations of measurements, but may not
be well suited for longer tracking arcs if the velocity information has to be obtained
from interpolation of positional measurements. Gaussian orbit determination, on
the other hand, was originally designed to find the orbital elements from three sets
of widely spaced direction measurements. In the case of satellite measurements, it
may also be applied to finding the orbit from two position vectors, which is useful
if both range and angle measurements are available.

The choice of the most suitable preliminary orbit determination method de-
pends strongly on the type and distribution of available measurements, and is still
an ongoing discussion, even though most methods for satellite orbit determination
were devised in the early days of spaceflight. In view of the great variety of pos-
sible approaches to the solution of the preliminary orbit determination problem,
the following presentation has intentionally been restricted to a brief account of a
simple Gaussian type algorithm.
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2.4.1 Orbit Determination from Two Position Vectors

In favorable cases a satellite may allow simultaneous distance and angle mea-
surements yielding directly the satellite’s three-dimensional position relative to the
ground station. Accounting for the known station location, these measurements can
be converted to the position with respect to the center of the Earth. Only two of
these position vectors (corresponding to six independent measurements) are then
required to determine all six orbital elements in a unique way. The method described
in the following comes from Gauss, and provides an efficient and robust way of
solving the orbit determination problem for two given position vectors. Further
methods like the Lambert-Euler method, the p-iteration and the use of f and g

series are discussed in Escobal (1965) and Bate et al. (1971).

The Ratio of Sector to Triangle

As shown by Gauss, the problem of determining an orbit from two position vectors
and a time interval is closely related to the problem of finding the ratio of the sector
and the triangle formed by the orbit and the radius vectors.

Let ra and rb denote the satellite’s geocentric position at times ta and tb. The
area Δ of the triangle defined by the vectors ra and rb (Fig. 2.14) depends on the
length of the sides ra and rb, and the included angle νb − νa , which is assumed to
be less than 180◦ in what follows:

Δ = 1

2
rarb · sin(νb − νa) . (2.96)

Here νa and νb are the values of the true anomaly at the times under consideration.

Earth rb

ra

Earth rb

ra

ΔS

Fig. 2.14. Areas of sectors and
triangles

The area S of the sector that is bounded by ra and rb and the arc of the orbit
between them, is proportional to the difference between the times ta and tb according
to Kepler’s second law (2.8):

S = 1

2

√√
GM⊕ ·

√√
a(1 − e2) · (tb − ta) . (2.97)

Here a and e denote the semi-major axis and the eccentricity of the orbit that joins
the given points. Substituting the semi-latus rectum p = a(1 − e2) yields the
expression

η = S

Δ
=

√√
p · τ

rarb · sin(νb − νa)
, (2.98)
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for the ratio η between the two areas, where, for simplicity, the normalized time
interval τ is defined by

τ = √√GM⊕ · (tb − ta) . (2.99)

If the semi-latus rectum is replaced by known quantities using the equations for the
two-body problem, one finds that it is no longer possible to express η as a solvable
algebraic equation. Instead one obtains a system of two equations

η2(η − 1) = m
2g − sin(2g)

sin3(g)

η2 = m
1

l + sin2(g/2)

(2.100)

with the (positive) auxiliary variables

m = τ 2

√√
2(rarb + ra · rb)

3

l = ra + rb

2
√√

2(rarb + ra · rb)
− 1

2
,

(2.101)

from which η can be determined together with the value g that equals half the
difference of the eccentric anomalies at times tb and ta . Eliminating g yields the
transcendental equation

η = 1 + m

η2
·W

(
m

η2
− l

)
, (2.102)

where the function W is defined by

W(w) = 2g − sin(2g)

sin3(g)
, g = 2 sin−1 √√

w (2.103)

or

W(w) = 4

3
+ 4·6

3·5w + 4·6·8
3·5·7w

2 + . . . (2.104)

(Bucerius 1950, Escobal 1965). The argumentw is always positive and smaller than
one for elliptic orbits. To determine η iteratively, one may use the secant procedure

ηi+1 = ηi − f (ηi) · ηi − ηi−1

f (ηi)− f (ηi−1)
(2.105)

for finding the root of

f (x) = 1 − x + m

x2
·W

(m
x2

− l
)

. (2.106)

Appropriate starting values

η1 = η0 + 0.1 and η2 = η0 (2.107)

may be computed from Hansen’s approximation (Bucerius 1950, Battin 1987)

η0 = 12

22
+ 10

22

√√
1 + 44

9

m

l + 5/6
. (2.108)
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Orbital Elements from Two Positions

The orbit of a satellite that passes through the points ra and rb is always restricted
to the plane determined by these two points and the center of the Earth. In order
to derive the inclination i of this plane with respect to the equator, as well as the
right ascension of the ascending node, one first obtains the orthogonal unit vectors
ea and e0, which both lie in the orbital plane:

ea = ra

|ra| (2.109)

e0 = r0

|r0| where r0 = rb − (rb · ea)ea . (2.110)

ea is aligned with ra , r0 and e0 are perpendicular to it. If one now forms the cross
product of ea and e0, the result obtained is the Gaussian vector W = ea × e0,
which is perpendicular to the orbital plane, and is likewise normalized to unit
length. Equation (2.58) then yields the right ascension of the node and the orbital
inclination. Furthermore, the argument of latitude ua may now be determined from

ua = arctan

(
za

−xaWy + yaWx

)
. (2.111)

In order to determine the remaining orbital elements, one requires the ratio sector to
triangle, which was derived in the previous subsection. One is then able to express
the semi-latus rectum

p =
(

2Δη

τ

)2

(2.112)

in terms of the interval τ and the area

Δ = 1

2
rarb sin(νb − νa) = 1

2
rar0 (2.113)

of the triangle defined by the vectors ra and rb.
The eccentricity of the orbit follows from the conic section equation (2.17) that

leads to

e cos(νa) = p/ra − 1

e cos(νb) = p/rb − 1
(2.114)

when solving for e cos(ν). Taking into account that

cos(νb) = cos(νa) cos(νb − νa)− sin(νa) sin(νb − νa)

= cos(νa)

(
rb · ea

rb

)
− sin(νa)

(
r0

rb

)
,

(2.115)

one obtains the two equations

e cos(νa) = p/ra − 1

e sin(νa) =
{
(p/ra − 1)

(
rb · ea

rb

)
− (p/rb − 1)

}/(r0

rb

)
,

(2.116)
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which may themselves be solved for the eccentricity and the true anomaly at time
ta . The argument of perigee now follows from the difference between the argument
of latitude and the true anomaly:

ω = ua − νa . (2.117)

From the semi-latus rectum and the eccentricity, one furthermore obtains the semi-
major axis

a = p

1 − e2
. (2.118)

Finally, the sixth element is the mean anomalyMa , which is obtained from Kepler’s
equation

Ma = Ea − e · sinEa (radians) . (2.119)

Here the eccentric anomaly Ea follows from the equations

cosEa = cos νa + e

1 + e · cos νa
sinEa =

√√
1 − e2 sin νa

1 + e · cos νa
(2.120)

or

Ea = arctan

(√√
1 − e2 sin νa
cos νa + e

)
. (2.121)

2.4.2 Orbit Determination from Three Sets of Angles

In order to obtain the three-dimensional satellite position at a specific instant of
time, simultaneous angle and distance measurements are required. Distance mea-
surements, however, require special onboard equipment like a retro-reflector or
transponder, in order to determine the round-trip time of a signal from the ground
to the satellite and back. In general, they are less easily available than passive angle
measurements, which can be obtained by optical observations or the localization
of arbitrary radio signals transmitted from a satellite. Orbit determination from ex-
clusive angle measurements is therefore of special interest for applications like the
identification of unknown spacecraft.

As was shown by Gauss in his analysis of minor planet orbit determination,
the problem of finding an orbit from angle observations can be reduced to that of
finding an orbit from two position vectors by accounting for various geometrical and
dynamical relations between the observations. Each set of angle measurements (for
example azimuth and elevation) defines a unit vector, which describes the direction
from the station to the satellite at the instant of the observation. The distance is
unknown, however, and has to be derived during the process of determining the
orbit. In order to obtain all six orbital elements in an unambiguous manner, three
sets of observations (i.e. six angle measurements) must be available. From these
values, and the known station location, the satellite position at the time of each
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observation can be derived in an iterative way. Knowing the position vectors, the
orbital elements may finally be computed as illustrated in the previous section.

Let e1, e2 and e3 denote the unit vectors that describe the direction of observa-
tion at the measurement times t1 < t2 < t3, and let R1, R2 and R3 be the equatorial
coordinates of the ground station, from which the corresponding measurements
have been obtained. Note that the observations may be obtained from different sta-
tions, and that all vectors have to be converted to a common, space-fixed coordinate
system, which is in general aligned with the equator. The Earth–satellite–station
triangle then yields the fundamental relation

r i = Ri + ρiei (i = 1, 2, 3) (2.122)

between the given quantities and the unknown station–satellite distances ρi and
Earth–satellite position vectors r i .

Since the satellite’s orbit lies in a plane with the center of the Earth for unper-
turbed Keplerian motion, it is possible to express the second position vector by an
appropriate linear combination of the other two:

r2 = n1r1 + n3r3 . (2.123)

The factors n1 and n3 depend on the relative position of r1, r2 and r3, and are
positive, provided that the entire arc of the orbit is less than 180◦. By inserting
(2.123) into (2.122), the unknown position vectors can be eliminated, yielding

−n1ρ1e1 + ρ2e2 − n3ρ3e3 = n1R1 − R2 + n3R3 (2.124)

after suitable rearrangement. Following Bucerius (1950) one introduces the auxil-
iary vectors

d1 = e2 × e3 d2 = e3 × e1 d3 = e1 × e2 (2.125)

to solve this vectorial equation for ρ1, ρ2 and ρ3. By definition d1 is perpendicular
to e2 and e3, d2 is perpendicular to e3 and e1, and d3 is perpendicular to e1 and e2.
Consequently, the dot product ei · dj only differs from zero for i = j . Multiplying
(2.124) by d1, d2 and d3 therefore yields the equations

−n1ρ1(e1 · d1) = (n1R1 − R2 + n3R3) · d1

ρ2(e2 · d2) = (n1R1 − R2 + n3R3) · d2

−n3ρ3(e3 · d3) = (n1R1 − R2 + n3R3) · d3 .

(2.126)

These expressions may further be simplified using the abbreviations

D = e1 · (e2 × e3) = e2 · (e3 × e1) = e3 · (e1 × e2)

= e1 · d1 = e2 · d2 = e3 · d3
(2.127)

and

Dij = d i · Rj , (2.128)
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which finally gives the three equations

ρ1 = − 1

n1D
(n1D11 −D12 + n3D13)

ρ2 = 1

D
(n1D21 −D22 + n3D23)

ρ3 = − 1

n3D
(n1D31 −D32 + n3D33) .

(2.129)

The distances ρ1, ρ2 and ρ3 can therefore be expressed in terms of n1 and n3, as
well as the vectors ei and Ri .

By introducing equation (2.123) for the orbital plane, the number of unknowns
has thus been reduced from three (ρ1,2,3) to two (n1,3). Furthermore, the newly
introduced coefficients are of particular interest, since they can be closely approx-
imated by expressions involving the time intervals between the observations. For
this purpose the equation of the orbital plane is again considered. Forming the cross
product of both sides of (2.123) with r3 and r1, one obtains the expressions

(r2 × r3) = n1 · (r1 × r3) (r1 × r2) = n3 · (r1 × r3) (2.130)

or

n1 = |r2 × r3|
|r1 × r3| = Δ1

Δ2
n3 = |r1 × r2|

|r1 × r3| = Δ3

Δ2
. (2.131)

n1 and n3 can therefore be interpreted as ratios of the triangle areas formed by r1,
r2, and r3 (see Fig. 2.15).
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Fig. 2.15. Sector and triangle areas for three satellite positions
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For small arcs of the orbit in particular, the areas of the triangles differ only
slightly from the corresponding sector areas Si = ηiΔi , which are themselves
proportional to these time intervals:

n1 = η2

η1
· t3 − t2

t3 − t1
≈ t3 − t2

t3 − t1
n3 = η2

η3
· t2 − t1

t3 − t1
≈ t2 − t1

t3 − t1
. (2.132)

Approximate values for n1 and n3 are therefore known, which provides a way to
determine first approximations for the geocentric distances (ρi).

These coarse initial values may then be improved by an iterative method. As
outlined in the previous subsection, an orbit is unambiguously determined if one
knows the geocentric position of a satellite at two given times. The same applies to
the orbital elements and the sector–triangle ratio. If, on the other hand, one knows
the value of the sector–triangle ratio for a set of three observed positions, the position
vectors with respect to the station and the center of the Earth may be calculated.
A simple iteration scheme may therefore be applied to determine an orbit from
three sets of angle measurements. To start with, n1 = (t3 − t2)/(t3 − t1) and n3 =
(t2−t1)/(t3−t1) are used as initial approximations for the ratios of the triangle areas.
Improved values of both quantities are then obtained by calculating the station–
satellite distances ρi from (2.129), the geocentric position vectors r i from (2.122),
the sector–triangle ratios ηi for each pair of geocentric position vectors, and finally
the corresponding triangle ratios from (2.132). These steps may be repeated until
the various quantities change only negligibly from one iteration to the next.

The iteration described here is due to Bucerius (1950) and provides the easi-
est way of solving the given orbit determination problem on the basis of Gauss’s
method. More refined algorithms may be used to improve the convergence, and
extend the range of applicability. For a description and valuation of these methods
the reader is referred to Escobal (1965).
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Exercises

Exercise 2.1 (Orbit raising using Hohmann transfer) Compute the total ve-
locity increment required for a Hohmann transfer between two circular orbits of
radius r1 = a and r2 = a+Δa. The Hohmann transfer makes use of a first velocity
increment Δv1 to change the orbit into an ellipse with perigee radius r1 and apogee
radius r2. At apogee, a second maneuver Δv2 is performed, which circularizes
the transfer orbit again at a radius of r2. Expand your result, assuming Δa 	 a

and demonstrate that, to first order, the required velocity increment is equal to the
difference of the orbital velocities. Check the expressions for the case of an orbit
raising maneuver changing the altitude of a remote sensing satellite from 750 km
to 775 km.

Solution: From the vis-viva law (2.22), orbital velocities of

v1 =
√√
GM⊕
r1

and v2 =
√√
GM⊕
r2

are obtained for the initial and final circular orbits. The transfer ellipse has a semi-
major axis at = 1

2(r1 + r2), yielding a perigee and apogee velocity of

vp =
√√
GM⊕

(
2

r1
− 2

r1 + r2

)
=
√√
GM⊕
at

r2

r1

and

va =
√√
GM⊕

(
2

r2
− 2

r1 + r2

)
=
√√
GM⊕
at

r1

r2

respectively. In total, a velocity increment of

Δv = Δv1 +Δv2 = (vp − v1)+ (v2 − va)

is required to perform the orbit raising.
Substituting v = v1 and using at = a + Δa/2, the linear expansion in Δa

yields

v2 ≈ v

(
1 − 1

2

Δa

a

)
, vp ≈ v

(
1 + 1

4

Δa

a

)
, va ≈ v

(
1 − 3

4

Δa

a

)
.

Accordingly,

Δv1 +Δv2 = 1

2
v
Δa

a
= v1 − v2

for small altitude raising maneuvers of circular orbits. Note, however, that both ma-
neuvers increase the instantaneous velocity of the satellite, but effectively decrease
the mean orbital velocity.
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For the given sample case, the following results are obtained from the rigorous
equations:

v1 = 7.478 km/s vp = 7.484 km/s
v2 = 7.465 km/s va = 7.458 km/s
v2 − v1 = −13.08 m/s Δv = 13.08 m/s

Both values for the velocity difference agree well with each other and with the
approximate value of Δv ≈ 13.11 m/s.

Exercise 2.2 (Kepler’s equation) Solve Kepler’s equation for an eccentricity of
e = 0.72 and a mean anomaly of M = 4◦ (the typical values of an Ariane geosta-
tionary transfer orbit at spacecraft separation). Compare the number of iterations
and the total number of trigonometric function evaluations required by Newton’s
method with the simple fixed-point iteration

E0 = M

Ei+1 = M + e sin(Ei) .

Which method performs better for M = 50◦?

Solution: In the first case, Newton’s iteration converges within three steps, whereas
a total of sixty steps are required for the fixed-point iteration. In terms of trigono-
metric function evaluations, Newton’s method outperforms the fixed-point iteration
by a factor of ten:

Newton’s iteration Fixed-point iteration
i E ΔE ntrig i E ΔE ntrig

1 0.24807037959 4.88·10−3 2 1 0.12003783118 1.23·10−1 1
2 0.24319412989 6.93·10−6 4 2 0.15603300183 8.72·10−2 2
3 0.24318719638 1.38·10−11 6 3 0.18170162689 6.15·10−2 3

...
...

...
...

20 0.24304481906 1.42·10−4 20
21 0.24308769931 9.95·10−5 21
22 0.24311766554 6.95·10−5 22
...

...
...

...

58 0.24318719620 1.73·10−10 58
59 0.24318719625 1.21·10−10 59
60 0.24318719629 8.47·10−11 60

Further away from pericenter, however, the fixed-point iteration may well be applied
even for large eccentricities. Despite the larger number of iterations, the computa-
tional effort may even be smaller than that of Newton’s method, as illustrated by
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the case M = 50◦:
Newton’s iteration Fixed-point iteration
i E ΔE ntrig i E ΔE ntrig

1 1.89939446077 3.07·10−1 2 1 1.42421662504 1.68·10−1 1
2 1.61923760464 2.67·10−2 4 2 1.58494364580 7.55·10−3 2
3 1.59274371561 2.49·10−4 6 3 1.59259257441 9.74·10−5 3
4 1.59249515283 2.19·10−8 8 4 1.59249360526 1.53·10−6 4
5 1.59249513093 0.00 10 5 1.59249515476 2.38·10−8 5

6 1.59249513056 3.72·10−10 6
7 1.59249513094 5.82·10−12 7

Exercise 2.3 (Osculating Elements) Compute the Keplerian elements for an
Earth-orbiting satellite located at

r = (+10000.0, +40000.0, −5000.0) km

and moving at a velocity of

v = (−1.5, +1.0,−0.1) km/s .

Solution:

Semi-major axis a 25015.181 km
Eccentricity e 0.7079772
Inclination i 6.971◦
RA ascend. node Ω 173.290◦
Arg. of perigee ω 91.553◦
Mean anomaly M 144.225◦

Exercise 2.4 (Topocentric satellite motion) Compute the motion of a polar satel-
lite at 960 km altitude (e = 0, i = 97◦) relative to a ground station in central Europe
(λ = +11◦ East, ϕ = +48◦). Assume the satellite crosses the equator at right as-
cension Ω = 130.7◦ at the reference epoch 1.0 January 1997 (MJD 50449.0) and
predict its motion (azimuth, elevation, distance) for a period of 30 mins. How long
is the satellite visible, and what is the maximum elevation? Compare your results
with Figs. 2.12 and 2.13.

Solution: The spacecraft is visible for about 18 minutes and achieves a peak ele-
vation of roughly 55◦.

UTC A E s UTC A E s

hh:mm:ss [◦] [◦] [km] hh:mm:ss [◦] [◦] [km]
00:06:00.0 151.1 −0.1 3644.9 00:15:00.0 48.4 53.7 1167.0
00:07:00.0 149.8 3.5 3262.7 00:16:00.0 23.0 43.6 1321.7
00:08:00.0 148.2 7.7 2884.1 00:17:00.0 10.1 32.9 1574.2
00:09:00.0 146.0 12.5 2512.4 00:18:00.0 3.1 24.2 1884.9
00:10:00.0 142.9 18.3 2153.0 00:19:00.0 358.8 17.3 2228.7
00:11:00.0 138.2 25.6 1814.8 00:20:00.0 356.0 11.7 2591.4
00:12:00.0 130.3 34.8 1514.1 00:21:00.0 354.1 7.1 2965.0
00:13:00.0 115.6 45.8 1278.8 00:22:00.0 352.6 3.1 3344.7
00:14:00.0 86.8 54.9 1151.0 00:23:00.0 351.6 −0.5 3727.3
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Exercise 2.5 (Sun-synchronous Repeat Orbits) The orbital plane of a remote
sensing satellite is commonly required to maintain a fixed angle (e.g 30◦) with
respect to the mean Sun direction, to ensure adequate illumination conditions for
image data collection. Considering the secular motion6

Ω̇ = −3

2
n0J2

R2⊕
a2

cos i with n0 =
√√
GM⊕
a3

and J2 = +1.083·10−3

of the ascending node, a sun-synchronous orbit may be obtained by adjusting the
inclination i in such a way that Ω̇ = α̇
 = 0.985647240◦/d for a given semi-major
axis a. At the same time, it is generally desirable to select the altitude in such a
way that the resulting ground track is repeated after a specified number of days
and orbits. Here “one orbit” refers to the time between subsequent nodal crossings,
which is also known as the draconic orbit period. Due to secular perturbations

ω̇ = −3

4
n0J2

R2⊕
a2

(1 − 5 cos2 i) Δn = n−n0 = −3

4
n0J2

R2⊕
a2

(1 − 3 cos2 i)

of the argument of perigee and the mean anomaly, the draconic period TN =
2π/(n + ω̇) differs slightly from the Keplerian orbital period T0 = 2π/n0. In
the case of the European Remote Sensing Satellite (ERS-1/2) a sun-synchronous
orbit is required, for which the Greenwich longitudeλΩ = Ω−Θ of the ascending
node equator crossing is repeated after K = 3 cycles (days) andN = 43 orbits, i.e.

N · (Ω̇ − Θ̇) · TN = −K · 360◦ .

Determine the corresponding altitudeh = a−R⊕ and inclination i of the ERS orbit,
taking into account the above-mentioned secular perturbations. Verify your result
by computing the Greenwich longitude λΩ of the ascending node forN subsequent
equator crossings (starting at an initial value of λΩ = 0 without loss of generality).

Hint: For sun-synchronous orbits Ω̇ − Θ̇ ≡ −360◦/d, giving the simplified re-
lation TN = (K/N) d or 2πN/(K d) = n0 + Δn + ω̇. Ignoring the difference
between the draconic and Keplerian orbital period (Δn + ω̇ ≈ 0), a first guess of
the semi-major axis is obtained. From this, an approximate value of the inclination
can be determined from the known secular rate Ω̇ of the ascending node. After
computing the perturbations Δn and ω̇, a refined value of n0 and the semi-major
axis is obtained, which may be used as input for a subsequent iteration.

Solution: Starting from TN = (K/N) d, the iteration of the semi-major axis and
inclination yields the following values:

Iteration 0 1 2

TN [d] 0.0697674
2π/TN [◦/d] 5160.00000
ω̇ [◦/d] 0.00000 −2.96073 −2.97087
n− n0 [◦/d] 0.00000 −3.10679 −3.11652
n0 [◦/d] 5160.00000 5166.06752 5166.08739
a [km] 7158.747 7153.141 7153.123
h [km] 780.610 775.004 774.986
i [◦] 98.521 98.498 98.498

6Valid for circular orbits, i.e. e = 0.
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Convergence is achieved within 2–3 steps, giving the final solution h = 774.99 km
and i = 98.50◦ for the parameters of the ERS orbit.

Consecutive ground tracks are shifted by ΔλΩ = 360◦ · K/N = −25.12◦ at
the equator. As required, the ground track is closed after 3 days and 43 orbits:

Day 1 Day 2 Day 3
i λΩ i λΩ i λΩ
0 0.00◦ 15 −16.74◦ 30 −33.49◦
1 −25.12◦ 16 −41.86◦ 31 −58.60◦
2 −50.23◦ 17 −66.98◦ 32 −83.72◦
3 −75.35◦ 18 −92.09◦ 33 −108.84◦
...

...
...

...
...

...

10 108.84◦ 25 92.09◦ 40 75.35◦
11 83.72◦ 26 66.98◦ 41 50.23◦
12 58.60◦ 27 41.86◦ 42 25.12◦
13 33.49◦ 28 16.74◦ 43 0.00◦
14 8.37◦ 29 −8.37◦ 44 −25.12◦

Exercise 2.6 (Initial Orbit Determination) An Indian ground station collects
two sets of range and angle measurements of a satellite:

Date UTC Azim. Elev. Range [km]
1999/04/02 00:30:00.0 132.67◦ 32.44◦ 16945.450
1999/04/02 03:00:00.0 123.08◦ 50.06◦ 37350.340

Given the Greenwich coordinates

X = +1344.143 km , Y = +6068.601 km , Z = +1429.311 km

of the station, find the inertial position vector of the spacecraft at both times, and
use the result to derive the Keplerian elements of the orbit.

Solution: The observed distances and pointing angles correspond to the following
positions with respect to the Earth equator and vernal equinox:

Date UTC x [km] y [km] z [km]
1999/04/02 00:30:00.0 +11959.978 −16289.478 −5963.827
1999/04/02 03:00:00.0 +39863.390 −13730.547 −4862.350

Taking into account the flight time of 2.5 hours between both points, a highly
eccentric orbit with elements

Semi-major axis a 28196.776km
Eccentricity e 0.7679436
Inclination i 20.315◦
RA ascend. node Ω 359.145◦
Arg. of perigee ω 179.425◦
Mean anomaly M 29.236◦

is obtained, where the value of the mean anomaly applies for the epoch of the first
observation.
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3.1 Introduction

In the framework of Newtonian physics the motion of a satellite under the influence
of a force F is described by the differential equation

r̈ = F (t, r, v)/m , (3.1)

where r and v are the position and the velocity of the satellite in a non-rotating
geocentric coordinate system, and m denotes the satellite’s mass. As shown in the
previous chapter, one obtains elliptic satellite orbits with fixed orbital planes for
the special case of a radially symmetric force

F = −mGM⊕
r2

er , (3.2)

which decreases with the second power of the distance. Here er denotes the nor-
malized position vector of the satellite pointing in radial direction. This simple
inverse-square law describes the gravitational attraction of a point-like mass, and
can also be shown to be true for extended bodies, provided that they are built up of
concentric shells of constant density. Since this is a basic model for the structure
of the Earth, Keplerian orbits provide a reasonable first approximation of satellite
motion.

Due to its daily rotation, the Earth is not, however, a perfect sphere, but has
the form of an oblate spheroid with an equatorial diameter that exceeds the polar
diameter by about 20 km. The resulting equatorial bulge exerts a force that pulls
the satellite back to the equatorial plane whenever it is above or below this plane
and thus tries to align the orbital plane with the equator. As may be expected
from the small flattening of the Earth, this perturbation is about three orders of
magnitude smaller than the central attraction but it may nevertheless be easily
detected. Due to its angular momentum the orbit behaves like a gyroscope, and
reacts with a precessional motion of the orbital plane, and a shift of the line of
nodes by several degrees per day. Aside from this secular perturbation of the orbital
plane, the asphericity of the Earth gives rise to a variety of further perturbations that
affect all orbital elements, and are most pronounced for satellites at low altitudes.

A different behavior is observed for the perturbations that arise from the grav-
itational attraction of the Sun and the Moon. In order to describe the motion of a
satellite with respect to the center of the Earth, one has to consider the lunar and
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solar forces on both the Earth and the satellite. Their difference increases almost
linearly with the satellite’s distance from the Earth and yields a perturbation of the
geocentric orbit that is comparable in size to that of the Earth’s equatorial bulge
for geostationary orbits. The resulting acceleration points away from the Earth
whenever the satellite is aligned with the Earth and the Sun or Moon, and is di-
rected towards the Earth when the satellite is approximately at right angles to the
Earth–Sun/Moon line. Similar forces as for the Moon and the Sun arise from the
gravitational attraction of the planets. However, their amplitude is much smaller
than the lunisolar perturbations; the dominant planetary contributions stem from
the planets Venus and Jupiter.

Satellites with altitudes of several hundred kilometers above ground are subject
to an additional, velocity-dependent force that is caused by the resistance of the
Earth’s atmosphere. Since the atmospheric density decreases exponentially with
increasing height, drag affects mainly the low-Earth satellites, and is strongest
during the perigee of an orbit. It reduces the orbit’s kinetic energy and angular
momentum, and leads to a slow decrease of the semi-major axis and the eccentricity.
For uncontrolled satellites, the loss of altitude and the circularisation of the orbit
pose severe limits on the satellite’s lifetime. Drag has little or no effect on the orbital
plane since its main component is always anti-parallel to the velocity vector.

While the acceleration due to gravitational forces is independent of the satel-
lite’s mass and area, this is not true for drag and other surface forces. Among these,
the solar radiation pressure is most notable, especially for communications satel-
lites with large solar panels. The radiation pressure arises when photons impinge
on the satellite surface, and are subsequently absorbed or reflected, transferring the
photons’ impulse to the satellite. In contrast to drag, the solar radiation pressure
does not vary with altitude. Its main effect is a slight change of the eccentricity and
of the longitude of perigee.

The effect of various perturbations as a function of geocentric satellite distance
is illustrated in Fig. 3.1. For the calculation of the influence of atmospheric drag
on circular low-Earth satellite orbits, exospheric temperatures between 500 K and
2000 K (cf. Sect. 3.5) have been assumed. The area-to-mass ratio used in the com-
putation of non-gravitational forces is 0.01 m2/kg. For specially designed geodetic
satellites like LAGEOS, the corresponding value may be smaller by one to two or-
ders of magnitude. The perturbations due to various geopotential coefficients Jn,m
and the lunisolar attraction have been calculated from rule-of-thumb formulas by
Milani et al. (1987). For the purpose of comparison it is mentioned that a constant
radial acceleration of 10−11 km/s2 changes the semi-major axis of a geostationary
satellite by approximately 1 m.

Aside from the aforementioned forces, various minor perturbations are consid-
ered in Fig. 3.1 which produce accelerations in the order of 10−15–10−12 km/s2. The
most notable are due to the radiation pressure, resulting from the sunlight reflected
by the Earth (albedo), as well as relativistic effects and the solid Earth tides.
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3.2 Geopotential

In the introductory chapter on unperturbed Keplerian motion, it was assumed that
the total mass of the Earth is concentrated in the center of the coordinate system,
and the gravitational law (2.1)

r̈ = −GM⊕
r3

r

can therefore be used to calculate the acceleration felt by a satellite at r . For the
following discussion of a more realistic model, it is convenient to use an equivalent
representation involving the gradient of the corresponding gravity potential U

r̈ = ∇U with U = GM⊕
1

r
. (3.3)

This expression for the potential may easily be generalized to an arbitrary mass
distribution by summing up the contributions created by individual mass elements
dm = ρ(s) d3s according to

U = G

∫
ρ(s) d3s

|r − s| . (3.4)

Here ρ(s) means the density at some point s inside the Earth, and |r − s| is the
satellite’s distance from this place (Fig. 3.2).

rs

dm r-s

Fig. 3.2. The contribution of a small mass
element to the geopotential

3.2.1 Expansion in Spherical Harmonics

In order to evaluate the integral in the above equation, the inverse of the distance
may be expanded in a series of Legendre polynomials. For r > s, which holds for
all points r outside a circumscribing sphere, one has

1

|r − s| = 1

r

∞∑
n=0

(s
r

)n
Pn(cos γ ) with cos γ = r · s

rs
. (3.5)

Here

Pn(u) = 1

2nn!
dn

dun
(u2 − 1)n (3.6)

is the Legendre polynomial of degree n, and γ is the angle between r and s.



3.2 Geopotential 57

By introducing the longitude λ (counted positively towards the East) and the
geocentric latitude φ of the point r according to

x = r cosφ cosλ

y = r cosφ sin λ

z = r sin φ ,

(3.7)

as well as the corresponding quantities λ′ and φ′ for s (cf. Fig. 3.2), one can make
use of the addition theorem of Legendre polynomials, which states that

Pn(cos γ ) =
n∑

m=0

(2−δ0m)
(n−m)!
(n+m)!Pnm(sin φ)Pnm(sin φ′) cos(m(λ− λ′)) . (3.8)

Here Pnm, which is called the associated Legendre polynomial of degree n and
order m, is defined as

Pnm(u) = (1 − u2)m/2 dm

dum
Pn(u) . (3.9)

Explicit formulas for selected low-order Legendre polynomials may be found in
Table 3.1.

Table 3.1. Low-order Legendre polynomials

n m Pnm(u) Pnm(sin φ)

0 0 1 1

1 0 u sin φ
1 1 (1 − u2)1/2 cosφ

2 0 1
2 (3u

2 − 1) 1
2 (3 sin2 φ − 1)

2 1 3u(1 − u2)1/2 3 cosφ sin φ
2 2 3(1 − u2) 3 cos2 φ

One is now able to write the Earth’s gravity potential in the form

U = GM⊕
r

∞∑
n=0

n∑
m=0

Rn⊕
rn

Pnm(sinφ)(Cnm cos(mλ) + Snm sin(mλ)) , (3.10)

with coefficients

Cnm = 2−δ0m

M⊕
(n−m)!
(n+m)!

∫
sn

Rn⊕
Pnm(sin φ′) cos(mλ′)ρ(s) d3s

Snm = 2−δ0m

M⊕
(n−m)!
(n+m)!

∫
sn

Rn⊕
Pnm(sin φ′) sin(mλ′)ρ(s) d3s ,

(3.11)

which describe the dependence on the Earth’s internal mass distribution. Geopo-
tential coefficients with m=0 are called zonal coefficients, since they describe the
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part of the potential that does not depend on the longitude. All Sn0 vanish due to
their definition, and the notation

Jn = −Cn0 (3.12)

is commonly used for the remaining zonal terms. The other geopotential coefficients
are known as tesseral and sectorial coefficients for (m<n) and (m=n), respectively.

A close look at (3.10) reveals that a change of R⊕ affects the geopotential
coefficients Cnm and Snm. Therefore, care must be taken to apply matching values
of GM⊕, R⊕, as well as Cnm and Snm, when computing the satellite’s acceleration.

Since the geopotential coefficients Cnm and Snm cover a range of ten or more
orders of magnitude, even for a small model, the normalized coefficients C̄nm and
S̄nm are usually given, which are defined as

{
C̄nm

S̄nm

}
=
√√

(n+m)!
(2−δ0m)(2n+1)(n−m)!

{
Cnm

Snm

}
. (3.13)

The normalized coefficients are much more uniform in magnitude than the unnor-
malized coefficients, and their size is given approximately by the empirical Kaula
rule (Kaula 1966) as

C̄nm, S̄nm ≈ 10−5

n2
. (3.14)

Making use of the normalized geopotential coefficients, the acceleration due
to the Earth’s gravity potential may be rewritten as (Milani et al. 1987)

r̈ = ∇GM⊕
r

∞∑
n=0

n∑
m=0

Rn⊕
rn

P̄nm(sin φ)(C̄nm cos(mλ)+ S̄nm sin(mλ)) , (3.15)

where the normalized associated Legendre functions are given as

P̄nm =
√√
(2−δ0m)(2n+1)(n−m)!

(n+m)! Pnm . (3.16)

In contrast to the unnormalized functions Pnm, the P̄nm exhibit a less pronounced
variation with n and m, according to their normalization relations.

Note: The reader should be aware that a slightly different definition of the associ-
ated Legendre polynomials is frequently used, which involves an additional factor
(−1)m. Both definitions are distinguished by the notation Pm

n = (−1)mPnm in
Abramowitz & Stegun (1965), but often the two notations are mixed up in the
literature. For applications in geodesy and related fields it is important to use the
definition given here (i.e. the one without the factor (−1)m) in order to be consistent
with published geopotential coefficients.
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3.2.2 Some Special Geopotential Coefficients

Even though the definition of the geopotential coefficients Cnm and Snm is rather
complicated at first sight, one may nevertheless derive some simple results if only
low-degree and order coefficients are considered, or if one uses an approximate
model for the terrestrial density variation.

First of all, it is easy to show that C00 is always equal to 1, since the integral

∫
s0

R0⊕
P00(sin φ′) cos(0)ρ(s) d3s =

∫
ρ(s) d3s = M⊕ (3.17)

yields just the total mass of the Earth. The first term in the expansion of the Earth’s
potential is therefore just the two-body potential U = GM⊕/r . Furthermore, one
recognizes from (3.11) that all terms Sn0 vanish, since sin(mλ′) in the integrand is
equal to zero for m=0.

As mentioned in the introductory section of this chapter, the potential of a
spherical body that is built up from concentric shells of constant density is the same
as that of a point-like mass, and it is now possible to prove this statement with the
help of (3.11). If the density ρ depends only on s, but not on φ′ and λ′, then all

Snm = κ

∫
sn

Rn⊕
Pnm(sin φ′) sin(mλ′)ρ(s) d3s

= κ

R⊕∫

0

+π/2∫

−π/2

2π∫

0

sn

Rn⊕
ρ(s)Pnm(sinφ′) sin(mλ′)s2 cos(φ′) dλ′ dφ′ ds

= κ

R⊕∫

0

sn+2

Rn⊕
ρ(s)ds ·

+π/2∫

−π/2

Pnm(sin φ′) cos(φ′)dφ′ ·
2π∫

0

sin(mλ′)dλ′

with κ = 2−δ0m

M⊕
(n−m)!
(n+m)!

(3.18)

vanish, since
∫

sin(mλ′)dλ′ = 0 for all m and the same proof applies to Cnm = 0
for n,m 
=0. For m=0 the integral

∫
cos(mλ′)dλ′ does not vanish, but

+π/2∫

−π/2

Pn0(sin φ′) cos(φ′)dφ′ =
1∫

−1

Pn(u)du = 0

for all n>0. Therefore all Cnm and Snm vanish, with the exception of C00, and the
potential reduces to that of a point-like mass, as long as the density does not vary
with longitude and latitude.

A similar consideration shows that the expansion of the potential contains only
zonal terms (Cn0), if one considers the more general case of a mass distribution that
is symmetric with respect to the axis of rotation. For an oblate rotational ellipsoid
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J = −3/2C20 is the largest geopotential coefficient aside from C00, and its value
is approximately given by

J ≈ f − ω2R2/2

GM/R
, (3.19)

where the flattening f measures the difference between the polar and the equatorial
diameter in units of the equatorial diameter, while M , R and ω are the mass, radius
and rotational velocity of the body, respectively. The relation follows from the
condition that the sum of the gravitational potential and the centrifugal potential
must be constant on the surface of a fluid body, and is derived in standard textbooks
on geodesy (e.g. Bomford 1980, Torge 1991). Using appropriate values

f = 1/298.257
GM⊕ = 398 600.4405 km3s−2

R⊕ = 6378.137 km
ω⊕ = 0.7292115·10−4 rad s−1

(3.20)

for the Earth, one finds that J =0.001621.
The Earth is not an ideal rotational ellipsoid, however, which gives rise to

additional tesseral and sectorial geopotential coefficients. Approximate values of
the Earth’s low-order potential coefficients can be found in Table 3.2.

Table 3.2. Geopotential coefficients up to degree and order three

Cnm m=0 1 2 3

n=0 +1.00
1 0.00 0.00
2 −1.08·10−3 0.00 +1.57·10−6

3 +2.53·10−6 +2.18·10−6 +3.11·10−7 1.02·10−7

Snm m=0 1 2 3

n=0 0.00
1 0.00 0.00
2 0.00 0.00 −9.03·10−7

3 0.00 +2.68·10−7 −2.12·10−7 1.98·10−7

Aside from the coefficients Sn0, which are zero by definition, there are five
other coefficients that vanish as a consequence of a special choice of the coordinate
system. By choosing the center of mass

r̄ =
⎛
⎝

x̄

ȳ

z̄

⎞
⎠ = 1

M⊕

∫
sρ(s) d3s (3.21)

1To be precise, equation (3.19) in a slightly extended form is used in geodesy to define the
flattening f of a suitable reference ellipsoid, since J2 is easier to determine than the mean figure of
the Earth (see e.g. Kaula 1966).
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as the origin of the coordinate system, one may always observe that the three
coefficients

C10= 1

M⊕R⊕

∫
s sinφ′ρ(s) d3s = 1

M⊕R⊕

∫
z′ρ d3s = z̄

R⊕

C11= x̄

R⊕

S11 = ȳ

R⊕

(3.22)

of degree one are equal to zero. Similarly C21 and S21, vanish as long as the z-axis
is aligned with the Earth’s main axis of inertia.

3.2.3 Gravity Models

Because the internal mass distribution of the Earth is not known, the geopotential
coefficients cannot be calculated from the defining equation (3.11), but have to be
determined indirectly. Three principal types of measurements and observations are
currently used to improve Earth gravity models

• Satellite Tracking: From the very beginning of spaceflight, ground-based ob-
servations of artificial satellites allowed scientists to determine the Earth’s
gravity field through the perturbations seen in the satellite orbits. The first ob-
servations mainly used Baker–Nunn wide angle telescopes, which provided
pictures of the satellites’ orbital tracks. Subsequently, it turned out that radio-
metric Doppler tracking led to models superior to those based on optical data.
The development of satellite laser ranging (SLR) systems around 1965, and
their continuous refinement up to a precision of better than 1 cm, significantly
improved the knowledge of the gravity field. In the beginning of the 1990s,
the French DORIS system with a Doppler precision of 0.4 mm/s, as well
as the German PRARE system with a range noise of 7 cm, provided further
advanced tracking systems with a high potential for satellite geodesy. Latest
enhancements in the gravity field recovery from satellite tracking are due to
the inclusion of satellite-to-satellite (SST) tracking. Especially the GPS track-
ing of satellites, starting with the TOPEX/POSEIDON spacecraft in 1992,
may significantly improve the gravity models due to its nearly continuous,
high-precision and three-dimensional information. The global coverage of
the Earth’s surface with satellite tracks allows the retrieval of global infor-
mation on the long-wavelength gravity field of the Earth.

• Surface Gravimetry: Static spring gravimeters measure the local gravita-
tional acceleration with an accuracy of 10−3 mGal (Torge 1991) (1 mGal =
10−5 m/s2), and thus provide precise local and regional (short-wavelength)
information on the gravity field. Relative gravimetry measures the gravity
differences from point to point by sensing the inertial reaction of a test mass
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in response to the change in gravitational acceleration. Since gravimetry is
always limited by geographic and political inaccessibility, ship-borne or air-
borne gravimeters may supplement terrestrial measurements at a reduced
accuracy of 0.1–5 mGal, with a 10–20 km resolution for airborne measure-
ments (Nerem et al. 1995). Even though these data describe the small scale
variations of the Earth’s gravitational field very well, a careful inclusion into
global gravity models is required due to their inhomogeneous distribution
over the whole surface of the Earth.

• Altimeter Data: Altimeters measure the height of a satellite above sea level,
and can be used for a high-precision determination of the mean sea surface
level. Since this is closely related to the equipotential surface, altimeter data
provide detailed information about the form of the geoid, which may in turn
be used to derive geopotential coefficients. The first satellite altimeter was
launched aboard the GEOS 3 satellite in 1975, followed by Seasat in 1978
and TOPEX/POSEIDON in 1992. Satellite altimeter data provide an accuracy
better than 15 cm for a typical resolution of 5–30 km, which allows a short
wavelength resolution of the marine geoid.

The combined use of satellite tracking, terrestrial gravimetry and altimetry mea-
surements for gravity field determination is described in e.g. Rapp (1989).
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Fig. 3.3. Evolution of the complexity of Earth gravity models

In Fig. 3.3 the evolution of the Earth gravity models, as derived from satellite
tracking data, is depicted in terms of the characteristic order of the models. The
launches of Sputnik 1 in 1957, and of Vanguard 1 in 1959, allowed the first precise
determination ofJ2, and led to the detection of theJ3 coefficient, which indicates the
north-south asymmetry of the geoid. A major improvement in gravity field models
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was achieved in 1966 by Anderle, using radiometric Doppler data instead of the
camera data, that had been previously applied (Nerem et al. 1995). Between 1966
and 1977, the leading models were those derived by Gaposchkin and colleagues at
the Smithonian Astrophysical Observatory (SAO).

As a reaction to the military classification of Doppler-based gravity models,
NASA’s Goddard Space Flight Center (GSFC) started in 1972 to develop a series of
models GEM 1–GEM 10 (Goddard Earth Model) of degree 12–22. Here the odd-
numbered models are exclusively based on satellite observations, the correspond-
ing even-numbered models have been derived using additional surface gravimetry
data. While the satellite tracking data determine the long-wavelength components
of the gravity field of degree n, according to a spatial resolution of 2πR⊕/(2n)
or ∼ 20000 km/n, the altimeter and surface gravimetry data allow a much higher
resolution at shorter wavelength. An example is the GEM 10C model of degree
and order 180, while at the same time the GEM 10B model of degree and order
36 was developed using a less dense grid of surface gravimetry and altimetry data
(Lerch et al. 1981). The models GEM-T1 (Marsh et al. 1988) and GEM-T2 (Marsh
et al. 1990), both complete to order and degree 36, were entirely based on satellite
tracking data from 17 and 31 satellites, respectively. In addition to a small augmen-
tation of satellite tracking data, the GEM-T3 model (Lerch et al. 1994) also applied
altimeter data from GEOS 3, Seasat and Geosat, and was complete to degree and
order 50.

The oceanographic mission TOPEX/POSEIDON (T/P), with its challenging
requirement on the radial orbit accuracy of 13 cm, led to a cooperation between
NASA’s GSFC, the University of Texas Center for Space Research (CSR) and the
Centre National d’Études Spatiales (CNES) for gravity field determination. As a
result, the final prelaunch T/P gravity model JGM-1 (Joint Gravity Model) of order
and degree 70 was issued in 1994 (Nerem et al.). It reiterated the GEM-T3 gravity
model solution by processing all of the data with improved models and constants.
Its successor JGM-2 (Nerem et al. 1994) was a first postlaunch T/P model, which
included a six-month set of T/P SLR and DORIS data. A further improvement in
accuracy was obtained with JGM-3 (Tapley et al. 1996), which comprised new T/P
SLR, DORIS, as well as for the first time GPS tracking data of T/P. In addition,
new LAGEOS 1, LAGEOS 2 and Stella laser tracking, as well as DORIS tracking
of the SPOT 2 satellite, were included. A subset of the JGM-3 model (Tapley et al.
1996) is reproduced in Table 3.3.

Although JGM-3 is a very elaborate global gravity model for precision orbit
determination, new models are continuously being developed. This is demonstrated
by a collaboration of NASA’s Goddard Space Flight Center (GSFC), the National
Imagery and Mapping Agency (NIMA) and the Ohio State University (OSU), that
published the EGM96S (Earth Gravity Model) of degree and order 70, and the
EGM96 model of degree and order 360 (Lemoine et al. 1998). The inclusion of
tracking data from 40 satellites, with more continuous data from GPS and TDRSS
satellite-to-satellite tracking, contributes to a further improvement of the gravity
field model.
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Table 3.3. JGM-3 normalized gravitational coefficients up to degree and order 20, in units of 10−6

(GM⊕ = 398 600.4415 km3s−2, R⊕ = 6378.13630 km) (Tapley et al. 1996)

n m C̄n,m S̄n,m n m C̄n,m S̄n,m n m C̄n,m S̄n,m

2 0 −484.165368 0.000000 2 1 −0.000187 0.001195 2 2 2.439261 −1.400266

3 0 0.957171 0.000000 3 1 2.030137 0.248131 3 2 0.904706 −0.618923
3 3 0.721145 1.414204

4 0 0.539777 0.000000 4 1 −0.536244 −0.473772 4 2 0.350670 0.662571
4 3 0.990869 −0.200987 4 4 −0.188481 0.308848

5 0 0.068659 0.000000 5 1 −0.062727 −0.094195 5 2 0.652459 −0.323334
5 3 −0.451837 −0.214954 5 4 −0.295123 0.049741 5 5 0.174832 −0.669393

6 0 −0.149672 0.000000 6 1 −0.076104 0.026900 6 2 0.048328 −0.373816
6 3 0.057021 0.008890 6 4 −0.086228 −0.471405 6 5 −0.267112 −0.536410
6 6 0.009502 −0.237262

7 0 0.090723 0.000000 7 1 0.280287 0.094777 7 2 0.329760 0.093194
7 3 0.250502 −0.217320 7 4 −0.275541 −0.124142 7 5 0.001644 0.018075
7 6 −0.358843 0.151778 7 7 0.001380 0.024129

8 0 0.049118 0.000000 8 1 0.023334 0.058499 8 2 0.080071 0.065519
8 3 −0.019252 −0.086286 8 4 −0.244358 0.069857 8 5 −0.025498 0.089090
8 6 −0.065859 0.308921 8 7 0.067263 0.074813 8 8 −0.123971 0.120441

9 0 0.027385 0.000000 9 1 0.142230 0.021910 9 2 0.022621 −0.032175
9 3 −0.161064 −0.074546 9 4 −0.008202 0.020068 9 5 −0.016325 −0.054272
9 6 0.062833 0.222677 9 7 −0.118159 −0.096899 9 8 0.187984 −0.003015
9 9 −0.047725 0.096586

10 0 0.054130 0.000000 10 1 0.083759 −0.131554 10 2 −0.093558 −0.051416
10 3 −0.007197 −0.154180 10 4 −0.084335 −0.078485 10 5 −0.049520 −0.050293
10 6 −0.037419 −0.079464 10 7 0.008208 −0.003149 10 8 0.040468 −0.091917
10 9 0.125403 −0.037737 10 10 0.100382 −0.023809

11 0 −0.050161 0.000000 11 1 0.016107 −0.027892 11 2 0.018430 −0.098452
11 3 −0.030561 −0.148803 11 4 −0.040024 −0.063596 11 5 0.037436 0.049828
11 6 −0.001461 0.034173 11 7 0.004706 −0.089777 11 8 −0.006141 0.024572
11 9 −0.031456 0.042041 11 10 −0.052129 −0.018302 11 11 0.046227 −0.069593

12 0 0.036383 0.000000 12 1 −0.054192 −0.042012 12 2 0.013986 0.031048
12 3 0.038979 0.024577 12 4 −0.068420 0.002954 12 5 0.031107 0.007639
12 6 0.003324 0.039369 12 7 −0.018603 0.035571 12 8 −0.025703 0.016667
12 9 0.041793 0.025325 12 10 −0.006169 0.030986 12 11 0.011321 −0.006344
12 12 −0.002349 −0.010959

13 0 0.039946 0.000000 13 1 −0.052967 0.039877 13 2 0.056039 −0.062699
13 3 −0.021817 0.098209 13 4 −0.001471 −0.012614 13 5 0.058253 0.065846
13 6 −0.035312 −0.006058 13 7 0.002706 −0.007711 13 8 −0.009887 −0.009729
13 9 0.024754 0.045359 13 10 0.040892 −0.037099 13 11 −0.044739 −0.004833
13 12 −0.031410 0.088106 13 13 −0.061211 0.068409



3.2 Geopotential 65

Table 3.3. (continued)

n m C̄n,m S̄n,m n m C̄n,m S̄n,m n m C̄n,m S̄n,m

14 0 −0.021804 0.000000 14 1 −0.019024 0.027472 14 2 −0.036979 −0.002989
14 3 0.036809 0.020313 14 4 0.001712 −0.020688 14 5 0.029900 −0.016858
14 6 −0.019401 0.002413 14 7 0.036851 −0.004222 14 8 −0.034867 −0.014888
14 9 0.032377 0.028698 14 10 0.038839 −0.001466 14 11 0.015357 −0.039039
14 12 0.008505 −0.030922 14 13 0.032167 0.045200 14 14 −0.051783 −0.005014

15 0 0.003166 0.000000 15 1 0.012019 0.008173 15 2 −0.021746 −0.031733
15 3 0.052403 0.015160 15 4 −0.042163 0.007827 15 5 0.013451 0.008982
15 6 0.033463 −0.037753 15 7 0.059913 0.006056 15 8 −0.031990 0.022271
15 9 0.013027 0.037876 15 10 0.010311 0.014956 15 11 −0.000952 0.018716
15 12 −0.032729 0.015720 15 13 −0.028289 −0.004294 15 14 0.005305 −0.024443
15 15 −0.019228 −0.004704

16 0 −0.005430 0.000000 16 1 0.027534 0.033708 16 2 −0.022395 0.026207
16 3 −0.035101 −0.023242 16 4 0.041219 0.046057 16 5 −0.013495 −0.001679
16 6 0.014321 −0.034445 16 7 −0.007813 −0.008510 16 8 −0.021538 0.005248
16 9 −0.022777 −0.038924 16 10 −0.012129 0.012065 16 11 0.019266 −0.002975
16 12 0.019698 0.006915 16 13 0.013837 0.000994 16 14 −0.019126 −0.038862
16 15 −0.014461 −0.032699 16 16 −0.037529 0.003591

17 0 0.018108 0.000000 17 1 −0.026389 −0.029853 17 2 −0.017379 0.009197
17 3 0.007423 0.008195 17 4 0.007520 0.023382 17 5 −0.017058 0.005353
17 6 −0.013467 −0.028275 17 7 0.024011 −0.005884 17 8 0.037625 0.003761
17 9 0.003291 −0.028586 17 10 −0.004304 0.018038 17 11 −0.015726 0.011021
17 12 0.028689 0.020744 17 13 0.016603 0.020305 17 14 −0.014061 0.011376
17 15 0.005332 0.005387 17 16 −0.030061 0.003724 17 17 −0.034064 −0.019733

18 0 0.007269 0.000000 18 1 0.004210 −0.039076 18 2 0.012828 0.013586
18 3 −0.003760 −0.003109 18 4 0.053092 0.001460 18 5 0.007314 0.024650
18 6 0.013378 −0.015661 18 7 0.006529 0.006280 18 8 0.031066 0.002470
18 9 −0.019183 0.036144 18 10 0.005566 −0.004595 18 11 −0.007643 0.002117
18 12 −0.029603 −0.016193 18 13 −0.006380 −0.034980 18 14 −0.008003 −0.013078
18 15 −0.040536 −0.020249 18 16 0.010671 0.006965 18 17 0.003600 0.004510
18 18 0.002621 −0.010810

19 0 −0.003519 0.000000 19 1 −0.006968 0.000158 19 2 0.031435 −0.004330
19 3 −0.009900 −0.000988 19 4 0.015827 −0.005662 19 5 0.012058 0.027204
19 6 −0.002385 0.017952 19 7 0.007368 −0.008665 19 8 0.031052 −0.010463
19 9 0.003031 0.006452 19 10 −0.033378 −0.007090 19 11 0.016081 0.011000
19 12 −0.002989 0.009310 19 13 −0.007447 −0.028398 19 14 −0.004529 −0.013114
19 15 −0.017839 −0.014106 19 16 −0.021421 −0.006958 19 17 0.029106 −0.015153
19 18 0.034714 −0.009439 19 19 −0.002371 0.004780

20 0 0.018790 0.000000 20 1 0.008348 0.006245 20 2 0.020030 0.014885
20 3 −0.005935 0.035571 20 4 0.005457 −0.022410 20 5 −0.011452 −0.006935
20 6 0.011565 −0.000423 20 7 −0.020302 −0.000130 20 8 0.004922 0.004067
20 9 0.018044 −0.005865 20 10 −0.032549 −0.005760 20 11 0.014563 −0.018930
20 12 −0.006409 0.018154 20 13 0.027324 0.007033 20 14 0.011894 −0.014472
20 15 −0.025833 −0.000766 20 16 −0.012064 0.000330 20 17 0.004435 −0.013703
20 18 0.014917 −0.000984 20 19 −0.002963 0.010960 20 20 0.004045 −0.012347
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3.2.4 Recursions

In the computation of the Earth’s gravity potential at a given point, several recur-
rence relations for the evaluation of Legendre polynomials can be used. Starting
with P00 = 1, all polynomials Pmm up to the desired degree and order are first
calculated from

Pmm(u) = (2m−1)(1 − u2)1/2Pm−1,m−1 , (3.23)

where u and (1 − u2)1/2 stand for sinφ and cosφ, respectively. With these results
the remaining values may be obtained from

Pm+1,m(u) = (2m+ 1)uPmm(u) (3.24)

and from the recursion

Pnm(u) = 1

n−m
((2n− 1)uPn−1,m(u)− (n+m− 1)Pn−2,m(u)) (3.25)

for n>m+1.
The above relations for the Legendre polynomials may, according to Cunning-

ham (1970), be favorably combined with the addition theorems

cos((m + 1)λ) = cos(mλ) cos(λ)− sin(mλ) sin(λ)

sin((m + 1)λ) = sin(mλ) cos(λ)+ cos(mλ) sin(λ)
(3.26)

for the angular functions of the longitude-dependent terms into a single recursion.
This allows an efficient computation of the geopotential and the resulting acceler-
ation as a function of the Cartesian coordinates (x, y, z) of the satellite. Defining

Vnm =
(
R⊕
r

)n+1

· Pnm(sin φ) · cosmλ

Wnm =
(
R⊕
r

)n+1

· Pnm(sin φ) · sinmλ

(3.27)

the gravity potential may be written as

U = GM⊕
R⊕

∞∑
n=0

n∑
m=0

(CnmVnm + SnmWnm) . (3.28)

The Vnm and Wnm satisfy the recurrence relations

Vmm = (2m− 1)

{
xR⊕
r2

Vm−1,m−1 − yR⊕
r2

Wm−1,m−1

}

Wmm = (2m− 1)

{
xR⊕
r2

Wm−1,m−1 + yR⊕
r2

Vm−1,m−1

} (3.29)
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and

Vnm =
(

2n−1

n−m

)
· zR⊕
r2

· Vn−1,m −
(
n+m−1

n−m

)
· R

2⊕
r2

· Vn−2,m

Wnm =
(

2n−1

n−m

)
· zR⊕
r2

·Wn−1,m −
(
n+m−1

n−m

)
· R

2⊕
r2

·Wn−2,m

(3.30)

which follow immediately from the above relations for the Legendre polynomials
and the trigonometric functions. The second set of equations holds for n = m+ 1,
too, if Vm−1,m and Wm−1,m are set to zero. Furthermore,

V00 = R⊕
r

and W00 = 0 (3.31)

are known.
In order to calculate all Vnm and Wnm (0 ≤ m ≤ n ≤ nmax), one first obtains

the zonal terms Vn0 by using (3.30) with m=0. The corresponding values Wn0 are
all identical to zero. Now, (3.29) yields the first tesseral terms V11 and W11 from
V00, which allows all Vn1 (1 ≤ n ≤ nmax) to be determined. Thus the recursions
are used according to the following scheme:

V00,W00 ↘ Eqn. (3.29)
↓ ↘ ↓ Eqn. (3.30)

V10,W10 V11,W11

↓ ↓ ↘
V20,W20 V21,W21 V22,W22

↓ ↓ ↓ ↘
...

...
...

. . .

↓ ↓ ↓ ↘
Vn0,Wn0 Vn1,Wn1 Vn2,Wn2 · · · Vnn,Wnn

Finally it should be noted that many other recursion formulas exist for the calcu-
lation of Legendre polynomials, and may be looked up in standard text books or
mathematical tables (Abramowitz & Stegun 1965). Not all of these are, however,
equally well suited for the numerical computation, especially if high-order polyno-
mials are required (cf. Lundberg 1985). The recursions presented here are stable,
which means that small numerical errors in the computation of low-order terms do
not lead to meaningless results for high orders. As was shown by Deuflhard (1976),
recurrence relations for Pnm that keep either order (m) or degree (n) constant are
more stable than others. This is the case for (3.25) and applies equally well to
the formulas for Vnm and Wnm. As a rule of thumb, one can expect to loose 2–3,
4–5, and 5–6 digits when evaluating these functions up to orders 15, 50, and 100,
respectively.
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3.2.5 Acceleration

The acceleration r̈ , which is equal to the gradient of U , may be directly calculated
from the Vnm and Wnm as

ẍ =
∑
n,m

ẍnm , ÿ =
∑
n,m

ÿnm , z̈ =
∑
n,m

z̈nm (3.32)

with the partial accelerations

ẍnm
(m=0)= GM

R2⊕
·
{

− Cn0Vn+1,1

}

(m>0)= GM

R2⊕
· 1

2
·
{
(−CnmVn+1,m+1 − SnmWn+1,m+1)

+(n−m+2)!
(n−m)! · (+CnmVn+1,m−1 + SnmWn+1,m−1)

}

ÿnm
(m=0)= GM

R2⊕
·
{

− Cn0Wn+1,1

}

(m>0)= GM

R2⊕
· 1

2
·
{
(−Cnm ·Wn+1,m+1 + Snm · Vn+1,m+1)

+(n−m+2)!
(n−m)! · (−CnmWn+1,m−1 + SnmVn+1,m−1)

}

z̈nm = GM

R2⊕
·
{
(n−m+1) · (−CnmVn+1,m − SnmWn+1,m)

}
.

(3.33)

The derivation of these equations is given in Cunningham (1970), together with
similar relations for the second-order partial derivatives of the potential. It is noted
that the Vνμ and Wνμ terms are required up to degree and order n+1 if the partial
accelerations due to geopotential coefficients up toCnn and Snn are to be calculated.

The formulas given so far yield the acceleration r̈ = (ẍ, ÿ, z̈) in an Earth-fixed
coordinate system as a function of the Earth-fixed position vector r = (x, y, z).
Some coordinate transformations are therefore required to obtain the acceleration
in an inertial or Newtonian coordinate system which is consistent with the equation
of motion (3.1). Using indices ef and sf to distinguish Earth-fixed from space-fixed
coordinates, one has

ref = U(t) · rsf and r̈sf = UT (t) · r̈ef , (3.34)

where U(t) is a time-dependent matrix that describes the Earth’s rotation. The
rigorous computation of U(t), furthermore, has to account for the long and short-
term perturbations of the Earth’s axis, known as precession and nutation, that are
described in detail in Chap. 5.
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3.3 Sun and Moon

3.3.1 Perturbing Acceleration

According to Newton’s law of gravity, the acceleration of a satellite by a point mass
M is given by

r̈ = GM · s − r

|s − r|3 , (3.35)

where r and s are the geocentric coordinates of the satellite and ofM , respectively.
Some care is required, however, before this expression can be used for describing
the satellite’s motion with respect to the center of the Earth. The value of r̈ in (3.35)
refers to an inertial or Newtonian coordinate system in which the Earth is not at
rest, but is itself subject to an acceleration

r̈ = GM · s

|s|3 (3.36)

due to M . Both values have to be subtracted to obtain the second derivative

r̈ = GM ·
(

s − r

|s − r|3 − s

|s|3
)

(3.37)

of the satellite’s Earth-centered position vector.
Since both the Sun and the Moon are much further away from the Earth than

most of the satellites, one may derive a simple approximation from (3.37) which
gives an insight into the structure of the acceleration in an Earth-centered reference
frame, and is often used for analytical perturbation theories. For this purpose the
denominator of (3.35) is expanded as

1

|s − r|3 = 1

s2 + r2 − 2sr(eser)

3/2

≈ 1

s3

(
1 + 3

r

s
(eser )

)
, (3.38)

with the unit vectors

es = s

s
and er = r

r
(3.39)

pointing in the direction of s and r . This yields the approximate relation

r̈ ≈ GMr

s3
· (−er + 3es(eser )) (3.40)

which reduces to

r̈ ≈ 2GM

s3
r (3.41)

for er =±es , and to

r̈ ≈ −GM

s3
r (3.42)
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Fig. 3.4. Tidal forces due to the gravitational attraction of a distant point-like mass

for eres =0. Therefore the satellite experiences an acceleration away from the Earth
whenever it is collinear with the Earth and the perturbing body, but is attracted
towards the Earth whenever it is perpendicular to this line (cf. Fig. 3.4).

One may further see from (3.40) that the acceleration increases linearly with
the satellite’s distance r from the center of the Earth, while it decreases with the
third power of the distance of the perturbing body.

3.3.2 Low-Precision Solar and Lunar Coordinates

Since the forces exerted by the Sun and the Moon are much smaller than the central
attraction of the Earth, it is not necessary to know their coordinates to the highest
precision when calculating the perturbing acceleration acting on a satellite. For
many purposes it is even sufficient to use simple equations for the solar and lunar
coordinates that are accurate to about 0.1–1% and follow from more advanced
analytical theories for the motion of the Sun and the Moon (see e.g. van Flandern
& Pulkkinen 1979, Montenbruck 1989, Montenbruck & Pfleger 2000 for further
references).

Geocentric solar coordinates can easily be obtained from the assumption of an
unperturbed motion of the Earth around the Sun. Appropriate mean orbital elements,
which approximate the Sun’s elliptic orbit with respect to the Earth and the ecliptic
for some decades around the year 2000, are given by

a = 149 600 000 km
e = 0.016709
i = 0◦.0000
Ω + ω = 282◦.9400
M = 357◦.5256 + 35999◦.049·T ,

where

T = (JD − 2451545.0)/36525.0
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is the number of Julian centuries since 1.5 January 2000 (J2000), and JD is the
Julian Date (cf. Annex A.1). The position coordinates may be found from these
elements using the equations for Keplerian orbits that were derived in the previous
chapter. Due to the small eccentricity and inclination, the use of some simple series
expansions is, however, recommended to speed up the calculation without loss of
accuracy. This results in the expressions

λ
 = Ω + ω +M + 6892′′ sinM + 72′′ sin 2M

r
 = (149.619 − 2.499 cosM − 0.021 cos 2M) · 106 km
(3.43)

for the Sun’s ecliptic longitude λ
 and distance r
, whereas the ecliptic latitude
β
 vanishes within an accuracy of 1′ (cf. Montenbruck 1989).

These values may be converted to Cartesian coordinates referring to the equator
by applying an appropriate rotation

r
 = Rx(−ε)
⎛
⎝

r
 cos λ
 cosβ

r
 sin λ
 cosβ

r
 sin β


⎞
⎠ , (3.44)

where

ε = 23◦.43929111 (3.45)

is the obliquity of the ecliptic, i.e. the inclination of the ecliptic relative to the Earth’s
equator. Since β
 =0, the expression for r
 may further be simplified to give

r
 =
⎛
⎝

r
 cosλ

r
 sin λ
 cos ε
r
 sin λ
 sin ε

⎞
⎠ . (3.46)

To be precise, the longitude λ
, the latitude β
, and the position vector r

in (3.44) refer to the mean equinox and ecliptic of J2000 (EME2000). Precession,
which is a result of perturbing forces of the Sun, Moon and planets, gives rise to a
slow motion of both the ecliptic and the equinox. While the ecliptic changes its ori-
entation by less than 1′ per century, the motion of the equinox is more pronounced,
however, and amounts to 5030′′ per century. Referred to the mean equinox of 1950,
for example, the Sun’s longitude is smaller than the above value by about 2515′′.
In order to refer the coordinates to the equinox of some epoch Teqx (measured in
centuries since the epoch 2000), one has to add a correction of

1◦.3972 · Teqx

to the value of λ
 given above. The ecliptic latitude need not be changed since it
varies by less than one arcminute within a full century.

Series expansions similar to those for the Sun exist for the lunar coordinates as
well. Due to the strong solar and terrestrial perturbations, a larger number of terms
are, however, needed to describe the lunar motion in terms of the mean arguments
of the lunar and solar orbit. The following relations allow the computation of lunar



72 3. Force Model

longitude and latitude with a typical accuracy of several arcminutes and about
500 km in the lunar distance. The calculation of the perturbations is based on five
fundamental arguments: the mean longitude L0 of the Moon, the Moon’s mean
anomaly l, the Sun’s mean anomaly l′, the mean angular distance of the Moon from
the ascending nodeF , and the differenceD between the mean longitudes of the Sun
and the Moon. The longitude of the ascending node Ω is not explicitly employed.
It is obtained from the difference Ω = L0 − F .

L0 = 218◦.31617 + 481267◦.88088 · T − 1◦.3972 · T
l = 134◦.96292 + 477198◦.86753 · T
l′ = 357◦.52543 + 35999◦.04944 · T
F = 93◦.27283 + 483202◦.01873 · T
D = 297◦.85027 + 445267◦.11135 · T

(3.47)

Using these values the Moon’s longitude with respect to the equinox and ecliptic
of the year 2000 may be expressed as

λM = L0+22640′′ · sin(l)+ 769′′ · sin(2l)
−4586′′ · sin(l−2D)+ 2370′′ · sin(2D)
−668′′ · sin(l′)− 412′′ · sin(2F)
−212′′ · sin(2l−2D)− 206′′ · sin(l+l′−2D)
+192′′ · sin(l+2D)− 165′′ · sin(l′−2D)
+148′′ · sin(l−l′)− 125′′ · sin(D)
−110′′ · sin(l+l′)− 55′′ · sin(2F−2D) .

(3.48)

Here, the first two terms describe the motion in an ellipse of eccentricity e = 0.055,
whereas the remaining terms denote the various perturbations. The lunar latitude
is given by

βM = 18520′′ sin(F+λM−L0+412′′ · sin 2F+541′′ · sin l′)
−526′′ · sin(F−2D)+ 44′′ · sin(l+F−2D)
−31′′ · sin(−l+F−2D)− 25′′ · sin(−2l+F)

−23′′ · sin(l′+F−2D)+ 21′′ · sin(−l+ F)

+11′′ · sin(−l′+F−2D) ,

(3.49)

where the leading term is due to the inclination of the Moon’s orbit relative to the
ecliptic, which amounts to approximately 5.1◦. Finally the Moon’s distance from
the center of the Earth is

rM = ( 385 000 − 20 905 cos(l)− 3 699 cos(2D−l)

−2 956 cos(2D)− 570 cos(2l)+ 246 cos(2l−2D)
−205 cos(l′−2D)− 171 cos(l+2D)
−152 cos(l+l′−2D) ) km ,

(3.50)

where terms smaller than 150 km have been neglected.
The spherical ecliptic coordinates may again be converted to equatorial Carte-

sian coordinates using the transformation

rM = Rx(−ε)
⎛
⎝

rM cos λM cosβM

rM sin λM cosβM

rM sin βM

⎞
⎠ . (3.51)
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A change of the reference system from EME2000 to the equator and equinox
of some epoch Teqx is further accounted for in the same way as for the Sun’s
coordinates.

3.3.3 Chebyshev Approximation

The above description of the solar and lunar motion is well suited for deriving
analytical expressions of the perturbations exerted on a satellite by these bodies, or
for low accuracy requirements. If, however, one requires accurate numerical values
of the solar and lunar coordinates very frequently, approximations by Chebyshev
polynomials may be more adequate. These polynomials are defined as

Tn(τ) = cos(n·arccos τ) (3.52)

for |τ | ≤ 1, and may recursively be computed by

T0(τ ) = 1

T1(τ ) = τ

Tn+1(τ ) = 2τTn(τ)− Tn−1(τ ) for n ≥ 1 .

(3.53)

The property which makes these polynomials so well suited for the approximation
of functions is their behaviour within the interval [−1,+1]. As can be seen from
Fig. 3.5, the absolute value of each polynomial Tn(τ) is always less than or equal
to one for −1 ≤ τ ≤ 1. Therefore, given an approximation

f (t) ≈
n−1∑
i=0

ai Ti(τ ) (3.54)

-1 +1

  

  
+1

-1

x

Tn(x)
T1

T2

T3

T4

T5

Fig. 3.5. The Chebyshev polynomials T1 to T5



74 3. Force Model

of some function f (t) over a finite time interval [t1, t2] that is mapped to [−1,+1]
by the transformation

τ = 2
t − t1

t2 − t1
− 1 , (3.55)

one may easily judge the contribution of each individual term to the total accuracy
of the approximation. If, for example, one would like to neglect the final term
an−1Tn−1, then one would produce an error that varies uniformly between t1 and t2,
and never exceeds the absolute value of an−1. If, on the other hand, one had chosen
a Taylor series approximation

f (t) ≈
n−1∑
i=0

bi τ
i

of equal order, the error of neglecting bn−1τ
n−1 would be negligible in the middle

of the approximation interval, but most pronounced at the beginning and the end.
Furthermore, the coefficients bi are generally found to be much larger than ai , so that
a higher number of terms would be needed for a similar degree of approximation.

The way in which the coefficients for the approximation of a function f may
be calculated depends on the form in which this function is available. If f is known
analytically, then one may use the relation

ai = 2 − δi0

n

n−1∑
k=0

f (tnk ) Ti(τ
n
k ) i = 0, . . . , n−1 (3.56)

(see Press et al. 1992), to construct an approximation of order n−1 from n values
of f at predefined times tnk that correspond to the n roots

τnk = cos

(
π

2k + 1

2n

)
k = 0, . . . , n− 1 (3.57)

of Tn. This algorithm is not, however, feasible for the approximation of a function
that is only known at a number of evenly spaced times. In this case one has to
use standard least-squares fit techniques to obtain the desired coefficients for the
approximation of f . In the case of JPL’s Development Ephemerides, a least-squares
fit is used to obtain the n coefficients (a0, . . . , an−1) from equally spaced positions
generated by the numerical integration (Newhall 1989). By using a constrained
least-squares adjustment it is, furthermore, assured that continuous position and
velocity values are obtained from the Chebyshev approximations at the interval
boundaries.

In order to evaluate a given Chebyshev approximation it is not necessary to
calculate the Chebyshev polynomials explicitly. An algorithm due to Clenshaw is
recommended instead, which minimizes the total number of multiplications re-
quired. To start with, fn and fn+1 are set equal to zero. Subsequently the values

fi = 2τfi+1 − fi+2 + ai for i = n−1, n− 2, . . . , 1 (3.58)
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are computed using the normalized time τ . The approximate value of f is then
given by

f (t) = τf1 − f2 + a0 . (3.59)

For some applications, e.g. for the computation of the spacecraft velocity from
the Chebyshev approximation of the spacecraft position, the derivative of a given
Chebyshev approximation is required. To this end, one may obtain the coefficients
of the approximation

d

dt
f (t) ≈ 2

t2 − t1

n−2∑
i=0

a′
i Ti(τ ) (3.60)

of the time derivative of f from the set of coefficients (a0, a1, . . . , an−1) approxi-
mating f (t) itself, using the recurrence relation

a′
i = a′

i+2 + 2(i + 1)ai+1 (i = n−2, . . . , 1)

a′
0 = a′

2/2 + a1

(3.61)

with a′
n = a′

n−1 = 0. The same method would yield Chebyshev approximations of
the higher order derivatives of f (t) if required.

3.3.4 JPL Ephemerides

The Jet Propulsion Laboratory (JPL) provides a series of solar system ephemer-
ides in the form of Chebyshev approximations. The Development Ephemerides
(DE) are publicly available and have emerged as a standard for high-precision
planetary and lunar coordinates (Seidelmann 1992). Currently the DE200 (Standish
1982, 1990) and DE405 (Standish 1998) ephemerides are most widely used for
general applications. They cover a total of roughly 600 years from 1600 to 2170.
An extended version of DE405 is, furthermore, available for historical purposes. It
is known as DE406 and covers the time span −3000 to +3000.

While the B1950 reference system has been employed in ephemerides with
series numbers of less than 200 (e.g. DE118), the DE200 series uses the dynamical
equator and equinox of J2000 (EME2000) as reference system. In the recent DE400
series all data are referred to the International Celestial Reference Frame (ICRF,
cf. Sect. 5.2), which is realized through a catalog of radio sources. The difference
between the dynamical J2000 reference frame and the ICRF is at a level of 0 ′′. 01,
and determined with an accuracy of 0 ′′. 003 (Standish et al. 1995).

All ephemerides are based on a rigorous numerical integration of the respec-
tive equations of motion (Newhall et al. 1983, Seidelmann 1992). In addition to the
point-mass interactions among the Moon, the planets and the Sun, the perturbations
from selected asteroids are considered, as well as relativistic post-Newtonian cor-
rections to the equations of motion. Furthermore, the lunisolar torques on the figure
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Table 3.4. Number of Chebyshev coefficients (n) per coordinate, number of sub-intervals (k), and
sub-interval size (Δt) in days, used in DE200 and DE405. EMB denotes the Earth-Moon-Barycenter.

DE200 DE405
# Body n k Δt n k Δt

1 Mercury 12 4 8 14 4 8
2 Venus 12 1 32 10 2 16
3 EMB 15 2 16 13 2 16
4 Mars 10 1 32 11 1 32
5 Jupiter 9 1 32 8 1 32
6 Saturn 8 1 32 7 1 32
7 Uranus 8 1 32 6 1 32
8 Neptune 6 1 32 6 1 32
9 Pluto 6 1 32 6 1 32

10 Moon 12 8 4 13 8 4
11 Sun 15 1 32 11 2 16

12 Nutation 10 4 8 10 4 8
13 Libration 10 4 8

of the Earth, and the Earth’s and Sun’s torques on the figure of the Moon, are taken
into account. The observational database for the development of DE405 comprises
mainly optical transit measurements of the Sun and the planets since 1911, radar
ranging to Mercury and Venus since 1964, tracking of deep space probes, planetary
orbiters and landers since 1971, and lunar laser ranging since 1970.

In addition to planetary and lunar coordinates, nutation angles and lunar li-
bration angles are available with some of the ephemerides. In order to obtain a
compact representation of the ephemeris data, the discrete positions are replaced
by Chebyshev approximations, which allow a direct interpolation of the position
and velocity of each body. The complete ephemeris is blocked into data records,
where each record covers a fixed time interval of typically 32 days, and contains
coefficients for the Chebyshev polynomial approximation of the positions of eleven
solar system bodies. As shown in Table 3.4, the order and the time covered by each
polynomial has been chosen in accordance with the period of revolution of the
individual bodies. An evaluation of the polynomials yields Cartesian coordinates
x, y, z in km for the planets, the Earth-Moon barycenter and the Sun with respect
to the barycenter of the solar system, while lunar positions are given with respect
to the center of the Earth.

While the lunar coordinates rM of the JPL ephemerides are already given in the
desired form for perturbation calculations (i.e. with respect to the Earth’s center),
the geocentric position of the Sun r
 is not directly available from the ephemeris
but may be computed as

r
 = r̂
 − rEMB + 1

1 + μ∗ · rM (3.62)

from the position vector of the Sun’s center with respect to the solar barycenter r̂
,
the position of the Earth-Moon barycenter rEMB and the geocentric lunar coordi-



3.4 Solar Radiation Pressure 77

nates rM. Here μ∗ ≈ 81.3 denotes the ratio of the Earth’s and the Moon’s masses.
For compatibility with the generation of the ephemeris, the value of μ∗ used in the
transformation should be retrieved from the DE file.

3.4 Solar Radiation Pressure

A satellite that is exposed to solar radiation experiences a small force that arises from
the absorption or reflection of photons. In contrast to the gravitational perturbations
discussed up to now, the acceleration due to the solar radiation depends on the
satellite’s mass and surface area.

The size of the solar radiation pressure is determined by the solar flux

Φ = ΔE

AΔt
, (3.63)

i.e. by the energy ΔE that passes through an area A in a time interval Δt . A single
photon of energy Eν carries an impulse

pν = Eν

c
, (3.64)

where c is the velocity of light. Accordingly, the total impulse of an absorbing body
that is illuminated by the Sun changes by

Δp = ΔE

c
= Φ

c
AΔt (3.65)

during the time Δt . This means that the satellite experiences a force

F = Δp

Δt
= Φ

c
A (3.66)

that is proportional to the cross-section A or, equivalently, a pressure

P = Φ

c
. (3.67)

Φ ≈ 1 367 Wm−2 (3.68)

(McCarthy 1996), and the solar radiation pressure is, therefore, given by

P
 ≈ 4.56·10−6 Nm−2 (3.69)

if one assumes that the satellite’s surfaceA absorbs all photons and is perpendicular
to the incoming radiation.

The more general case of a satellite surface with an arbitrary orientation is
illustrated in Fig. 3.6 for the cases of complete absorption (reflectivity ε= 0) and
complete specular reflection (reflectivity ε= 1). In contrast to specular reflection,

     
In a distance of one Astronomical Unit (1 AU ≈ 149.6 Mio km) from the Sun – i.e.,
at the mean orbital radius of the Earth around  the S – the solar flux amounts toun
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Fig. 3.6. The force due to solar radiation pressure for absorbing (ε=0) and reflecting (ε=1) surface
elements

the diffuse reflection of light is neglected in the sequel. The normal vector n gives
the orientation of the surface A. It is inclined at an angle θ to the vector e
 which
points into the direction of the Sun.

For an absorbing surface, it follows from the consideration given above that
the force F abs is equal to

F abs = −P
 cos(θ)A e
 (3.70)

where cos(θ)A is the cross-section of the bundle of light that illuminates A. For a
reflecting surface, the force is not, in general, directed away from the Sun, since no
impulse is transferred in the direction parallel to the surface. Due to the reflected
light rays, the impulse transferred in the direction of n is twice as large, however,
as in the case of pure absorption, and the resulting force is, therefore, given by

F refl = −2P
 cos(θ)A cos(θ)n . (3.71)

Both formulas may be combined for a body that reflects a fraction ε of the incoming
radiation ΔE, while it absorbs the remaining energy (1−ε)ΔE:

F = −P
 cos(θ)A [(1−ε)e
 + 2ε cos(θ)n] . (3.72)

For typical materials used in the construction of satellites, the reflectivity ε lies in
the range from 0.2 to 0.9 (see Table 3.5).

Table 3.5. Reflectivity, absorption and radiation pressure coefficient of selected satellite components
(cf. van der Ha & Modi 1977)

Material ε 1−ε CR≈1+ε

Solar panel 0.21 0.79 1.21
High-gain antenna 0.30 0.70 1.30
Aluminum coated mylar solar sail 0.88 0.12 1.88
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Due to the eccentricity of the Earth’s orbit, the distance between an Earth-orbiting
satellite and the Sun varies between 147·106 km and 152·106 km during the course
of a year. This results in an annual variation of the solar radiation pressure by about
±3.3%, since the solar flux decreases with the square of the distance from the Sun.
Accounting for this dependence, one finally obtains the following expression for
the acceleration of a satellite due to the solar radiation pressure:

r̈ = −P

1AU2

r2

A

m
cos(θ) [(1−ε)e
 + 2ε cos(θ)n] . (3.73)

Here m means the satellite’s mass and cos θ may be calculated from

cos θ = nT e
 , (3.74)

since both n and e
 are unit vectors.
For many applications (e.g. satellites with large solar arrays) it suffices, how-

ever, to assume that the surface normal n points in the direction of the Sun. In this
case (3.73) may further be simplified, yielding

r̈ = −P
CR
A

m

r

r3


AU2 , (3.75)

where the radiation pressure coefficient CR stands for

CR = 1+ε . (3.76)

Equation (3.75) is commonly used in orbit determination programs with the option
of estimatingCR as a free parameter. Orbital perturbations due to the solar radiation
pressure may thus be accounted for with high precision, even if no details of the
satellites structure, orientation and reflectivity are known.

For high-precision applications, which are required for geodetic space mis-
sions, the simple model of Equation (3.75) no longer suffices. In this case the
complex satellite structure, as well as the various surface properties, have to be
treated. To avoid an excessive computational effort during orbit determination, a
complex micro model may be established prior to the mission, which is used to
adjust parameters of a simplified macro model, applied during routine spacecraft
operations (Marshall et al. 1991). To this end, a finite element method is applied to
model the complex spacecraft shape and orientation, the optical and thermal prop-
erties of the surfaces, and the impinging radiation. The definition of a simplified
macro satellite model may then consist of a “box-wings” satellite shape, with six
flat plates as the satellite body, and four flat plates for the front and back of the two
connected solar arrays. The adjustable parameters of the macro model consist of the
area and specular and diffuse reflectivities of the individual plates; the individual
vector accelerations are finally summed to compute the total acceleration on the
satellite’s center-of-mass.
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3.4.1 Eclipse Conditions

So far, the size of the solar radiation pressure has been derived under the assumption
of full illumination by the Sun. For most Earth-orbiting satellites, however, partial
or total eclipses occur when the satellite passes the night side of the Earth. Apart
from occultations of the Sun by the Earth, the Moon may also cast a shadow on the
satellite, even though these events occur less frequently and in a “random” fashion.
Although the computation of eclipse conditions is generally applied for the Earth
as occulting body, the following models are generic and may well be adapted to
other cases.

Sun
Earth

R

s RB

s

s0 f21f

l

l

1

2

S/C

Penumbra

Umbra
Umbra

Penumbra

V V1 2

c1

R

c2

Fundamental
Plane

Fig. 3.7. Conical shadow model

Neglecting the atmosphere or oblateness of the occulting body, eclipse con-
ditions may be derived from a conical shadow model as illustrated in Fig. 3.7.
Let

s
 = r
 − rB (3.77)

and

s = r − rB (3.78)

denote the coordinates of the Sun and the spacecraft with respect to the occulting
body at rB. The fundamental plane, which is perpendicular to the shadow axis and
passes through the satellite, then intersects the shadow axis at a distance

s0 = (−sT s
)/|s
| (3.79)



3.4 Solar Radiation Pressure 81

from the center of the occulting body in anti-Sun direction. Accordingly,

l =
√√
s2 − s2

0 (3.80)

is the distance of the spacecraft from the shadow axis.
Making use of the solar radius R
 and the body radius RB, the generating

angles of the shadow cones are given by

sin f1 = (R
 + RB)/s

sin f2 = (R
 − RB)/s
 .

(3.81)

Here and in the sequel, the index 1 denotes quantities related to the shadow cone
of the penumbra, whereas the index 2 refers to the cone of the umbra. When the
occulting body is the Earth, the half cone angle of the umbra is 0.264◦ and 0.269◦
for the penumbra. This yields the distances

c1 = s0 + RB/ sin f1

c2 = s0 − RB/ sin f2
(3.82)

(measured in anti-Sun direction) of the fundamental plane from the vertices V1 and
V2 of the shadow cones, as well as the radii

l1 = c1 tan f1

l2 = c2 tan f2
(3.83)

of the shadow cones in the fundamental plane. Regarding the sign of l2, it is noted
that l2 is negative between the occulting body and the vertex of the umbral cone
(total eclipse region). Behind the vertex V2 (c2 > 0, l2 > 0), with a geocentric
distance of 1.384 · 106 km for the Earth, the apparent diameter of the occulting
body is less than that of the Sun, implying an annular eclipse if the spacecraft is
inside the umbral cone.

3.4.2 Shadow Function

The orbital perturbations resulting from shadow transits may be treated by gener-
alizing (3.73) according to

r̈ = −νP

1AU2

r2

A

m
cos(θ) [(1−ε)e
 + 2ε cos(θ)n] (3.84)

where ν is the shadow function, such that

ν = 0 if the satellite is in umbra

ν = 1 if the satellite is in sunlight

0 < ν < 1 if the satellite is in penumbra.

The degree of the Sun’s occultation by a body like the Earth or the Moon is computed
from the angular separation and diameters of the respective bodies. Due to the small
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Fig. 3.8. Occultation of the Sun by a spher-
ical body.

apparent diameter of the Sun, it is sufficient to model the occultation by overlapping
circular disks. Let

a = arcsin
R


|r
 − r| (3.85)

be the apparent radius of the occulted body (i.e. the Sun),

b = arcsin
RB

s
(3.86)

be the apparent radius of the occulting body, and

c = arccos
−sT (r
 − r)

s|r
 − r| (3.87)

be the apparent separation of the centers of both bodies (cf. Fig. 3.8). Then the area
of the occulted segment of the apparent solar disk is

A = ACFC′ + ACDC′ (3.88)

provided that

|a − b| < c < a + b . (3.89)

The occulted area may be expressed as

A = 2(ABCF − ABCE)+ 2(AACD − AACE) . (3.90)

Using the notation AE = x, EC = y, and 
 CAE = α, the individual areas are
given by

AACD = 1
2αa

2

AACE = 1
2xy

(3.91)

with similar relations for the other area sections. Finally we end up with

A = a2 · arccos(x/a)+ b2 · arccos((c − x)/b)− c · y (3.92)
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where

x = c2 + a2 − b2

2c
and y =

√√
a2 − x2 . (3.93)

The remaining fraction of Sun light is thus given by

ν = 1 − A

πa2
. (3.94)

If the condition (3.89) is not satisfied, no occultation takes place (a + b ≤ c) or
the occultation is total (c < b − a implying that a < b) or partial but maximum
(c < a − b implying that a > b). It is noted that shadow transits violate the as-
sumption of continuous high-order derivatives of the force function, which is made
by all common algorithms for the numerical integration of the equation of motion.
Especially if the penumbra regime is not sampled by the integration algorithm due
to a large stepsize, an apparent discontinuity is noted, leading to numerical inte-
gration errors. In some cases, the error when entering the shadow is opposite to the
error when exiting the shadow, but an error cancellation will not inevitably occur.
Hence, for long-term orbit prediction, the integration step size should not be in
resonance with the shadow entry period (i.e. the time interval between shadow en-
tries in subsequent orbits) to avoid an accumulation of numerical integration errors
(Lundberg 1996).

3.5 Atmospheric Drag

Atmospheric forces represent the largest non-gravitational perturbations acting on
low altitude satellites. However, accurate modeling of aerodynamic forces is diffi-
cult from three points of view. Firstly, the physical properties of the atmosphere, in
this case especially the density of the upper atmosphere, are not known very accu-
rately. Secondly, the modeling of these forces requires detailed knowledge of the
interaction of neutral gas, as well as charged particles, with the different spacecraft
surfaces. Thirdly, the varying attitude of non-spherical satellites with respect to the
atmospheric particle flux has to be taken into account.

The dominant atmospheric force acting on low altitude satellites, called drag,
is directed opposite to the velocity of the satellite motion with respect to the atmo-
spheric flux, hence decelerating the satellite. Minor contributions to atmospheric
forces are the lift force and binormal forces, acting perpendicular to this relative
velocity. In most cases they can safely be neglected. The dependence of the drag
force on the velocity of the object relative to the atmosphere vr can be derived in a
simple way. Consider a small mass element Δm of an atmosphere column that hits
the satellite’s cross-sectional area A in some time interval Δt

Δm = ρ A vr Δt , (3.95)
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where ρ is the atmospheric density at the location of the satellite. The impulse dp
exerted on the satellite is then given by

Δp = Δmvr = ρ A v2
r Δt , (3.96)

which is related to the resulting force F by F = Δp/Δt . The satellite acceleration
due to drag can therefore be written as

r̈ = −1

2
CD

A

m
ρ v2

r ev , (3.97)

wherem is the spacecraft mass. The drag coefficientCD is a dimensionless quantity
that describes the interaction of the atmosphere with the satellite’s surface material.
Typical values of CD range from 1.5–3.0, and are commonly estimated as free
parameters in orbit determination programs. The direction of the drag acceleration
is always (anti-)parallel to the relative velocity vector as indicated by the unit
vector ev = vr/vr . Here the factor of 1

2 has been introduced to preserve a consistent
notation in all branches of aerodynamics, since 1

2ρAv
2Δt is the increase in pressure

when low-speed air is stopped.
The drag coefficient CD depends on the interaction of the atmospheric con-

stituents with the satellite surface. In the free molecular flow regime, where the
satellites usually move, the particles re-emitted from the satellite do not interfere
with the incident molecules, i.e. the mean free path λ is much greater than the typi-
cal satellite dimension l. This regime can be characterized by a so-called Knudsen
number K = λ/l ≥ 10. At lower altitudes λ decreases, and a situation with
K < 0.1 may occur which is then called the hypersonic continuum flow. In this
regime, which is entered in most cases only near the end of low-Earth satellite
lifetimes, the CD coefficient is reduced from about 2.3 to about 1.0, since the re-
emitted molecules partially shield the satellite from the incident flow. In Fig. 3.9
the Knudsen numbers depending on the satellite dimension and altitude are shown.
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Fig. 3.9. Knudsen numbers depending on satellite dimension and altitude
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Two principally different scattering mechanisms are possible: a specular, elastic
reflection of the impinging particles, and a diffuse reflection (Fig. 3.10). Diffuse
reflection occurs when the atmospheric particles penetrate the satellite surface,
interact with the body molecules, and are finally re-emitted in a random manner,
producing forces tangential to the local surface element. In fact, both types of
scattering appear to various degrees. A variety of different algorithms for computing
the gas-surface interaction has been established. In Schamberg’s model (Schamberg
1959), for example, this interaction is parameterized by the relation of incident and
reflection angle, the speed of reflected molecules, and the angular width of the
reflected beam.

n

A A

Fig. 3.10. Two principally different scattering mechanisms: specular and diffuse reflection

The a priori knowledge of CD is generally not very good, because the drag
coefficient depends in a complex way on the spacecraft surface material, the chem-
ical constituents of the atmosphere, the molecular weight, and temperature of the
impinging particles . Therefore, if possible, the drag coefficient is estimated during
the orbit determination process. A crude approximation is CD = 2 in the case of a
spherical body, whereas typical values for non-spherical convex-shaped spacecraft
range from 2.0 to 2.3.

The area-to-mass ratio in principle requires the knowledge of the spacecraft
attitude. A constant area-to-mass ratio can, however, be assumed in the Earth-
pointing mode, where one of the satellite’s main axes of inertia is permanently
aligned with the radial direction vector.

The relative velocity of the satellite with respect to the atmosphere depends
on the complex atmospheric dynamics. However, a reasonable approximation of
the relative velocity is obtained with the assumption that the atmosphere co-rotates
with the Earth. Therefore one can write

vr = v − ω⊕ × r , (3.98)

with the inertial satellite velocity vector v, the position vector r , and the Earth’s
angular velocity vector ω⊕ of size 0.7292·10−4 rad/s. Maximum observed devia-
tions from this assumption are of the order of 40% (King-Hele 1987), leading to
uncertainties in the drag force of less than 5%. A global atmospheric wind model
above 220 km was established by Hedin et al. (1988) using a limited set of vector
spherical harmonics.

As the drag force depends on the atmospheric density ρ at the satellite location,
the modeling of the complex properties and dynamics of the Earth’s atmosphere is
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a challenging task of modern precision orbit determination. A variety of more or
less complicated atmospheric models have been established recently, with typical
density differences for different models of about 20% at a lower altitude of 300 km,
even increasing at higher altitudes. It is remarkable that the accuracy of empirical
drag models has not significantly improved during the past two decades (see e.g.
Marcos et al. 1989).

3.5.1 The Upper Atmosphere

The density of the upper atmosphere depends in a complex way on a variety of
different parameters. The most evident dependency, however, is its decrease with
increasing altitude. A very rough estimate of this dependency is expressed in the
strongly simplified formula

ρ = ρ0e−h/H0 , (3.99)

where ρ0 is the atmospheric density at some reference height, and H0 is the density
scale height, which is 7.9 km at mean sea level and increases with geodetic height.
According to the theory of thermodynamics, the hydrostatic equation together with
the gas law can be used to derive H0 as

H0 = T

μg
. (3.100)

Here, denotes the universal gas constant, T the absolute temperature, g =
GM⊕/r2 the Earth’s gravitational acceleration, and μ the molecular weight of
the atmospheric constituents. From (3.100) it is seen that the partial densities of
the different gas constituents decrease at different rates. Therefore, the distribution
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of chemical constituents in the atmosphere has to be taken into account. While
below 100 km the atmospheric species are in a state of turbulent mixing, called
homosphere, the molecular dissociation and diffusion leads to an inhomogeneous
species distribution in the heterosphere. Below 170 km altitude, nitrogen is dom-
inant (cf. Fig. 3.11), whereas up to 500–600 km, depending on solar activity, the
atmosphere mainly consists of atomic oxygen. In the regime from 500 km to 900 km
helium dominates, followed by atomic hydrogen at higher altitudes.
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Fig. 3.12. Temperature stratification in the atmosphere with respect to altitude

From (3.100) it is also evident that a model of the atmospheric temperature
variation is required. In Fig. 3.12 the temperature stratification in the Earth’s atmo-
sphere with respect to geodetic height is shown. The lower atmosphere is divided
into the troposphere, stratosphere and mesosphere. At mean sea level the typical
temperature is 290 K, which decreases with increasing height to 220 K. A local
temperature maximum of 280 K is reached at a height of 50 km, due to the absorp-
tion of solar ultraviolet radiation in an ozone layer. Again, the temperature drops to
a minimum of about 180 K at the mesopause, the transition from the mesosphere
to thermosphere at 90 km height. The thermosphere is characterized by a rapid in-
crease in temperature, approaching the exospheric temperature at the thermopause
at 450–600 km altitude. As indicated in Fig. 3.12, the exospheric temperature is no
longer dependent on the height, therefore it is often denoted by T∞. However, the
exospheric temperature is strongly dependent on many parameters, and varies in a
regime of typically 400 K to 2000 K. Once the exospheric temperature is known, the
temperature stratification in the thermosphere can be derived. This fact explains the
great importance of the exospheric temperature in atmospheric density modeling,
such as e.g. in the Jacchia models.

There are mainly three effects of solar radiation that affect the upper atmo-
sphere. Firstly, the diurnal or day-night effect, resulting from the solar ultraviolet
radiation heating, produces a diurnal variation of the atmospheric density. The



88 3. Force Model

maximum density occurs two hours after local noon, approximately at the latitude
of the sub-solar point, while a minimum density is found three hours past midnight
near the same latitude but in the opposite hemisphere. This density variation is
therefore dependent on the geographical latitude. The second effect results from
the extreme ultraviolet radiation of the Sun, varying on different time scales. Be-
sides a short-term 27-day period, related to the rotation period of the Sun, the Sun’s
activity is characterized by the 11-year Sun spot cycle. It has been discovered that
variations in the solar decimeter flux are related to the extreme ultraviolet radiation
from the Sun. Therefore, the 10.7 cm radiation index denoted by F10.7 is intro-
duced, which accounts for extreme ultraviolet radiation effects. F10.7 is measured
in units of 10−22W/m2/s = 104 Jansky (Jy). Since 1947, measurements of this
flux line have been recorded by the National Research Council in Ottawa on a daily
basis, and from 1991 on by a radio telescope in Penticton, British Columbia. These
values appear in printed form as “Solar-Geophysical Data prompt reports” as well
as electronically, published by the National Geophysical Data Center (NGDC) in
Boulder, Colorado. Finally, the third effect results from the corpuscular solar wind,
which is responsible for short-term fluctuations in the atmospheric density.

Table 3.6. Relation of geomagnetic ap to Kp values (Mayaud 1980)

ap 0 2 3 4 5 6 7 8 12 15 18 22 27 32
Kp 00 0+ 1− 10 1+ 2− 20 2+ 3− 30 3+ 4− 40 4+
ap 39 48 56 67 80 94 111 132 154 179 207 236 300 400
Kp 5− 50 5+ 6− 60 6+ 7− 70 7+ 8− 80 8+ 9− 90

Geomagnetic storms affecting the thermosphere have been observed for many
years. They increase the temperature, as well as the total density, associated with
chemical composition changes on a timescale of one or two days. Although a large
number of satellite acceleration measurements are available (Berger at al. 1988) the
basic physical processes are not yet known precisely. It is, however, evident that
the interaction of the solar wind and the Earth’s magnetic field plays a major role in
perturbations of the geomagnetic field. The “three-hourly planetary geomagnetic
index” Kp is used as a global measure of a three-hour variation in the Earth’s
magnetic field. It is obtained from K-indices that are measured at 12 observatories
situated at locations ranging from 48◦ to 63◦ geomagnetic latitude. The K-indices,
integers in the range 0 to 9, correspond to variations in the horizontal component of
the geomagnetic field with respect to a quiet day, as measured by magnetometers.
These variations amount up to 400 nT, compared to the Earth’s magnetic field of
about 30 000 nT. In some cases geomagnetic data are given as ap values, the “three-
hourly planetary amplitude index”, which is related to Kp as given in Table 3.6.
Note that Kp is a one-digit number, subdivided into units of 1/3.

A collation of minimum, typical and maximum numbers of the daily F10.7

index, the F̄10.7, averaged over 90 days, and the geomagneticKp index, is given in
Table 3.7. The short- and long-term evolution of solar flux values and prediction
algorithms are discussed in Sect. 3.5.5.
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Table 3.7. Solar flux values and geomagnetic indices

F10.7 F̄10.7 Kp

Minimum 70 70 00

Typical 200 155 40

Maximum 330 240 80

A lag of 6.7 hours in the response of temperature changes to geomagnetic
storms, indicated byKp values from 6 to 9, has been observed. Along with the solar
flux values, geomagnetic data are also available in the above-mentioned “Solar-
Geophysical Data prompt reports”.

Semi-annual variations in the atmospheric density show a strong height depen-
dence and periodic variations throughout the year. However, these variations seem
not to be connected with the solar activity, and the geophysical mechanisms behind
these variations are not well understood.

At lower altitudes of 90–120 km, latitudinal density fluctuations have been
observed in the thermosphere related to seasonal variations. The amplitude of these
variations attains a maximum at about 110km height, and is assumed to decrease
rapidly with increasing height.

Seasonal-latitudinal variations of the helium density in the upper atmosphere
have been observed, resulting from helium migration towards the winter pole. No
major height-dependency seems to exist.

Additionally, there are a number of further atmospheric processes that affect
the density, as e.g. variations in the hydrogen density and pressure waves in the
atmosphere. However, as accurate modeling of global atmospheric properties is
lacking, these smaller effects are neglected in most cases.

3.5.2 The Harris–Priester Density Model

Although the dynamics of the upper atmosphere shows a significant temporal and
spatial variation, there exist relatively simple atmospheric models that already allow
for a reasonable atmospheric density computation. Thus, prior to a description of
elaborate and complex models, we consider the algorithm of Harris–Priester (Harris
& Priester 1962, see also Long et al. 1989), which is still widely used as a standard
atmosphere and may be adequate for many applications.

The Harris–Priester model is based on the properties of the upper atmosphere
as determined from the solution of the heat conduction equation under quasi-
hydrostatic conditions. While neglecting the explicit dependence of semi-annual
and seasonal latitude variations, it has been extended to consider the diurnal den-
sity bulge. As the atmospheric heating due to the solar radiation leads to a gradual
increase of the atmospheric density, the apex of this bulge is delayed by approxi-
mately 2 hours, equivalent to a location 30◦ to the east of the subsolar point (Long
et al. 1989). The antapex and apex density ρm(h) and ρM(h) at a given altitude h is
computed through the exponential interpolation between tabulated minimum and
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maximum density values ρm(hi) and ρM(hi) according to

ρm(h) = ρm(hi) exp (
hi − h

Hm

) (hi ≤ h ≤ hi+1)

ρM(h) = ρM(hi) exp (
hi − h

HM

) ,

(3.101)

where h is the height above the Earth’s reference ellipsoid. The corresponding scale
heights are given as

Hm(h) = hi − hi+1

ln(ρm(hi+1)/ρm(hi))

HM(h) = hi − hi+1

ln(ρM(hi+1)/ρM(hi))
.

(3.102)

The diurnal density variation from the apex to the antapex due to the solar radiation
is accomplished through a cosine variation according to

ρ(h) = ρm(h)+ (ρM(h)− ρm(h)) · cosn
(
Ψ

2

)
, (3.103)

whereΨ is the angle between the satellite position vector and the apex of the diurnal
bulge. In practice, the latitudinal density variations are roughly taken into account
by the declination-dependent angleΨ and by the exponent n, which has a numerical
value of 2 for low-inclination orbits, and 6 for polar orbits. Using trigonometric
calculus and the definition of Ψ we derive

cosn
(
Ψ

2

)
=
(

1 + cosΨ

2

) n
2 =

(
1

2
+ er · eb

2

) n
2

, (3.104)

with the unit satellite position vector er . The unit vector eb to the apex of the diurnal
bulge is given as

eb = =
⎛
⎝

cos δ
 cos(α
 + λl)

cos δ
 sin(α
 + λl)

sin δ


⎞
⎠ (3.105)

with the Sun’s right ascension α
, declination δ
 and the lag angle in longitude
λl ≈ 30◦.

In Table 3.8 the minimum and maximum density values are given for an altitude
regime of 100 km to 1000 km and mean solar activity. In addition to its computa-
tional simplicity, the benefit of the Harris–Priester density model is that it can easily
be tailored or extended to other altitude regimes or to other solar flux conditions. A
multi-parametric comparison with the Jacchia 1971 model shows a mean deviation
in density of about 40% for mean solar flux conditions, which increases to 60% for
maximum solar activity. Since considerably higher deviations have been observed
for minimum solar flux conditions, the tabular coefficients should be modified suit-
ably for low solar activity phases.



3.5 Atmospheric Drag 91

Table 3.8. Harris–Priester atmospheric density coefficients valid for mean solar activity (Long et
al. 1989)

h ρm ρM h ρm ρM
[km] [g/km3] [g/km3] [km] [g/km3] [g/km3]

100 497400.0 497400.0 420 1.558 5.684
120 24900.0 24900.0 440 1.091 4.355
130 8377.0 8710.0 460 0.7701 3.362
140 3899.0 4059.0 480 0.5474 2.612
150 2122.0 2215.0 500 0.3916 2.042
160 1263.0 1344.0 520 0.2819 1.605
170 800.8 875.8 540 0.2042 1.267
180 528.3 601.0 560 0.1488 1.005
190 361.7 429.7 580 0.1092 0.7997
200 255.7 316.2 600 0.08070 0.6390
210 183.9 239.6 620 0.06012 0.5123
220 134.1 185.3 640 0.04519 0.4121
230 99.49 145.5 660 0.03430 0.3325
240 74.88 115.7 680 0.02632 0.2691
250 57.09 93.08 700 0.02043 0.2185
260 44.03 75.55 720 0.01607 0.1779
270 34.30 61.82 740 0.01281 0.1452
280 26.97 50.95 760 0.01036 0.1190
290 21.39 42.26 780 0.008496 0.09776
300 17.08 35.26 800 0.007069 0.08059
320 10.99 25.11 840 0.004680 0.05741
340 7.214 18.19 880 0.003200 0.04210
360 4.824 13.37 920 0.002210 0.03130
380 3.274 9.955 960 0.001560 0.02360
400 2.249 7.492 1000 0.001150 0.01810

3.5.3 The Jacchia 1971 Density Model

A number of different atmospheric density models have been published since 1965
by L. G. Jacchia (1965, 1970, 1971, 1977) and Jacchia & Slowey (1981). The first
model, called J65, was solely based upon the primary parameters geodetic height
and temperature, with the latter determining the atmospheric conditions. When
further density-related data became available from the analysis of satellite acceler-
ations due to drag, an improved atmospheric model was established (Jacchia 1971).
The J71 model includes density variations as a function of time, and covers the al-
titude interval from 90 km to 2500 km. It was adopted by the COSPAR (Committee
on Space Research) working group as the International Reference Atmosphere in
1972, for heights ranging from 110 km to 2000 km (see CIRA 1972).

In 1977 Jacchia published the atmospheric model J77 (Jacchia 1977), which
was based upon measurements of the acceleration of satellites, and additionally
upon analyses of mass spectrometer data. The J77 model was revised once more in
1981 (Jacchia et al. 1981).
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All Jacchia models employ the exospheric temperature T∞ as a basic parameter
for the computation of the atmospheric density. The models are based upon the
assumption that the chemical constituents of the atmosphere are in a state of mixing
below heights of 100 km. The density for altitudes from 90 to 100 km is computed
by integration of the barometric equation. At higher altitudes the atmosphere is
assumed to be in diffusion equilibrium, where the constituents N2, O2, O, Ar, He
and H2 are taken into account. These two assumptions cause the Jacchia models
to be static in nature. Therefore, temperature and density predictions will be poor
when dynamical variations with time scales shorter than those typical for diffusion
are present in the atmosphere. The densities from 100 km upwards are computed
by integration of the differential equations for diffusion.

The J71 model offers a reasonable description of the atmospheric density at
moderate computational expense, and is therefore widely used in the fields of orbit
determination and prediction. The computation of atmospheric densities in the J71
model is performed in three steps:

1. The exospheric temperature T∞ is computed from data on solar activity and
from the geomagnetic index, in combination with a model of the diurnal
variations in the atmosphere.

2. Once T∞ is known, a temperature profile is assumed, which is input for the
integration of the barometric or diffusion equation (whichever is applicable).
It is this integration in particular that turns out to be time-consuming. As
an alternative, use is made of the coefficients of a bi-polynomial fit for the
computation of the standard density values.

3. Time-dependent corrections are applied to the density, which account for
various observed density variations.

Exospheric Temperature

In the J71 model, the minimum global exospheric temperature without solar ra-
diation or geomagnetic activity is assumed to be TC = 379.0◦. The exospheric
temperature with the effect of solar radiation included is given by

TC = 379.0◦ + 3.24◦F̄10.7 + 1.3◦ (F10.7 − F̄10.7) , (3.106)

(Jacchia 1971), where F10.7 is the actual solar flux at 10.7 cm, and F̄10.7 the average
solar flux (both measured in Solar Flux Units of 10−22 W/(m2Hz)) at this wave-
length. In this model the actual flux is taken to be the average over the day before
the date under consideration. The mean flux F̄10.7 is found by taking an average
over three solar rotations of 27 days. The last term in (3.106) thus represents daily
variations around the mean global exospheric temperature.

The actual exospheric temperature is a function of local time or, in other words,
depends on the local hour angle of the Sun with respect to the satellite. It also
depends, however, on the declination of the Sun and the geographic latitude of the
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satellite. The actual exospheric temperature T1 with the diurnal variations included
can be computed from

T1 =TC

[
1 + 0.3

(
sin2.2|θ | + (cos2.2|η| − sin2.2|θ |) cos3.0

(τ
2

))]
, (3.107)

(Jacchia 1971) with the angles τ (−180◦ < τ < +180◦), θ, η given by

τ = H − 37.0◦ + 6.0◦ sin(H + 43.0◦)

θ = 1

2
(ϕ + δ
)

η = 1

2
(ϕ − δ
) .

(3.108)

In these equations δ
 denotes the Sun’s declination, ϕ the geographic latitude and
H the local hour angle of the Sun with respect to the satellite. The additional terms
in (3.108) which modify the hour angle H , account for asymmetric effects in the
temperature variation relative to the position of the Sun. The difference between
the geographic and the geocentric latitude is always less than 12′ and can therefore
be neglected. The local hour angle H is simply given by

H = αSAT − α
 , (3.109)

whereαSAT andα
 are the right ascension of the satellite and of the Sun respectively.
Jacchia’s original representation (3.107) can further be amended by

sin2.2
( |α|

2

)
= (1

2 (1 − cos α)
)1.1

cos2.2
( |α|

2

)
= (1

2 (1 + cos α)
)1.1 (3.110)

to avoid the norm of the angles.
Geomagnetic activities are taken into account by using the three-hourly plan-

etary geomagnetic index Kp for a time 6.7 hours earlier than the time under con-
sideration (Jacchia 1971). The resulting change in exospheric temperature can be
written as

ΔTH∞ = 28.0◦Kp + 0.03◦eKp (Z > 350 km)

ΔT L∞ = 14.0◦Kp + 0.02◦eKp (Z < 350 km)

(3.111)

for high and low altitude (Z) respectively. In order to retain continuity of the tem-
perature correction at 350 km, Jacchia introduced a transition function f

f = 1

2
(tanh(0.04(Z − 350 km))+ 1) . (3.112)

The temperature correction due to geomagnetic activity can then be written as

ΔT∞ = fΔT H∞ + (1 − f )ΔT L∞ . (3.113)
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It should be noted that in the J71 model, geomagnetic perturbations affect the den-
sity in a twofold hybrid manner. Firstly, the temperature perturbations are directly
reflected in the density and, secondly, an additional geomagnetic density correction
term is added.

Finally, the full expression for the exospheric temperature, with solar and ge-
omagnetic terms included, becomes

T∞ = T1 +ΔT∞ , (3.114)

which, together with the height Z, determines the standard density values.

Standard Density Computation

The standard Jacchia 1971 model is based upon an empirical temperature profile
which starts from a fixed valueT0 = 183 K at 90 km. The temperature increases with
altitude in a transition region until it reaches T∞ asymptotically (Jacchia 1965). The
standard density is obtained by integration of the barometric differential equation
below 100 km and of the diffusion differential equation above this height. The
molecular weights, and the fraction by volume of the atmospheric species nitrogen
(N2), oxygen (O2), argon (Ar), and helium (He) at sea level, are input parameters
to the model.

The Fortran source code provided in CIRA (1972) uses a Newton–Cotes five-
point quadrature formula for the numerical integration of the individual constituent
number densities. The advantage of this approach is that only few input data are
necessary in order to get the full information content of the Jacchia model. The
inherent drawback, however, is the computational effort, because each time a density
is calculated, the equations must be integrated. It is estimated that more than 90%
of the processing time is consumed by the computation of the standard density in
this method. A graphical presentation of the J71 standard density as a function of
altitude and exospheric temperature is given in Figure 3.13.

Considerable savings in processing time may be obtained by interpolating the
standard density from precomputed tabular values or corresponding polynomials.
A sophisticated bi-polynomial representation

logρ(Z, T∞) =
5∑
i=0

4∑
j=0

cij

(
Z

1000 km

)i (
T∞

1000 K

)j
(3.115)

of the standard density ρ (in [kg/m3]) as a function of height and exospheric tem-
perature was developed by Gill (1996). It achieves a representative accuracy of 7%
with coefficients cij given in Tables 3.9 and 3.10. The approximation is applicable
within the altitude range 90–2500 km and the temperature range 500–1900 K, which
is divided into 4×2 subintervals. In order to ensure continuous density values and
first-order derivatives at the sub-interval boundaries, the polynomial coefficients
were obtained from a constrained least-squares fit that is described in detail in Gill
(1996).
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Fig. 3.13. Logarithm of the standard density in the J71 model as a function of temperature and
altitude

Density Corrections

In addition to the computation of the standard density, several density corrections
have to be applied to account for various observed density variations. Below 350 km
there is an additional geomagnetic term

Δ logρGM = (0.012Kp + 1.2·10−5 eKp
)
(1 − f ) (3.116)

as part of the hybrid Jacchia geomagnetic algorithm.
The semi-annual density variation in the thermosphere and the lower exosphere

is only considered by temperature corrections in the Jacchia 1965 model. Large
discrepancies with this model were found, however, when actual data of the drag
force on satellites became available. This forced Jacchia to the assumption that those
density variations are not primarily caused by variations in temperature. Hence, an
empirical relationship

Δ logρSA = f (Z) g(t) (3.117)

for the density correction was assumed, where g(t) represents the temporal varia-
tion, and f (Z) is the amplitude of the density variation at a given altitude. A best
fit to the available data was found with the functions

f (Z) = (
5.876·10−7 (Z/km)2.331 + 0.06328

)
e(−0.002868Z/km)

g(t) = 0.02835+
(0.3817+0.17829 sin(2πτSA+4.137))× sin(4πτSA+4.259) .

(3.118)
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Table 3.9. Coefficients cij of Jacchia 1971 standard density polynomials in temperature (index j )
and height (index i) below 500 km

90 km < Z < 180 km 500 K < T∞ < 850 K

i/j 0 1 2 3 4

0 −0.3520856·102 +0.3912622·101 −0.8649259·102 +0.1504119·103 −0.7109428·102

1 +0.1129210·104 +0.1198158·104 +0.8633794·103 −0.3577091·104 +0.1970558·104

2 −0.1527475·105 −0.3558481·105 +0.1899243·105 +0.2508241·105 −0.1968253·105

3 +0.9302042·105 +0.3646554·106 −0.3290364·106 −0.1209631·105 +0.8438137·105

4 −0.2734394·106 −0.1576097·107 +0.1685831·107 −0.4282943·106 −0.1345593·106

5 +0.3149696·106 +0.2487723·107 −0.2899124·107 +0.1111904·107 +0.3294095·104

90 km < Z < 180 km 850 K < T∞ < 1900 K

i/j 0 1 2 3 4

0 −0.5335412·102 +0.2900557·102 −0.2046439·102 +0.7977149·101 −0.1335853·101

1 +0.1977533·104 −0.7091478·103 +0.4398538·103 −0.1568720·103 +0.2615466·102

2 −0.2993620·105 +0.5187286·104 −0.1989795·104 +0.3643166·103 −0.5700669·102

3 +0.2112068·106 −0.4483029·104 −0.1349971·105 +0.9510012·104 −0.1653725·104

4 −0.7209722·106 −0.7684101·105 +0.1256236·106 −0.6805699·105 +0.1181257·105

5 +0.9625966·106 +0.2123127·106 −0.2622793·106 +0.1337130·106 −0.2329995·105

180 km < Z < 500 km 500 K < T∞ < 850 K

i/j 0 1 2 3 4

0 +0.2311910·102 +0.1355298·103 −0.8424310·103 +0.1287331·104 −0.6181209·103

1 −0.1057776·104 +0.6087973·103 +0.8690566·104 −0.1715922·105 +0.9052671·104

2 +0.1177230·105 −0.3164132·105 −0.1076323·104 +0.6302629·105 −0.4312459·105

3 −0.5827663·105 +0.2188167·106 −0.2422912·106 +0.2461286·105 +0.6044096·105

4 +0.1254589·106 −0.5434710·106 +0.8123016·106 −0.4490438·106 +0.5007458·105

5 −0.9452922·105 +0.4408026·106 −0.7379410·106 +0.5095273·106 −0.1154192·106

180 km < Z < 500 km 850 K < T∞ < 1900 K

i/j 0 1 2 3 4

0 +0.4041761·102 −0.1305719·103 +0.1466809·103 −0.7120296·102 +0.1269605·102

1 −0.8127720·103 +0.2273565·104 −0.2577261·104 +0.1259045·104 −0.2254978·103

2 +0.5130043·104 −0.1501308·105 +0.1717142·105 −0.8441698·104 +0.1518796·104

3 −0.1600170·105 +0.4770469·105 −0.5473492·105 +0.2699668·105 −0.4870306·104

4 +0.2384718·105 −0.7199064·105 +0.8284653·105 −0.4098358·105 +0.7411926·104

5 −0.1363104·105 +0.4153499·105 −0.4793581·105 +0.2377854·105 −0.4310233·104

Here the time-dependent parameter is

τSA = Φ+0.09544

{(
1

2
+ 1

2
sin(2πΦ + 6.035)

)1.65

− 1

2

}
(3.119)

with

Φ = (t − 36204)

365.2422
. (3.120)

In equation (3.120), t is the time expressed in Modified Julian Days (MJD =
JD − 2400000.5). Hence, Φ is the number of tropical years since January 1, 1958.
The maximum semi-annual density correction is Δ logρmax|SA ≈ 0.21.
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Table 3.10. Coefficients cij of Jacchia 1971 standard density polynomials in temperature (index j )
and height (index i) above 500 km

500 km < Z < 1000 km 500 K < T∞ < 850 K

i/j 0 1 2 3 4

0 −0.1815722·104 +0.9792972·104 −0.1831374·105 +0.1385255·105 −0.3451234·104

1 +0.9851221·104 −0.5397525·105 +0.9993169·105 −0.7259456·105 +0.1622553·105

2 −0.1822932·105 +0.1002430·106 −0.1784481·106 +0.1145178·106 −0.1641934·105

3 +0.1298113·105 −0.7113430·105 +0.1106375·106 −0.3825777·105 −0.1666915·105

4 −0.1533510·104 +0.7815537·104 +0.7037562·104 −0.4674636·105 +0.3516949·105

5 −0.1263680·104 +0.7265792·104 −0.2092909·105 +0.2936094·105 −0.1491676·105

500 km < Z < 1000 km 850 K < T∞ < 1900 K

i/j 0 1 2 3 4

0 −0.4021335·102 −0.1326983·103 +0.3778864·103 −0.2808660·103 +0.6513531·102

1 +0.4255789·103 +0.3528126·103 −0.2077888·104 +0.1726543·104 −0.4191477·103

2 −0.1821662·104 +0.7905357·103 +0.3934271·104 −0.3969334·104 +0.1027991·104

3 +0.3070231·104 −0.2941540·104 −0.3276639·104 +0.4420217·104 −0.1230778·104

4 −0.2196848·104 +0.2585118·104 +0.1382776·104 −0.2533006·104 +0.7451387·103

5 +0.5494959·103 −0.6604225·103 −0.3328077·103 +0.6335703·103 −0.1879812·103

1000 km < Z < 2500 km 500 K < T∞ < 850 K

i/j 0 1 2 3 4

0 +0.3548698·103 −0.2508685·104 +0.6252742·104 −0.6755376·104 +0.2675763·104

1 −0.5370852·103 +0.4182586·104 −0.1151114·105 +0.1338915·105 −0.5610580·104

2 −0.2349586·102 −0.8941841·103 +0.4417927·104 −0.6732817·104 +0.3312608·104

3 +0.3407073·103 −0.1531588·104 +0.2179045·104 −0.8841341·103 −0.1369769·103

4 −0.1698471·103 +0.8985697·103 −0.1704797·104 +0.1363098·104 −0.3812417·103

5 +0.2497973·102 −0.1389618·103 +0.2820058·103 −0.2472862·103 +0.7896439·102

1000 km < Z < 2500 km 850 K < T∞ < 1900 K

i/j 0 1 2 3 4

0 +0.1281061·102 −0.3389179·103 +0.6861935·103 −0.4667627·103 +0.1029662·103

1 +0.2024251·103 +0.1668302·103 −0.1147876·104 +0.9918940·103 −0.2430215·103

2 −0.5750743·103 +0.8259823·103 +0.2329832·103 −0.6503359·103 +0.1997989·103

3 +0.5106207·103 −0.1032012·104 +0.4851874·103 +0.8214097·102 −0.6527048·102

4 −0.1898953·103 +0.4347501·103 −0.2986011·103 +0.5423180·102 +0.5039459·101

5 +0.2569577·102 −0.6282710·102 +0.4971077·102 −0.1404385·102 +0.8450500·100

So far, the model gives a constant density over the globe at 90 km. This contra-
dicts observations of density variations below 120 km, which indicate a seasonal-
latitudinal density dependence with a maximum amplitude atZ ≈ 110 km. In terms
of the latitude, ϕ, and the deviation from the reference height, ΔZ90 = Z− 90 km,
the deviation in density can be written as

Δ logρSL = 0.014ΔZ90e
(−0.0013ΔZ2

90) sin(2πΦ + 1.72)
sin3 ϕ

| sin ϕ| . (3.121)

In a computer application sin3 ϕ/| sin ϕ| should be replaced by SIGN(sin2 ϕ, ϕ).
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A strong increase of the helium concentration above the winter pole has been
found from mass-spectrometer data, as well as from satellite drag data. This phe-
nomenon is accounted for in the Jacchia 1971 model by an empirical seasonal-
latitudinal correction

Δ lognHe = 0.65

∣∣∣∣
δ

ε

∣∣∣∣
(

sin3
(
π

4
−ϕ

2

δ

|δ
|

)
−0.35355

)
(3.122)

to the helium number density nHe (in [1/m3]), where ε is the obliquity of the eclip-
tic. The maximum helium density contribution to the standard density is given by
Δ logρmax

He ≈ 0.88. It is straightforward to compute this correction from the inte-
gration of the diffusion equation, which yields the number density of the individual
species. However, a standard density computation from tabular data now requires
additional table values for the helium number density as a function of altitude and
of exospheric temperature.

Therefore, a polynomial approximation, similar to the one for the standard
density, is also made for the helium density. To this end the helium density correction
is written as

ΔρHe = 10lognHe
mHe

Av

(
10Δ log nHe − 1

)
(3.123)

with the helium number density

lognHe(Z, T∞) =
5∑
i=0

4∑
j=0

hij

(
Z

km

)i (
T∞
K

)j
, (3.124)

the helium molecular weight mHe = 4.0026, and the number of Avogadro Av.
Coefficients hij for a smooth and continuous approximation of the helium number
density as derived by Gill (1996) are collated in Table 3.11.

3.5.4 A Comparison of Upper Atmosphere Density Models

Only after the advent of the space age, with the launch of the Sputnik satellite in
1957, could information on the physical properties of the upper atmosphere above
150 km be deduced. In particular, atmospheric densities can be derived from the
evolution and decay of the satellite orbits, assuming a given drag coefficient. This
method was primarily used for the density model development up to the mid seven-
ties. Its inherent drawback is, however, that only integrated drag effects over several
orbit revolutions may be resolved from orbit determination, and thus the method is
restricted to a limited spatial and temporal resolution. Its benefit, on the other hand,
is that density models derived from these observations can consistently be applied
to other space missions, being free from any further instrument calibration.

Rapid developments in satellite and ground system instrumentation consider-
ably improved the knowledge of detailed atmospheric properties in the seventies.
The use of spacecraft accelerometers directly monitored the non-inertial forces act-
ing on the satellite. Mass spectrometers were integrated into the satellite hardware
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Table 3.11. Coefficients hij of Jacchia 1971 logarithmic helium number density polynomials in
temperature (index j ) and height (index i)

90 km < Z < 500 km

i/j 0 1 2 3 4

0 +1.831549·10+01 +5.887556·10−03 −4.813257·10−06 +1.701738·10−09 −2.128374·10−13

1 −7.374008·10−02 −1.251077·10−04 +1.039269·10−07 −3.679280·10−11 +4.555258·10−15

2 +4.384164·10−04 +8.657027·10−07 −7.216946·10−10 +2.481534·10−13 −2.859074·10−17

3 −1.411195·10−06 −2.483834·10−09 +2.004107·10−12 −6.244985·10−16 +5.561004·10−20

4 +2.153639·10−09 +3.421944·10−12 −2.628961·10−15 +7.085655·10−19 −3.279804·10−23

5 −1.255139·10−12 −1.827253·10−15 +1.321581·10−18 −2.887398·10−22 −7.827178·10−27

500 km < Z < 1000 km

i/j 0 1 2 3 4

0 +1.627089·10+01 −1.786816·10−02 +3.079079·10−05 −2.043431·10−08 +4.643419·10−12

1 −1.958297·10−02 +1.386126·10−04 −2.532463·10−07 +1.714183·10−10 −3.934230·10−14

2 +2.514251·10−05 −3.806339·10−07 +7.692376·10−10 −5.394766·10−13 +1.260304·10−16

3 −2.983314·10−08 +5.855851·10−10 −1.210663·10−12 +8.561632·10−16 −2.009030·10−19

4 +1.802028·10−11 −4.382878·10−13 +9.201530·10−16 −6.543935·10−19 +1.540220·10−22

5 −4.243067·10−15 +1.268830·10−16 −2.695807·10−19 +1.925469·10−22 −4.542329·10−26

1000 km < Z < 2500 km

i/j 0 1 2 3 4

0 +1.873346·10+01 +2.285683·10−02 −6.860776·10−05 +5.379623·10−08 −1.327559·10−11

1 −2.362530·10−02 −6.907613·10−05 +2.251680·10−07 −1.795937·10−10 +4.463659·10−14

2 +1.893899·10−05 +1.145960·10−07 −3.183259·10−10 +2.461076·10−13 −6.040423·10−17

3 −1.132198·10−08 −7.438326·10−11 +2.040288·10−13 −1.573191·10−16 +3.857032·10−20

4 +3.465014·10−12 +2.308943·10−14 −6.320466·10−17 +4.871419·10−20 −1.194139·10−23

5 −4.156710·10−16 −2.791930·10−18 +7.632792·10−21 −5.881112·10−24 +1.441455·10−27

that produced in-situ measurements of the chemical composition and temperature
at upper atmospheric altitudes. Incoherent radar scattering techniques from ground-
based antennas provided measurements of atmospheric electron and ion properties
that could be related to the neutral atmospheric density and composition. More
recent atmospheric models, such as the J77 model, or the series of MSIS (Mass
Spectrometer and Incoherent Scatter) models, make extensive use of those data.
The spatial and temporal resolution of these models is therefore high, at the cost of
increased complexity and CPU time.

Apart from the well-known and frequently applied J71 model, a variety of other
density models of the upper atmosphere exists. These range from very simple, easy
to implement algorithms to elaborate theories, which either require much CPU
time, or refer to a large number of numerical coefficients. A brief summary of
the various models is given in this section, and a comparison is made in terms of
computation time and of relative density difference with respect to the original J71
model provided in CIRA (1972).

The Jacchia–Roberts model of the atmosphere (Roberts 1971) was originally
derived from J70. Later on it was modified according to J71 (Long et al. 1989).
Roberts’ method is based upon analytical solutions of the barometric and diffusion
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Table 3.12. Comparison of density models. Relative CPU time performance, mean, and maximum
difference in density relative to J71

Model CPU Δρmean Δρmax

Jacchia 71 1.00 – –
Jacchia–Roberts 0.22 0.01 0.03
Jacchia–Lineberry 0.43 0.13 0.35
Jacchia–Gill 0.11 0.02 0.08
Jacchia 77 10.69 0.13 0.35
Jacchia–Lafontaine 0.86 0.13 0.36
MSIS 77 0.06 0.18 0.53
MSIS 86 0.32 0.21 1.45
TD88 0.01 0.91 7.49
DTM 0.03 0.40 1.22

differential equations, which are obtained by integration of partial fractions. The
original Jacchia temperature profile (exospheric temperature computed as in J70)
is used between 90 and 125 km. Above 125 km a different temperature profile is
assumed, which results in a diffusion equation that can be integrated analytically.
Hence, Roberts’ results match Jacchia’s exactly between 90 and 125 km, and are
in close agreement above 125 km. The mean relative difference in density and the
maximum relative differences with respect to J71 are 1% and 3% respectively.
According to Long et al. (1989) the maximum density difference amounts to 6.7%.
This demonstrates the close agreement between both models. The CPU performance
is better by a factor of almost five compared to J71, as can be seen from Table 3.12.
The advantage of the Roberts model is that numerical integration is avoided, and
storage of a large number of coefficients is also unnecessary. At the same time the
computational speed is good.

The Jacchia–Lineberry model (Mueller 1982) assumes that the logarithm of the
density can be computed as a truncated Laurent series in temperature and altitude.
The altitude is split into nine intervals at most, and the necessary number of coef-
ficients in this model is about a hundred. However, the seasonal-latitudinal helium
variation is not included. Density differences between the Jacchia–Lineberry model
and J71 are typically 13%, and the gain in computational speed is moderate.

The model of Jacchia–Gill (Gill 1996), as described above, uses a bi-polynomial
approximation of the Jacchia 1971 standard density model. It is based upon poly-
nomials of 4th order in temperature and of 5th degree in altitude. The temperature
interval from 500 to 1900 K and the altitude interval from 90 to 2500 km are divided
into eight sections, each with its own bi-polynomial fit. A continuous transition be-
tween the several height intervals is ensured by the use of a constrained least-squares
fit. The helium number density is obtained in a similar way. The total number of
coefficients required in the Jacchia–Gill model is 330. Typical differences with J71
are 2% and the maximum deviation is 8%. The computing time is reduced by a
factor of nine.

In 1977 Jacchia published an updated atmosphere model, J77, which was re-
vised once more in 1981 (Jacchia et al. 1981). These models are based upon mea-
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surements of satellite acceleration and, additionally, upon analyses of mass spec-
trometer data. Similar to the older Jacchia models a physical description of the
upper atmosphere with regard to satellite drag is attempted by the integration of the
barometric and diffusion equations. However, a greater complexity is introduced
through a species-dependent pseudo-temperature in order to account for the fact
that the density of different constituents peaks at different hours of the day. Further-
more, the mean solar flux is replaced by a weighted mean value which is centered
around the epoch. Finally, the time at which the Kp index is required is corrected
for the geomagnetic latitude of the satellite position. These extensions make the
model significantly more complex. This is of course directly reflected in the CPU
time, which is ten times higher than for the J71 model. Yet, the J77 model does not
significantly improve the accuracy of density modeling for satellite orbit prediction
and determination.

Modifications of the temperature profile at low altitudes in the J77 model, as
compared to the J70 and J71 models, caused Roberts’ approach to be no longer
applicable. This situation was resolved by de Lafontaine & Hughes (1983). They
modified Jacchia’s temperature profile below 125 km and extended Roberts’ expo-
nential temperature profile above 125 km in order to obtain an analytical version
of the J77 model. Their approach is more general than Roberts’ method and it is
not restricted to the J77 model, but can also be applied to the J70 and J71 models.
The computational efficiency is considerably better than that of the original J77
formulation and, in contrast to Roberts’ method, continuity of the first derivative of
the density is guaranteed for all exospheric temperatures. The mean and maximum
deviations relative to the J71 density are 13% and 36% respectively.

A different class of models was published in papers by A. E. Hedin. These
models are entirely based upon in-situ data from satellites and sounding rockets, as
well as incoherent scatter measurements. The first model was published in 1977 by
Hedin et al. and is known as MSIS-77 (Mass Spectrometer and Incoherent Scatter).
When more data became available, this model was upgraded yielding MSIS-83
(Hedin 1983) and MSIS-86 (Hedin 1987) models. The latter model was adopted
as the CIRA 1986 reference atmosphere. MSIS-86 is based on a complex function,
which has to be evaluated to compute the density, as well as other atmospheric
quantities. More than 850 coefficients have to be provided, which, in turn, allows
a detailed modeling of the complex atmospheric properties.

Barlier et al. (1978) published the thermospheric density model, DTM, which
is based upon total density data derived from satellite drag observations. An expan-
sion in terms of spherical harmonics is performed for the exospheric temperature
and for the density of the main atmospheric constituents helium, atomic oxygen,
and nitrogen comprising up to terdiurnal and semi-annual terms. The total density
depends in a simple analytical form upon the altitude and is obtained from the
integration of the diffusion equation with an empirical temperature profile. About
150 parameters are required for the evaluation of the model, which requires ex-
tremely little computer time. However, very high density differences of typically
40% relative to the J71 model are found. The maximum difference lies at 122%.
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The simple atmospheric model TD88 was derived by Sehnal & Pospíšilová
(1988) mainly by fitting an analytical series of exponential functions in height and
of trigonometric functions in time to the density values from the DTM model. The
resulting model requires only 40 parameters and is according to Sehnal applicable
for altitudes between 150 and 750 km. Compared to the performance of J71 a run-
time gain of a factor of a hundred is obtained. The density differences, however,
seem to be unacceptably high, lying on the average at 91%. In Table 3.12 the
maximum density deviation of 749% with respect to J71 was due to an evaluation
at 130 km altitude, which is just outside the validity interval of the model given by
Sehnal.

There have been a number of publications which analyze and compare the per-
formance of different density models (e.g. Gaposchkin & Coster 1990, Marcos et
al. 1989). The conclusion is that the models have statistical accuracies of about 15%
and that there has been no significant improvement in density models over the last
two decades. The profit achieved by the application of complex atmosphere models
in the field of satellite orbit determination and prediction is therefore question-
able. It appears fully justified to select density models with a moderate complexity
only, which essentially minimize the computational effort and coefficient storage
requirements.

3.5.5 Prediction of Solar and Geomagnetic Indices

Low-Earth satellite orbits are severely affected by atmospheric drag, which strongly
varies with the solar flux and geomagnetic activity. While the measured solar and
geomagnetic activity indices can be applied in orbit determination, orbit forecasts
have to rely on predictions of these parameters. Short-term to mid-term predictions
are required for spacecraft operations, especially for ground station scheduling and
maneuver planning of low-Earth satellites. In particular, remote sensing missions
require the control of orbit equator crossings within specified equatorial longitude
bands, which are maintained by orbit raising or lowering maneuvers. Hence, the
orbit maneuver schedule depends on the evolution of the semi-major axis within pe-
riods of typically some weeks, while the semi-major axis evolution itself is governed
by the evolution of the solar and geomagnetic flux in that time frame. Long-term
predictions of the solar and geomagnetic flux, on the other hand, are important for
mission planning and analysis. The knowledge of the profile and magnitude of the
next solar cycle, for example, is crucial for the logistic planning of the assembly of
the International Space Station. Furthermore, mission planning requires long-term
forecasts for estimates of the expected satellite lifetime.

It is therefore adequate to distinguish three different time scales for solar and
geomagnetic index forecast, namely

1. Short-term predictions (days)

2. Mid-term predictions (months)

3. Long-term forecasts (years)
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Fig. 3.14. Short-term variation of solar flux values due to solar rotation

each of which may apply mathematical methods or physical models or a combina-
tion thereof as forecast algorithms.

Short-term predictions have to account for the 27-day periodicity of the solar
activity that results from the synodic solar rotation with this period (Fig. 3.14). The
periodic variation in theF10.7 index may be forecasted using a regression algorithm
(Nostrand 1984) that compares the long-term trend from three solar rotations with
a recent trend from the past three days. Supposing that the two trends are directed
opposite, the prediction follows the recent trend with a later regression towards the
long-term trend. This method assures that the predicted values evolve smoothly
from the observed values and it leads to a particularly good prediction accuracy for
the first 7–10 days (Frauenholz & Shapiro 1991).

Mathematical methods are in general applied to mid-term predictions. The
linear-regression technique of McNish & Lincoln (1949) makes use of the relation
between the solar flux F10.7 values and the sunspot numbers to compute a mean
solar cycle. This approach considerably improves the database, since F10.7 data are
available only from 1947 onwards, whereas the first sunspot numbers date back to
1749. Departures of the current cycle from the mean cycle are then based on the
assumption that they are related to deviations of the previous cycle from the mean
cycle (Mugellesi & Kerridge 1991). This method provides monthly smoothed F10.7

values and can correspondingly be applied to geomagnetic index predictions. The
drawback of this method is that the prediction accuracy deteriorates with increasing
forecast periods and that no understanding of the involved physical mechanisms is
achieved.

The long-term evolution of solar flux values is governed by the 11-year solar
cycle as depicted in Fig. 3.15. Among various prediction methods, the precursor
models have shown the best performance. Here, it is assumed that the solar cycle
actually starts in the declining phase of the previous cycle, where the next cycle



104 3. Force Model

1960 1970 1980 1990 2000 2010
Year

0

50

100

150

200

250

300
F 1

0.
7 

[1
0-2

2 W
s-1

m
-2

]
Cycles 20 21 22 23

Fig. 3.15. Monthly averages of the solar flux for solar cycles 20–23. Predicted average values and
±2σ uncertainties in the predicted average are due to Schatten (1999).

manifests itself in the occurrence of coronal holes and the strength of the polar
magnetic field of the Sun. According to the solar dynamo model, the Sun’s polodial
magnetic field at solar minimum is transformed by differential rotation to a toroidal
field that gives rise to phenomena such as sunspot numbers and solar activity for
the next cycle (Schatten et al. 1978, Schatten & Pesnell 1993). Although the model
allows a physical connection between the Sun’s polar magnetic field, and coronal
holes, as well as solar and geomagnetic activity, a drawback of this method is that
the Sun’s polar magnetic field is difficult to measure and that the assumed physical
model might be oversimplified.

3.6 Thrust Forces

Aside from the natural forces discussed so far, the motion of a spacecraft may also
be affected by the action of an onboard thruster system. Thrusters are frequently
applied for orbit control, attitude control, or a combination of both, and exhibit
a variety of performance levels (cf. Table 3.13) and burn durations. In view of a
significant impact on the spacecraft orbit, thrust forces must be taken into account
in the trajectory prediction using an adequate mathematical model. In turn, thruster
and maneuver parameters may be calibrated by adjusting them along with other
parameters in an orbit determination.

While attitude thrusters are ideally burned in pairs to produce a pure momentum-
free torque, changes in the shape and orientation of the orbit are accomplished by
thrusters acting primarily in the along-track and cross-track directions. In the case
of orbital maneuvers the overall thruster activity is generally confined to a finite
time interval, ranging from seconds or minutes for ground track control of remote
sensing satellites to several hours for inclination control of geostationary satellites
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Table 3.13. Representative values of the thrust level, the ejection velocity, the specific impulse
(Isp = ve/9.81 m/s2), and the mass flow rate for various thrust systems

Propulsion system F ve Isp |ṁ|
Solid propellant boost motor 40 kN 3000 m/s 300 s 1.3 kg/s
Liquid propellant boost motor 400 N 3500 m/s 350 s 130 g/s
Station keeping thruster 10 N 3500 m/s 350 s 3 g/s
Ion thruster 20 mN 25 km/s 2500 s 0.8 mg/s

with ionic propulsion. Whereas maneuvers may conveniently be treated as instan-
taneous velocity increments

v(t+m ) = v(t−m )+Δv(tm) (3.125)

occurring at the impulsive maneuver time tm whenever the thrust duration is small
as compared to the orbital period, an adequate thrust model is required for extended
maneuvers. This is particularly true for orbital transfers with large boost maneuvers
that are applied e.g. in the positioning of geostationary satellites (see Fig. 2.4). Here,
a substantial amount of propellant is consumed during a single maneuver, which
results in a continuous change of the spacecraft mass along the burn.

Despite the variety of spacecraft propulsion systems, a simple, constant thrust
model is often sufficient to describe the motion of a spacecraft during thrust arcs.
The model described in the sequel is applicable to most types of extended orbit
maneuvers ranging from high-thrust orbital transfer maneuvers to low-thrust orbit
corrections. To ensure compatibility with commonly employed impulsive maneuver
models, a formulation in terms of velocity increments is chosen.

Under the action of a propulsion system which ejects a mass |dm| = |ṁ|dt of
propellant per time interval dt at a velocity ve, a spacecraft of mass m experiences
a thrust

F = |ṁ|ve (3.126)

which results in an acceleration

a = F

m
= |ṁ|

m
ve . (3.127)

Upon integration over the burn time Δt , the total velocity increment is given by

Δv =
t0+Δt∫

t0

a(t)dt = −ve

m(t0+Δt)∫

m0

1

m
dm = −ve ln

m(t0 +Δt)

m0
(3.128)

or

Δv = − F

|ṁ| ln

(
1 − |ṁ|Δt

m0

)
(3.129)

assuming a constant mass-flow rate |ṁ|.
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Making use of the total velocity increment Δv, the acceleration may be ex-
pressed as

a(t) = |ṁ|
m(t)

1

− ln

(
1 − |ṁ|Δt

m0

)Δv , (3.130)

which approaches the limiting value

a(t) ≈ Δv

Δt
(3.131)

in the case of negligible mass flow (|ṁ|Δt 	 m0).
The one-dimensional motion considered so far may be generalized by intro-

ducing a time-dependent set of orthogonal unit vectors e1, e2 and e3 with constant
projected thrust vector componentsF1,F2 andF3. The resulting acceleration vector
is given by

a(t) = 1

m
E

⎛
⎝

F1

F2

F3

⎞
⎠ (3.132)

or

a(t) = |ṁ|
m(t)

1

− ln

(
1 − |ṁ|Δt

m0

)EΔv . (3.133)

Here

Δv(t) =
⎛
⎝

Δv1

Δv2

Δv3

⎞
⎠ (3.134)

is the vector of velocity increments in the chosen thrust reference frame, while the
rotation matrix

E(t) = (e1, e2, e3) (3.135)

performs the transformation into the inertial reference frame used to describe the
spacecraft motion.

In most cases the spacecraft maintains a constant orientation during the thrust
phase, either with respect to the orbital frame or the inertial reference system. In the
orbital frame the unit vectors e1 and e3 are aligned with the radial direction and the
angular momentum vector. e2 completes the right-handed system and is parallel to
the velocity vector for circular orbits:

e1 = r

|r|
e2 = e3 × e1

e3 = r × v

|r × v| .

(3.136)
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The orbital frame is a co-moving frame, which is particularly suited to separate
in-plane thrust components, which change the size and shape of the orbit, and
out-of-plane components, which affect the orbit’s spatial orientation.

The inertial thrust direction model is e.g. applicable to spin-stabilized space-
craft. Here, the inertially fixed spacecraft attitude results in a constant thrust direc-
tion vector and the transformation matrix E = I is simply the identity matrix.

It should be noted that for a numerical treatment of accelerations due to thrust,
both instantaneous and extended maneuvers lead to discontinuities in the equations
of motion. Thus, a proper maneuver treatment requires the restart of the numerical
integration algorithm at the beginning and end of each thrust phase.

3.7 Precision Modeling

For a wide range of applications, the accelerations described so far are fully suf-
ficient for a precise description of the satellite orbit. However, there are missions
with challenging accuracy requirements, such as in satellite geodesy, which have
to account for even more and smaller perturbations. A prominent example is the
US/French TOPEX/POSEIDON mission, which requests a radial position error
of less than 10 cm. Such high-precision modeling needs to account for additional
perturbations like the radiation pressure of the Earth, tidal forces that modify the
Earth’s gravity field, as well as general relativistic deviations to the Newtonian
equations of motion. Finally empirical accelerations may be introduced to account
for effects that cannot suitably be described by physical models.

3.7.1 Earth Radiation Pressure

In addition to the direct solar radiation pressure, the radiation emitted by the Earth
leads to a small pressure on the satellite. Two components are distinguished: the
shortwave optical radiation and the longwave infrared radiation. In both cases the ac-
celeration on the satellite decreases slightly with increasing altitude. This is caused
by the inverse square law of the emitted radiation pressure, which is partially com-
pensated for by an increase of the illuminating surface section of the Earth with
altitude. The amplitude of the typical albedo acceleration for low-Earth satellites
is 10% to 35% of the acceleration due to direct solar radiation pressure (Knocke et
al. 1988).

The optical albedo radiation is produced by reflection and scattering of incident
solar radiation on the Earth’s surface. This reflection is described by the albedo
factor a, defined as the fraction of the shortwave radiation reflected from the Earth
to space to the incident shortwave solar radiation. The average global albedo value is
a ≈ 0.34, equivalent to a radiation of 459 W/m2 of the Earth surface elements. The
optical albedo radiation has essentially the same spectral distribution as the direct
solar radiation pressure. It is emitted only by the daylight side of the Earth and may
vary significantly due to different surface characteristics and cloud coverage.
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In contrast to the optical radiation, the infrared radiation is a near isotropic re-
emission of the direct solar radiation absorbed by the Earth and its atmosphere. The
average emissivity ε is approximately 0.68. Its contribution to the flux is, however,
reduced by a factor of 4 due to the ratio of the irradiated Earth cross-section πR2⊕
to the total radiating Earth surface 4πR2⊕. Hence, the effective radiation of Earth
surface elements due to infrared emission is 0.17Φ or 230 W/m2.

The acceleration of the spacecraft due to Earth radiation is summed up from
j (j = 1, . . . , N ) individual terms, corresponding to different Earth area elements
dAj

r̈ =
N∑
j=1

CR

(
νjaj cos θEj + 1

4
εj

)
P


A

m
cos θSj

dAj

πr2
j

ej (3.137)

where the νj denote the Earth element shadow functions and θEj and θSj are the
angles of the Earth surface or satellite surface normals to the incident radiation.
The unit vector ej points from the Earth surface element to the satellite, while the
distance is rj . The albedo and emissivity may be expressed using a second-degree
zonal spherical harmonic model (Knocke et al. 1988). Typically about 20 Earth
surface elements are considered.

3.7.2 Earth Tides

The gravitation of the Sun and the Moon exerts a direct force on Earth satellites, as
discussed in Sect. 3.3. In addition, those forces are also acting on the body of the
Earth and thus lead to a time-varying deformation of the Earth. The small periodic
deformations of the solid body of the Earth are called solid Earth tides, while the
oceans respond in a different way to lunisolar tidal perturbations, known as ocean
tides. As a consequence, the Earth’s gravity field is no longer static in nature, but
exhibits small periodic variations, which also affect the motion of satellites.

In a co-rotating frame, the gravitational field of the Sun or the Moon of mass
M implies a potential U at a point P on the Earth’s surface, which is given by

U = GM

|s − R| + 1

2
n2d2 (3.138)

where R and s are the geocentric coordinates of P and of the tide generating body,
respectively. Furthermore, n is the mean motion of the body about an axis through
the system’s center of mass and d is the distance of P to this axis. Since s � R for
the Sun and the Moon, the denominator of (3.138) is expanded as

1

|s − R| ≈ 1

s

(
1 + R

s
cos γ − 1

2

R2

s2
+ 3

2

R2

s2
cos2 γ

)
(3.139)

where γ is the angle between s and R. The distance d may furthermore be expressed
as

d2 = d2
c + R2cos2φ − 2dcR cosφ cos(Δλ)

= d2
c + R2cos2φ − 2dcR cos γ ,

(3.140)
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where dc = Ms/(M +M⊕) is the geocentric distance of the center of mass of the
system, φ is the geocentric latitude and Δλ is the difference of the East longitudes
of P and the perturbing body. With the above relations and n2s3 = G(M + M⊕),
the potential may thus be written as (Bertotti & Farinella 1990)

U = GM

s

(
1+ 1

2

M

M +M⊕

)
+ GMR2

2s3

(
3 cos2 γ−1

)+ n2R2

2
cos2 φ . (3.141)

While the first term is constant, the third term describes the rotational potential
about an axis through the Earth’s center and perpendicular to the orbital plane. It
adds a small permanent equatorial bulge to the Earth, similar to the one produced
by the rotation of the Earth, but of a much smaller size, since n2 	 ω2⊕.

The second term in (3.141) is called the tidal potential U2. It is a second-order
zonal harmonic that deforms the equipotential to a prolate, axisymmetric ellipsoid,
aligned along the direction to the Moon or to the Sun. Its amplitude is proportional
to GM/s3 and thus the lunar tides are about twice as strong as the solar tides. The
dominant periodicity of the tidal acceleration is nearly semi-diurnal according to
the dependence of U2 on cos2γ , which itself is a function of cos 2λ.

The tidal potential essentially leads to an elastic deformation of the Earth. This
may mathematically be described by a linear relation of the tidal potentialU2 and the
resulting perturbed gravity potentialUT , the ratio of both potentials being the Love
number κ ≈ 0.3. A completely stiff body would therefore have a vanishing Love
number. As the tidal potential is a second-order harmonic, the perturbed gravity
potential falls off with 1/r3 and can finally be expressed as

UT = 1

2
κ
GMR5⊕
s3r3

(
3 cos2 γ − 1

)
. (3.142)

The Earth is, however, only elastic to first order. Deviations from an elastic tidal
response are due to the rate-dependent behavior of terrestrial fluids, like the Earth’s
inner core and the oceans, as well as friction, i.e. energy dissipation in matter. The
latter causes phase lags of the tidal bulge with respect to the position of the Sun
and the Moon. The tidal-induced gravity potential contains many different periods,
as the angle γ depends on the position of the Sun and the Moon with respect to
the rotating Earth. Moreover, the potential varies with 1/s3 and accordingly the
variation in the eccentricity of the Sun’s and Moon’s orbit leads to monthly and
annual periods.

The perturbations of satellite orbits from the lunisolar solid Earth tides are
derived by an expansion of the tidal-induced gravity potential using spherical har-
monics in a similar way as for the static gravity field of the Earth. For practical
purposes, the time-dependent corrections to the unnormalized geopotential coeffi-
cients can be computed according to

{
ΔCnm

ΔSnm

}
=4kn

(
GM

GM⊕

)(
R⊕
s

)n+1
√√
(n+2)(n−m)!3

(n+m)!3 Pnm(sinφ)

{
cos(mλ)

sin(mλ)

}
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(Sanchez 1974) for the Sun and the Moon respectively, where kn are the Love
numbers of degree n, φ is the Earth-fixed latitude and λ the Earth-fixed longitude
of the disturbing body. As the acceleration due to solid Earth tides falls off at least
with 1/r4, a careful evaluation of an adequate force model is required especially
for low altitude missions, depending on the accuracy requirements.

Ocean tides also play an important role in satellite geodesy, although their am-
plitudes are about one order of magnitude smaller than that of solid Earth tides.
Their contributions can be expressed by an ocean tide potential, which is expanded
in terms of spherical harmonics and mapped to time-varying geopotential coeffi-
cients

{
ΔCnm

ΔSnm

}
= 4πGR2⊕ρw

GM⊕
1+k′

n

2n+1

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
s(n,m)

(C+
snm+C−

snm)cos θs+(S+
snm+S−

snm)sin θs

∑
s(n,m)

(S+
snm−S−

snm)cos θs−(C+
snm−C−

snm)sin θs

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(Eanes et al. 1983) where ρw is the density of seawater, k′
n are the load deformation

coefficients and C±
snm and S±

snm are the ocean tide coefficients in meters for the
tide constituent s. Moreover, θs is the weighted sum of the six Doodson variables.
Doodson variables denote fundamental arguments of the Sun’s and Moon’s orbit,
being closely related to the arguments of the nutation series. An alternative rep-
resentation of ocean tide harmonics may be found in Schwiderski (1983). For a
rigorous computation of the solid Earth and ocean tides, the Love numbers may no
longer be treated as constant values, leading to a dual-step approach in the evalu-
ation of the geopotential coefficient corrections. The practical computation of the
solid Earth and ocean tides is therefore a complex task, which is described in detail
in Seidelmann (1992) and McCarthy (1996).

3.7.3 Relativistic Effects

A rigorous treatment of the satellite’s motion should be formulated in accordance
with the theory of general relativity. While the special theory of relativity considers
a flat four-dimensional space-time, this is no longer true in the vicinity of the
Earth. Instead, the Earth’s mass M⊕ with the potential U = GM⊕/r and the
Earth’s angular momentum vector l⊕ with the potential V = G/2(l⊕ × r)/r3

lead to a curvature of the four-dimensional space-time. Making use of the standard
coordinates xμ = (ct, x1, x2, x3) the post-Newtonian space-time can be described
using the invariant element

ds2=−c2dτ 2

=gμνdxμdxν

=−
(

1− 2U

c2
+ 2U 2

c4

)
(dx0)2 − 4

Vi

c3
dx0dxi +

(
1+ 2U

c2

)
δijdx

idxj

(3.143)
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between two events (Soffel 1989). Here, Einstein’s summation convention is ap-
plied, which states that summation is assumed, when a literal index is repeated in
a term, both as a subscript and a superscript. The Greek indices run from 0 . . . 3
and the Roman indices from 1 . . . 3. The time τ is the proper time that would be
measured by an atomic clock comoving with the satellite, while the coordinate time
t may be associated with an atomic clock located at the geocenter. In (3.143) the
so-called gravito-electric contributions stem from the curvature of space-time due
to the Earth’s mass, which is (GM⊕)/(c2R⊕) ≈ 7·10−10 at the Earth’s surface. The
gravito-magnetic contributions, on the other hand, stem from a dragging of space-
time due to the rotation of the Earth with a magnitude of (GL⊕)/(c3R2⊕) ≈ 4·10−16.

According to the theory of general relativity, the motion of a satellite can be
expressed using the geodesic equation (Weinberg 1972)

d2xμ

dτ 2
+ Γ μ

νσ

dxν

dτ

dxσ

dτ
= 0 (3.144)

where the Christoffel symbols Γ μ
νσ are obtained from derivatives of the space-time

metric gμν

Γ μ
νσ = 1

2
gαμ

(
∂gαν

∂xσ
+ ∂gασ

∂xν
− ∂gνσ

∂xα

)
. (3.145)

Here gαμ can be computed as elements of the matrix inverse of gαμ.
Based on the given metric in the vicinity of the Earth, the geodesic equation

may be expanded to first order in the relativistic terms U/c2 and V/c3. This pro-
cedure leads to the Newtonian equation of motion with additional post-Newtonian
correction terms. Following McCarthy (1996), the coordinate time t is associated
with the Terrestrial Time TT (see Sect. 5.1) and dropping the gravito-magnetic
contributions leads to the post-Newtonian correction of the acceleration

r̈ = +GM⊕
r2

((
4
GM⊕
c2r

− v2

c2

)
er + 4

v2

c2
(er · ev)ev

)
(3.146)

where er and ev denote the unit positon and velocity vector. For a circular orbit
GM⊕/r = v2 and the velocity is perpendicular to the radius vector. Accordingly
the relativistic correction of the acceleration

r̈ = +GM⊕
r2

er

(
3
v2

c2

)
(3.147)

is equal to the product of the Newtonian acceleration and a factor of 3v2/c2 which
is roughly 3·10−10 for a typical satellite velocity.

As a rough rule, the size of general relativistic effects is given by the Schwarz-
schild radius of the Earth (2GM⊕)/c2 ≈ 1 cm. Any application in satellite geodesy
that approaches this level of accuracy must carefully consider the effects of general
relativity. The relativistic effects due to the mass of the Sun on the orbit of an Earth
satellite show up as post-Newtonian corrections to the third-body (tidal) forces of
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the Sun and lead to a relativistic satellite distance variation of

GM

AU3 · r

n
· GM

c2AU

≈ 0.1mm , (3.148)

where n is the mean motion of the satellite.

3.7.4 Empirical Forces

Despite the tremendous improvements of force models applied within orbit deter-
mination, further progress is getting more and more difficult. This is, in general,
caused by the growing complexity and computational load of these models. In par-
ticular, the imperfect non-conservative force models impose major limitations to a
high-precision force modeling of Earth observing platforms. Even the most detailed
models for the satellite’s surface forces are limited by uncertainties in the knowledge
of the time-varying orientation, material properties, and surface temperatures.

Based on a highly precise force model, small unmodeled forces may be ac-
counted for using the concept of empirical accelerations. Much of this mismodel-
ing occurs at a frequency of one-cycle-per-orbital-revolution (1CPR). Accordingly,
constant and 1CPR empirical accelerations

r̈ = E (a0 + a1 sin ν + a2 cos ν) (3.149)

are employed to accommodate the effect. Here, a0 is a constant acceleration bias,
while a1 and a2 are the 1CPR coefficients and ν is the true anomaly. The direction
of the empirical acceleration is commonly specified in the local orbital frame,
with principal axes in the radial, cross-track, and along-track direction, which is
transformed into the inertial system by the matrix E. In order to provide an optimum
compensation of unmodelled forces, the empirical acceleration coefficients have to
be adjusted along with other parameters in an orbit determination.

Empirical accelerations have successfully been employed to mitigate the effects
of force model errors and spacecraft momentum unloads of GPS satellites (Colombo
1989, Bertiger et al. 1994) as well as for TOPEX/POSEIDON (Tapley et al. 1994).
While this technique is especially well suited for an a posteriori high-precision orbit
restitution, care must be taken to apply the empirical acceleration parameters for
orbit prediction purposes, since this may lead to a substantial degradation of the
position accuracy.
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Exercises

Exercise 3.1 (Gravity Field) The processor time required to compute the satellite
acceleration due to the Earth’s gravity field is to be determined as a function of
the model’s order using the Cunningham algorithm and a maximum order of 20.
Compare the observed times with the assumption of a quadratic increase of the
workload with the order of the gravity field.

Solution: In a sample test run the CPU times have been determined for 10 000
evaluations of the gravity field at a given order and are marked in Fig. 3.16. As can
be seen the CPU times may be modelled by a parabola that intersects the abscissa
at a value of about 0.3 s, which reflects a computational overhead for function
calls, initialization, and other computations performed independently of the actual
Cunningham recursions. As a consequence, the evaluation of a 10×10 gravity field
takes only 3 times longer than that of a 4×4 field. This is about two time less than
would be expected for a purely quadratic increase.
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Fig. 3.16. Sample CPU times for 10 000 evaluations of the gravity field

Exercise 3.2 (Moon ephemerides) The Moon ephemeris is to be computed and
evaluated. To this end the geocentric Cartesian position coordinates of the Moon are
to be computed from 2006/03/14 00:00 to 2006/03/18 00:00 (Terrestrial Time) in
steps of one day. A comparison of low-precision analytic lunar coordinates is to be
made with positions as derived from the Chebyshev coefficients of JPL’s DE405. A
listing of the 39 Chebyshev coefficients (13 per coordinate) is given below, which
covers the DE405 subinterval size of 4 days.

i ax [km] ay [km] az [km]
0 −0.383089044877·10+06 −0.379891721705·10+05 −0.178496690739·10+05

1 0.218158411755·10+05 −0.143611643157·10+06 −0.788257550332·10+05

2 0.179067292901·10+05 0.187126702787·10+04 0.880684692614·10+03

3 −0.836928063412·10+02 0.112734362473·10+04 0.618395886330·10+03

4 −0.628266733052·10+02 0.932891213817·10+00 0.103331218595·10+01

5 −0.459274434235·10+00 −0.191932684131·10+01 −0.104949867328·10+01

6 0.491167202820·10−01 −0.266517663332·10−01 −0.150337371963·10−01
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7 0.770804039288·10−03 0.104558913449·10−02 0.569056416308·10−03

8 −0.125935992206·10−03 −0.359077689124·10−04 −0.186297523287·10−04

9 0.500271026611·10−05 −0.123405162037·10−04 −0.680012420654·10−05

10 0.107044869186·10−05 0.180479239596·10−06 0.902057208454·10−07

11 0.172472464344·10−08 0.525522632334·10−07 0.287891446432·10−07

12 −0.269667589577·10−08 0.543313967009·10−09 0.319822827700·10−09

Solution: The Cartesian position coordinates of the Moon using the analytic equa-
tions are given as

Date TT x [km] y [km] z [km]
2006/03/14 00:00:00.0 −387105.185 106264.577 61207.474
2006/03/15 00:00:00.0 −403080.629 33917.735 21704.832
2006/03/16 00:00:00.0 −401102.631 −39906.188 −18757.478
2006/03/17 00:00:00.0 −381055.373 −111853.486 −58337.911
2006/03/18 00:00:00.0 −343564.315 −178551.672 −95178.733

In comparison, the position coordinates as derived from the Chebyshev coefficients
of the Development Ephemeris DE405 are

Date TT x [km] y [km] z [km]
2006/03/14 00:00:00.0 −386976.783 106369.219 61240.442
2006/03/15 00:00:00.0 −403002.331 34008.826 21741.255
2006/03/16 00:00:00.0 −401058.650 −39859.480 −18729.305
2006/03/17 00:00:00.0 −381019.563 −111859.423 −58322.341
2006/03/18 00:00:00.0 −343513.403 −178603.217 −95176.374

The position differences in the above interval amount to 169 km at maximum,
consistent with the relative accuracy of the analytic theory of 10−3.

Exercise 3.3 (Accelerations) The selection of an appropriate force model for a
specific satellite orbit requires an assessment of the various perturbations acting on
the satellite. To first order the analytical acceleration equations may be evaluated
and the altitude regimes determined, where certain perturbations exceed others.

Determine the altitudes where the acceleration from the Earth’s dominant zonal
gravity term J20 and sectorial term J22 equals the acceleration due to the Moon and
Sun. In addition, determine the altitude, where the non-conservative accelerations
due to atmospheric drag and solar radiation pressure balance (CR = 1.3,CD = 2.3).

Hint: Make use of the following simplified relations

aJnm = (n+ 1)
GM⊕
r2

Rn⊕
rn

√√
C̄2
nm + S̄2

nm

aS/M = 2GM

s3
r

aSRP = CR
A

m
P


aDRG = 1

2
CD

A

m
ρ
GM⊕
a

that are derived from (3.15), (3.41), (3.75), and (3.97), respectively.
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Solution: The geocentric distance, where the lunar and solar acceleration balances
that of the Earth’s gravity field, is

rn+3 = n+ 1

2

GM⊕
GM

Rn⊕s3
√√
C̄2
nm + S̄2

nm .

The density ρ, where the solar radiation pressure is balanced by the atmospheric
drag, is given as

ρ = 2
CR

CD
P


a

GM⊕
.

The associated altitude may be determined from the difference of the two accel-
erations using a conventional root-finding algorithm. The following relations are
obtained:

aDRG ≥ aSRP for h ≤ 752 km
aJ22 ≥ aM for h ≤ 8750 km
aJ22 ≥ a
 for h ≤ 11298 km
aJ20 ≥ aM for h ≤ 35983 km
aJ20 ≥ a
 for h ≤ 43117 km .

Note that the dependence of the various acceleration sources on the altitude is
depicted in Fig. 3.1.

Exercise 3.4 (Orbit Perturbations) The orbit perturbations due to the non-
spherical gravity field of the Earth, the third-body forces of the Sun and the Moon,
as well as the solar radiation pressure and the atmospheric drag are to be evaluated.
To this end, the equations of motion of the satellite are to be numerically integrated
for a reference (truth) orbit that takes into account all relevant perturbations and is
based on a gravity model of the Earth complete to order and degree 20. To compute
the orbit perturbations, the satellite position using a restricted force model with
individual perturbations switched off is computed and the difference with respect
to the reference trajectory is derived.

The orbit perturbations are to be computed for a remote sensing satellite of
area 5 m2 and mass 1000 kg with the initial orbital elements at epoch 1999/03/01
00:00:00.0 UTC of

Semi-major axis a 7178.0 km
Eccentricity e 0.001
Inclination i 98.57◦
RA ascend. node Ω 0.0◦
Arg. of perigee ω 0.0◦
Mean anomaly M 0.0◦

for a propagation period of one revolution as well as for a one-day period. The
considered perturbations are to describe the position errors arising, when the Earth’s
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gravity model is restricted to J20, J22, J44, J10,10 and when Sun, Moon, solar
radiation pressure and drag are neglected, respectively.

In addition, the orbital perturbations are to be computed for a geostationary
satellite of area 10 m2 and mass 1000 kg with initial orbital elements

Semi-major axis a 42166.0 km
Eccentricity e 0.0004
Inclination i 0.02◦
RA ascend. node Ω 0.0◦
Arg. of perigee ω 0.0◦
Mean anomaly M 0.0◦

for propagation periods of one and two days. Both satellites are supposed to have
a solar radiation pressure coefficients of 1.3 and a drag coefficient of 2.3.

Solution: The equations of motion are numerically integrated over the specified
time intervals, both with the reference force model and the restricted models. The
resulting position differences exhibit both a steady increase and periodic varia-
tions. Below, the maximum position differences within the propagation interval are
tabulated.

Restricted force model Remote sensing Geostationary
1 rev 1 day 1 day 2 days

[m] [m] [m] [m]
J20 600 5028 671 2534
J22 224 3038 2 10
J44 148 1925 0 0
J10,10 23 459 0 0
Sun 3 34 3143 4834
Moon 6 66 5080 5438
Radiation pressure 1 14 415 830
Atmospheric drag 1 105 0 0

It should be noted that the position differences for a restricted gravity field model in
the above table describe the position errors arising from a neglect of the respective
higher-order terms.



4. Numerical Integration

The high accuracy that is nowadays required in the computation of satellite orbits
can only be achieved by using numerical methods for the solution of the equation of
motion (cf. Gendt & Sorokin 1978). A variety of methods has been developed for
the numerical integration of ordinary differential equations and many of them have
successfully been applied in the field of celestial mechanics. Since each method has
its own inherent advantages and drawbacks, it is in general not possible to simply
select one method as best suited for the prediction of satellite motion.

The present chapter describes the basic principles and properties of the most
important integration methods and assesses their usefulness for orbit computation
purposes:

• Runge–Kutta methods that are particularly easy to use and may be applied to
a wide range of different problems,

• multistep methods that provide a high efficiency but require a storage of past
data points, and

• extrapolation methods that are famous for their high accuracy.

Special attention is also given to methods for the direct integration of second-order
equations of motion. These methods may be preferable in those cases where the
forces acting on a satellite do not depend on its velocity.

The discussion of numerical integration methods is by no means exhaustive,
however, and the reader who wants to study the matter in more detail should con-
sult one of the various textbooks published on this subject, e.g. Lambert (1973),
Shampine & Gordon (1975), Stoer & Bulirsch (1983) or Hairer et al. (1987). For
further reading the reviews of integration methods by Gupta et al. (1985) and by
Kinoshita & Nakai (1989) are recommended.

To start with, it is assumed that the differential equations to be solved are
n-dimensional first-order equations of the form

ẏ = f (t, y) y, ẏ,f ∈ IRn , (4.1)

where dotted symbols denote derivatives with respect to time t . This form can
always be obtained from the second-order differential equation

r̈ = a(t, r, ṙ) (4.2)

O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications,   
DOI 10.1007/978-3-642-58351-3_4, © Springer-Verlag Berlin Heidelberg 2000 
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for the acceleration of a satellite by combining position r and velocity ṙ into the
6-dimensional state vector

y =
(r

ṙ

)
, (4.3)

which satisfies

ẏ = f (t, y) =
(

ṙ

a(t, r, ṙ)

)
. (4.4)

4.1 Runge–Kutta Methods

4.1.1 Introduction

Starting from initial values y0 = y(t0) at time t0 one may calculate a simple
approximation of y at some later time t0 + h from a first-order Taylor expansion

y(t0 + h) ≈ y0 + hẏ0
= y0 + hf (t0, y0) ,

(4.5)

which is known as a Euler step. The geometrical interpretation of this equation is to
start with (t0, y0) and to proceed with a time-step of size h along the tangent to the
graph of y. Performing a series of subsequent Euler steps (see Fig. 4.1) one obtains
approximate values ηi of the solution at distinct times ti= t0 + ih (i=1, 2, . . .).

-1 0 1 2 3 4 5 6 7
t/h

0

2

4

6

8

10

12

14

y(
t)

y(t)

η(t)

ηi h

 ηi+1=ηi+hf(ti,ηi)
hf

Fig. 4.1. Approximate solu-
tion of a differential equa-
tion ẏ = f (t, y) using Euler
steps of size h

Obviously the stepsize has to be very small if one wants to follow the solution
curve over several steps and it seems worthwhile to look for better approximations.
Using the general notation

y(t0 + h) ≈ y0 + h · Φ = η(t0 + h) (4.6)

for the approximate solution η(t0 + h), it is evident that Φ, the increment func-
tion, should closely approximate the slope of the secant through (t0, y0) and (t0 +
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h, y(t0 +h)) which may deviate considerably from the slope f of the tangent used
in the Euler step.

To overcome this deficiency, the mathematicians Carl Runge and Wilhelm
Kutta developed improved expressions around the end of the 19th century, which
are based on the slopes at various points within the integration step. In the classical
RK4 Runge–Kutta method, the increment function Φ is calculated as the weighted
mean

ΦRK4 = 1

6
(k1 + 2k2 + 2k3 + k4) (4.7)

of four slopes

k1 = f (t0, y0)

k2 = f (t0 + h/2, y0 + hk1/2)

k3 = f (t0 + h/2, y0 + hk2/2)

k4 = f (t0 + h, y0 + hk3) .

(4.8)

This formula is designed to approximate the exact solution up to terms of order h4,
provided that y(t) is sufficiently smooth and differentiable, and the RK4 method is
therefore called a 4th-order method. Its local truncation error

eRK4 = |y(t0 + h)− η(t0 + h)| ≤ const · h5 (4.9)

is bound by a term of order h5.
The accuracy of the RK4 method is comparable to that of a 4th-order Taylor

polynomial

y0 + hẏ0 + h2

2! y
(2)
0 + h3

3! y
(3)
0 + h4

4! y
(4)
0 , (4.10)

where the superscripts in brackets indicate the order of derivatives with respect to
time. However, the Runge–Kutta method avoids the calculation of the derivatives

ẏ0 =f (t0, y0)

y
(2)
0 = d

dt
ẏ0 = ∂ ẏ0

∂t0
+ ∂ ẏ0

∂y0
ẏ0 = ∂f (t0, y0)

∂t0
+ ∂f (t0, y0)

∂y0
ẏ0

y
(3)
0 = d

dt
y
(2)
0 = ∂y

(2)
0

∂t0
+ ∂y

(2)
0

∂y0
ẏ0

y
(4)
0 = d

dt
y
(3)
0 = ∂y

(3)
0

∂t0
+ ∂y

(3)
0

∂y0
ẏ0 ,

(4.11)

which may be pretty cumbersome and replaces them by evaluations of the function
f . This makes Runge–Kutta methods an easy to use standard technique for the
numerical solution of ordinary differential equations.
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4.1.2 General Runge–Kutta Formulas

The RK4 method presented so far is the prototype of Runge–Kutta formulas all
of which share the same common structure1. In an s-stage RK formula, s function
evaluations

k1 = f (t0+c1h, y0)

ki = f (t0+cih, y0+h

i−1∑
j=1

aijkj ) (i=2 . . . s) (4.12)

are used to form the increment function

Φ =
s∑
i=1

biki

which yields an approximation

η(t0 + h) = y0 + hΦ . (4.13)

Each method is fully described by the coefficients

c1

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs , (4.14)

which are chosen in such a way that the order p of the local truncation error is as
high as possible. Usually the coefficients are determined such that they obey the
relations

s∑
i=1

bi = 1 , c1 = 0 , ci =
i−1∑
j=1

aij (i > 1) . (4.15)

For the RK4 method described above the number s of function evaluations is
just equal to the order p of the local truncation error, but this is not generally the
case. Butcher (1964, 1965, 1985) has shown that at least one additional evaluation
is required for methods of order 5 and 6, that two additional evaluations are required
for order 7 and three for order 8 and upwards. These rules are known as Butcher
barriers. Only few methods of higher order are currently known, since the derivation

1To be precise, only explicit Runge–Kutta methods are considered here. See e.g. Hairer et al.
(1987) for a discussion of implicit methods which require the solution of a nonlinear system of
equations to obtain the increment function. An overview of explicit methods is provided in the
review of Enright et al. (1995).
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of appropriate coefficients becomes increasingly difficult. The tenth-order method
of Hairer (1978) requires a total of 17 function evaluations per step.

Since the coefficients are not uniquely determined by the condition of maximum
order, one may find various Runge–Kutta methods with an equal number of stages.
Furthermore it is possible to construct methods of neighboring order that are based
on the same set of function evaluations. These methods are known as embedded
Runge–Kutta methods and allow an easy estimation of the local truncation error
which is a prerequisite for an efficient stepsize control during the integration. An
embedded method of s stages yields two independent approximations

η(t0 + h) = y0 + h

s∑
i=1

biki

η̂(t0 + h) = y0 + h

s∑
i=1

b̂iki

(4.16)

of orders p and p+1 with local truncation errors

e = |y(t0 + h)− η(t0 + h)| ≤ c hp+1

ê = |y(t0 + h)− η̂(t0 + h)| ≤ ĉ hp+2 .
(4.17)

Now, since ê is smaller than e by the order of h (which we assume to be a small
quantity), one has

e = |y − η| ≈ |η̂ − η| , (4.18)

which means that one is able to get an estimate of the local truncation error of
the pth-order formula from the difference of the two solutions. While this would
also be possible with arbitrary methods of neighboring order, using an embedded
method has the advantage of requiring only s instead of 2s−1 function evaluations.

As an example Table 4.1 lists the coefficients of the embedded RK8(7)-13M
method2 of Prince & Dormand (1981) which can be recommended as a general
purpose method for a wide range of applications. A Fortran implementation (DO-
PRI8) of this method is described in Hairer et al. (1987). Even though methods up
to an order of 10 have been developed by some authors (Curtis 1975, Hairer 1978)
they have not become widely accepted due to the lack of an embedded lower-order
formula for stepsize control. Except for very high accuracies there seems to be no
advantage of using them instead of DOPRI8 (Hairer et al. 1987).

4.1.3 Stepsize Control

During the numerical integration of a differential equation the stepsize should be
chosen in such a way that each step contributes uniformly to the total integration

2The notation RKp(q)s is used for a method of order p with an embedded qth-order method for
stepsize control and a total of s stages.



122 4. Numerical Integration

Table 4.1. Coefficients of the RK8(7)-13 Runge–Kutta method for first-order differential equations
by Prince & Dormand (1981).
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error. While obviously a single step should not be too large, it should not be too
short either, since this might increase the total number of steps, round-off errors,
and the computational effort considerably. A common technique of stepsize control
for Runge–Kutta methods is based on the error estimate available with embedded
methods. It tries to limit the local truncation error e, an estimate of which can be
computed in each step.

Suppose that a single integration step has been performed with a given stepsize
h yielding an estimate

e(h) ≈ |η̂ − η| (4.19)

for the local truncation error of the lower-order formula. If this value is larger than
a tolerance ε, the step has to be repeated with a smaller stepsize h∗. Knowing that
e(h) is proportional to hp+1 for the method of order p, the local truncation error
will then be equal to

e(h∗) = e(h)

(
h∗

h

)p+1

≈ |η̂ − η|
(
h∗

h

)p+1

(4.20)

for the new stepsize. Requiring this to be smaller than ε and solving for h∗ yields
the maximum allowed stepsize

h∗ = p+1
√√

ε

e(h)
· h ≈ p+1

√√
ε

|η̂ − η| · h (4.21)

for repeating the step. In practice about 0.9 times this maximum value is commonly
used for safety reasons to avoid another unsuccessful step. If the step was successful
one may use h∗ for the next step. In order to avoid rapid oscillations of the stepsize,
h should not, however, be changed by more than a factor of 2 to 5 from one step to
the next.

While this kind of stepsize control is well capable of adapting the current
stepsize to the behavior of the differential equation, it does not relieve the user from
supplying an initial guess of the starting stepsize. As long as one is concerned with a
special type of problem, some test calculations and a bit of experience will certainly
help to find a reasonable value. For the integration of a satellite orbit one may e.g.
start with h equal to 1/100 of the time of revolution, integrate over several orbits
and monitor the stepsize calculated by the stepsize control. The obtained value may
then be used as starting stepsize for similar calculations. Aside from this approach
some methods have been devised to calculate an initial stepsize guess from several
evaluations of the function f (Watts 1983, Gladwell et al. 1987).

4.1.4 Runge–Kutta–Nyström Methods

Many problems in physics and especially the motion of artificial satellites and
celestial bodies may be described by a second-order differential equation

r̈ = a(t, r, ṙ) (4.22)

for the acceleration r̈ as a function of time t , position r and velocity v = ṙ .
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If one rewrites this second-order equation as a system of first-order equations,
applies a standard Runge–Kutta method and keeps in mind the relation ci =∑ aij ,
one arrives at

r(t0 + h) = r0 + hv0 + h2
∑
i

b̄ik
′
i

v(t0 + h) = v0 + h
∑
i

bik
′
i

(4.23)

with

k′
i = a

⎛
⎝ t0 + cih , r0 + cihv0 + h2

∑
j

āijk
′
j , v0+h

∑
j

aijk
′
j

⎞
⎠ (4.24)

and coefficients

āij =
∑
k

aikakj , b̄i =
∑
j

bjaji . (4.25)

Runge–Kutta–Nyström methods differ from standard Runge–Kutta methods by
using (4.23) and (4.24) in combination with coefficients that are especially adapted
to the direct integration of second-order differential equations and do not necessarily
obey equation (4.25). Several methods of this type have been developed by Fehlberg
(1975), the highest of which is of order 7 and requires a total of 13 stages.

The advantages of Runge–Kutta–Nyström formulas over standard Runge–
Kutta methods are most pronounced if the acceleration

r̈ = a(t, r) (4.26)

does not depend on the velocity of the body. In this case special Runge–Kutta–
Nyström methods may be derived that usually need a smaller number of stages
to provide a given order of the local truncation error. An embedded 6(4)th-order
method may be realized e.g. using 6 function evaluations (Dormand & Prince
1987), only, instead of 7 evaluations required by the Butcher barriers for standard
Runge–Kutta methods.

Runge–Kutta–Nyström methods of order p+1(p) which allow for an easy
stepsize control and are well suited for high accuracy requirements have been
developed by Dormand & Prince (1978), Filippi & Gräf (1986) and Dormand et al.
(1987). They are described by the equations

ki = a ( t0 + cih , r0 + cihv0 + h2
i−1∑
j=0

aijkj )

r(t0 + h) = r0 + hv0 + h2
s∑

i=0

biki e = O(hp+1)

r̂(t0 + h) = r0 + hv0 + h2
s∑

i=0

b̂iki ê = O(hp+2)

v̂(t0 + h) = v0 + h

s∑
i=0

ˆ̇biki

(4.27)
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and coefficients

c0 =0

c1 a10

c2 a20 a21
...

...
...

. . .

cs =1 as0 as1 . . . as,s−1 =0

b0 =as0 b1 =as1 . . . bs−1 =−λ bs =λ

b̂0 =b0 b̂1 =b1 . . . b̂s−1 =0 b̂s =0
ˆ̇b0

ˆ̇b1 . . . ˆ̇bs−1
ˆ̇bs .

(4.28)

The formulas for r̂ and v̂ yield an approximation of position and velocity at
t0+h of order p+1 while r gives an estimate of the local truncation error

e ≈ |r̂ − r| = λh2|ks−1 − ks| (4.29)

of the embedded pth-order formulas. This may then be used to control the stepsize
using the same strategy that led to (4.21) for the classical Runge–Kutta methods:

h∗ = p+1
√√

ε

e(h)
· h = p+1

√√
ε

λh2|ks−1 − ks| · h . (4.30)

The coefficient b̂s =λ> 0 is a free parameter which is not determined by the
order conditions. It does not affect the solution r and v, since it only appears in
the stepsize control formula. By changing the value of λ one may influence the
estimation of the truncation error and adjust the value of ε required to obtain a
certain stepsize and error. Recommended values are usually given together with the
other coefficients of the methods.

The special conditions cs =1 and bi=asi for i=0, . . . , s−1 which are part of
the design of these methods result in a saving of one evaluation of the function a

per step. This is due to the fact that the final function evaluation

ks = a ( t0 + csh , r0 + cshv0 + h2
s−1∑
i=0

asiki ) (4.31)

in the step from t0 to t0 + h is just the same as the first evaluation

k0 = a ( t0 + h , r(t0 + h) )

= a ( t0 + h , r0 + hv0 + h2
s−1∑
i=0

biki )
(4.32)

of the next step starting at t0 + h. It is, therefore, common to speak of s-stage
methods, even though an individual step actually requires s+1 function values.
As an example, the coefficients of the seventh-order method of Dormand & Prince
(1978) are listed in Table 4.2. A Fortran subroutine that implements this method
may be found in Hairer et al. (1987).
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Table 4.2. Coefficients of the RKN7(6)-8 Runge–Kutta–Nyström method for special second-order
differential equations by Dormand & Prince (1978).
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4.1.5 Continuous Methods

In the discussion of stepsize control for Runge–Kutta methods no notice was taken
of the fact that the solution of a differential equation is often required at prede-
fined output points. This does not cause major problems as long as the difference
between two subsequent points is considerably larger than the stepsize proposed
by the stepsize control. If, however, the stepsize has to be truncated very often to
reach predefined output points, the use of a Runge–Kutta method turns to be very
ineffective. Considering the case of satellite orbits the problem of dense output
may, for example, arise from ephemeris printout requirements or from the need for
a smooth graphical representation of the orbit. Dense satellite position points are
furthermore required for an iterative search for special events like shadow entries
of a satellite.

The straightforward way to cope with this problem is to calculate the solution
of the differential equation at widely spaced time steps and to interpolate it to
the desired dense output points by means of an appropriate polynomial. A major
disadvantage of this method is, however, that the results of subsequent Runge–Kutta
integration steps have to be stored for interpolation similar to common multistep
methods.

Within the last decades several authors (e.g. Horn 1981, 1983, Shampine 1985,
Dormand & Prince 1986, 1987, Sharp & Verner 1998) have, therefore, been con-
cerned with the design of interpolation formulas for Runge–Kutta methods that
preserve the character of a single-step method. The idea of these formulas is to
use the function values ki (which have already been calculated to obtain the in-
crement function Φ) and a few additional evaluations to construct an interpolating
polynomial valid between y(t0) and y(t0 + h).

As an example of an interpolant, one of the first continuous methods, which
has been proposed by Horn (1981, 1983), is described in what follows. It is based
on the embedded 6-stage Runge–Kutta–Fehlberg method RKF4(5)

ki = f (t0 + cih, y0 + h

i−1∑
j=1

aijkj ) (i=1 . . . 6)

η̂(t0 + h) = y0 + h

6∑
i=1

b̂iki

η(t0 + h) = y0 + h

5∑
i=1

biki

(4.33)

which is defined by the coefficients of Table 4.3.
In addition to k1 . . . k6, the method of Horn requires the value

k7 = f

(
t0 + h, y0 + h

(
1

6
k1 + 1

6
k5 + 2

3
k6

))
(4.34)
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Table 4.3. Coefficients of the 6-stage Runge–Kutta–Fehlberg method RKF4(5) for use with the
interpolant of Horn (1981, 1983)

ci ai1 ai2 ai3 ai4 ai5 ai6

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1 439
216 −8 3680

513
−845
4104

1
2

−8
27 2 −3544

2565
1859
4104

−11
40

bj
25

216 0 1408
2565

2197
4104

−1
5

b̂j
16

135 0 6656
12825

28561
56430

−9
50

2
55

to compute the solution at any point between t0 and t0 + h. For 0 < σ < 1 an
approximation at t = t0 + σh may be obtained from

η(t0 + σh) = y0 + σh

7∑
i=1

b∗
i (σ )ki (4.35)

where the coefficients b∗
i are polynomials in the independent variable σ . They are

defined as:

b∗
1 = 1 − σ

(301
120 + σ

(−269
108 + σ 311

360

))

b∗
2 = 0

b∗
3 = σ

(7168
1425 + σ

(−4096
513 + σ 14848

4275

))

b∗
4 = σ

(−28561
8360 + σ

(199927
22572 − σ 371293

75240

))

b∗
5 = σ

(57
50 + σ

(−3 + σ 42
25

))

b∗
6 = σ

(−96
55 + σ

(40
11 − σ 102

55

))

b∗
7 = σ

(3
2 + σ

(−4 + σ 5
2

))
.

(4.36)

Intermediate values of the solution may thus be obtained at the expense of evaluating
several polynomials instead of f which usually results in a considerable saving of
computing time if dense output is required.

The algorithm of Horn is given here as a simple example of an interpolation
formula for Runge–Kutta methods. It is intended to illustrate the basic ideas but
is not necessarily the most efficient solution for practical applications. A different
approach that is based on the RKF4(5) method, too, but uses y0 and η(t0 + h) in
addition to the ki is e.g. described in Enright et al. (1986).
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Up to some time ago interpolants were only available for several methods of in-
termediate order. Recently, however, a 7th-order interpolant based on an embedded
8(6)th-order/12-stage Runge–Kutta pair has been announced by Dormand & Prince
(1989). This interpolation formula requires four function evaluations in addition to
those of the basic method.

Dense output formulas have also been developed for several Runge–Kutta–
Nyström methods. A 6th-order interpolant is, for example, available for the RKN6(4)
pair of Dormand & Prince (1987) and the authors are concerned with the search for
an interpolant for their 12(10)th-order pair (see Brankin et al. 1989).

4.1.6 Comparison of Runge–Kutta Methods

For the assessment of different numerical integration methods several sets of test
problems have been developed by Hull et al. (1972) which greatly facilitate the
comparison of performance data obtained by different authors. From the various
test problems proposed by Hull et al. the plane two-body problem is frequently
used by many authors and describes the main aspects of satellite motion very well.
Even though it is not possible to cover all aspects that might affect the choice of
an integration method by such a simple example, one can get a first idea of the
performance of the Runge–Kutta methods discussed so far. For further discussion
the reader is referred to Sect. 4.4.

The differential equation of the two-body problem is given by

ẏ1 = y3

ẏ2 = y4

ẏ3 = −y1/(y
2
1 + y2

2)
3/2

ẏ4 = −y2/(y
2
1 + y2

2)
3/2 ,

(4.37)

which results from writing r̈ = −r/r3 as a first-order equation with r = (y1, y2)

and v = (y3, y4). Initial values for t=0 that describe an orbit with semi-major axis
a=1 and eccentricity e starting at pericenter are given by

y1(0) = 1 − e

y2(0) = 0

y3(0) = 0

y4(0) = √√
(1 + e)/(1 − e) .

(4.38)

Since the velocity variations in an eccentric orbit are a crucial test for the capability
of a numerical integration method to change its stepsize, Hull et al. (1972) defined
the distinct test problems D1 to D5 with eccentricities ranging from e = 0.1 to
e=0.9 in steps of 0.2. The stop time is defined as t=20 in all cases, corresponding
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Fig. 4.2. Performance diagram of several embedded Runge–Kutta–(Nyström) methods for test case
D1 (e=0.1) of Hull et al. (1972). The number of function calls is plotted versus the accuracy in digits

to 20/2π ≈ 3.2 revolutions. The analytical solution of the Kepler problem yields
reference values

y1(t) = cosE − e y2(t) = √√
1 − e2 sinE

y3(t) = − sinE

1 − e cosE
y4(t) =

√√
1 − e2 cosE

1 − e cosE

(4.39)

for calculating the total (global) integration error. The eccentric anomaly E has to
be obtained by an iterative solution of Kepler’s equation which takes the form

E − e sinE = t . (4.40)

Results for various Runge–Kutta and Runge–Kutta–Nyström methods are given
in the performance diagram of Fig. 4.2. Here the total number of function evalu-
ations is plotted against the final accuracy for an orbit of e = 0.1 (test case D1).
For higher eccentricities one obtains similar results since the stepsize control of all
methods is essentially the same. The following methods were used for the compar-
ison:

• DOPRI5 (RK5(4)7FM) is a 7-stage method of order 5 with an embedded
method of order 4 developed by Dormand & Prince (1980).

• DOPRI8 (RK8(7)13M) by Prince & Dormand (1981) requires 13 function
evaluations for 8th-order approximation. The Fortran subroutines DOPRI5
and DOPRI8 used in the comparison are provided in Hairer et al. (1987). The
authors recommend the lower-order method for relative accuracies of 10−4

to 10−7, while DOPRI8 may be used for the adjacent range from 10−7 to
10−13. The latter should not, however, be used for higher accuracies, since
the coefficients are not given with a sufficient number of digits in this case.
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• RKF7 – a famous method developed by Fehlberg (1968) – is similar to
DOPRI8 but uses the 7th-order method for integration, while the 8th-order
method is only used for error estimation. A total of 13 function evaluations
are required per step.

• DOPRIN (RKN7(6)9) is an embedded Runge–Kutta–Nyström method of
order 7(6), which – in contrast to the aforementioned methods – is used for
the direct integration of special second-order differential equations of type
y ′′ = f (t, y). The Fortran implementation is taken from Hairer et al. (1987).

• RKN(ẋ)7(8) is a 13-stage Runge–Kutta–Nyström method of order 7 devel-
oped by Fehlberg (1975) which – in contrast to the other Nyström methods
considered here – may also be used for second-order differential equations
depending on ṙ . An implementation is described in Schastok et al. (1989).

• FILG11 is based on the 11(10)th-order/17 stages RKN coefficient set K17M
by Filippi & Gräf (1986) and has been implemented similar to DOPRIN.

• RKN12(10)17M is a 12(10)th-order/17-stage Nyström method recently de-
veloped by Dormand et al. (1987). Implementations of this code are de-
scribed in Brankin et al. (1987, 1989). The authors’ RKNINT program, which
combines the RKN12(10) method with the RKN6(4) Runge–Kutta–Nyström
triple (Dormand & Prince 1987), has been used for the present comparison.
It allows the user to choose between a high-precision solution obtained with
the 12th-order formulas and dense output at a somewhat lower precision.
The code is also available under the name D02LAF in the well known NAG
library.

The comparison of the various methods clearly shows that high-order methods are
required to achieve accuracies of better than 10−8. Forcing a low-order code like
DOPRI5 to produce a highly accurate solution by using small stepsizes results
in excessive computing times. A comparison of RKF7 and DOPRI8 – both of
which are embedded methods of order 7 and 8 – clearly shows the superiority
of the approach of Dormand and Prince to optimize the higher-order method for
calculating the solution and only use the low-order method for stepsize control. The
excellent performance of the methods developed by Dormand and Prince is also
seen in a comparison of DOPRI8 or DOPRIN with Fehlberg’s Nyström method
RKN(ẋ)7(8). Methods like DOPRI8 or DOPRIN can be recommended for a wide
range of accuracies, but high-order codes like FILG11 or RKN12(10) are certainly
more efficient even for moderate accuracy requirements. Where applicable, the
special Runge–Kutta–Nyström methods are preferable to standard Runge–Kutta
methods of similar order.

The stepsize control of all codes performs well up to high eccentricities since
all methods considered are embedded methods. Even though this is not essential
for near-circular orbits, it facilitates the use of Runge–Kutta methods, since even
a bad initial stepsize can easily be corrected to the optimum stepsize during the
integration. All examples were calculated with a starting stepsize of h=0.1.
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The discussion given here is intended to help the reader in a valuation of existing
codes and a comparison with the entire range of Runge–Kutta and Runge–Kutta–
Nyström methods available today. In Sect. 4.4 a subset of these methods is compared
with multistep and extrapolation codes to provide a more general assessment of the
performance of different types of integration methods.

4.2 Multistep Methods

The Runge–Kutta methods discussed so far may be characterized as single-step
methods. No use is made of function values calculated in earlier steps, which
means that all integration steps are completely independent of one another. This
feature allows a compact implementation of single-step methods and makes them
particularly easy to use. Since a new stepsize may be used in each step, single-step
methods are well suited for differential equations with rapid changes in the function
to be integrated.

One may, however, think of a completely different approach that tries to reduce
the total number of function evaluations as much as possible by storing values
from previous steps. This leads to the concept of multistep methods which are most
efficient for differential equations defined by complicated functions with a lot of
arithmetic operations.

The development of multistep integration methods in the 19th and early 20th
centuries is closely linked with the work of astronomers who utilized them for an
accurate description of solar system bodies. Among these are J. C. Adams, who is
most famous for his contribution to the discovery of Neptune, F. R. Moulton, and
Ph. H. Cowell, who accurately predicted the motion of Halley’s comet before its
1910 return.

4.2.1 Introduction

In order to illustrate the basic principles of multistep methods, it is assumed for the
moment that one has already obtained approximate values ηj of the solution y(tj )

at equidistant times tj = t0 + jh for j = 0, 1, . . . , i. Integrating both sides of the
differential equation

ẏ = f (t, y) (4.41)

with respect to t from ti to ti+1 one obtains the equivalent expression

y(ti+1) = y(ti)+
∫ ti+h

ti

f (t, y(t))dt . (4.42)

The integral cannot, however, be evaluated as it is, since it depends itself on the
unknown solution y(t) of the differential equation. To circumvent this difficulty,
one replaces the integrand by a polynomial p(t) that interpolates some of the values

f j = f (tj , ηj ) (4.43)
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Fig. 4.3. Interpolation of
four function values by a
third-order polynomial

at previous times tj that are already known according to the initial assumption. This
results in

ηi+1 = ηi +
∫ ti+h

ti

p(t)dt (4.44)

and the increment function of a multistep method is therefore given by

Φ = 1

h

∫ ti+h

ti

p(t)dt . (4.45)

As an example a third-order polynomial is considered (see Fig. 4.3), which is
defined by the four function values f i−3, f i−2, f i−1 and f i at times ti−3, ti−2,
ti−1 and ti . This polynomial may be written as

p(t) = a0 + a1σ + a2σ
2 + a3σ

3 (4.46)

with σ(t) = (t − ti)/h. This yields the simple expression

Φ =
∫ 1

0
(a0 + a1σ + a2σ

2 + a3σ
3)dσ = a0 + a1/2 + a2/3 + a3/4 (4.47)

for the increment function. Substituting the coefficients

a0 = ( 6f i)/6
a1 = (−2f i−3 +9f i−2−18f i−1+11f i)/6
a2 = (−3f i−3+12f i−2−15f i−1 +6f i)/6
a3 = (−1f i−3 +3f i−2 −3f i−1 +1f i)/6

(4.48)

finally leads to the 4th-order Adams–Bashforth formula

ΦAB4 = 1

24
(−9f i−3 + 37f i−2 − 59f i−1 + 55f i) , (4.49)

which may be used to calculate the approximate solution

ηi+1 = ηi + hΦAB4 (4.50)
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of the differential equation at ti+1 = ti + h. Repeated application of the Adams–
Bashforth formula then yields the solution of the differential equation for subse-
quent times ti+jh.

In order to start the integration scheme the first four values f 0, f 1, f 2 and f 3
or, equivalently, η0, η1, η2 and η3 are required. They may, for example, be obtained
from t0 and η0 using three steps of a fourth or higher-order Runge–Kutta method
with sufficient accuracy.

4.2.2 Adams–Bashforth Methods

The simple procedure described in the introductory section may easily be extended
to derive general multistep methods of arbitrary order.

For this purpose one makes use of Newton’s formula for a polynomial pi
m of

order m−1 that interpolates m points

(ti−m+1,f i−m+1) , . . . , (ti ,f i)

with equidistant nodes ti . This polynomial is given by the compact expression

pi
m(t) = pi

m(ti + σh) =
m−1∑
j=0

(−1)j
(−σ

j

)
∇jf i , (4.51)

where the binomial coefficient stands for
(−σ

j

)
= (−σ)(−σ − 1) . . . (−σ − j + 1)

j ! (4.52)

if j >0 and is equal to 1 for j=0. The backward differences of f i are recursively
defined by

∇0f i = f i

∇f i = f i − f i−1
∇nf i = ∇n−1f i − ∇n−1f i−1

(4.53)

and may be computed from the given function values as outlined in Fig. 4.4.
Using this notation the increment function of the mth-order Adams–Bashforth

multistep method may now be written as

ΦABm = 1

h

∫ ti+h

ti

pi
m(t)dt =

m−1∑
j=0

γj∇jf i (4.54)

with stepsize independent coefficients

γj = (−1)j
∫ 1

0

(−σ
j

)
dσ . (4.55)
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f i−4 . . .

↘
f i−3 → ∇1f i−3 . . .

↘ ↘
f i−2 → ∇1f i−2 → ∇2f i−2 . . .

↘ ↘ ↘
f i−1 → ∇1f i−1 → ∇2f i−1 → ∇3f i−1 . . .

↘ ↘ ↘ ↘
f i → ∇1f i → ∇2f i → ∇3f i → ∇4f i . . .

Fig. 4.4. Backward difference table for polynomial interpolation

Table 4.4. Coefficients of Adams–Bashforth methods in backwards difference notation

j 0 1 2 3 4 5 6 7 8

γj 1 1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

1070017
3628800

Numerical values of γ0 . . . γ8 are given in Table 4.4. They may be obtained from a
simple recurrence relation (see e.g. Hairer et al. 1987):

γj = 1 −
j−1∑
k=0

1

j + 1 − k
γk . (4.56)

The local truncation error of the Adams–Bashforth method decreases with the
order m and may be estimated by comparing two methods of order m and m+1:

eABm = |y(ti + h)− ηABm| ≈ |ηABm+1 − ηABm| = h|γm∇mf i | . (4.57)

Since ∇mf /hm is an approximation of the m-th derivative of f , the truncation
error may also be expressed as

eABm ≈ hm+1|γmf
(m)
i | = hm+1|γmy

(m+1)
i | (4.58)

which shows that the order of the Adams–Bashforth method is equal to the number
(m) of nodes (ti−m+1 . . . ti).

Substituting the definition of backwards differences into (4.54), the increment
function may also be written in terms of the function values f j :

ΦABm = βm1f i−m+1 + . . .+ βmmf i =
m∑
j=1

βmjf i−m+j . (4.59)

This formulation of the increment function, which has already been used in our
introductory example, avoids the computation of the backwards differences and
is therefore more convenient and efficient as long as methods of fixed order are
considered. There are, however, several applications where (4.54) is preferable,
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Table 4.5. Coefficients of Adams–Bashforth methods up to order m = 8.

j 1 2 3 4 5 6 7 8

β1j 1

β2j
−1
2

3
2

β3j
5

12
−16
12

23
12

β4j
−9
24

37
24

−59
24

55
24

β5j
251
720

−1274
720

2616
720

−2774
720

1901
720

β6j
−475
1440

2877
1440

−7298
1440

9982
1440

−7923
1440

4277
1440

β7j
19087
60480

−134472
60480

407139
60480

−688256
60480

705549
60480

−447288
60480

198721
60480

β8j
−36799
120960

295767
120960

−1041723
120960

2102243
120960

−2664477
120960

2183877
120960

−1152169
120960

434241
120960

since the use of backwards differences allows a straightforward estimation of the
local truncation error and an easy change of the order from one step to the next.

The new coefficients βmj – which are no longer independent of the order m –
may be obtained from the γj ’s using the relation

βmj = (−1)m−j
m−1∑
l=m−j

γl

(
l

m− j

)
(4.60)

for j = 1, . . . , m (Grigorieff 1977). Explicit values are given in Table 4.5.

4.2.3 Adams–Moulton and Predictor–Corrector Methods

In the mth-order Adams–Bashforth method the polynomial p(t) is defined by m
function values up to and including f i at time ti . The integration is, however,
performed over the subsequent interval ti . . . ti+1 where the approximation cannot
be expected to be very good.

Another type of multistep method – known as the Adams–Moulton method –
therefore uses the polynomial pi+1

m (t)which interpolatesm function values at time
steps ti−m+2 and ti+1:

pi+1
m (t) = pi+1

m (ti + σh) =
m−1∑
j=0

(−1)j
(−σ + 1

j

)
∇jf i+1 . (4.61)

Upon integration this yields the Adams–Moulton formula

ΦAMm = 1

h

∫ ti+h

ti

pi+1
m (t)dt =

m−1∑
j=0

γ ∗
j ∇jf i+1 (4.62)
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with coefficients

γ ∗
j = (−1)j

∫ 1

0

(−σ + 1

j

)
dσ (4.63)

that are given in Table 4.6. Further values may be calculated from the recurrence
relation

γ ∗
j = −

j−1∑
k=0

1

j + 1 − k
γ ∗
k . (4.64)

Table 4.6. Coefficients of Adams–Moulton methods in backwards difference notation

j 0 1 2 3 4 5 6 7 8

γ ∗
j 1 −1

2
−1
12

−1
24

−19
720

−3
160

−863
60480

−275
24192

−33953
3628800

The order of the Adams–Moulton method is equal to m and is, therefore, the
same as that of an Adams–Bashforth method involving m grid points for the in-
terpolating polynomial. The local truncation error of the Adams–Moulton method,
which is given by

eAMm ≈ hm+1|γ ∗
my

(m+1)
i | , (4.65)

is smaller, however, than that of an Adams–Bashforth method of equal order, since
the error constant |γ ∗

m| is smaller than |γm|.
As with the Adams–Bashforth methods, the backwards differences may be

substituted to yield a formulation that depends on f j only:

ΦAMm = β∗
m1f i−m+2 + . . .+ β∗

mmf i+1 =
m∑
j=1

β∗
mjf i+1−m+j . (4.66)

The coefficients β∗
mj (see Table 4.7) of themth-order method may be obtained from

the γ ∗
j using the relation

β∗
mj = (−1)m−j

m−1∑
l=m−j

γ ∗
l

(
l

m− j

)
(4.67)

for j = 1, . . . , m (Grigorieff 1977).
Since the increment function of the Adams–Moulton method depends on

f i+1 = f (ti+1, ηi+1) , (4.68)

it is not possible to calculate an explicit solution at ti+1 from

ηi+1 = ηi + hΦAMm . (4.69)
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Table 4.7. Coefficients of Adams–Moulton methods up to order m = 8.

j 1 2 3 4 5 6 7 8

β2j
1
2

1
2

β3j
−1
12

8
12

5
12

β4j
1

24
−5
24

19
24

9
24

β5j
−19
720

106
720

−264
720

646
720

251
720

β6j
27

1440
−173
1440

482
1440

−798
1440

1427
1440

475
1440

β7j
−863
60480

6312
60480

−20211
60480

37504
60480

−46461
60480

65112
60480

19087
60480

β8j
1375

120960
−11351
120960

41499
120960

−88547
120960

123133
120960

−121797
120960

139849
120960

36799
120960

The Adams–Moulton formula is therefore called an “implicit” method and some
iterative procedure is required to solve for ηi+1.

To avoid this difficulty, an Adams–Bashforth method of order m is usually
combined with an Adams–Moulton method of order m or m+1 in a so-called
predictor–corrector or PECE-algorithm which consists of four steps:

1. In the first step – the Predictor step – an initial estimate of the solution at ti+1

is calculated from the Adams–Bashforth formula

η
p
i+1 = ηi + hΦAB . (4.70)

2. The result is used in the Evaluation step to find the corresponding function
value

f
p
i+1 = f (ti+1, η

p
i+1) . (4.71)

3. In the third step – called the Corrector – the Adams–Moulton formula is
applied to find an improved value

ηi+1 = ηi + hΦAM(f
p
i+1) . (4.72)

4. The final Evaluation step yields the updated function value

f i+1 = f (ti+1, ηi+1) (4.73)

which may then be used for the start of the next integration step.

In principle the third and fourth step would have to be repeated until convergence
is achieved to find the exact solution of the Adams–Moulton formula, but since
each such iteration costs another function evaluation, this would not be worth the
effort. A single corrector step is enough to assure that the order of the combined
Adams–Bashforth–Moulton method is equal to that of the implicit method, even
though the local truncation error is slightly larger (cf. Grigorieff 1977).
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The justification for using the somewhat complicated predictor–corrector al-
gorithm, lies in the stability of multistep methods at large stepsizes. Due to the
truncation at a fixed order and a limited computing accuracy, the individual steps of
the numerical integration are always affected by small local errors. An analysis of
the way in which these errors are propagated from one step to the next shows that
the errors may grow exponentially for large stepsizes. In order to avoid this unfa-
vorable behavior and to guarantee stability, the stepsize may not exceed a certain
limit that depends on the method and the differential equation to be solved.

Low-order methods are generally more stable even for large stepsizes. Due to
their modest accuracy, small steps have to be used anyway and stability is often not
a serious problem. When using high-order multistep methods, however, stability
can pose stringent limits on the allowed stepsize. Even steps that yield a sufficiently
small truncation error may then be too large since the propagation of local errors
could result in an unbounded growth of the global integration error.

The implicit Adams–Moulton methods behave much better in this respect than
the explicit Adams–Bashforth methods and even the approximate solution of the
Adams–Moulton formula in the PECE algorithm improves the stability consider-
ably. This is the main reason why it is generally recommended to use one additional
function evaluation for the corrector step. Another advantage is that the local trun-
cation error can be reduced by using the corrector. The doubled expense for a single
integration step can at least partially be compensated for by larger stepsizes.
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Fig. 4.5. A plot of the global integration error versus time t for an orbit of e = 0.1 reveals the effect
of instability of high-order Adams–Bashforth methods

To illustrate the practical meaning of stability, the two-body problem (D1) has
been integrated with both a 6th-order and an 8th-order Adams–Bashforth method
(AB6, AB8) at a stepsize of h = 0.04 (see Fig. 4.5). Since the local truncation
error decreases with higher order, one might expect more precise results for the
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AB8 method, but the growth of the global integration error clearly shows the onset
of instability. When combined with a corrector, the resulting Adams–Bashforth–
Moulton method (ABM8) is stable, however, even at twice the stepsize.

As a compromise between a cheap predictor-only method and a more stable
PECE method, a PECE∗ algorithm (cf. Long et al. 1989) may be useful for the treat-
ment of perturbed satellite orbits. Here E∗ stands for a pseudo-evaluate step, which
means that some simplifications are made in the final evaluation step. According
to (4.4) the evaluation of f involves the computation of the acceleration

a(t, r, ṙ) = −GM⊕
r3

r + p(t, r, ṙ) , (4.74)

where the dominant first term arises from the central gravity field of the Earth and
p means the sum of all perturbations. Since the perturbations are much smaller
than the central force, one makes a small error only if one does not recompute them
after the corrector step. In a pseudo-evaluate step only the dominant term of the
total acceleration is therefore updated with the coordinates obtained in the corrector
step, while the perturbations are taken from the predictor step:

a∗(t, r, ṙ) = −GM⊕
r3

r + p(t, rp, ṙp) . (4.75)

Since the computation of the perturbations is much more time-consuming than that
of the central acceleration term, the PECE∗ method increases the stability at almost
no additional cost.

Irrespective of the use of a stabilizing corrector step one should not arbitrarily
increase the order of a multistep method in an attempt to increase the stepsize and
the accuracy. For the requirements of typical orbit computations orders in the range
from 8 to 12 can usually be recommended.

4.2.4 Interpolation

The multistep methods of Adams’ type may be extended in a straightforward manner
to provide a solution at intermediate output points. For this purpose it is assumed
that a PECE step of size h has been used to advance from ti to ti+1 and that one is
interested in the approximate solution at some time t = ti +σh, where 0 < σ < 1.
From a total of m+1 points

(ti−m+1,f i−m+1) , . . . , (ti,f i) , (ti+1,f
p
i+1)

one may construct the interpolating polynomial

p
∗,i+1
m+1 (t) = p

∗,i+1
m+1 (ti + σh) =

m∑
j=0

(−1)j
(−σ + 1

j

)
∇jf ∗

i+1 (4.76)

that was already used in the implicit Adams–Moulton formula of the corrector step.
Here the ∗ denotes that f

p
i+1 is a predictor value while all other f j result from the
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final (corrector) values of previous steps. Inserting this polynomial into the integral
form of the differential equation leads to

η(ti + σh) = ηi +
∫ ti+σh

ti

p
∗,i+1
m+1 (t)dt (4.77)

or

η(ti + σh) = ηi + h

m∑
j=0

γ̂j (σ )∇jf ∗
i+1 (4.78)

with

γ̂j (σ ) =
∫ σ

0
(−1)j

(−s + 1

j

)
ds . (4.79)

The coefficients γ̂j depend on σ and must therefore be calculated separately for
each desired output value. Appropriate recurrence relations may be found e.g. in
Shampine & Gordon (1975). Since the differential equations that are usually treated
by multistep methods are characterized by complicated functions f , the computa-
tional effort for the interpolation coefficients is negligible in most applications.

It should be noted that the interpolant given here is continuous at the grid points
ti , by definition, but that the same is not true for the first derivative. For a more
detailed discussion of smooth interpolants we refer to Watts & Shampine (1986)
and Higham (1989).

4.2.5 Variable Order and Stepsize Methods

In the derivation of the Adams–Bashforth and Adams–Moulton methods it has so
far been assumed that the solution of the differential equation is calculated with
a constant stepsize, i.e. on a series of equidistant time points. This concept has to
be modified whenever the behavior of the solution requires changes of the stepsize
during the integration.

The easiest way to realize a variable stepsize consists of stopping the integration
and calculating new starting values for another stepsize (e.g. with a Runge–Kutta
method) whenever the current stepsize has to be modified. Alternatively one may
use interpolation formulas like those described above to find a new set of starting
values. Both approaches are feasible when stepsize changes are rare events, i.e.
when a constant stepsize can be used for most of the integration.

A more flexible solution is obtained by generalizing the Adams formulas of the
previous sections. In the case of arbitrary stepsizes themth-order predictor formula
for the computation of the solution at ti+1 may be written as

ηi+1 = ηi + (ti+1−ti)·
m−1∑
j=0

gj (i)φj (i) . (4.80)
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Here the factors

gj (i) = 1

ti+1 − ti

∫ ti+1

ti

j−1∏
l=0

t − ti−l
ti+1 − ti−l

dt (4.81)

correspond to the coefficients γj of the fixed stepsize formula, while the

φj (i) =
j−1∏
l=0

(ti+1−ti−l) · f [ti, . . . , ti−j ] (4.82)

replace the backward differences ∇jf i (see e.g. Hairer et al. 1987). The expressions
f [ti , . . . , ti−j ] are known as divided differences and result from the use of Newton’s
formula for a general interpolation polynomial. They are recursively defined by

f [ti] = f i

f [ti , ti−1] = f i − f i−1

ti − ti−1

f [ti , ti−1, ti−2] = f [ti, ti−1] − f [ti−1, ti−2]
ti − ti−2

. . .

(4.83)

For constant stepsize h

f [ti , . . . , ti−j ] = 1

hj
∇jf i . (4.84)

The coefficients gj (i) and φj (i) as well as those of a corresponding corrector
formula may be calculated from recurrence relations which are essential for an
efficient implementation of variable order methods (see e.g. Shampine & Gordon
1975).

For the selection of order and stepsize the error for the order currently in use
is estimated as well as the expected error for adjacent orders. At the same time a
new stepsize is calculated based on the current error estimate and the current order.
Evaluating this information a new order or stepsize can be chosen. Since changes
in the stepsize require an increased effort for the computation of the coefficients
gj (i) the stepsize is changed only if the recommended stepsize is larger or smaller
than the present one by a factor of at least two.

A great advantage of variable order and stepsize methods is the fact that they
do not require a starting procedure. Starting from order one and a very small initial
stepsize, both order and stepsize may be increased up to an optimum value within
a few steps. This makes variable order and stepsize codes particularly easy to use.
Among the various implementations the following are mentioned:

• DVDQ – developed at the Jet Propulsion Laboratory by Krogh (1969, 1974)
– is one of the earliest variable order and stepsize multistep codes. DVDQ
has, for example, been used for the numerical integration of the solar system
ephemeris DE102 (Newhall et al., 1983).
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• DE/DEABM is one of the most popular methods of its kind. The code and its
theoretical background are explained in detail in the textbook of Shampine
& Gordon (1975). The original code DE has since been improved to meet the
needs of program libraries (Shampine & Watts 1979) and is available under
the name DEABM now. Further amendments of the interpolation routines
are reported in Watts & Shampine (1986).

• VOAS is a variable order and stepsize multistep code by Sedgwick (1973).
Aside from a different implementation its characteristics and performance
are similar to DE/DEABM.

• The predictor–corrector method of Hall & Watts – implemented as D02CJF
in the NAG Fortran library – provides interpolation for dense output similar
to DE/DEABM.

4.2.6 Stoermer and Cowell Methods

In the discussion of Runge–Kutta methods, Nyström methods have been introduced
that are especially designed for the direct integration of second-order differential
equations. Corresponding multistep methods that are known as Stoermer and Cow-
ell methods may be derived by an extension of the concept of Adams methods. For
this purpose the differential equation

r̈ = a(t, r) (4.85)

is integrated twice to form the equivalent integral equation

r(ti + h) = r i + hṙ i +
ti+h∫

ti

t∫

ti

a(τ, r(τ ))dτdt . (4.86)

Using partial integration the double integral can be replaced by a single integral:

ti+h∫

ti

1·
t∫

ti

a(τ, r(τ ))dτ dt =
⎛
⎝t ·

t∫

ti

a(τ, r(τ ))dτ

⎞
⎠
∣∣∣∣∣∣

ti+h

ti

−
ti+h∫

ti

t · a(t, r(t))dt

=
ti+h∫

ti

(ti+h−t)a(t, r(t))dt

= h2

1∫

0

(1−s)a(ti+sh, r(ti+sh))ds .
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Table 4.8. Coefficients of Stoermer and Cowell methods in backwards difference notation. See e.g.
Schubart & Stumpff (1966) for higher-order coefficients.

j 0 1 2 3 4 5 6 7 8

δj 1 0 1
12

1
12

19
240

3
40

863
12096

275
4032

33953
518400

δ∗
j 1 −1 1

12 0 −1
240

−1
240

−221
60480

−19
6048

−9829
3628800

By adding r(ti + h) and r(ti − h) one can eliminate the velocity ṙ i , which results
in

r(ti+h)− 2r(ti)+ r(ti−h)

= h2

1∫

0

(1−s)[a(ti+sh, r(ti+sh))+ a(ti−sh, r(ti−sh))]ds .
(4.87)

As in the derivation of the Adams–Bashforth formulas one may now use a polyno-
mial through m points

(ti−m+1, ai−m+1), . . . , (ti, ai)

to approximate a and to evaluate the integral. This yields the Stoermer formula

r i+1 = 2r i − r i−1 + h2
m−1∑
j=0

δj∇jai (4.88)

with coefficients given by

δj = (−1)j
1∫

0

(1 − s)

[(−s
j

)
+
(
s

j

)]
ds . (4.89)

They are easily obtained from the coefficients γ ∗
j of the implicit Adams method

(see Table 4.6) via the relation

δj = (1 − j)γ ∗
j . (4.90)

Numerical values for j ≤ 8 are given in Table 4.8.
The use of the Stoermer formula requires the knowledge of two position vec-

tors r i−1, . . . , r i and m accelerations ai−m+1, . . . , ai . These initial values may be
obtained from a special starting procedure (see e.g. Schubart & Stumpff 1966) or
a Runge–Kutta method.

The explicit Stoermer method may be supplemented by the implicit Cowell
method

r i+1 = 2r i − r i−1 + h2
m−1∑
j=0

δ∗
j∇jai+1 (4.91)

as corrector. The coefficients δ∗
j are given in Table 4.8 up to order 8. Further values

follow from the simple relation

δ∗
j = δj − δj−1 . (4.92)
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4.2.7 Gauss–Jackson or Second Sum Methods

The Gauss–Jackson or second sum methods (Jackson 1924, Merson 1974) are
slightly modified versions of the Stoermer–Cowell methods for second-order dif-
ferential equations and probably the most recommendable fixed-stepsize multistep
methods for orbit computations. The explicit Stoermer formula is replaced by the
equation

r i+1 = h2
m+1∑
j=0

δj∇j−2ai (4.93)

and the modified Cowell formula is given by

r i+1 = h2
m+1∑
j=0

δ∗
j∇j−2ai+1 . (4.94)

Velocities at each step may be obtained from similar equations that follow from the
Adams–Bashforth–Moulton formulas:

vi+1 = h

m∑
j=0

γj∇j−1ai (4.95)

and

vi+1 = h

m∑
j=0

γ ∗
j ∇j−1ai+1 . (4.96)

The coefficients γj , γ ∗
j , δj and δ∗

j are listed in Tables 4.4, 4.6 and 4.8.
The expressions for r i+1 and vi+1 involve the use of first and second sums

(∇−1, ∇−2), which are generalizations of the backwards differences introduced
earlier. They are implicitly defined by the recursions

ai = ∇−1ai − ∇−1ai−1

∇−1ai = ∇−2ai − ∇−2ai−1
(4.97)

in close analogy with definition (4.53). By applying the backward difference oper-
ator ∇ twice to the explicit second sum formula (4.93) for r i+1, one obtains

r i+1 − 2r i + r i−1 = h2
m−1∑
j=0

δj∇jai (4.98)

which is just equation (4.88) of the Stoermer method. In a similar manner one
may prove the validity of the implict second sum formulas as well as the first sum
formulas for the prediction of v.

Despite the apparent equivalence of the Bashforth–Moulton and Stoermer-
Cowell formulas and the first and second sum formulas, the latter are generally
preferred in practical computations. According to Henrici (1962) and Herrick (1971,
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1972) the sum formulas are less influenced by round-off errors that result from the
finite computing accuracy. This is especially important in long-term integrations
where round-off errors are the main source of error, since the local truncation error
can always be limited by choosing a high-order method and/or a small stepsize.

In order to use the summed version of the Stoermer–Cowell formulas one has
to determine initial values of the first and second sums in addition to the initial set
of backward differences. For starting the calculation it is assumed that one knows
the position and velocity (rj , vj ) of the satellite for a given set of m equidistant
times tj = t0 + jh (j =−m+1, . . . , 0). These data can always be obtained from
the initial values (t0, r0, v0) by a backwards integration with a high-order Runge–
Kutta method or an extrapolation method. From position and velocity one is able to
calculate the accelerations aj and the backward differences ∇a0 . . .∇m−1a0. The
desired values of the first and second sums can now be determined by solving the
implicit Adams–Moulton and Cowell formulas for ∇−1a0 and ∇−2a0:

∇−1a0 = v0

h
−

m∑
j=1

γ ∗
j ∇j−1a0 ∇−2a0 = r0

h2
−

m+1∑
j=1

δ∗
j∇j−2a0 . (4.99)

As an alternative to using a single-step method for obtaining the initial set
of accelerations and backward differences one may use a special starting calcula-
tion. It involves an iterative refinement of a crude approximation of the satellite’s
coordinates and the corresponding difference table that may be based e.g. on the
assumption of an unperturbed Keplerian orbit. For a detailed description of this
method the reader is referred to Herrick (1971, 1972).

4.2.8 Comparison of Multistep Methods

The relative performance of some of the multistep methods described so far is com-
pared in Fig. 4.6. The test set covers a 6th-order Adams–Bashforth method (AB6),
two Adams–Bashforth–Moulton methods of order 8 and 12 (ABM8, ABM12) and
the variable order, variable stepsize code DE (Shampine & Gordon 1975), all of
which may be used for integrating general first-order differential equations. In ad-
dition two high-order Stoermer and Stoermer–Cowell methods (S14, SC14) for the
integration of second-order differential equations are included.

When considering fixed-order multistep methods the user must be careful to
select a method of appropriate order for a given accuracy requirement. While low-
order methods may be inefficient for high accuracies, the higher-order methods
are subject to instability at low accuracies (i.e. at large stepsizes). As an example,
the ABM12 method can only be used to integrate problem D1 with accuracies of
better than 9 digits, whereas the ABM8 method becomes inefficient at just the same
accuracy. These problems may be avoided, however, by using a variable order and
stepsize method like DE, since the automatic order selection avoids an unstable
behavior and, simultaneously, guarantees a high efficiency.
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Fig. 4.6. Performance diagram of several multistep methods for test case D1 (e=0.1) of Hull et al.
(1972). The number of function calls is plotted versus the relative accuracy in digits.

While the use of a corrector is essential for all but the lowest-order Adams
methods, the same is not true for the Stoermer(–Cowell) methods, which are con-
siderably more stable. Predictor methods of the Stoermer type have therefore been
preferred by several authors (see e.g. Schubart & Stumpff (1966), Herrick (1971,
1972)) for applications in celestial mechanics, especially for long-term integrations
of the solar system. Due to their high stability, Stoermer(–Cowell) methods may
be used up to very high orders which makes them the most efficient methods of the
test set.

4.3 Extrapolation Methods

The extrapolation method is a powerful single-step method that extends the idea
of Richardson extrapolation (i.e. extrapolation to zero stepsize) to the numeri-
cal solution of ordinary differential equations. It is often called Bulirsch–Stoer or
Gragg–Bulirsch–Stoer method in honor of the pioneering work of Gragg (1965)
and Bulirsch & Stoer (1966). A general review of extrapolation methods may be
found in Deuflhard (1985).

4.3.1 The Mid-Point Rule

In order to find the solution of a first-order differential equation at some time t0+H
from given initial values (t0, y0), the interval [t0, t0 +H ] is first subdivided into
n (micro-)steps of size h = H/n. A simple Euler step is then used to find an
approximation u1 at t0+h, while further values ui are obtained from the so-called
mid-point rule:

u1 = y0 + hf (t0, y0)

ui+1 = ui−1 + 2hf (t0+ih,ui) (i = 1, . . . , n− 1) .
(4.100)
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This yields an approximate solution

η(h) = 1

4
un−2 + 1

2
un−1 + 1

4
un ≈ y(t0+H) (4.101)

at t0+H which may be considered a function of the stepsize h.
According to Gragg (1965) the difference between η(h) and the exact solution

may be described by an asymptotic expansion

η(h)− y(t0+H) = ε2h
2 + ε4h

4 + ε6h
6 + . . . (4.102)

in h2 for sufficiently smooth functions and even values of n. The error coefficients
εj depend on t0 and H but are independent of h.

4.3.2 Extrapolation

As may be expected from the simple formulas used for the micro-steps, the order
of the approximation is quite low. However, one may improve it considerably after
repeating the integration with a different stepsize h′. Forming

η∗ = h′2η(h)− h2η(h′)
h′2 − h2

= y(t0+H)+ ε4O(h
2h′2) , (4.103)

one can eliminate the leading error term ε2h
2 and thus reduce the error by two

orders.
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Fig. 4.7. Extrapolation of η(h) for
h→0.

Equation (4.103) describes a linear extrapolation of η as a function of h2 down
to h=0 and it is obvious that even better approximations may be obtained by using
higher-order extrapolation formulas (see Fig. 4.7). This requires that the mid-point
rule integration from t0 to t0+H is repeated several times with different stepsizes
hi = H/ni , where the ni are taken from a sequence like

n = 2, 4, 6, 8, 12, 16, 24, 32, 48 . . . (ni = 2ni−2 for i ≥ 4) (4.104)
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which is called the Bulirsch sequence. The extrapolation is then performed accord-
ing to the following scheme:

η(h1) = η1,1
↘

η(h2) = η2,1 → η2,2
↘ ↘

η(h3) = η3,1 → η3,2 → η3,3
↘ ↘ ↘

η(h4) = η4,1 → η4,2 → η4,3 → η4,4
↘ ↘ ↘ ↘

η(h5) = η5,1 → η5,2 → η5,3 → η5,4 → η5,5
...

...
...

...
...

... ↘

(4.105)

When using polynomial extrapolation3 each entry of the table is a simple linear
combination

ηi,j+1 = h2
i−jηi,j − h2

i ηi−1,j

h2
i−j − h2

i

= ηi,j + ηi,j − ηi−1,j

(ni/ni−j )2 − 1
(4.106)

of the entries to the left and upper left of it.
From the asymptotic expansion of the error and ε2j =O(H) one obtains the

following estimate:

ei,j = |y(t0+H)−ηi,j | = ε2jO(h
2
i ·h2

i−1 ·. . .·h2
i−j+1) = O(H 2j+1) .(4.107)

This means that each value ηij in column j of the extrapolation table provides an
approximation comparable to that of a Runge–Kutta method of order 2j . Since
the number of columns may be quite high (e.g. 7–10), the extrapolation method
exceeds any known Runge–Kutta method with respect to the attainable order and
is therefore often considered the best method for very high accuracy requirements.

The stepsize control of the extrapolation method may be based on the same
consideration that led to (4.21) for embedded Runge–Kutta methods. For a given
size of the extrapolation table one can estimate the truncation error from the dif-
ference of two neighboring values ηj,j−1 and ηj,j and calculate a new stepsize
from

H ∗ = 0.9H · 2j−1

√√
ε

|ηj,j − ηj,j−1|
, (4.108)

where 0.9 is a safety factor that avoids an overoptimistic stepsize estimate and ε
is the required tolerance. Simultaneously one may check whether the order of the

3Bulirsch & Stoer (1966) proposed an extrapolation involving rational functions, but polynomials
are at least equally well suited (see e.g. Hairer et al. (1987)).
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extrapolation table should be changed to decrease the total integration effort. For
details of the stepsize control used in practical implementations of the extrapolation
method the reader is referred to Hussels (1973), Deuflhard (1983) and Hairer et al.
(1987).
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Fig. 4.8. Performance diagram of several extrapolation methods for test case D1 (e=0.1) of Hull et
al. (1972). The number of function calls is plotted versus the relative accuracy in digits. Note the
jump in the graph for DIFSY1 that is caused by the stepsize and order control

4.3.3 Comparison of Extrapolation Methods

Implementations of the extrapolation method have been published by various au-
thors. They differ mainly in the choice of polynomial or rational extrapolation, the
set of micro-stepsizes and the stepsize and order control:

• DIFSY1, DIFSY2: Extrapolation methods using rational instead of polyno-
mial extrapolation (Bulirsch & Stoer 1966). The initial stepsize control has
been improved by Hussels (1973). DIFSY2 has been developed by Hussels
(1973) for special second-order differential equations ÿ = f (t, y) that do
not depend on first-order derivatives. For this purpose the mid-point rule is
replaced by the lowest-order Stoermer formula (yi+1 = 2yi−yi−1+h2f i).
Compared to DIFSY1, computing times may be reduced considerably by
using DIFSY2 whenever appropriate.

• DIFEX1, DIFEX2: Extrapolation codes for first and second-order differential
equations with a new kind of order and stepsize control developed by Deu-
flhard (1983). The Bulirsch sequence (4.104) is replaced by the harmonic
sequence (n = 2, 4, 6, 8, 10, 12, 14, . . .).
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• ODEX1, ODEX2: Implementations of the extrapolation method described
in Hairer et al. (1987). ODEX2 – like DIFSY2 – is intended for use with
second-order differential equations.

As with the Runge–Kutta methods (see Fig. 4.2), test problem D1 of Hull et. al.
(1972) is used to compare the performance of some of these extrapolation codes
(Fig. 4.8). The high order of the extrapolation methods is evident from the fact that
even a small increase in the number of function evaluations leads to a considerable
increase of the number of accurate digits. Within the set of first-order methods
(DIFSY1, DIFEX1, ODEX1) performance differences of about 20% are observed
in agreement with Hairer et al. (1987). The use of DIFEX2 and ODEX2 which have
been developed for the direct integration of second-order differential equations in-
creases the efficiency by about 30–50%. Concerning the order and stepsize control,
the ODEX codes are notable for the smooth relation between function evaluations
and accuracy in the performance diagram.

Since the effective order of extrapolation codes can be quite high, the integra-
tion is usually performed with large stepsizes. This may be pretty inefficient, if
dense output is required. The situation is similar to that of high-order Runge–Kutta
methods with the difference that an extrapolation method may be considered as a
variable order method. If the maximum stepsize is limited by the requested out-
put points, codes like DIFEX1 and ODEX therefore try to reduce the order as far
as possible using only one column of the extrapolation table, if necessary. Even
though the costs per integration step are reduced to a minimum in this way, the total
integration effort may still be quite high. As a possible solution to this problem
Shampine et al. (1982) have constructed a low-order interpolating Runge–Kutta
formula based on the function evaluations that are required for the first entries of
the extrapolation table. An interpolation algorithm that preserves the high order
of extrapolation codes has only recently been developed by Hairer & Ostermann
(1990) for first-order differential equations, but has not yet been tested for use in
high-precision ephemeris calculations.

4.4 Comparison

In the preceding sections the basic concepts and features of Runge–Kutta, multistep,
and extrapolation methods for the integration of ordinary differential equations have
been discussed. Regarding the class of Runge–Kutta methods, it has been shown that
only high-order methods are reasonable candidates for the accuracy requirements
of orbit computations. FILG11 and RKN12(10) were identified as the most efficient
methods, but if the acceleration involves velocity dependent terms, DOPRI8 will
serve best. Among the extrapolation codes ODEX2 is most promising, being about
40% faster than the corresponding codes for first-order differential equations. As
expected, an excellent performance is also found for all multistep methods.

The sample calculations presented so far have been restricted to near-circular
orbits, however, and in order to extend the discussion to more general orbits, highly
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eccentric orbits (e=0.9; test case D5 of Hull et al. (1972)) have been considered,
too. In addition to DOPRI8, FILG11, and ODEX2 the variable order, variable
stepsize multistep code DE/DEABM is used for this comparison.

As before, the valuation of the different integration methods is based on a perfor-
mance diagram showing the relation between the number of function evaluations
and the achieved accuracy. This approach avoids the measurement of machine-
dependent computing times but some comments may be helpful to illustrate its
validity.

The total computing effort of a numerical integration method depends not
only on the number of function evaluations but also on the extent of additional
arithmetic operations that are required inside the integration routine. In the case
of the two-body problem the total computing time is, for example, about 30–60%
higher than expected from the number of function evaluations alone, if one uses a
Runge–Kutta or Extrapolation method. For variable-order and stepsize multistep
methods which require a lot of work to calculate new coefficients at each step,
this computational overhead is even higher and may well be in the order of 200%.
The situation changes, however, if one considers a realistic force model that is
appropriate for the prediction of satellite orbits. While the additional perturbations
do not affect the number of function evaluations, they increase the total computing
time considerably and make the integration overhead more or less negligible. As
an example we found values between 5% (single-step methods) and 20% (variable-
order and stepsize multistep methods) for a satellite force model including a 3 × 3
geopotential, lunisolar gravitational attraction, and solar radiation pressure.

The number of function evaluations that are required to achieve a given accuracy
is, therefore, an appropriate performance measure for our purposes and we may now
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Fig. 4.9. Performance diagram of several single- and multistep methods for test cases D1 (e=0.1,
lower set of curves) and D5 (e=0.9, upper set of curves) of Hull et al. (1972). The number of function
calls is plotted versus the relative accuracy in digits.
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turn to Fig. 4.9 which presents the results for the various integration methods under
consideration. First of all it is evident that the total integration effort for a highly
eccentric orbit is larger by a factor of about 3–4 than that for a near-circular orbit.
Since this factor is almost the same for all methods, it can be concluded that the
stepsize control of all codes works well even for orbits of high eccentricity. While
the good performance of the multistep methods at low eccentricities is beyond
doubt, it is noteworthy that DE is well suited for very high eccentricities, too. This
clearly indicates the usefulness of variable-order and stepsize multistep methods for
application to general types of orbits. A regularization of the equations of motion
(see e.g. Long et al. 1989), which is essential for an efficient use of simple fixed-
stepsize multistep methods at high eccentricities, can thus be avoided completely.

A comparison of single-step methods with multistep methods indicates that
both classes of integration methods have become almost competitive by now. While
the 8th-order code DOPRI8 needs still 2–2.5 times the computing effort required
by DE, one may note that the 11th-order Nyström method FILG11 is even more
efficient than the multistep method for both low and high eccentricities. An excellent
performance is also found for the ODEX2 code, which shows that all types of single-
step methods are well worth considering for applications in the field of orbital
mechanics.

This result is somewhat in contrast to the common opinion that the use of a mul-
tistep method is an indispensable prerequisite for an efficient numerical integration
of satellite orbits due to the small number of function evaluations required. While
there is strong support for this point of view in earlier reviews (Moore 1974, Fox
1984) one should keep in mind that the technique of Runge–Kutta integration has
been improved considerably within the past two decades and that new high-order
methods like FILG11 are much more efficient than their predecessors. Fox (1984),
for example, recommends the Gauss–Jackson method (without corrector step) for
near-circular orbits, since he finds it superior to the 8th-order Runge–Kutta method
DOPRI8 by a factor of about 3. This result is in close agreement with our com-
parison of DOPRI8 and the multistep method DE/DEABM and Fox’s conclusions
can be supported as long as methods for general first or second-order differential
equations are considered. If the equation of motion does not contain any veloc-
ity dependent term, however, then high-order Runge–Kutta–Nyström codes like
FILG11 or RKN12(10) may be used which are even faster than multistep methods
like DE or VOAS.

The good performance of Runge–Kutta and extrapolation methods exhibited in
the sample calculations should not, however, obscure the fact that the efficiency of
these method deteriorates considerably when the distance between subsequent out-
put points becomes smaller than the natural stepsize. This situation might change
with the development of interpolants for high-order Runge–Kutta methods, but up
to now single-step methods can only be recommended, if less than 50 to 100 output
points per revolution are required. Multistep methods are still, therefore, prefer-
able for the generation of equidistant ephemerides at small time intervals. With
the availability of variable-order and stepsize codes these methods are no longer
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restricted to near-circular orbits, but may also be used for high eccentricities with-
out any precautions. Due to this increased flexibility, variable-order and stepsize
multistep methods are ideal candidates for use in general satellite orbit prediction
and determination systems. Nevertheless, fixed stepsize codes that have been fa-
vored in software packages like GTDS (Long et al. 1989), GEODYN (Martin et al.
1976), UTOPIA (Schutz & Tapley, 1980), and PEPSOC (Soop 1983) are useful for
an efficient treatment of near-circular orbits like those of geodetic or geostationary
satellites.

Exercises

Exercise 4.1 (4th-Order Runge–Kutta Method) Apply the 4th-order Runge–
Kutta method (cf. Sect. 4.1.1) to integrate the normalized two-body problem from
t0 = 0 to t = 20 for an eccentricity of e = 0.1 (test problem D1, cf. Sect. 4.1.6).
Determine the resulting accuracy of the state vector at the end point using n =
{50, 100, 250, 500, 750, 1000, 1500, 2000} steps and count the corresponding
number of function evaluations.

Solution: Reference values obtained with IEEE 8-byte floating point arithmetics
(double precision) are given below:

nfnc Accuracy Digits
200 1.953·10−1 0.71
400 6.663·10−3 2.18

1000 9.051·10−5 4.04
2000 4.012·10−6 5.40
3000 6.847·10−7 6.16
4000 1.996·10−7 6.70
6000 3.608·10−8 7.44
8000 1.089·10−8 7.96

Exercise 4.2 (4th-Order Gauss–Jackson Method) Implement the 4th-order
Gauss–Jackson method (cf. Sect. 4.2.7) and integrate the second-order differen-
tial equation r̈ = −r/r3 of the normalized two-body problem from t0 = 0 to
t = 20 for an eccentricity of e = 0.1 (Test problem D1, cf. Sect. 4.1.6). De-
termine the resulting accuracy of the state vector at the end point using n =
{100, 300, 600, 1000, 1500, 2000, 3000, 4000} steps and count the correspond-
ing number of function evaluations.

Hint: Apply the 4th-order Runge–Kutta method to compute position and velocity
at times t0 −h, t0 −2h and t0 −3h from the intial values r0 and v0. The correspond-
ing accelerations a0, . . . , a−3 can then be used to form the backwards differences
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∇0a0, . . . ,∇3a0 and to initialize the sums

∇−1a0 = v0

h
−
(

−1

2
∇0a0 − 1

12
∇1a0 − 1

24
∇2a0 − 19

720
∇3a0

)

∇−2a0 = r0

h2
−
(

−∇−1a0 + 1

12
∇0a0 − 1

240
∇2a0 − 1

240
∇3a0

)

at the starting point t0.

Solution: Reference values obtained with IEEE 8-byte floating-point arithmetics
(double precision) are given below:

nfnc Accuracy Digits
116 2.456·10−03 2.61
316 3.363·10−06 5.47
616 7.705·10−08 7.11

1016 4.539·10−09 8.34
1516 5.174·10−10 9.29
2016 1.166·10−10 9.93
3016 1.499·10−11 10.82
4016 3.577·10−12 11.45

Exercise 4.3 (Stepsize Control for Eccentric Orbits) Integrate the normalized
two-body problem with eccentricity e = 0.9 from t0 = 0 to t = 20 (test problem
D5, cf. Sect. 4.1.6) using the DE multistep method of Shampine & Gordon (1975)
and monitor the step size variation as a function of time and distance.

Solution: Using double-precision arithmetics and a value of εabs = 10−8 for the
error control parameter of the DE method, the results shown in Fig. 4.10 are ob-
tained.
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Fig. 4.10. Stepsize variation of DE multistep method during integration of normalized two-body
problem with eccentricity e = 0.9.

Following an infinitesimal initial step, the order and stepsize of the DE multistep
method are continuously increased, until a typical order of ten is achieved. During
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the integration small steps are chosen close to pericenter, where the orbital position
changes rapidly. Near apocenter, in contrast, the slow motion allows for much
larger steps. It may be observed that the stepsize varies roughly as the square of
the distance from the center, and is thus almost proportional to the inverse of the
central acceleration. In total the stepsize varies by two orders of magnitude during
one orbit.



5. Time and Reference Systems

The physical and numerical models presented so far have tacitly assumed the avail-
ability of a unique time and reference system for the equation of motion. In practice,
however, one faces a multitude of historically grown concepts and definitions, which
are employed along with each other. Whereas the definition of both time and the
fundamental reference systems has traditionally been based on the rotational and
translational motion of the Earth, one has now advanced to ideally uniform atomic
time scales and an ideally non-rotating quasar-tied celestial reference frame. Nev-
ertheless, a thorough understanding of the Earth’s motion and rotation remains
essential for a rigorous description of satellite orbits and even more the accurate
modeling of ground based measurements.

5.1 Time

Despite the apparent familiarity and its use in everyday life, time has remained an
issue that requires careful attention in the description of astronomical, physical, and
geodetic phemomena. In accordance with the advance of physical theories, obser-
vational methods, and measuring devices, the underlying concepts and definitions
have undergone continued revisions and refinements up to the present date.

Time is traditionally measured in days of 86 400 seconds duration, where the
length of the solar day is determined from subsequent meridian transits of the
Sun. Because of the orbital motion of the Earth around the Sun, the Sun’s right
ascension changes by approximately one degree per day and the solar day is thus
about 4 minutes longer than the period of the Earth’s rotation. The latter time
interval, which is also known as a sidereal day, amounts to 23h56m4s.1 (solar time)
and is equal to time between successive meridian passages of the vernal equinox.

In view of the eccentricity of the Earth’s orbit and the resulting seasonal varia-
tions of the Sun’s apparent motion, the real Sun is not, however, well suited for time
reckoning purposes. Instead it had to be replaced by the concept of a mean Sun,
that moves uniformly in right ascension at a rate determined from observations and
analytical ephemerides. Based on a conventional expression for the right ascension
of the mean Sun that was derived from Newcomb’s Tables of the Motion of the
Earth, the Greenwich Mean Time GMT or Universal Time UT was established in
1925 as an international time scale for astronomical and civil purposes.

O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications,   
DOI 10.1007/978-3-642-58351-3_5, © Springer-Verlag Berlin Heidelberg 2000 
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When imperfections in the UT time scale became apparent that are due to
irregularities and secular variations in the Earth’s rotation, it was decided to establish
a new time scale in 1960 that was based exclusively on the orbital motion of solar
system bodies. This time scale, known as Ephemeris Time ET, defined time as the
independent argument of planetary and lunar ephemerides. Based on this definition
ET could be determined by comparing observed positions of the Sun, the planets, or
the Earth’s Moon with tabulated data predicted from analytical or numerical theories
of motion. Ephemeris Time is thus the prototype of a dynamical time scale, which
considers time as a continuously and uniformly passing physical quantity in the
dynamical theories of motion.

With the advent of atomic clocks Atomic Time was introduced as a new tim-
ing system that was more easily accessible by laboratory standards and free from
deficiencies of dynamical models. More recently a set of time scales has been
defined that accounts for the effects of general relativity in the framework of a
four-dimensional space-time.

Today the following time scales are of prime relevance in the precision modeling
of Earth orbiting satellites:

• Terrestrial Time (TT), a conceptually uniform time scale that would be mea-
sured by an ideal clock on the surface of the geoid. TT is measured in days
of 86 400 SI1 seconds and is used as the independent argument of geocentric
ephemerides.

• International Atomic Time (TAI), which provides the practical realization of
a uniform time scale based on atomic clocks and agrees with TT except for
a constant offset of 32.184 s and the imperfections of existing clocks.

• GPS Time, which like TAI is an atomic time scale but differs in the chosen
offset and the choice of atomic clocks used in its realization.

• Greenwich Mean Sidereal Time (GMST), the Greenwich hour angle of the
vernal equinox.

• Universal Time (UT1), today’s realization of a mean solar time, which is
derived from GMST by a conventional relation.

• Coordinated Universal Time (UTC), which is tied to the International Atomic
Time TAI by an offset of integer seconds that is regularly updated to keep
UTC in close agreement with UT1.

For a description of planetary and lunar motion as well as solar system events within
a general relativistic context, the above time scales are further supplemented by
Geocentric and Barycentric Coordinate Time (TCG and TCB) as well as Dynamical
Barycentric Time (TDB).

The mutual relation of the above time scales and their historical evolution is
outlined in Fig. 5.1. Here distinction is made between dynamical time scales that
serve as independent argument in the equations of motion, atomic time scales that
provide the practical realization of a uniform clock, and the non-uniform solar time
scales that are tied to the motion of the Sun and the rotation of the Earth.

1Système International (cf. Goodman & Bell 1986)
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Universal Time
UT

(Greenwich Mean Time GMT)
Solar day defined as time

between two meridian transits
of the fictitious mean Sun

Ephemeris Time
ET

Time argument of Newcomb's Tables 
of the motion of the Earth; second defined 

by duration of the tropical century.
 (ET~UT on Jan. 1, 1900)

Universal Time
UT1

Implicitely defined by the 
adopted right ascension of the

mean Sun and the observed
Greenwich Sidereal Time

International Atomic Time
TAI

SI second defined by hyperfine
radiation of cesium-133 atoms.

ET=TAI+32.184s 
(TAI~UT on Jan 1, 1958)

Coordinated Universal Time
UTC

Common civil time; differs
from TAI by an integer number
of leap seconds to follow UT1

within 0.9s 

1925

1960

1967

1972

Terrestrial Dynamical Time TDT
Independent variable of geocentric

ephemerides; 1day = 86400 SI seconds.
ET~TDT=TAI+32.184s

Barycentric Dynamical Time TDB
Independent variable of barycentric

solar system ephemerides; 
rate and unit of length adjusted 

to retain only periodic terms (~2ms)
in TDB-TDT time difference.

1976

1992

Terrestrial Time TT
Independent variable of geocentric

ephemerides; 1d = 86400 SI seconds
of a clock on the geoid; renames TDT.

TT=TAI+32.184s 

Barycentric Coordinate Time TCB
Relativistic  time coordinate of the
4-dimensional barycentric frame.

TCB = TDB + 46.7s/cy ·(year-1977.0)

Geocentric Coordinate Time TCG
Relativistic  time coordinate of the
4-dimensional geocentric frame.

TCG = TT + 2.2s/cy ·(year-1977.0)

Dynamical Time Atomic Time Mean Solar Time

1980

GPS Time
Atomic time scale of the

Global Positioning System
GPS=TAI(GPS)-19s 

(GPS=UTC on Jan 6, 1980)
Universal Time

UT1
Conventional relation
between UT1(0h) and
GMST (FK5 equinox)

1984

Fig. 5.1. Evolution of conventional time scales
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5.1.1 Ephemeris Time

Ephemeris Time was adopted in 19602 to cope with irregularities in the Earth’s
rotation that had been found to affect the flow of mean solar time. Even though its
definition is based on Newtonian physics and has meanwhile been replaced by TT,
TCG, and TCB within a relativistic framework, Ephemeris Time still represents
the prototype of a dynamical time scale and provides a useful link to historical
planetary observations.

The definition of Ephemeris Time is based on Newcomb’s analytical theory
of the Earth’s motion around the Sun (Newcomb 1898). In his analytical solution
of the equations of motion, Newcomb expressed the relative motion of the Earth-
Moon barycenter and the Sun by a set of secularly perturbed Keplerian elements
and superimposed periodic perturbations. Based on his theory and an adjustment
to obervations, he derived the expression

L
 = 279◦41′48 ′′. 04 + 129 602 768 ′′. 13 · T + 1 ′′. 089 · T 2 (5.1)

for the geometric mean longitude of the Sun with respect to the Earth-Moon
barycenter. Here L
 refers to the mean equinox of date while T measures time
from noon 1900 January 0 (JD 2 415 020.0) GMT in Julian centuries of 36525
days.

While a day was originally meant to represent a mean solar day in Newcomb’s
computations, the above relation was later adopted as a conventional expression in
the definition of Ephemeris Time. To this end, the instant at which the geometric
mean longitude of the Sun had a value of 279◦41′48 ′′. 04 near the beginning of the
calendar year AD 1900 was defined as 1900 January 0, 12h Ephemeris Time (ET).
The rate of change dL
/dT at this epoch is given by the linear term in (5.1), which
corresponds to an orbital period of

P = 360 · 3600′′

129 602 768 ′′. 13
· 36525 · 86400 s = 31 556 925.9747 s . (5.2)

Accordingly, the ephemeris second was defined as the fraction 1/31556925.9747
of the tropical year at 1900 January 0.5 ET, where a tropical year specifies the time
during which the Sun’s mean longitude, as referred to the mean equinox of date,
increases by 360◦.

Even though Ephemeris Time provides a conceptually smooth and uniform
time scale it is more difficult to measure than mean solar time that is closely related
to the Earth’s rotation. In practice Ephemeris Time has to be determined by com-
paring observations of the Sun, Moon or planets with precomputed ephemerides.
Among these bodies the Moon exhibits the fastest orbital motion and has therefore
formed the basis for the actual implementation of Ephemeris Time. Soon, however,
Ephemeris Time became superseded by the use of atomic time scales, which pro-
vided a much better short-term availability together with an excellent long-term
stability.

2A preliminary definition of Ephemeris Time was actually devised about ten years earlier (see
Seidelmann 1992), but was refined and revised in subsequent resolutions.
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5.1.2 Atomic Time

Atomic (or molecular) clocks are based on the periodic oscillation of a microwave
signal that is in resonance with a low-energy state transition of a specific atom or
molecule. While the first clock built at the National Bureau of Standards in 1948
used an ammonia (NH3) absorption line to control the frequency generation (For-
man 1985), today’s atomic clocks are generally based on cesium (133Cs), hydrogen
(1H), or rubidium (87Rb) (McCoubrey 1996). Among these types, cesium clocks
provide the best long-term stability and are therefore used as primary standards in
the practical realization of atomic time scales.

The principle of a cesium-beam atomic clock is illustrated in Fig. 5.2. A beam of
cesium-133 atoms leaves an oven through a thin hole and enters the inhomogenous
field of a Stern–Gerlach magnet. It then passes through a microwave resonator and
a second magnet before it is finally collected by a detector (cf. Vessot 1974).
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Fig. 5.2. Schematic view of a cesium-beam atomic clock

Depending on the nucleus and outer electron spins, the cesium atoms exhibit
a total angular momentum of either F = 3 or F = 4. Both states are separated
by a small energy of about 0.04 meV and are almost equally populated in thermal
equilibrium. Atoms in the F =3 state experience an acceleration along the gradient
of an external magnetic field, while atoms in the F = 4 state are deflected into
the opposite direction. The first Stern–Gerlach magnet thus acts as a state selector,
which allows only atoms in the F = 3 state to enter the subsequent microwave
resonator. Here the beam passes through an electromagnetic field with a nominal
frequency of 9 192 631 770 Hz, which corresponds to the energy difference between
the two states. Accordingly, atoms in theF =3 state may absorb a microwave photon
and change the electron spin from anti-parallel to parallel orientation with respect
to the spin of the nucleus. Upon leaving the resonator, the atoms pass a second
Stern–Gerlach magnet (analyzer) that separates the F = 3 and F = 4 states and
allows only the latter (i.e. those with modifed electron spin) to enter the detector. A
maximum signal is thus obtained, if the microwave radiation frequency is properly
centered to the hyperfine transition. The detector signal can, therefore, be used to
adjust the resonator frequency to a fraction of the natural linewidth and obtain a
highly stable frequency reference. Upon continued subdivision, lower frequencies
of equal stability are obtained that ultimately provide the desired clock signal.

Due to the sharpness of the absorption line, the resonance frequency can be
matched with great precision and is thus ideally suited as an accurate time reference.
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Typical accuracies achieved with present cesium clocks range from 10−12 to 10−14

(Guinot 1989) with prospects for stabilities down to 10−16 (Wolf & Petit 1995).
This may be compared to a stability of the Earth’s rotation of about 10−8 (0.3 s/year)
and an accuracy of ephemeris time determination in the range of 10−10 (0.05 s in
10 years).

In comparison with Ephemeris Time as derived from lunar observations, the ce-
sium resonance frequency was determined as 9 192 631 770 ±20 Hz by Markowitz
(1958). The numerical value was finally adopted in 1967 to independently define
one second in the Système International (SI) as the duration of exactly 9 192 631 770
periods of the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the cesium-133 atom.

At the French Bureau International de l’Heure BIH atomic clocks were used
as early as 1955 in addition to traditional astronomical time keeping procedures. In
1972, the BIH atomic time scale was adopted as a world-wide standard time under
the name International Atomic Time TAI. The unit of time of TAI is defined as the
SI second and the origin has arbitrarily been chosen such that TAI closely matches
Universal Time on 1958 January 1.0, yielding the relation

ET = TAI + 32.184 s . (5.3)

Today TAI is established at the French Bureau International des Poids et Mesures
BIPM using an elaborate stability algorithm and clock readings from a large number
of atomic clocks (Guinot 1989).

In addition to TAI, the atomic time scale established by the Global Positioning
Satellite (GPS) system has become of great significance in the past decade due
to the common availability of GPS receivers. Besides serving the direct needs
of geodetic and navigational measurements, GPS provides high-precision timing
signals with a near-instantaneous and worldwide availability. GPS time is realized
by an independent set of atomic clocks and is maintained to follow the United States
Naval Observatory (USNO) atomic clock time with an accuracy of 1μs, which itself
differs from TAI by less than 5μs. The origin of GPS time was arbitrarily chosen
to coincide with UTC on 1980 January 6.0 UTC, i.e. GPS time differs from TAI by
a constant offset of

GPS = TAI − 19 s (5.4)

aside from the aforementioned clock offsets on the micro-second level.

5.1.3 Relativistic Time Scales

While time is an absolute quantity in the context of Newtonian physics, which does
not depend on the location and the motion of a clock, the same is no longer true in a
general relativistic framework. Instead, different proper times apply for each clock,
that are related to each other by a four-dimensional space-time transformation. This
transformation requires knowledge of the space-time metric, which itself depends
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on the location and motion of the gravitating masses. Within the solar system, a
first-order post-Newtonian approximation is generally adequate for a treatment of
relativistic effects in view of moderate velocities and gravitational potentials (Soffel
& Brumberg 1991).

In the vicinity of the Earth, it is possible to choose a rotation-free system of
four-dimensional space-time coordinates (x0 = ct, x = (x1, x2, x3)) in such a
way that the invariant space-time distance between two events is given by

ds2 = −c2dτ 2 = −
(

1 − 2U

c2

)
(dx0)2 +

(
1 + 2U

c2

)
(dx)2 (5.5)

to lowest order. Here c denotes the speed of light, τ is the proper time (as opposed
to coordinate time t) and U is the sum of the Earth’s gravitational potential and
the tidal potential generated by external bodies. Eqn. (5.5) implies that the rate of
a clock at rest on the surface of the Earth differs from the rate of coordinate time
by a factor of

dτ

dt
=
√√

1 − 2U

c2
− v2

c2
≈ 1 − GM⊕

R⊕c2
− v2

2c2
≈ 1 − 7·10−10 , (5.6)

where v ≈ ω⊕R⊕ cos ϕ is the clock’s speed in the non-rotating frame for a given
latitude ϕ. Likewise, clocks at different altitudes will have different proper times
and experience a rate difference in long-term comparisons.

The conceptual difference between proper time and coordinate time has led the
International Astronomical Union (IAU) to adopt two different time scales for use
since 1992, which are named as Terrestrial Time TT (formerly Terrestrial Dynamical
Time TDT)3 and Geocentric Coordinate Time TCG. Terrestrial Time has as its unit
the SI second as measured on the geoid and provides a smooth continuation of
Ephemeris Time, i.e.

TT = TDT = ET = TAI + 32.184 s . (5.7)

Geocentric Coordinate Time TCG in contrast represents the time coordinate of a
four-dimensional reference system and differs from TT by a constant scale factor
1 − LG with

LG = 6.9692903·10−10 (5.8)

(Wolf & Petit 1995). By convention TCG agress with TT on 1977 January 1.0,
yielding the relation

TCG = TT + LG · (JD − 2443144.5) · 86400 s . (5.9)

Around the epoch J2000, the difference TCG–TT amount to roughly 0.5 s.

3The word dynamical was originally used to emphasize its nature as the argument of dynamical
theories of motion in contrast to atomic time scales governed by the laws of quantum mechanics.
It was eventually dropped in 1992, since for practical purposes Terrestrial Time is actually derived
from the atomic TAI time scale.
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Supplementary to TCG, the Barycentric Coordinate Time TCB has been intro-
duced to describe the motion of solar-system objects in a non-rotating relativistic
frame centered at the solar-system barycenter. Both time scales are defined to match
each other on 1977 January 1.0 TAI but exhibit a rate difference

d(TCB − TCG)

dTCG
≈ GM


ac2
+ v2⊕

2c2
≈ 3

2

GM

ac2

≈ 1.5·10−8 , (5.10)

that depends on the gravitational potential of the Sun at the mean Earth-Sun distance
a = 1 AU and the Earth’s orbital velocity v⊕. Due to the eccentricity of the Earth’s
orbit and the associated variations of the heliocentric distance and velocity, the
rigorous transformation involves additional periodic terms and is given by

TCB = TCG + LC · (JD − 2443144.5) · 86400 s + P (5.11)

with

LC = 1.4808268457·10−8 (5.12)

(McCarthy 1996) and

P ≈ +0s.0016568·sin(35999◦.37T + 357◦.5)
+0s.0000224·sin(32964◦.5T + 246◦)
+0s.0000138·sin(71998◦.7T + 355◦)
+0s.0000048·sin(3034◦.9T + 25◦)
+0s.0000047·sin(34777◦.3T + 230◦)

T = (JD − 2451545.0)/36525

(5.13)

(Seidelmann & Fukushima 1992). The leading periodic term is of 1.7 ms amplitude
and varies with the sine of the Earth’s mean anomaly. All other terms are about
two orders of magnitude smaller. In view of the significant rate difference between
TCB and TCG/TT the accumulated TCB–TT time difference amounts to roughly
11 s around the epoch J2000 (cf. Fig. 5.3).

TCB supersedes a time scale known as Barycentric Dynamical Time TDB,
which was introduced by the IAU in 1976 and defined to differ from TDT (now
TT) by periodic terms, only. Accordingly TDB and TCB are related by

TCB = TDB + LB · (JD − 2443144.5) · 86400 s , (5.14)

where the scale difference

LB = LC + LG = 1.5505197487·10−8 (5.15)

(McCarthy 1996) synchronizes the average rate of Barycentric Dynamical Time
with that of Terrestrial (Dynamical) Time. While the definition of TDB appeared to
be useful at first sight in view of the small amplitude of the TDB-TT time difference
it has a subtle implication for models of solar system dynamics. While the post-
Newtonian equations hold irrespective of the use of TCB or TDB time, the TDB
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Fig. 5.3. Difference of atomic, dynamical, and solar time scales between 1950 and 2020. Periodic
terms in TCB and TDB have been exaggerated by a factor of 100 to make them discernible. (Adapted
from Seidelmann & Fukushima 1992)

second is longer than the TCB second by a factor LB. Furthermore, in order to
maintain the adopted numerical value

c = 299 792 458 m/s (5.16)

of the speed of light, the length of a meter is likewise different in the TCB and TDB
system. In a similar manner derived quantities like the masses of the Sun, Earth,
and planets are affected by the scaling difference (Hellings 1986). Considering,
however, that all precise solar system ephemerides are so far based on a TDB time
scale, the continued use of TDB is still accepted by the current IAU resolutions.

5.1.4 Sidereal Time and Universal Time

Greenwich Mean Sidereal Time GMST, also known as Greenwich Hour Angle,
denotes the angle between the mean vernal equinox of date and the Greenwich
meridian. It is a direct measure of the Earth’s rotation and may jointly be expressed
in angular units or units of time with 360◦ (2π ) corresponding to 24h. In terms of
SI seconds, the length of a sidereal day (i.e the Earth’s spin period) amounts to
23h56m4s.091 ± 0s.005, making it about four minutes shorter than a 24h solar day.
Due to length-of-day variations with an amplitude of several milliseconds, sidereal
time cannot be computed from other time scales with sufficient precision but must
be derived from astronomical and geodetic observations.
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Fig. 5.4. Sample set of Earth Orientation Parameters as provided by the Bulletin B of the IERS
International Earth Rotation Service
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Universal Time UT1 is the presently adopted realization of a mean solar time
scale with the purpose of achieving a constant average length of the solar day of
24 hours. As a result, the length of one second of Universal Time is not constant,
because the actual mean length of a day depends on the rotation of the Earth and the
apparent motion of the Sun (i.e. the length of the year). Similar to sidereal time, it
is not possible to determine Universal Time by a direct conversion from e.g. atomic
time, because the rotation of the Earth cannot be predicted accurately. Every change
in the Earth’s rotation alters the length of the day, and must therefore be taken into
account in UT1. Universal Time is therefore defined as a function of sidereal time,
which directly reflects the rotation of the Earth. For any particular day, 0h UT1 is
defined as the instant at which Greenwich Mean Sidereal Time has the value

GMST(0hUT1) = 24110s.54841 + 8640184s.812866 · T0

+ 0s.093104 · T 2
0 − 0s.0000062 · T 3

0

(5.17)

(Aoki et al. 1982). In this expression the time argument

T0 = JD(0hUT1)− 2451545

36525
(5.18)

denotes the number of Julian centuries of Universal Time that have elapsed since
2000 Jan. 1.5 UT1 at the beginning of the day. For an arbitrary time of the day, the
expression may be generalized to obtain the relation

GMST = 24110s.54841

+ 8640184s.812866 T0 + 1.002737909350795 UT1

+ 0s.093104T 2 − 0s.0000062 T 3 ,

(5.19)

where the time argument

T = JD(UT1)− 2451545

36525
(5.20)

specifies the time in Julian centuries of Universal Time elapsed since 2000 Jan. 1.5
UT1.

The difference between Universal Time and Terrestrial Time or International
Atomic Time can only be determined retrospectively. At the end of the 20th century
ΔT = TT−UT1 amounts to roughly 65 s and increases by about 0.5 to 1.0 seconds
per year (cf. Fig. 5.3). In addition to the secular variation, which is caused by tidal
friction in the Earth-Moon system, UT1 is subject to periodic variations on the
1 ms level that are caused by tidal perturbations of the polar moment of inertia (see
McCarthy (1996) and references therein). By convention, zonal tide terms with
periods between 5 and 35 days are removed from UT1 to obtain the regularized
Universal Time UT1R. Values of the UT1R–TAI time difference are published on a
monthly basis in Bulletin B of the International Earth Rotation Service (IERS) (cf.
Fig. 5.4), while the adopted expression for UT1-UT1R is given in McCarthy (1996).
Aside from reconstructed, post-facto values of the Earth orientation parameters, the
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bulletin provides approximate forecasts over a two month time frame at 5-day and
1-day intervals. Using quadratic interpolation of the tabulated data, UT1 may be
obtained for arbitrary instants from given TAI (or TT), which then allows GMST
to be computed as a function of TAI using the conventional relation (5.19).

Clock time, which is used for everyday purposes, is derived from Coordinated
Universal Time (UTC). Since 1972, UTC is obtained from atomic clocks running at
the same rate as International Atomic Time and Terrestrial Time. By the use of leap
seconds, which may be inserted at the end of June and/or the end of December, care
is taken to ensure that UTC never deviates by more than 0.9 seconds from Universal
Time UT (cf. Fig. 5.3). Between 1972 and 1999, a total of 23 leap seconds have been
introduced as summarized in Table 5.1. New leap seconds are announced in Bulletin
C of the IERS (cf. Fig. 5.5) about half a year in advance of their implementation.

Fig. 5.5. Announcement of new UTC leap seconds in Bulletin C of the IERS International Earth
Rotation Service
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Table 5.1. Leap seconds introduced in Coordinated Universal Time (UTC) since 1972.

From UTC–TAI From UTC–TAI From UTC–TAI

1972 Jan. 1 –10 s 1981 July 1 –20 s 1996 Jan. 1 –30 s
1972 July 1 –11 s 1982 July 1 –21 s 1997 July 1 –31 s
1973 Jan. 1 –12 s 1983 July 1 –22 s 1999 Jan. 1 –32 s
1974 Jan. 1 –13 s 1985 July 1 –23 s 2006 Jan. 1 –33 s
1975 Jan. 1 –14 s 1988 Jan. 1 –24 s 2009 Jan. 1 –34 s
1976 Jan. 1 –15 s 1990 Jan. 1 –25 s 2012 July 1 –35 s
1977 Jan. 1 –16 s 1991 Jan. 1 –26 s
1978 Jan. 1 –17 s 1992 July 1 –27 s
1979 Jan. 1 –18 s 1993 July 1 –28 s
1980 Jan. 1 –19 s 1994 July 1 –29 s

5.2 Celestial and Terrestrial Reference Systems

The equation of motion as derived in Chap. 3 describes the orbit of a satellite with
respect to a quasi-inertial or Newtonian reference system, i.e. with respect to a
coordinate system that moves with the center of the Earth but is free of rotation.
Satellite observations on the other hand are commonly obtained from an observing
site on the surface of the Earth, which is not at rest with respect to this reference
system. In order to compare ground-based measurements with the computed satel-
lite position, a concise definition of celestial and terrestrial reference systems is
required and their mutual relation has to be established.

Traditionally, celestial reference frames have been tied to the Earth’s rotation
and its annual revolution around the Sun. In view of the apparent constancy of both
the orbital plane and the rotation axis of the Earth, two global coordinate systems
can be defined in a straightforward manner. The first one gives the position of a
point in space with respect to the ecliptic (the Earth’s orbital plane), while the other
one refers to the Earth’s equatorial plane (the plane perpendicular to the rotation
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Fig. 5.6. Ecliptic and equator
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axis). These planes are inclined at an angle ε ≈ 23.5◦ and the line of intersection is
a common axis of both coordinate systems (cf. Fig. 5.6). The x/x ′-axis is defined as
being the direction of the vernal equinox or First Point of Aries, designated by ϒ .
It is perpendicular to both the North Celestial Pole (the z-axis) and the north pole
of the ecliptic (the z′-axis). According to their definition the equatorial coordinates
r and the ecliptic coordinates r ′ of a given point are related by a rotation

r ′ = Rx(ε)r , (5.21)

where the precise value of the obliquity ε is given in (5.42). The choice between
ecliptic and equatorial coordinates is mainly a question of vividness and conve-
nience. Planetary orbits, for example, are inclined at small angles to the Earth’s
orbital plane and are therefore commonly described in ecliptic coordinates. Equa-
torial coordinates, on the other hand, are closely related to geographical coordinates
and provide a natural link to an Earth-fixed reference system.

While the orbital plane of a body around a central mass is fixed in space as
long as the attractive force is parallel to the radius vector, this condition does not
hold for the Earth due to the presence of other solar system planets. This results in a
small secular variation of the orbital plane which is known as planetary precession.
At the same time the Earth’s axis of rotation is perturbed by the torque exerted on
the equatorial bulge by the Sun and Moon. This torque tries to align the equator
with the ecliptic and results in a gyroscopic motion of the Earth’s rotation axis
around the pole of the ecliptic with a period of about 26 000 years. As a result of
this lunisolar precession the vernal equinox recedes slowly on the ecliptic, whereas
the obliquity of the ecliptic remains essentially constant. In addition to precession
some minor periodic perturbations of the Earth’s rotation axis may be observed that
are known as nutation and reflect variations of the solar and lunar torques on time
scales larger than a month. In view of the time-dependent orientation of equator and
ecliptic a standard reference frame is usually based on the mean equator, ecliptic,
and equinox of some fixed epoch, which is currently selected as the beginning of the
year 2000. Access to the Earth Mean Equator and Equinox of J2000 (EME2000)
is provided by the FK5 star catalog (Fricke et al. 1988), which provides precise
positions and proper motions of some 1 500 stars for the epoch J2000 as referred
to the given reference frame.

In view of conceptual difficulties related to the dynamical definition of the
ecliptic and equinox (see e.g. Kinoshita & Aoki 1983), it was decided by the IAU
in 1991 to establish a new International Celestial Reference System (ICRS)4 and
adopt it for use from 1998 onwards (Feissel & Mignard 1998). The origin of the
ICRS is defined as the solar-system barycenter within a relativistic framework
and its axes are fixed with respect to distant extragalactic radio objects. These are
supposed to have no proper motion, thus ensuring that the ICRS exhibits no net
rotation. For a smooth transition to the new system, the ICRS axes are chosen in

4Here, the term Reference System means the set of basic concepts and models used to define at
any instant the orientation of the reference axes. A Reference Frame, in contrast, means a specific
realization in accordance with the concepts.
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such a way as to be consistent with the previous FK5 system to within the accuracy
of the latter. The fundamental plane of the ICRS is closely aligned with the mean
Earth equator at J2000 and the origin of right ascension is defined by an adopted
right ascension of the quasar 3C273.

The practical realization of the ICRS is designated the International Celestial
Reference Frame (ICRF) and is jointly maintained by the IERS and the IAU Working
Group on Reference Frames (cf. Arias et al. 1995). It is mainly based on high-
precision observations of extragalactic radio sources using Very Long Baseline
Interferometry (VLBI) and may be accessed through a catalog providing source
coordinates of 608 objects (cf. McCarthy 1996). Links to existing optical catalogs
are provided by radio stars (Seidelmann 1998), while the ICRS and planetary frame
tie is provided by VLBI observations of planetary spacecraft as well as lunar laser
ranging (LLR) (Folkner et al. 1994, Standish 1998).

Complementary to the ICRS, the International Terrestrial Reference System
(ITRS) provides the conceptual definition of an Earth-fixed reference system (Mc-
Carthy 1996). Its origin is located at the Earth’s center of mass (including oceans
and atmosphere) and its unit of length is the SI meter (consistent with the TCG
time coordinate). The orientation of the IERS Reference Pole (IRP) and Meridian
(IRM) are consistent with the previously adopted BIH system at epoch 1984.0 and
the former Conventional International Origin (CIO) (cf. Sect. 5.4.3). The time evo-
lution of the ITRS is such that it exhibits no net rotation with respect to the Earth’s
crust. Realizations of the ITRS are given by the International Terrestrial Refer-
ence Frame (ITRF) that provides estimated coordinates and velocities of selected
observing stations under authority of the IERS. Observational techniques used in
their determination include satellite laser ranging (SLR), lunar laser ranging (LLR),
Global Positioning System (GPS), and VLBI measurements. New versions of the
ITRF are published annually and exhibit global differences at the centimeter level.

The transformation between the International Celestial Reference System and
the International Terrestrial Reference System is accomplished by conventional
models for

• precession (Lieske et al. 1977), describing the secular change in the orienta-
tion of the Earth’s rotation axis and the equinox,

• nutation (Seidelmann 1982), describing the periodic and short-term variation
of the equator and the vernal equinox, and

• Sidereal Time in relation to UT1 (Aoki et al. 1982), describing the Earth’s
rotation about its axis.

These models are supplemented by the IERS Earth Observation Parameters (EOP),
comprising

• observations of the UT1-TAI difference and

• measured coordinates of the rotation axis relative to the IERS Reference Pole

(IERS 1998). The resulting transformation may be expressed as

r ITRS = Π(t)Θ(t)N(t)P (t) r ICRS (5.22)
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where the rotation matrices P , N , Θ , and Π describe the coordinate changes due
to precession, nutation, Earth rotation, and polar motion, respectively. A detailed
account of the underlying concepts of these transformations and the adopted nu-
merical expressions is presented in the subsequent sections.

5.3 Precession and Nutation

5.3.1 Lunisolar Torques and the Motion of the Earth’s Rotation Axis

In order to describe the precession of the Earth’s rotation axis, the Earth is considered
as a rotationally symmetric gyroscope with an angular momentum l that changes
with time under the influence of an external torque D according to

dl

dt
= D . (5.23)

Even though the direction of the angular momentum may, in general, differ from
the symmetry axis of a gyroscope and the instantaneous axis of rotation, one may
neglect these differences in the discussion of precession and nutation and assume
that l is parallel to the unit vector ez that defines the Earth’s axis (cf. Fig. 5.7). Then

l = Cω⊕ez (5.24)

where

ω⊕ ≈ 7.29·10−5 rad/s (5.25)

is the angular velocity of the Earth’s rotation and C is the moment of inertia. For a
spherical body of homogeneous density with mass M⊕ and radius R⊕ the moment
of inertia is given by

I = 2

5
M⊕R2⊕ (5.26)

for an arbitrary axis of rotation. Due to the Earth’s flattening and its internal structure
the actual moments of inertia are given by slightly differing values

A = 0.329M⊕R2⊕ and C = 0.330M⊕R2⊕ (5.27)

for a rotation around an axis in the equatorial plane and a rotation around the
polar axis, respectively. It may be noted that these quantities are related to the C20

geopotential coefficient by

C − A = −C20M⊕R2⊕ . (5.28)

The torque D due to a point mass m (i.e. the Sun or Moon) at a geocentric
position r is given by

D = −m(r × r̈) , (5.29)
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Fig. 5.7. Motion of the Earth’s axis under the influence of solar and lunar torques

if r̈ designates the acceleration of m by the gravitational force of the Earth. Ne-
glecting higher-order zonal terms in the expansion of the geopotential, r̈ is obtained
as

r̈ = −GM⊕
r3

r − 3

2

GM⊕R2⊕C20

r7
[ (5z2−r2)r − 2(zr2)ez ] (5.30)

for a rotationally symmetric Earth (cf. Sect. 3.2), where z=rez is the distance ofm
from the equatorial plane. All terms of the acceleration that are parallel to the radius
vector affect the Earth’s center of mass, only, and the resulting torque is given by
the simple expression

D = Gm(C − A)
3z(r × ez)

r5
. (5.31)

The Sun moves around the Earth in a near-circular orbit that is inclined at an
angle ε with respect to the equator and the resulting torque vanishes whenever the
Sun crosses the equator (z= 0). Introducing the unit vector ex in the direction of
the vernal equinox (cf. Fig. 5.7), the torque of the Sun at right angles to the line of
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nodes is found to be

D
 = GM
(C − A)
3 sin ε cos ε

r3

ex , (5.32)

irrespective of whether the Sun is above or below the equatorial plane. This results
in a mean solar torque

D
 = GM
(C − A)
3 sin ε cos ε

2r3

ex (5.33)

in the direction of the vernal equinox during the course of a year, whereas the mean
component in the direction perpendicular to ex vanishes. Making use of Kepler’s
third law, the last expression may further be written as

D
 = 3

2
(C − A) sin ε cos ε n2
 ex , (5.34)

where n
 is the mean motion of the Sun in its orbit around the Earth.
Similar considerations hold for the Moon, with the exception that the inclination

of the lunar orbit with respect to Earth’s equator is not fixed, but varies between
18◦ and 28◦ during a period of about 18 years. Since this period is small compared
to the time scale of precession, one may, however, assume that the Moon moves in
the ecliptic just like the Sun. This yields a total mean torque of

D = 3

2
(C − A) sin ε cos ε

(
n2
 + MM

M⊕
n2

M

)
ex , (5.35)

which changes neither the Earth’s total angular momentum nor the obliquity ε but
forces l to move around the pole of the ecliptic at an angular velocity

Ωprec = |D|
sin(ε)|l| = 3

2

C − A

C
cos(ε)

n2
 + n2
MMM/M⊕
ω⊕

(5.36)

of one revolution in 26 000 years.

5.3.2 Coordinate Changes due to Precession

The combined effects of precession on the orientation of the ecliptic and the equator
are illustrated in Fig. 5.8, where the motion of both planes is described with respect
to the mean equator and ecliptic of the reference epoch J2000 (2000 January 1.5).

Due to lunisolar precession the intersection of the mean equator of epoch t and
the mean ecliptic of J2000 lags behind the vernal equinox ϒ2000 of J2000 by an
angle

ψ = 5038 ′′. 8 · T − 1′′. 1 · T 2 (5.37)

that increases almost linearly with time, while the inclination of the mean equator
with respect to the ecliptic of J2000 is nearly constant:

ω = 23◦26′21′′ + 0 ′′. 05 · T 2 . (5.38)
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Fig. 5.8. The effects of precession on the ecliptic, equator, and vernal equinox

Here

T = (JD − 2451545.0)/36525.0 (5.39)

is measured in Julian centuries Terrestrial Time5 since J2000 TT.
While the gravitational pull of the Sun and Moon changes the direction of the

Earth’s axis and the equatorial plane, it does not affect the orientation of the ecliptic.
Long-term changes of the mean orbit of the Earth around the Sun do, however, arise
from the influence of the planets, which results in a corresponding motion of the
ecliptic. With respect to the ecliptic of J2000 the ecliptic at another epoch is inclined
at an angle of

π = 47 ′′. 0029 · T − 0 ′′. 03302 · T 2 + 0 ′′. 000060 · T 3 , (5.40)

where the line of intersection is described by the angle

Π = 174◦.876383889 − 869 ′′. 8089 · T + 0 ′′. 03536 · T 2 . (5.41)

These values follow from a theory of the secular changes of the Earth’s orbital
elements and have been derived by Lieske et al. (1977) following earlier calculations
by Newcomb.

5Following a recommendation of the IERS (McCarthy 1996), the expressions for precession and
nutation are to be evaluated in terms of Terrestrial Time, instead of Barycentric Dynamical Time.
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As a result of planetary precession the obliquity of the ecliptic is slightly de-
creasing and amounts to

ε = 23◦.43929111 − 46 ′′. 8150 T − 0 ′′. 00059 T 2 + 0 ′′. 001813 T 3 . (5.42)

The combined precession in longitude

p = Λ−Π = 5029 ′′. 0966 · T + 1 ′′. 11113 · T 2 − 0 ′′. 000006T 3 (5.43)

is somewhat smaller, therefore, than the lunisolar precession ψ alone.
The orientation of the mean equator and equinox of epoch T with respect to

the equator and equinox of J2000 is defined by the three angles

ζ = 2306 ′′. 2181 T + 0 ′′. 30188 T 2 + 0 ′′. 017998 T 3

ϑ = 2004 ′′. 3109 T − 0 ′′. 42665 T 2 − 0 ′′. 041833 T 3

z = ζ + 0 ′′. 79280T 2 + 0 ′′. 000205 T 3

(5.44)

that follow from the fundamental quantities π , Π , p, and ε.
According to Fig. 5.8 the transformation from coordinates r ICRF (referred to

the mean equator and equinox of J2000) to coordinates referred to the mean equator
and equinox of some other epoch (“mean-of-date”) may now be written as

rmod = P r ICRF (5.45)

where the matrix P is the product of three consecutive rotations:

P = Rz(−90◦−z)Rx(ϑ)Rz(90◦−ζ )

= Rz(−z)Ry(ϑ)Rz(−ζ ) .
(5.46)

Evaluating the matrix product, one obtains the following expression for P = (pij ):

p11 = − sin z sin ζ + cos z cosϑ cos ζ

p21 = + cos z sin ζ + sin z cosϑ cos ζ

p31 = + sinϑ cos ζ

p12 = − sin z cos ζ − cos z cosϑ sin ζ

p22 = + cos z cos ζ − sin z cosϑ sin ζ

p32 = − sinϑ sin ζ

p13 = − cos z sinϑ

p23 = − sin z sin ϑ

p33 = + cosϑ .

(5.47)

Since P is a rotation matrix, its inverse P −1 is equal to the transpose P T :

P −1 = P T = Rz(+ζ )Ry(−ϑ)Rz(+z) . (5.48)
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The precession transformation between arbitrary epochs T1 and T2 is thus obtained
from

r2 = P (T2)P
T (T1) r1 . (5.49)

Here P (T ) denotes the rotation from the mean equator and equinox of J2000 to the
mean equator and equinox of epoch T .

Alternatively, the generalized expressions

ζ(T , t) = (+2306 ′′. 2181 + 1 ′′. 39656 T − 0 ′′. 000139 T 2) t

+(+0 ′′. 30188 − 0 ′′. 000344T ) t2 + 0 ′′. 017998 t3

z(T , t) = (+2306 ′′. 2181 + 1 ′′. 39656 T − 0 ′′. 000139 T 2) t

+(+1 ′′. 09468 + 0 ′′. 000066 T ) t2 + 0 ′′. 018203 t3

ϑ(T , t) = (+2004 ′′. 3109 − 0 ′′. 85330T − 0 ′′. 000217 T 2) t

+(−0 ′′. 42665 − 0 ′′. 000217 T ) t2 − 0 ′′. 041833 t3

(5.50)

(Lieske et al.1977, Lieske 1979) with

T = T1 = (JD1(TT)− 2451545.0)/36525.0
t = T2 − T1 = (JD2(TT)− JD1(TT))/36525.0

(5.51)

can be used to compute the transformation matrix

P (T2, T1) = Rz(−z(T , t))Ry(ϑ(T , t))Rz(−ζ(T , t)) (5.52)

directly from the mean equator and equinox of epoch T1 to the mean equator and
equinox of epoch T2.

The 3rd-order polynomials6 for the precession angles given in (5.50) obey the
identities

z(T + t,−t) = −ζ(T , t)
ζ(T + t,−t) = −z(T , t)
ϑ(T + t,−t) = −ϑ(T , t) .

(5.53)

Accordingly,

P (T1, T2) = Rz(−z(T +t,−t))Ry(+ϑ(T +t,−t))Rz(−ζ(T +t,−t))
= Rz(ζ(T , t))Ry(−ϑ(T , t))Rz(z(T , t))

= P T (T2, T1)

(5.54)

yields the rigorous inverse of P (T2, T1). On the other hand, the transitivity relation

P (T3, T1) = P (T3, T2)P (T2, T1) (5.55)

is not maintained exactly by the generalized precession angles. It is therefore better
in practical applications of expression (5.50) to avoid the sequential use of preces-
sion matrices. Otherwise, errors typically of the order of 10−11 rad, or 10−6′′, will
arise for epochs lying within one century from the reference epoch J2000.

6The coefficient ζ ′
2 = 1

2∂
3ζ /∂2t∂T is originally given as −0.000345 in Lieske (1977) and has

been replaced by the proper value −0.000344 in Lieske (1979).
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5.3.3 Nutation

Aside from the secular precessional motion the orientation of the Earth’s rotation
axis is affected by small periodic perturbations that are known as nutation. They
are due to the monthly and annual variations of the lunar and solar torque that have
been averaged in the treatment of precession. The main contribution to nutation
arises from the varying orientation of the lunar orbit with respect to the Earth’s
equator as expressed by the longitude of the Moon’s ascending node Ω . It induces
a periodic shift

Δψ ≈ −17 ′′. 200 · sin(Ω) (5.56)

of the vernal equinox and a change

Δε ≈ +9 ′′. 203 · cos(Ω) (5.57)

of the obliquity of the ecliptic during the 18.6-year nodal period of the Moon. As a
result the true celestial pole performs an elliptic motion around the mean position
as affected by the lunisolar precession.

The currently adopted IAU 1980 nutation series is based on theories of Ki-
noshita (1977) and Wahr (1981). It expresses the nutation angles

ΔΨ =
106∑
i=1

(ΔΨ )i · sin(φi)

Δε =
106∑
i=1

(Δε)i · cos(φi)

(5.58)

by a total of 106 terms, which are summarized in Table 5.2 (Seidelmann 1982).
Each term describes a periodic function of the mean elements of the lunar and solar
orbit with argument

φi = pl,il + pl′,i l
′ + pF,iF + pD,iD + pΩ,iΩ (5.59)

and integer coefficients pl,i , pl′,i , pF,i , pD,i , and pΩ,i . The other parameters are
the Moon’s mean anomaly (l), the Sun’s mean anomaly (l′), the mean distance of
the Moon from the ascending node (F ), the difference between the mean longitudes
of the Sun and the Moon (D), and the mean longitude of the ascending node of the
lunar orbit (Ω). Numerical values for use with the IAU 1980 theory of nutation are
originally given as

l = 134◦57′46 ′′. 733 + 477198◦52′02 ′′. 633 T + 31 ′′. 310 T 2 + 0 ′′. 064T 3

l′ = 357◦31′39 ′′. 804 + 35999◦03′01 ′′. 224 T − 0 ′′. 577 T 2 − 0 ′′. 012 T 3

F = 93◦16′18 ′′. 877 + 483202◦01′03 ′′. 137 T − 13 ′′. 257 T 2 + 0 ′′. 011 T 3

D = 297◦51′01 ′′. 307 + 445267◦06′41 ′′. 328 T − 6 ′′. 891 T 2 + 0 ′′. 019 T 3

Ω = 125◦02′40 ′′. 280 − 1934◦08′10 ′′. 539 T + 7 ′′. 455 T 2 + 0 ′′. 008 T 3

(5.60)
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Table 5.2. The IAU 1980 nutation theory

pl pl′ pF pD pΩ ΔΨ [0.0001′′] Δε [0.0001′′] i pl pl′ pF pD pΩ ΔΨ Δε i

0 0 0 0 1 −171996−174.2T +92025+8.9 T 1 1 0 2 2 2 −8 3 54
0 0 0 0 2 2062 +0.2T −895+0.5 T 2 1 0 0 0 0 6 0 55

−2 0 2 0 1 46 −24 3 2 0 2 −2 2 6 −3 56
2 0 −2 0 0 11 0 4 0 0 0 2 1 −6 3 57

−2 0 2 0 2 −3 1 5 0 0 2 2 1 −7 3 58
1 −1 0 −1 0 −3 0 6 1 0 2 −2 1 6 −3 59
0 −2 2 −2 1 −2 1 7 0 0 0 −2 1 −5 3 60
2 0 −2 0 1 1 0 8 1 −1 0 0 0 5 0 61
0 0 2 −2 2 −13187 −1.6 T 5736−3.1 T 9 2 0 2 0 1 −5 3 62
0 1 0 0 0 1426 −3.4T 54−0.1 T 10 0 1 0 −2 0 −4 0 63
0 1 2 −2 2 −517 +1.2T 224−0.6 T 11 1 0 −2 0 0 4 0 64
0 −1 2 −2 2 217 −0.5 T −95+0.3 T 12 0 0 0 1 0 −4 0 65
0 0 2 −2 1 129 +0.1 T −70 13 1 1 0 0 0 −3 0 66
2 0 0 −2 0 48 1 14 1 0 2 0 0 3 0 67
0 0 2 −2 0 −22 0 15 1 −1 2 0 2 −3 1 68
0 2 0 0 0 17 −0.1 T 0 16 −1 −1 2 2 2 −3 1 69
0 1 0 0 1 −15 9 17 −2 0 0 0 1 −2 1 70
0 2 2 −2 2 −16 +0.1 T 7 18 3 0 2 0 2 −3 1 71
0 −1 0 0 1 −12 6 19 0 −1 2 2 2 −3 1 72

−2 0 0 2 1 −6 3 20 1 1 2 0 2 2 −1 73
0 −1 2 −2 1 −5 3 21 −1 0 2 −2 1 −2 1 74
2 0 0 −2 1 4 −2 22 2 0 0 0 1 2 −1 75
0 1 2 −2 1 4 −2 23 1 0 0 0 2 −2 1 76
1 0 0 −1 0 −4 0 24 3 0 0 0 0 2 0 77
2 1 0 −2 0 1 0 25 0 0 2 1 2 2 −1 78
0 0 −2 2 1 1 0 26 −1 0 0 0 2 1 −1 79
0 1 −2 2 0 −1 0 27 1 0 0 −4 0 −1 0 80
0 1 0 0 2 1 0 28 −2 0 2 2 2 1 −1 81

−1 0 0 1 1 1 0 29 −1 0 2 4 2 −2 1 82
0 1 2 −2 0 −1 0 30 2 0 0 −4 0 −1 0 83
0 0 2 0 2 −2274 −0.2 T 977−0.5 T 31 1 1 2 −2 2 1 −1 84
1 0 0 0 0 712 +0.1 T −7 32 1 0 2 2 1 −1 1 85
0 0 2 0 1 −386 −0.4T 200 33 −2 0 2 4 2 −1 1 86
1 0 2 0 2 −301 129−0.1 T 34 −1 0 4 0 2 1 0 87
1 0 0 −2 0 −158 −1 35 1 −1 0 −2 0 1 0 88

−1 0 2 0 2 123 −53 36 2 0 2 −2 1 1 −1 89
0 0 0 2 0 63 −2 37 2 0 2 2 2 −1 0 90
1 0 0 0 1 63 +0.1 T −33 38 1 0 0 2 1 −1 0 91

−1 0 0 0 1 −58 −0.1 T 32 39 0 0 4 −2 2 1 0 92
−1 0 2 2 2 −59 26 40 3 0 2 −2 2 1 0 93

1 0 2 0 1 −51 27 41 1 0 2 −2 0 −1 0 94
0 0 2 2 2 −38 16 42 0 1 2 0 1 1 0 95
2 0 0 0 0 29 −1 43 −1 −1 0 2 1 1 0 96
1 0 2 −2 2 29 −12 44 0 0 −2 0 1 −1 0 97
2 0 2 0 2 −31 13 45 0 0 2 −1 2 −1 0 98
0 0 2 0 0 26 −1 46 0 1 0 2 0 −1 0 99

−1 0 2 0 1 21 −10 47 1 0 −2 −2 0 −1 0 100
−1 0 0 2 1 16 −8 48 0 −1 2 0 1 −1 0 101

1 0 0 −2 1 −13 7 49 1 1 0 −2 1 −1 0 102
−1 0 2 2 1 −10 5 50 1 0 −2 2 0 −1 0 103

1 1 0 −2 0 −7 0 51 2 0 0 2 0 1 0 104
0 1 2 0 2 7 −3 52 0 0 2 4 2 −1 0 105
0 −1 2 0 2 −7 3 53 0 1 0 1 0 1 0 106
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True equator Mean equator

Mean equinox 

ϒϒ'

Ecliptic

ε' ε
Δψ

Fig. 5.9. The shift in the posi-
tions of the equator, the eclip-
tic and the vernal equinox,
caused by nutation

in Seidelmann (1982), while slightly modified expressions recommended by the
IERS are given in McCarthy (1996).

Following Fig. 5.9, the transformation from mean-of-date coordinates (referred
to the mean equator and equinox) to true-of-date coordinates (referred to the true
equator and equinox) may be written as

r tod = N(T ) rmod, (5.61)

with

N(T ) = Rx(−ε−Δε)Rz(−Δψ)Rx(ε) . (5.62)

The elements of the transformation matrix N = (nij ) in equatorial coordinates are
given by

n11 = + cos(ΔΨ )

n21 = + cos(ε′) · sin(ΔΨ )

n31 = + sin(ε′) · sin(ΔΨ )

n12 = − cos(ε) · sin(ΔΨ )

n22 = + cos(ε) · cos(ε′) · cos(ΔΨ )+ sin(ε) · sin(ε′)
n32 = + cos(ε) · sin(ε′) · cos(ΔΨ )− sin(ε) · cos(ε′)

n13 = − sin(ε) · sin(ΔΨ )

n23 = + sin(ε) · cos(ε′) · cos(ΔΨ )− cos(ε) · sin(ε′)
n33 = + sin(ε) · sin(ε′) · cos(ΔΨ )+ cos(ε) · cos(ε′) ,

(5.63)

where ε and ε′ = ε+Δε are the mean and true obliquity of the ecliptic at time
T = (JD(TT)− 2451545.0)/36525.

From VLBI and LLR observations, the IAU 1980 theory of nutation is known
to be in error on the level of several milli-arcseconds and an improved nutation the-
ory (IERS 1996) due to T. Herring has been made available in McCarthy (1996).
Nevertheless, the IAU 1980 series is retained as official standard in the IERS con-
ventions and the existing deficiencies are compensated for by observed values of
the celestial pole offsets δΔψ and δΔε. Improved nutation angles are obtained by
adding these corrections to the IAU 1980 values:

Δψ = ΔψIAU1980 + δΔψ

Δε = ΔεIAU1980 + δΔε .
(5.64)
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The corresponding correction to the nutation matrix is obtained from

N =
⎛
⎝

1 −δΔψ cos ε −δΔψ sin ε
+δΔψ cos ε 1 −δΔε
+δΔψ sin ε +δΔε 1

⎞
⎠N IAU1980 (5.65)

(McCarthy 1996). Post-facto determinations and short-term predictions of the ce-
lestial pole offsets are published on a monthly basis in Bulletin B of the IERS (cf.
Fig. 5.4).

5.4 Earth Rotation and Polar Motion

5.4.1 Rotation About the Celestial Ephemeris Pole

The IAU precession and nutation theories yield the instantaneous orientation of the
Earth’s rotation axis, or, more precisely, the orientation of the Celestial Ephemeris
Pole (CEP)7 with respect to the International Celestial Reference System. The ro-
tation about the CEP axis itself is described by the Greenwich Mean Sidereal Time
(GMST) that measures the angle between the mean vernal equinox and the Green-
wich Meridian (cf. Sect. 5.1.4). Given the UT1–UTC or UT1–TAI time difference
as monitored and published by the IERS, the Greenwich Mean Sidereal Time at
any instant can be computed from the conventional relation (5.19).

Similar to GMST, the Greenwich Apparent Sidereal Time (GAST) measures
the hour angle of the true equinox. Both values differ by the nutation in right
ascension

GAST − GMST = Δψ cos ε , (5.66)

which is also known as the equation of the equinoxes8. Given the apparent sidereal
time, the matrix

Θ(t) = Rz(GAST) (5.67)

yields the transformation between the true-of-date coordinate system (as defined
by the adopted precession–nutation theory) and a system aligned with the Earth
equator and Greenwich meridian.

7The Celestial Ephemeris Pole differs slightly from the instantaneous rotation axis which was
used in the earlier nutation theory of Woolard (1953). The adoption of the CEP is related to the fact
that the rotation axis performs a predictable daily motion around the CEP under the action of Sun
and Moon and is not, therefore, a proper reference pole for theoretical and observational reasons.
On the Earth’s surface the difference between both poles amounts to approximately 0.6 m. For a
detailed discussion the reader is referred to Seidelmann (1982) Groten (1984), and Capitaine et al.
(1985).

8If milliarcsecond accuracy is required in the equation of the equinoxes, two additional terms
+0 ′′. 002649 sinΩ − 0 ′′. 000013 cosΩ with Ω denoting the longitude of the Moon’s ascending node
should be added to the right-hand side of (5.66). These terms represent a second-order correction
resulting from a coupling between precession in longitude and nutation in obliquity in a kinematical
definition of apparent sidereal time (cf. Capitaine & Gontier 1993, McCarthy 1996).
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The common z-axis of both systems points to the Celestial Ephemeris Pole,
which is not, however, fixed with respect to the surface of the Earth, but performs
a periodic motion around its mean position from which it differs by at most 10 m.
This motion is known as polar motion and can be understood by considering a
rotationally symmetric gyroscope, in which the rotation axis moves around the axis
of figure in the absence of external torques.

5.4.2 Free Eulerian Precession

In a body-fixed coordinate system (e1, e2, e3) that is aligned with the principal axes
of inertia the angular momentum l′ of a symmetric gyroscope is given by

l′ =
⎛
⎝

A 0 0
0 A 0
0 0 C

⎞
⎠ ω , (5.68)

where ω is the instantaneous rotation axis and where A and C are the moments of
inertia for a rotation around the e1- or e2-axis and the e3-axis, respectively. Without
external torques the angular momentum l is constant in an inertial reference system,
but since l′ refers to a rotating system it obeys the relation

dl

dt
= dl′

dt
+ ω × l′ = 0 . (5.69)

Upon insertion this yields Euler’s equations

A
dω1

dt
+ (C − A)ω2ω3 = 0

A
dω2

dt
− (C −A)ω1ω3 = 0

C
dω3

dt
= 0

(5.70)

for the motion of ω with respect to the body-fixed coordinate system in the special-
ized case of a symmetric gyroscope. While the third equation implies a constant
component of ω around the symmetry axis e3, the solution of the first two equations
is given by

ω1 = a cos

(
C − A

A
ω3t + b

)

ω2 = a sin

(
C − A

A
ω3t + b

)
.

(5.71)

The instantaneous rotation vector therefore describes a circle around the e3-axis,
where the radius a and phase b are fixed by the initial conditions. The period

P = 2π

ω3

A

C − A
(5.72)
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depends on the angular velocity and the flattening of the gyroscope as expressed
by the fraction of the moments of inertia. For the Earth, the dynamical flattening
C/(C −A) as derived from the observed precession rate (cf. Sect. 5.3.1) amounts
to 0.00326, which yields a period of 305 days.

5.4.3 Observation and Extrapolation of Polar Motion

Observations show that the Earth’s polar motion is actually a superposition of
two components. One is the free precession with a period of about 435 days (the
Chandler period) that is not, however, in accord with the expected 305 day period
and can only be explained by a non-rigid Earth model. The second part is an annual
motion that is induced by seasonal changes of the Earth’s mass distribution due to
air and water flows.

In contrast to precession and nutation the motion of the rotation axis with respect
to the surface of the Earth cannot, therefore, be predicted from theory but has to be
monitored by continuous observations. For this purpose the mean position of the
pole of rotation during the years 1900 to 1905 is usually chosen as the origin for polar
motion measurements. Historically two slightly differing reference points have been
employed by various institutions. The CIO (Conventional International Origin) is
defined by the location of five stations of the International Latitude Service (ILS)
that has been involved in polar motion measurements from the beginning of the
century, whereas the BIH pole was later adopted by the Bureau International de
l’Heure. The difference between the two definitions is estimated to be less than 1 m
(Groten 1984). Following the introduction of the International Terrestrial Reference
System (ITRS) all polar motion data have consistently been referred to the IERS
Reference Pole (IRP), which was initially aligned with the BIH pole in 1984.0.
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Fig. 5.10. Due to polar motion the Celestial Ephemeris Pole (CEP) performs a periodic oscillation
around the IERS Reference Pole (IRP). The superposition of the annual oscillation and the Chand-
lerian free precession results in a pronounced beat frequency of roughly 5–6 six years. In addition,
the CEP exhibits a secular motion in the y-direction
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Examples of polar motion observations are given in Fig. 5.10 which shows the
coordinates xp and yp of the Celestial Ephemeris Pole with respect to the IERS
Reference Pole as a function of time. The x and y-axes are aligned with the IERS
Reference Meridian (Greenwich meridian) and the 90◦-West meridian. A displace-
ment of 0 ′′. 1 corresponds to 3 m on the surface of the Earth. Since 1900 the mean
position of the pole has shifted by about 10 m due to small changes in the Earth’s
mass distribution (cf. Fig. 5.10). As a result of this motion, which is known as polar
wander, the observed oscillation of the rotation axis is no longer symmetric with
respect to the adopted CIO/BIH-pole. The superposition of the annual oscillation
and the free precession is evident from the frequency spectrum of polar motion
shown in Fig. 5.11. Both contributions are of near-equal magnitude and almost
cancel each other with a beat period of 5 to 6 years (cf. Fig. 5.10). Current values
of the pole coordinates are published on a monthly basis in Bulletin B (cf. Fig. 5.4)
of the International Earth Rotation Service with a resolution of one and five days,
respectively. From these data intermediate values for any time may be obtained by
quadratic interpolation with sufficient accuracy.
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Fig. 5.11. The polar motion fre-
quency spectrum for the xp coordi-
nate (continuous line) and the yp co-
ordinate (dashed line) clearly shows
the annual and the Chandlerian pe-
riod

Even though polar motion cannot rigorously be predicted, an extrapolation over
a certain interval is nevertheless possible from previous data. For this purpose the
motion of the pole may be modeled as a superposition of a linear motion (polar
wander), an oscillation with a period of 365.25 days (annual term), and an oscillation
with a period of 435 days (Chandler term). Appropriate coefficients that provide an
extrapolation of tabulated polar motion data with an accuracy of about 0 ′′. 01 over
one month are published twice per week in IERS Bulletin A issued jointly by the
IERS and US National Earth Orientation Service (NEOS). Similar predictions are
also provided by the US National Imagery and Mapping Agency (NIMA) as part
of the GPS precise ephemeris generation process (NIMA 1999).

For a prediction over longer time scales a more flexible model has been proposed
by Chao (1985). The two components of polar motion are represented by time-
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dependent functions

xp = ax + bxt + cax cos(2πt/Pax + φax)+ ccx cos(2πt/Pcx + φcx)

yp = ay + byt + cay sin(2πt/Pay + φay) + ccy sin(2πt/Pcy + φcy)
(5.73)

with a total of 16 free parameters ax, . . . , φcy that are obtained from a least-squares
fit to six years of past polar motion data. By allowing for different annual and
Chandlerian periods Pa and Pc as well as different phases φa and φc in the x- and
y-component of polar motion some additional degrees of freedom are introduced
in this model that improve the prediction in times of notable period changes (e.g.
starting in 1977). Within a one-year prediction interval an accuracy of 0′′. 025 can
thus be achieved.

5.4.4 Transformation to the International Reference Pole

Based on the previous discussion, the transformation from true-of-date coordinates
(as defined by the theory of precession and nutation) to the International Terrestrial
Reference System may be expressed as

r ITRF = Π(t)Θ(t) r tod . (5.74)

Here Θ (cf. (5.67)) describes the Earth’s rotation about the CEP axis, while

Π = Ry(−xp)Rx(−yp) ≈
⎛
⎝

1 0 +xp

0 1 −yp

−xp+yp 1

⎞
⎠ (5.75)

accounts for polar motion and describes the subsequent transition to the Interna-
tional Reference Pole and Meridian. In view of the small angles involved (0 ′′. 3 ≈
1.5μrad), second order terms can safely be neglected in the expansion of the
trigonometric functions and the linearized form of Π is fully adequate for all ap-
plications.

5.5 Geodetic Datums

Besides the International Terrestrial Reference System and its annually updated
realizations ITRFyy, a variety of other global geodetic datums are in widespread use.
Common to all systems is the goal of establishing a global coordinate system that
originates at the Earth’s center of mass and is closely aligned with the Greenwich
meridian and the adopted pole.

The World Geodetic System 1972 (WGS72) and 1984 (WGS84) have been
established by the United States Department of Defense (DoD) and the Defence
Mapping Agency9 (DMA) for use with the TRANSIT and GPS satellite navigation
systems. WGS84, in its initial realization, was itself based on reference station

9Now: National Geospatial-Intelligence Agency (NGA); previously National Imagery and Map-
ping Agency (NIMA; 1996-2004)
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coordinates obtained by TRANSIT Doppler measurements and achieved a global
accuracy of 1–2 meters. To improve its precision, two new realizations named
WGS84 (G730) and WGS84 (G873) were established (Malys & Slater 1994, Malys
et al. 1997) based on accurate GPS positioning techniques. The revised systems are
considered to agree with the ITRF on the decimeter and centimeter level (cf. NIMA
1997). Similar to the use of WGS84 in GPS applications, the Russian GLONASS
system employs a specific datum known as PZ-90 reference frame (ICD-GLONASS
1998).

Table 5.3. Helmert transformation parameters for global geodetic datums. References: (a) McCarthy
1992, (b) McCarthy 1996, (c) Cunningham & Curtis 1996, (d) Mitrikas et al. 1998

From To T1 T2 T3 D R1 R2 R3 Ref.
[cm] [cm] [cm] 10−9 0 ′′. 001 0 ′′. 001 0 ′′. 001

ITRF90 WGS72 +6.0 –51.7 –472.3 –231 +18.3 –0.3 +547.0 (a)
ITRF90 WGS84 +6.0 –51.7 –22.3 –11 +18.3 –0.3 –7.0 (a)
ITRF90 ITRF88 +0.0 –1.2 –6.2 +6 +0.1 0.0 0.0 (a)
ITRF94 ITRF88 +1.8 0.0 –9.2 +7.4 +0.1 0.0 0.0 (b)
ITRF94 ITRF90 +1.8 1.2 –3.0 +0.9 0.0 0.0 0.0 (b)
ITRF94 ITRF92 +0.8 0.2 –0.8 –0.8 0.0 0.0 0.0 (b)
ITRF94 WGS84 (G730) –2 +2 –1 +0.2 +2.5 +1.9 –2.5 (c)
ITRF94 WGS84 (G873) +1 –1 –2 +0.3 +0.6 +1.2 +0.7 (c)
WGS84 PZ-90 +47 +51 +156 –22 +15.7 +3.5 –356 (d)

Except for statistical errors in the associated station coordinates, the relation
between different datums may be expressed by an infinitesimal seven-parameter
transformation. This is known as Helmert transformation and accounts for an off-
set in the adopted origin (T1,2,3), a scale difference (D) and a misalignment of
the coordinate axes (R1,2,3). Given the coordinates r in the original system, the
coordinates in another system may be expressed as

r ′ =
⎛
⎝
T1

T2

T3

⎞
⎠+

⎛
⎝

1 +D −R3 +R2

+R3 1 +D −R1

−R2 +R1 1 +D

⎞
⎠ r . (5.76)

Sample parameters for common transformations are provided in Table 5.3. In view
of different conventions for the names and signs of the transformation parameters,
care should be taken when applying the above equation with other parameter sets.

Supplementary to the Cartesian coordinates in the terrestrial reference system
the location of points on or near the surface of the Earth is commonly expressed in
terms of geodetic coordinates relative to a chosen reference ellipsoid. The geodetic
longitude λ is identical to the geocentric longitude and measures the angle between
the Greenwich meridian (or the International Reference Meridian) and the meridian
through the point. By convention λ is counted positive towards the east of Green-
wich. Unlike the geocentric latitude ϕ′ that specifies the inclination of the position
vector with respect to the equatorial plane, the geodetic latitude ϕ gives the angle
between the Earth’s equator and the normal to the reference ellipsoid. It thus equals
the elevation of the north celestial pole above the local tangent plane.
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Fig. 5.12. Geocentric and geodetic latitude

The reference ellipsoid is rotationally symmetric and any plane through the
symmetry axis intersects the ellipsoid in an ellipse of flattening f which is defined
by the relative difference of the equatorial radius and the polar radius:

f = R⊕ − Rpole

R⊕
. (5.77)

All points on the Greenwich meridian therefore obey the relation

x2 + z2

(1 − f )2
= R2⊕ , (5.78)

which may also be written in the differenced form as

dz

dx
= −(1 − f )2

x

z
. (5.79)

On the other hand

dz

dx
= − 1

tan ϕ
(5.80)

according to the definition of ϕ, and by equating both expressions one obtains

z = x (1 − f )2 tan ϕ . (5.81)

Inserting this relation into the equation of the ellipse and solving for x finally leads
to

x = R⊕
1√√

1 + (1−f )2 tan2 ϕ
= R⊕

cosϕ√√
1 − f (2−f ) sin2 ϕ

z = R⊕
(1 − f )2 tan ϕ√√

1 + (1−f )2 tan2 ϕ
= R⊕

(1 − f )2 sin ϕ√√
1 − f (2−f ) sin2 ϕ

. (5.82)
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This relation between Cartesian and geodetic coordinates may easily be generalized
for arbitrary points yielding

r =
⎛
⎝

(N + h) cos ϕ cos λ
(N + h) cos ϕ sin λ

((1−f )2N + h) sin ϕ

⎞
⎠ , (5.83)

where

N = R⊕√√
1 − f (2−f ) sin2 ϕ

(5.84)

is an auxiliary quantity that is illustrated in Fig. 5.12 and where h is the height
above the reference ellipsoid.

While the computation of Cartesian coordinates from given geodetic coordi-
nates is fairly simple, the inverse transformation is slightly more involved. Besides
direct methods that involve the solution of a quartic equation (Borkowski 1989,
Bowring 1985) there are several iterative methods, which usually converge rapidly.
The method described here utilizes the quantity

Δz = (N + h) sin ϕ − z = N e2 sin ϕ , (5.85)

where

e =
√√

1 − (1−f )2 (5.86)

stands for the eccentricity of the reference ellipsoid. InitiallyΔz is set to e2z, which
is a good approximation for all points that are reasonably close to the surface of the
Earth. Improved values are then calculated from

sin ϕ = z+Δz√√
x2 + y2 + (z +Δz)2

N = R⊕√√
1 − e2 sin2 ϕ

Δz = N e2 sin ϕ ,

(5.87)

until the iteration converges. The geodetic longitude and latitude and the height
above the reference ellipsoid may then be calculated from

λ = arctan
(y
x

)

ϕ = arctan

(
z+Δz√√
x2 + y2

)

h = √√
x2 + y2 + (z +Δz)2 −N ,

(5.88)
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Table 5.4. Common reference ellipsoids

Datum R⊕ 1/f Reference

GEM-10B 6378 138 m 298.257 McCarthy 1992
GEM-T3 6378 137 m 298.257 McCarthy 1992
WGS72 6378 135 m 298.26 McCarthy 1992
WGS84 6378 137 m 298.257223563 NIMA 1997
ITRF (GRS-80) 6378 137 m 298.257222101 McCarthy 1996, Moritz 1980
PZ-90 6378 136 m 298.257839303 ICD-GLONASS 1998

which follows immediately from Fig. 5.12. It is noted that the above relations are
singular for points on the z-axis, which is likewise the case for many direct methods
(see e.g. Seidelmann 1992).

Since the difference between the Earth’s equatorial and polar radii is less than
22 km, the flattening f ≈ 1/298.257 is a very small quantity and the difference
between geodetic and geocentric latitudes amounts to twelve arcminutes at most.
To a first approximation

ϕ = ϕ′ + f sin(2ϕ′) , (5.89)

which shows that the difference between ϕ and ϕ′ reaches its maximum for inter-
mediate latitudes but vanishes at the poles and the equator. Numerical values of the
inverse flattening for various datums and reference ellipsoid are presented in Table
5.4.
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Exercises

Exercise 5.1 (ICRS to ITRS Transformation) Compute the transformation from
the International Celestial Reference System (or the mean equator and equinox of
J2000) to the International Terrestrial Reference System (or the reference pole and
Greenwich meridian) for the epoch 1999 March 4, 0h UTC.

Hint: Obtain Terrestrial Time (TT) and Universal Time 1 (UT1) as well as pole
coordinates at the time of interest from the respective IERS bulletins (cf. Figs. 5.4
and 5.5). Employ the IAU 1976 precession theory and the IAU 1980 nutation
theory to compute the instantaneous orientation of the Celestial Ephemeris Pole
(neglecting any corrections to the nutation angles). In computing the Earth rotation
transformation account for the conventional relation between UT1 and GMST as
well as the first-order term of the equation of the equinoxes.

Solution: The IERS Bulletins B (No. 135) and C (No. 16) provide the following
Earth orientation parameters and derived quantities:

UTC − TAI = −32s.0
TT − UTC = +64s.184
UT1 − UTC = +0s.649232
xp = +0 ′′. 06740
yp = +0 ′′. 24173

Using the above assumptions, the following step-by-step transformation matrices
for precession (P ), nutation (N ), Earth rotation (Θ), and polar motion (Π) are
obtained:

P =
⎛
⎝

+0.99999998 +0.00018581 +0.00008074
−0.00018581 +0.99999998 −0.00000001
−0.00008074 −0.00000001 +1.00000000

⎞
⎠

N =
⎛
⎝

+1.00000000 +0.00004484 +0.00001944
−0.00004484 +1.00000000 +0.00003207
−0.00001944 −0.00003207 +1.00000000

⎞
⎠

Θ =
⎛
⎝

−0.94730417 +0.32033547 +0.00000000
−0.32033547 −0.94730417 +0.00000000
+0.00000000 +0.00000000 +1.00000000

⎞
⎠

Π =
⎛
⎝

+1.00000000 +0.00000000 +0.00000033
+0.00000000 +1.00000000 −0.00000117
−0.00000033 +0.00000117 +1.00000000

⎞
⎠

Multiplication then yields the matrix

U ICRS
ITRS = Π Θ N P =

⎛
⎝

−0.94737803 +0.32011696 −0.00008431
−0.32011696 −0.94737803 −0.00006363
−0.00010024 −0.00003330 +0.99999999

⎞
⎠

that describes the full ICRS to ITRS transformation.
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Exercise 5.2 (Velocity in the Earth-fixed Frame) The GPS precise ephemerides
of the National Imagery and Mapping Agency (NIMA) provide the state vectors of
the GPS satellites in an Earth-fixed reference system (presently WGS84 (G873)).
This frame is considered as rotating, which implies that the rotation of the axes
must be considered in the transformation of the velocity vector, i.e.

rWGS = U ICRS
WGS(t) r ICRS

vWGS = U ICRS
WGS(t) vICRS + dU ICRS

WGS(t)

dt
r ICRS .

(5.90)

Given the state vector

rWGS = ( 19440.953805, 16881.609273, −6777.115092 ) km

vWGS = (−0.8111827456,−0.2573799137,−3.0689508125 ) km/s

of satellite PRN 15 at epoch 1999 March 4, 0h GPS time, compute the position and
velocity vector in the International Celestial Reference System (mean equator and
equinox of J2000). Check your result by showing that the corresponding orbital
elements describe a near-circular orbit with a twelve-hour period (a ≈ 26560 km)
and an inclination of about 56◦.

Hint: The WGS84 (G873) frame is identical to the International Terrestrial Refer-
ence Frame within an accuracy of a few centimeters. In computing the derivative of
the ICRS to ITRS transformation, the precession, nutation and polar motion matrix
may be considered as constant, i.e.

dU ICRS
ITRS(t)

dt
≈ Π

dΘ

dt
N P . (5.91)

Furthermore, the time derivative of the Earth rotation matrix is given by

dΘ(t)

dt
= ω⊕

⎛
⎝

0 +1 0
−1 0 0
0 0 0

⎞
⎠ Θ(t) (5.92)

where

ω⊕ = d(GAST)

dt
≈ 1.002737909350795

2π

86400 s
= 7.2921158553·10−5 s−1

(cf. (5.19)) is the Earth’s angular velocity. IERS Earth orientation parameters for
the date of interest are provided in the previous exercise.

Solution: The GPS–UTC time difference amounts to 13 s, which results in the
ICRS-ITRS transformation matrix

U =
⎛
⎝

−0.94707414 +0.32101491 −0.00008425
−0.32101491 −0.94707414 −0.00006371
−0.00010024 −0.00003330 +0.99999999

⎞
⎠
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and in its derivative

U̇ =
⎛
⎝

−0.23408779 −0.69061744 −0.00004561
+0.69061743 −0.23408779 +0.00006167
+0.00000089 −0.00000005 +0.00000000

⎞
⎠ · 10−4/s .

Then

r ICRS = UT rWGS

= (−23830.593, −9747.074, −6779.829) km

vICRS = UT vWGS + U̇
T

rWGS

(+1.561964, −1.754346, −3.068851) km/s

is the state vector in the inertial celestial reference system. The associated osculating
orbital elements of the GPS satellite are obtained as

Semimajor axis a 26561.013 km
Eccentricity e 0.0070606
Inclination i 56.338◦
RA ascend. node Ω 12.146◦
Arg. of perigee ω 87.617◦
Mean anomaly M 109.435◦ ,

which matches the specified orbital characteristics of the GPS space segment.

Exercise 5.3 (Geodetic coordinates) The Cartesian coordinates of the NIMA
GPS receiver at Diego Garcia are given by

rWGS84(G873) = (+1917032.190, +6029782.349, −801376.113) m

at epoch 1997.0 (Cunningham & Curtis 1996). Compute the corresponding geodetic
coordinates using the WGS84 reference ellipsoid.

Solution:

East longitude λ = +72.36312094◦
Latitude ϕ = −7.26654999◦
Height h = −63.667 m .



6. Satellite Tracking and Observation Models

6.1 Tracking Systems

Orbit determination of an artificial satellite requires as input measurements that are
related to the satellite’s position or velocity. These data are collected by a satellite
tracking system that measures the properties of electromagnetic wave propagation
between the transmitter and the receiver. The transmitter as well as the receiver
may either be a ground station or a satellite.

6.1.1 Radar Tracking

Since the early times of spaceflight radar techniques have been utilized to gather
information on the position and velocity of artificial satellites. Restricting to a
simple configuration with one ground station and one satellite:

1. the pointing angles in the topocentric system of the ground station are ob-
tained by measuring the direction of the maximum signal amplitude of the
spacecraft;

2. the slant range or distance from the satellite to the station is computed from
the round-trip light time of a radar signal emitted from the ground station
antenna to the satellite and radiated back to the station;

3. the range rate or line-of-sight velocity of the spacecraft relative to the ground
station can be derived from the Doppler shift of a radar wave emitted from the
ground station, transponded by the satellite, and received again at the ground
station.

In many cases range and range rate measurements are two-way measurements
with a ground station serving as transmitter and receiver. This is related to the
fact that only few satellites are equipped with high-precision time and frequency
standards to perform one-way range (high-precision transmit time required) or
one-way Doppler (high-precision transmit frequency required) measurements. In
case of ground-based two-way measurements the transmit time and frequency as
well as the reception time and frequency are determined very accurately using the
high-precision ground station equipment. In the sequel a variety of different radar
tracking systems and principles is addressed in more detail.

O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications,   
DOI 10.1007/978-3-642-58351-3_6, © Springer-Verlag Berlin Heidelberg 2000 
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Angle Measurements

To determine the direction towards a radio signal emitted by the satellite, the ground
antenna has to automatically follow the satellite beacon (autotrack mode). This may
be achieved using the conical scan method, where the antenna feed performs a slight
rotation in such a way that the cone always covers the direction to the satellite. The
amplitude modulation of the received signal leads to an error signal that can be
used to steer the antenna.
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Fig. 6.1. Antenna beams of a monopulse autotrack system (left) and associated sum and difference
signals (right)

The monopulse technique derives antenna-angle offsets by the extraction of
two signals from the satellite beacon: the difference signalΔ and the sum signalΣ ,
which are illustrated in Fig. 6.1 (see Hartl 1977). There are two different methods
to obtain these signals:

• a feed network attached to the radiator system measures the incident direction
of the satellite signals. By differencing and summation of the individual
feed outputs the difference and sum signals are derived. This technique is
hardware-intensive, since it requires several feed units.

• a single feed such as a corrugated horn is applied. The incoming satellite
signal generates low and high-oscillation modes. High modes are excited on
the horn aperture by the asymmetry of the received wavefront caused by the
antenna pointing error and extracted by a mode coupler. These error signals
are similar to signals obtained with differencing techniques.

The sum signal is essentially applied as a reference for the error signal. The ampli-
tude of the difference signal is proportional to the amplitude of the antenna-angle
offset, while the phase of the difference signal corresponds to the direction of the
offset. The error signal together with the sum signal is fed to a tracking unit to
provide azimuth and elevation error outputs. The difference signal is, in contrast
to the sum signal, extremely sensitive to the antenna angle offset (cf. Fig. 6.1) and
may therefore be used to precisely measure the antenna angle offset and to control
the antenna motion.
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Fig. 6.2. Methods of radar range and range rate tracking
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The angle measurement errors depend essentially on the beamwidth of the
ground station antenna. The beamwidth itself depends linearly on the carrier fre-
quency of the satellite signal and the inverse of the antenna diameter. For an an-
tenna of 15 m diameter the 3 dB beamwidth amounts to 0.6◦ at 2 000 MHz (S-
band). Nevertheless, a resolution of about 50′′ can be achieved in combination
with a monopulse tracking system. At Ku-band (14 000 MHz) an accuracy of 10′′
(0.05 mrad) may be obtained with an antenna of 10 m diameter that is commonly
used for the control of geostationary communications satellites. Depending on the
altitude, the position of a spacecraft can be obtained with accuracies between 100 m
and 5000 m using typical angle tracking systems.

In general, angle measurements are severely affected by systematic errors that
are due to calibration deficiencies, thermoelastic distortions, and wind or snow
loads. Within an orbit determination the systematic angle errors may partially be
absorbed by the estimation of angle measurement biases, although the error sources
lead, in general, to varying angle errors.

Ranging

The classical two-way radar ranging employs a ranging signal that is radiated from
the ground station to the satellite. A satellite transponder is required to receive the
signal and to transmit it back to the ground station (see Fig. 6.2a). The ground
station receives the transponded ranging signal from the satellite and determines
the signal travel time τ . This is expressed as an equivalent range value ρ = 1/2·cτ ,
which is equal to the average of the uplink and downlink distance.
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Fig. 6.3. Principle of distance measurements using tone ranging (left) and code ranging (right)

There are basically two different techniques to generate ranging signals. Com-
mon tone-ranging systems modulate the carrier signal with a sine wave of frequency
f0 ≈ 100 kHz, which is known as major tone. Upon reception, the ranging demod-
ulator locks onto the incoming tone and determines its phase with respect to the
outgoing tone (Fig. 6.3). The phase shift ΔΦ is directly proportional to the turn-
around signal travel time

τ = ΔΦ

2πf0
(6.1)
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and can be measured with a resolution of aboutσΦ = 10−2 cyc = 2π ·10−2 rad. As a
result, the two-way range is obtained with a typical accuracy ofσρ = 10−2c/(2f0) =
15 m. Because the phase shift can only be measured in the interval [0, 2π ], the range
measurements suffer from an indetermination or ambiguity of

Δρ = c

2f0
, (6.2)

which amounts to 1500 m in the given example. To overcome this difficulty, the
ranging signal is supplemented by a series of sub-harmonic minor tones, which are
derived from the major tone and coherently modulated on the carrier. A representa-
tive sequence of major and minor tones is given by the frequencies f0 = 100 kHz,
f1 = 20 kHz, f2 = 4 kHz, f3 = 800 Hz, f4 = 160 Hz, f5 = 32 Hz, and f6 = 8 Hz
(Zarrouati 1987). Here, the turn-around time can uniquely be measured up to a
value of 1/8 s as determined by the lowermost minor-tone frequency. This results
in an overall range ambiguity of a = c/(2f6) = 18 750 km that can readily be
accepted in practice.

In contrast to harmonic signals, the code-ranging system applies a pseudo-
noise (PN) code that is continuously modulated onto the carrier (Fig. 6.3). The PN
code consists of a random-like sequence of bits (or chips) that each take a value
of zero or one. It is repeated again and again after a predefined number of bits,
which is known as code length. Upon reception of the ranging signal the turn-
around light time is obtained by correlating the incoming signal with a replica of
the uplink code. The ranging accuracy is thus determined by the code rate (or,
equivalently, the chip length), whereas the range ambiguity is given by the code
length. The advantage of a code-ranging system lies in the simple acquisition of PN
signals and the continuous frequency spectrum that allows sharing of the ranging
signal with telecommand signals. On the other hand the acquisition time for weak
signals is higher than that of tone-ranging systems and the achieved measurement
accuracy may be worse, unless a pre-steering Doppler shift is used to reduce the
loop bandwidth of the system (Gaudenzi et al. 1990).

PRARE

PRARE (Precise Range and Range Rate Equipment) is a spaceborne tracking sys-
tem that provides high-precision two-way range and range rate measurements (Hartl
1984). The PRARE system was developed by the Institut für Navigation (INS) of
the University of Stuttgart and has been operated since 1995 aboard the European
remote sensing satellite ERS-2.

The measurements are based on the signal travel time of an X-band ranging
signal transmitted from the satellite, transponded by a PRARE ground-based user
station, and received again by the satellite. Here the two-way signal travel time
is measured, from which range data are derived (Fig. 6.2c). The Doppler shift of
the X-band carrier frequency is, furthermore, measured to derive precise range rate
data.
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The space-based PRARE unit has dimensions 40x21x18 cm and a power con-
sumption of 30 W in operational mode. Two crossed dipole antennas transmit
continuous ranging signals to the ground segment in the S-band (2248 MHz) and
X-band (8489 MHz) as well as station-relevant information, such as visibility pre-
diction. The ranging signals are pseudo-noise (PN) codes, modulated on the carriers
with a rate of 10 MChips/s in X-band and 1 MChip/s in S-band. With a hardware
resolution of 1/1000 an effective range resolution of c 10−7s 10−3 ≈ 3 cm is given,
while the Doppler hardware resolution is 1/1000 of the wavelength within one sec-
ond, thus c/(8.5·109Hz) 10−3/s ≈ 0.04 mm/s. The overall accuracy (r. m. s.) is
about 6 cm for range and 0.4 mm/s for range rate at a 1 s integration time (Bedrich
et al. 1997). Four independent correlators and four Doppler counters allow a simul-
taneous data collection from up to four stations in a code multiplexing mode.

The user-station network currently comprises a worldwide net of about 30
small transportable and automated ground stations, equipped with 60 cm diameter
antennas. Since the user stations measure the downlink signal travel time both in
S-band and X-band, the ionospheric path delay (TEC) along the signal path may
be derived and subsequently corrected within the orbit determination. The received
X-band signal is then coherently transposed to 7225 MHz, modulated with the
regenerated PN code, and uplinked together with the dual frequency time delay,
meteorological data at the ground site and housekeeping data.

The PRARE control segment comprises a command station, a master station,
as well as a calibration station. While the command station performs the monitoring
of the space system and commanding, the master station serves as central reception
station, receiving the measured tracking data, time difference data from the user
stations, and meteorological data from the global network. The data are processed,
time-tagged to the UTC time scale, archived and disseminated to the users. The
calibration station uses a laser tracking system to determine the hardware biases of
the PRARE system.

TDRSS

NASA’s Tracking and Data Relay Satellite System (TDRSS) is a constellation of
six geosynchronous satellites and a ground system which provides tracking and
communications support for low-Earth orbiting space vehicles. The first TDRS
starting operated in 1983 and since then spacecraft like the Extreme Ultra-Violet
Explorer (EUVE), the Compton Gamma Ray Observatory (CGRO), the Earth Radi-
ation Budget Satellite (ERBS), Landsat-4, TOPEX/Poseidon, and the Space Shuttle
have been tracked by TDRSS.

The space segment consists of geostationary satellites at longitudes of 41◦ West
(TDE), 171◦ viz. 174◦ West (TDW) and, to close a gap in coverage over the Indian
Ocean (zone of exclusion), 275◦ West (TDZ) (STDN 1998). Each TDRS can relay
voice, television, and digital signals between a ground station and a user satellite.
In the altitude regime from 1200 km to 3000 km the primary satellites TDE and
TDW are sufficient to ensure continuous communication, while an 85% coverage
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can be achieved for altitudes of 200 km (STDN 1998). The TDRS provides links to
the user spacecraft through two steerable single-access (SA) antennas with 4.9 m
diameter in the Ku-band and S-band. In addition a multiple-access (MA) S-band
array may receive data from up to 20 satellites simultaneously and transmit to
one satellite at a time. The communication to the ground is achieved using a 2 m
Ku-band space-to-ground link (SGL) antenna.

The ground segment comprises the White Sands Ground Terminal (WSGT) in
New Mexico, operating three 18 m antennas for Ku-band communication and one
6 m S-band antenna, as well as a second TDRSS ground terminal (STGT). The
WSGT/STGT performs the tracking, telemetry, and telecommand operations for
TDRSS and collects the user spacecraft data. Through the NASA ground terminal
(GT) the communication with the Network Control Center (NCC) at the Goddard
Space Flight Center (GSFC) is established, which manages the space network
through system scheduling and TDRSS monitoring.

A TDRS allows relayed two-way range and range rate tracking of user satel-
lites and, for user spacecraft equipped with an ultra-stable frequency reference,
also precise relayed one-way range rate measurements. In case of two-way mea-
surements, the signals are transmitted (14.6–15.25 GHz) (SN 1995) from the White
Sands station to the TDRS, where they are coherently forwarded (2.1064 GHz MA,
2.0258–2.1179 GHz SA, 13.775 GHz SA) to the user spacecraft (Fig. 6.2e). The
signals are transponded by the user satellite and transmitted (2.2875 GHz MA,
2.200–2.300 GHz SA, 15.0034 GHz SA) back to the TDRS, where they are relayed
(13.4–14.05 GHz) to the receiving antenna at White Sands (Long et al. 1989). In the
same way as the TDRS tracks a user satellite, each TDRS may also track ground-
based TDRSS transponders, which are located at four different sites and are part of
the Bilateration Ranging Transponder System (BRTS).

The overall quality of TDRS-relayed range and range rate data is similar to
ground-based tracking. In the case of TOPEX/Poseidon the relayed two-way range
and range rate residuals show a standard deviation of 2 m and 0.5 mm/s (Marshall et
al. 1996). The operational TDRSS orbit determination is based on relayed two-way
range data from the BRTS. Due to a limited observation geometry, unmodeled iono-
spheric perturbations, and measurement biases, the operational TDRS trajectories
are limited to 30–40 m (1σ ) total position accuracies (Cox & Oza 1994). When
TDRS tracking of TOPEX/Poseidon is applied together with a highly precise a
priori ephemeris of TOPEX/Poseidon, the TDRS ephemerides may be determined
with a total position accuracy of 1–3 m (1σ ) (Rowlands et al. 1997).

Doppler Tracking

The Doppler tracking of satellites is based on the frequency shift

fr

ft
= 1 − vr · e/c + Ur/c

2 + v2
r /(2c

2)

1 − vt · e/c + Ut/c2 + v2
t /(2c2)

(6.3)

of radio waves (Soffel 1989), which depends on the relative motion between the
transmitter and receiver. Here ft and fr are the transmitted and received signal
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frequencies, vt and vr are the velocities of the transmitter and the receiver, e is
the unit vector in the direction of the signal propagation, and Ut and Ur are the
Newtonian potentials at the transmitter and the receiver. The c2-terms in (6.3)
result from the general and special theory of relativity.

The frequency shift cannot, however, be measured instantaneously. The Doppler
shift is measured instead by counting accumulated cycles of zero-crossings between
the received frequency fr and a reference frequency fref over a count time tc. The
measurement is also referred to as integrated Doppler measurement and must be
clearly distinguished from the instantaneous Doppler shift.

Table 6.1. Transponder turn-around ratios (CCSDS 1998)

Band fe [MHz] fr [MHz] T1,2

S/S 2025 − 2120 2200 − 2300 240/221
X/X 7145 − 7235 8400 − 8500 880/749
S/X 2025 − 2110 8450 − 8500 900/221
X/S 7190 − 7235 2200 − 2290 240/765

Consider a two-way Doppler measurement, where a radar signal is emitted from
a ground station with frequency fe and is received at the satellite with a certain
Doppler shift (Fig. 6.2b). To avoid interference of the received and transmitted
signals at the satellite, a satellite transponder coherently multiplies the received
frequency by the transponder turn-around ratio T1,2 before the transmission to the
ground station. Within the transponder a phase locked loop (PLL) assures that the
precise fidelity of the received signal is transmitted by the satellite. The transponder
ratios are standardized and depend on the frequency bands involved (Table 6.1). The
carrier signal is then received at the same ground station (two-way) with about twice
the Doppler shift of the uplink or at a separate station (three-way). The Doppler
measurement provides the number of accumulated cycle counts

N =
∫ t2

t1

(fr − fref) dt (6.4)

in the interval [t1, t2]. Under the assumption of a constant reference frequency over
the count interval this can also be expressed as

N =
∫ t2

t1

frdt − fref(t2 − t1) . (6.5)

The same number of accumulated cyclesN is present in the interval [t1−τ1, t2−τ2],
where τ1 and τ2 are the signal travel times for signals received at the station at the
start t1 and end t2 of the count interval. Let T1,2fe be the reception frequency for
zero Doppler, then

∫ t2

t1

frdt = T1,2

∫ t2−τ2

t1−τ1

fedt . (6.6)
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Assuming a constant transmission frequency over the count-time interval, the num-
ber of counts is given by

N = T1,2fe[(t2 − τ2)− (t1 − τ1)] − fref(t2 − t1) . (6.7)

Provided that the reference frequency fref at the ground station is set to T1,2fe the
Doppler count may finally be expressed as

N = T1,2fe(τ1 − τ2) . (6.8)

As the two-way Doppler counts themself are abstract measurements, a conversion
is usually applied to average range rate measurements ¯̇ρ according to

¯̇ρ = −1

2

cN

T1,2fetc
. (6.9)

Here tc = t2 − t1 denotes the duration of the count interval and the negative sign
relates a positive Doppler frequency shift (approach) to a negative range rate. The
measurement may then be modeled as the difference of the two-way range at the a
delta range over the count time

¯̇ρ = 1

2

c(τ2 − τ1)

tc
= ρ2 − ρ1

tc
. (6.10)

Here ρ1 = 1/2cτ1 is the two-way range, i.e. one half of the light path of a signal
being transmitted at t1 −τ1 from the station and received again at the station at time
t1. Likewise ρ2 is the two-way range value for a ground reception time t2.

Existing Doppler tracking systems usually derive the reference frequency from
the transmitted carrier frequency. Furthermore, the electronic implementation must
assure that the frequency being counted exhibits no zero-crossings. A known fr-
requency bias is therefore added to the received signal prior to subtracting the
reference frequency from it. Basically two different realizations of cycle counters
are available. The first method counts the number of cycles of the reference fre-
quencyN required to accumulate a fixed number of cycles of the Doppler-plus-bias
cycle counter. The count time tc is not fixed for this measurement technique. The
cycle counter is reset after each measurement. Therefore, this method is called
a destructive Doppler measurement. The second approach accumulates the Dop-
pler-plus-bias count over a pre-defined number of reference frequency cycles, or
equivalently, a fixed count time tc. The Doppler-plus-bias counter is not reset after
each measurement, therefore this method is referred to as a non-destructive Doppler
measurement. As the counter is not reset an accumulated phase variation over time
is recorded and the non-destructive Doppler measurement may be referred to as a
biased range measurement.

The noise of two-way Doppler data is often expressed by the phase noiseσϕwith
typical values of 0.1 rad. This may be converted to the range rate noise according
to (Segura 1998)

σρ̇ =
√√

2c

2T1,2fetc

σϕ

2π
. (6.11)

For S-band signals (2 GHz) and a count time of 1 s a representative accuracy of
about 1 mm/s is achieved.
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DORIS

DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) is a
precise Doppler tracking system developed by CNES (Centre National d’Études
Spatiales), GRGS (Groupe de Recherche en Géodésie Spatiale), and the IGN (Insti-
tut Géographique National). The first DORIS receiver was implemented on SPOT2
in 1990, followed by receivers on TOPEX/Poseidon, SPOT3, SPOT4, and a planned
utilization for ENVISAT, Jason, and SPOT5.

DORIS is a one-way Doppler tracking system, where the frequency shift of a
radio signal transmitted from a ground beacon is measured onboard the satellite
(Fig. 6.2d). To this end, the satellite receiver applies an ultrastable oscillator (USO),
i.e. a temperature-controlled crystal oscillator with an Allen variance of 5·10−13

over the count time of 10 s, which results in a Doppler noise value of 0.3 mm/s for the
precision measurements (Laudet et al. 1995). As DORIS is a single-channel, dual-
frequency receiver, only signals from one ground station at a time are supported.

The DORIS ground segment comprises about 50 uniformly distributed small
ground stations that provide a geographical coverage of better than 80% for the
TOPEX/Poseidon mission. Each of the automated ground stations consists of a
beacon that transmits two ultrastable frequencies: 2036.25 MHz for precise Doppler
tracking and 401.25 MHz for ionospheric Doppler correction. The latter frequency
is also used for auxiliary data transmission, such as meteorological data at the
ground site that are required for tropospheric corrections.

The DORIS control center is situated at Toulouse, France, where the daily
schedule of the beacon contacts is computed. The command transmission and
telemetry reception is performed using two master beacons at Toulouse and Kourou.
In addition, the master beacon also provides the long-term frequency stability, as
it is linked to a cesium atomic clock. To cope with deviations of the ground-based
beacons and the satellite USO, biases are solved for each individual pass, and the
satellite frequency is thus linked to the frequency of the master beacon. The track-
ing data collected at the satellite are stored in the receiver’s telemetry memory and
dumped twice a day to the ground, where time-tagging, preprocessing, and orbit
determination are performed.

6.1.2 Laser Tracking

Satellite laser ranging (SLR) is a technique for precisely measuring the range be-
tween a laser station and a satellite that is equipped with retroreflectors. SLR was
demonstrated as early as 1964 and since then a continuous extension of laser track-
ing networks has been achieved together with a steady improvement of the measure-
ment accuracy. Nowadays more than 40 laser stations track satellites like GFZ-1,
Lageos I, TOPEX/Poseidon, ERS-2, as well as the GPS-35 and GPS-36 satellites
with a precision in the range of one centimeter.

Modern laser transmitters use a solid-state pulsed laser that applies neodymium
as a lasing impurity in a lattice of yttrium aluminum garnet (Nd:YAG) (Degnan &
Pavlis 1994). This allows the generation of green laser light with a wavelength of
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532 nm and ultra-short pulses of 30–200 ps width that are repeated at a rate of 5–
10 Hz. When a laser pulse is transmitted by the telescope (Fig. 1.9), a discriminator
starts a time interval counter for initialization of a range measurement. The laser
pulse then propagates through the atmosphere until it is reflected by a retroreflector
array onboard a satellite. When the pulse is received at the telescope, a high-speed
photodetector stops the time interval counter with a time granularity of less than
20 ps, equivalent to a one-way range precision of better than 3 mm. The half
difference of the counter stop and start time multiplied by the velocity of light
hence gives an unambiguous average one-way range. The measurement is time-
tagged with an accuracy of better than a microsecond, when a rubidium or cesium
atomic clock is applied that is regularly synchronized by a GPS time receiver.

The precision of modern SLR systems is usually given as the root-mean-square
of the single-shot accuracy over a single pass and is in the order of 5–50 mm. To
further reduce the data scatter, normal points are formed at the laser stations by
averaging individual range measurements over a two-minute data interval. This
reduces the RMS values by a factor of 4–5 (Husson 1997) and thus leads to a
normal point RMS of 1–12 mm. Systematic errors in the station hardware, such as
non-linearities in the tracking electronics, lead to biases that limit the absolute SLR
accuracy to ±1 cm (Marshall et al. 1995).

Due to the high accuracy of SLR data, geodetic applications in the fields of
crustal dynamics, gravity field determination, and Earth rotation parameter esti-
mation are the major applications of SLR. In addition, the development of precise
satellite force models, and the calibration of other tracking devices significantly
benefit from SLR (Zhu et al. 1997).

It is noted that laser tracking (other than radar tracking) does not allow auto-
tracking of satellites, but depends on the availability of high-precision a priori orbit
elements for antenna pointing. Furthermore, the use of SLR for regular tracking is
restricted due to its dependence on the weather at the laser stations and to the dense
operations schedule of the ground segment.

6.1.3 The Global Positioning System

NAVSTAR GPS (NAVigation System with Time and Ranging Global Positioning
System) is a satellite-based radio navigation, positioning, and time-transfer system.
It was initiated in 1973 and achieved its full operational capability in 1995. GPS
consists of three major segments: the space segment, the control segment, and the
user segment.

The GPS space segment comprises 24 satellites deployed in six evenly spaced
planes (A to F) with 55◦ inclination, and with four satellites per plane (Fig. 6.4). The
GPS satellites move in near-circular orbits with an altitude of about 20 200 km and
a period of 12 sidereal hours. The space segment provides a global and continuous
coverage with at least four simultaneously visible satellites. A ground-based user
will observe the same satellite constellation once per day but four minutes earlier
each day due to the difference between the sidereal and solar day.
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Fig. 6.4. GPS Space Segment Constellation

The GPS control segment consists of five monitor stations, a master control sta-
tion, and three ground control stations. The unmanned monitor stations are located
at Colorado Springs, Hawaii, Kwajalein, Diego Garcia, and Ascension Island. They
are equipped with a GPS receiver and a cesium atomic clock to perform continuous
one-way pseudorange measurements to all GPS satellites in view as well as weather
data measurements for tropospheric corrections. The coordinating master control
station at the Schriever Air Force Base, Colorado Springs, Colorado, is responsible
for the GPS satellite control and system operations. It collects the tracking data from
the monitor stations and computes the satellite ephemerides and clock parameters
that are transferred to the ground control stations for daily command upload. The
ground control stations operate in the S-band and are collocated with the monitor
stations at Ascension, Diego Garcia, and Kwajalein.

GPS provides two levels of service to the user segment. A Standard Positioning
Service (SPS) provides position and timing information to any user on a contin-
uous worldwide basis. The Precise Positioning Service (PPS) provides position,
velocity, and timing information to authorized U.S. and allied military, federal gov-
ernment, and civil users who can satisfy specific U.S. requirements. The specified
50th percentile SPS and PPS accuracies are compiled in Table 6.2, and are based
on instantaneous GPS measurement sets for the computation of the position and
velocity in the presence of typical random and systematic errors.

The GPS satellites transmit microwave carrier signals at the L1 frequency
(1575.42 MHz) and the L2 frequency (1227.60 MHz). The second frequency allows
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Table 6.2. SPS and PPS 50th percentile accuracies for instantaneous measurements (NRC 1995)

Specification SPS PPS

Position
horizontal 40 m 8 m
vertical 47 m 9 m
spherical 76 m 16 m

Velocity
any axis - 0.07 m/s

Time
GPS 95 ns 17 ns
UTC 115 ns 68 ns

measurement of the ionospheric signal delay using PPS-capable receivers. Three
binary codes are modulated on the L1 or L2 carrier or both:

1. The Coarse Acquisition (C/A) code is a short pseudorandom noise (PRN)
code of 1023 bits or 1 ms duration at a 1.023 Mbps bit rate (Spilker 1978).
The C/A code modulates the L1 carrier and is the basis for the civil SPS. Since
each satellite has a specific and different C/A code PRN, GPS satellites may
uniquely be identified by their PRN number.

2. The Precise (P) code is a PRN code with about 6·1012 bits, equivalent to a
period of exactly one week and a bit rate of 10.23 Mbps. The P code modulates
both the L1 and L2 carrier phases and is the basis for the military PPS. When
the Anti-Spoofing (AS) mode is active, the P code is encrypted into the Y
code and requires a classified AS module with cryptographic keys.

3. The navigation data are transmitted in a 50 bit/s stream, added to the C/A and
P(Y) codes on the L1 frequency and, depending on the satellite mode, also
on the L2 P(Y) code. Each message word consists of 30 bits with 10 words in
one subframe. Each frame consists of 5 subframes and a superframe consists
of 25 frames. Thus the navigation message comprises 37 500 bits and is re-
peated every 12.5 minutes (Spilker 1994). The navigation message contains
low-accuracy (almanac parameters) and high-accuracy (broadcast ephemeris)
GPS satellite orbit data as well as clock corrections, and other system param-
eters (see Annex A.2).

An overview of the GPS signal characteristics is given in Table 6.3, where the
frequency and wavelength for the PRN-codes refers to their chip length.

Table 6.3. GPS satellite signal characteristics (Spilker 1978)

Signal Type f Frequency [MHz] Wavelength [cm]

Satellite Clock f0 10.23 2931
Carrier Signal L1 154 f0 1575.42 19.05

L2 120 f0 1227.60 24.45
PRN-Codes P f0 10.23 2931

C/A 0.1 f0 1.023 29310
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The GPS-based positioning relies essentially on the measurement of biased
one-way range data, called pseudoranges (Fig. 6.2f). To perform pseudorange mea-
surements, the GPS receiver produces replicas of the C/A or P(Y) code for a specific
GPS satellite and shifts the code in time until the cross-correlation of the satellite
and the receiver codes achieves a maximum. The measured code phase Φ(tr) cor-
responds to a reception time tr at the receiver clock while the signal transmission
time tt is provided via the PRN code. Hence the difference of the transmission and
reception time readings multiplied by the velocity of light c yields a range value of

ρΦ(tr) = c(tr − tt ) . (6.12)

This is actually called a pseudorange (Hofmann-Wellenhof et al. 1997) since tr and
tt are obtained by different clocks. Denoting GPS system time by a superscript GPS

and offsets of the receiver and transmitter clocks from GPS time by the symbols
δtr and δtt the pseudorange is obtained as

ρΦ(tr) = c
(
(tGPS
r +δtr)− (tGPS

t +δtt)
)

. (6.13)

Using ΔtGPS = tGPS
r − tGPS

t and δt = δtr − δtt it can be seen that the pseudorange

ρΦ(tr) = c
(
ΔtGPS+ δt

)
(6.14)

is larger than the actual signal path by a distance cδt , which depends on the relative
offset of the two clocks. Since the individual clock errors exhibit independent
variations with time, the difference between the pseudorange and the actual range
is also a time-varying quantity.

Due to the C/A code length of about 1 ms the C/A code pseudoranges are
ambiguous at about 300 km, while the P(Y) code pseudoranges are unambiguous.
As the code phases are determined with a typical accuracy of 0.1 rad (1σ ) or about
0.01591 cycles, the noise figures for code phases are 0.01591 · 293 m ∼ 5 m for
C/A code pseudoranges and 0.5 m for P code pseudoranges.

Highly precise GPS carrier phase measurements or phase pseudoranges apply
the carrier phase φ instead of the code phase Φ and thus require no information
modulated on the carrier. Here the phase of the GPS satellite signal received by the
user at GPS system time t is given as

φr(t) = ft
(
t −ΔtGPS)+ ftδtt (6.15)

where ft is the emitted frequency and ftΔtGPS denotes the phase retardation due
to the signal propagation from the transmitter to the receiver. At the receiver a
reference signal with phase

φref(t) = fref t + frefδtr (6.16)

is generated using the receivers reference frequency fref . The phase difference

φr(t)− φref(t) = N +Δφ (6.17)
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which is also called the beat phase, may then be expressed by an integer number
of cycles N and the actual measurement value Δφ, known as the instantaneous
fractional beat phase. Provided that the reference frequency equals the transmitted
frequency, insertion of (6.15) and (6.16) into equation (6.17) gives, the observation
equation

ρφ(t) = cΔtGPS + λN + cδt (6.18)

where ρφ = −λΔφ is the range equivalent of the measured phase difference. The
integer number of carrier cycles N is unknown, hence carrier phase measurements
are ambiguous with one wavelength λ of about 20 cm. During a continuous signal
lock of a GPS satellite by the receiver, the integer ambiguityN remains constant for
that satellite. The ambiguity resolution may be achieved with different techniques
(Hofmann-Wellenhof et al. 1997). It has, however, to be kept in mind that ambiguity
resolution may require a high computational effort or may even fail under certain
conditions. When the signal lock is lost, the integer ambiguity after re-establishing
the lock is changed, which is known as cycle slip. Considering that carrier phases
are determined with an accuracy of at least 0.1 rad or about 0.01591 cycles, the
noise figures for carrier phases are less than 3 mm and 4 mm for L2 and L1 signals,
respectively.

GPS users with moderate or low-positioning requirements may directly apply
the receiver’s navigation solution or position fixes, i.e. the receiver coordinates
(x, y, z) in the Earth-centered, Earth-fixed reference frame WGS-84. Position fixes
are not raw GPS measurements, but are derived from code pseudoranges that may
have been smoothed by carrier phases within the receiver for data noise reduction.
The derivation of position fixes is based on the geometric method of triangulation,
where three range measurements to three locations of known position uniquely
determine the receiver’s coordinates. For GPS applications, pseudoranges to at least
four GPS satellites simultaneously have to be available to determine, in addition to
the position, the receiver’s instantaneous clock offset with respect to GPS system
time.

As the inherent SPS performance leads to a positioning accuracy of about 10 m
(Parkinson 1994), an intentional degradation has been implemented, called Selec-
tive Availability (SA). SA consists of a manipulation of the navigation message
orbit data (ε process) as well as the intentional degradation of the satellite clock
frequency (δ process), also known as clock dither. The clock dither leads to oscil-
lations in the C/A code and P code pseudoranges of 23 m (1σ ) with a period of
2–5 min (van Graas & Braasch 1994), while the ε process leads to a slow varia-
tion of the satellite positions with an amplitude of 50–150 m (Hofmann-Wellenhof
et al. 1997) and a period of the order of hours. As a result, the achievable SPS
position accuracy in the presence of SA amounts to roughly 100 meters and only
authorized users are able to correct for these errors. In support of commercial GPS
applications SA has been deactivated, however, on 1 May 2000 by decision of the
US government. Since then every user of a single-frequency GPS receiver is able
to achieve a position accuracy of 10 m.
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The GPS makes use of two dedicated representations of the GPS satellite or-
bits, which are known as almanac and (broadcast) ephemeris (see Annex A.2). Both
parameter sets are transmitted as part of the GPS navigation message and enable
a user receiver to compute positions of the GPS satellites with different levels of
accuracy. Almanac data are mainly used to determine the constellation of visible
satellites above the horizon, to select the best satellites for navigation and to de-
termine approximate Doppler shifts for improved signal acquisition. The receiver
has to demodulate the entire navigation data superframe within 12.5 minutes to
completely retrieve all almanac data. The almanac accuracy is about 900 m within
a one-day interval from the transmission of the almanac and degrades to 1200 m
and 3600 m respectively within a one-week and two-week interval (Spilker 1994).
Almanac updates are performed at least once in six days. The ephemeris parame-
ters, on the other hand, provide a much more accurate description of the spacecraft
trajectory that is essential for the computation of precise user position fixes. The
broadcast ephemerides are accurate to 5–10 m in the absence of SA and 5–100 m
(Hofmann-Wellenhof et al. 1997) if SA is active. Broadcast ephemeris updates are
performed approximately every hour and are valid through a period of four hours.
In accordance with the envisaged usage, the low-accuracy almanac parameters are
always provided for the full constellation of active satellites, whereas each satellite
only transmits ephemeris parameters for itself.

In addition to the raw GPS measurement types, a variety of combinations of
raw measurement types can be applied to facilitate the data analysis. These derived
measurement types are, in general, constructed by computing the difference of
raw GPS measurements referring to the same measurement epoch. Taking single
carrier phase differences that involve two receivers and a single GPS satellite, it can
e.g. be shown that the satellite clock error cancels. Likewise, double carrier phase
differences are computed from single carrier phase differences to two GPS satellites.
Both GPS satellite and user clock errors are cancelled for this data type. Vice-versa,
the combination of raw measurement types allows the isolation of specific error
contributions. As an example, multipath effects that are caused by reflecting surfaces
in the vicinity of the GPS antenna can be evaluated by forming the difference of
ionosphere-corrected code and carrier pseudoranges.

6.2 Tracking Data Models

6.2.1 Transmitter and Receiver Motion

Satellite tracking methods involve the propagation of a signal over a finite time
span. The signal is recorded at the receiver at a certain time t but originates from a
transmitter at an earlier time t − τ < t . Thus, a rigorous observation model has to
account for the motion of the transmitter and the receiver during the signal travel
time τ .

The signal travel time τ ranges from 5 ms for low-Earth orbiting (LEO) satellites
up to 100 ms for geostationary satellites (GEO). Thus, the computation of the
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satellite position at the time of signal transmission r(t−τ) can be performed either
by an interpolation of adjacent position values or by a Taylor expansion

r(t−τ) ≈ r(t)− ṙ(t)τ + 1

2
r̈(t)τ 2 , (6.19)

where ṙ and r̈ are the inertial satellite velocity and acceleration, respectively. With
a satellite velocity of 3 km/s for GEO’s and 7.5 km/s for LEO’s the linear term in
(6.19) is about 400 m for GEO’s and 100 m for LEO’s, while the second-order term is
about 2 mm. When using numerical integration methods for the trajectory prediction
the satellite position at signal transmission may be obtained from interpolation of
subsequent integration steps. Preferrably, however, an integration method should
be used that directly supports dense output generation (cf. Chap. 4).

The motion of a ground station in an inertial reference system is dominated
by the Earth rotation with a velocity of 460 m/s at the equator. When the motion
of the ground station is modeled in the inertial International Celestial Reference
System (ICRS, see Sect. 5.2), the position RITRS of the station in the International
Terrestrial Reference System (ITRS) has to be transformed using the matrices for
precession (P ), nutation (N), Earth rotation (Θ) and polar motion (Π) according
to

RICRS = P T (t)NT (t)ΘT (t)ΠT (t)RITRS . (6.20)

In addition, the precise computation of the ground station position requires mod-
eling site displacements due to tidal perturbations and plate motion. Due to the
differential lunisolar acceleration, the solid Earth tides cause a maximum radial
site displacement of 25 mm with a daily period. Horizontal displacements are less
than one millimeter, and are in general neglected. The ocean tides deform the Earth’s
crust and hence each ground station undergoes a displacement that reaches a few
centimeters near the coast and less than one centimeter for continental stations (Mc-
Carthy 1996). The pole tides are caused by the contribution of the polar motion in
the centrifugal potential due to the Earth rotation. They lead to a tidal response with
a maximum radial displacement of 25 mm and a maximum horizontal displacement
of 7 mm (McCarthy 1996). Similar amplitudes are found for atmospheric loading,
i.e. temporal variations in the geographic distribution of atmospheric masses that
deform the Earth’s surface (Manabe et al. 1991). For geodetic applications, the
relative motion of stations on different tectonic plates with rates of 5 cm per year
or larger may be accounted for using a plate motion model (DeMets et al. 1994).

6.2.2 Angle Measurements

Light Time and Aberration

Angle measurements are modeled using the vector d = r − R from the ground
station to the satellite. Due to the finite velocity of light, the geometric relative
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position d0 = r(t) − R(t) at the time t of signal reception is different, however,
from the true signal path. This is given by the vector

d = r(t−τ)− R(t) (6.21)

that links the ground station position R(t) at the reception time to the satellite
position r(t−τ) at the transmission time (cf. Fig. 6.5). The signal travel time τ may
thus be computed from the implicit light-time equation

cτ = |r(t−τ)− R(t)| . (6.22)

Starting from an initial value of τ (0) = 0 the light time is consecutively determined
using the fixed-point iteration

τ (i+1) = 1/c · |r(t−τ (i))− R(t)| . (6.23)

The iteration may be continued until successive values of τ agree to better than a
certain threshold, such as 10−7 s for general data types. Given a light time of 0.01 s
for a low-Earth orbiting satellite, the light-time correction for angle measurements
is in the order of 7′′. Here, the correction refers to the difference between the true
signal path (d) and the geometric relative position (d0).
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Fig. 6.5. The motion of the satellite during sig-
nal travel time for the downlink
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Fig. 6.6. The effect of aberration

The solution of the light-time equation yields the true signal path in the inertial
system which is different, however, from the apparent direction to the spacecraft
for a moving ground station. This effect is known as aberration and may be under-
stood by considering the relative motion of the incoming signal and the observer
(Fig. 6.6). Neglecting a rigorous formulation within the theory of special relativity,
the observed direction is given by the vector

d ′ = d + τV , (6.24)

where V is the inertial velocity of the ground station relative to the geocenter. Thus
the apparent position

d ′ = d + τV = r(t−τ)− R(t)+ τV (t) ≈ r(t−τ)− R(t − τ) (6.25)

matches the geometric position at time t − τ to first order. The aberration is about
0.6′′ for low-Earth satellites and 0.3′′ for geostationary satellites. It can be neglected
in most cases in view of the limited resolution of common radar tracking systems.
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Local Tangential Coordinates

For a station with geodetic coordinates (λ, ϕ, h) the three unit vectors

eE =
⎛
⎝

− sin λ
+ cosλ

0

⎞
⎠ eN =

⎛
⎝

− sinϕ cosλ
− sin ϕ sin λ

cos ϕ

⎞
⎠ eZ =

⎛
⎝

cos ϕ cos λ
cosϕ sin λ

sin ϕ

⎞
⎠ (6.26)

that point to the east, north, and zenith direction provide a natural and convenient
frame for describing a satellite’s motion with respect to an antenna (cf. Fig. 6.7).
According to their definition, eE and eN span the tangential plane to the reference
ellipsoid, while eZ points to the geodetic zenith. Aside from small deviations of
the geoid from the adopted reference ellipsoid, the tangential coordinate system
is aligned with the horizon and the zenith as defined by the local direction of the
plumb line.
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Fig. 6.7. Orientation of local horizontal co-
ordinate systems

The satellite coordinates in the local tangential coordinate system may be ob-
tained by projecting the station-satellite vector ref −Ref in the Earth-fixed system
onto the axes eE, eN, and eZ:

s =
⎛
⎝
sE

sN

sZ

⎞
⎠ = E (ref − Ref) . (6.27)

Here

E =
⎛
⎝

eTE
eTN
eTZ

⎞
⎠ =

⎛
⎝

− sin λ + cosλ 0
− sin ϕ cos λ − sin ϕ sin λ + cosϕ
+ cosϕ cosλ + cosϕ sin λ + sin ϕ

⎞
⎠ (6.28)
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is an orthonormal matrix made up by the east, north, and zenith unit vectors. How-
ever, because the Cartesian coordinates cannot be measured directly by tracking
radars, spherical coordinates are frequently employed to specify the satellite posi-
tion in local tangential or horizontal coordinates.

A
E

Zenith

North

East

South

West

Fig. 6.8. Definition of azimuth and elevation

The most common spherical coordinates are known as azimuth and elevation.
The azimuth angleA measures the longitude in the horizontal plane and is counted
positively from north to east as illustrated in Fig. 6.8. The elevation angleE specifies
the latitude above the horizontal plane and is measured positively to the zenith. The
mutual conversion between the Cartesian and spherical coordinates is provided by
the relations

⎛
⎝
sE

sN

sZ

⎞
⎠ =

⎛
⎝

sinA cosE
cosA cosE
sinE

⎞
⎠ (6.29)

and

A = arctan

(
sE

sN

)
E = arctan

⎛
⎝ sZ√√

s2
E + s2

N

⎞
⎠ . (6.30)

East

NorthSouth

West

Zenith

XNS

YNS

Zenith

East

NorthSouth

WestXEW
YEW

Fig. 6.9. Definition of X-Y-angles for north-south antenna mount type (left) and east-west antenna
mount (right)
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Alternatively X-Y-angles are sometimes used that differ from azimuth and elevation
by the choice of a reference plane at right angles to the horizon (cf. Fig. 6.9):

XNS = arctan

(
sE

sZ

)
YNS = arctan

⎛
⎝ sN√√

s2
E + s2

Z

⎞
⎠ (6.31)

and

XEW = arctan

(−sN

sZ

)
YEW = arctan

⎛
⎝ sE√√

s2
N + s2

Z

⎞
⎠ . (6.32)

Both X- and Y-angles are less than 90◦ (π/2) by magnitude for all points above the
horizon.

6.2.3 Range Measurements

Round-trip Light Time

Two-way radar and laser ranging comprises the signal uplink from the ground
station to the satellite and the downlink from the satellite to the ground station.
When a two-way range measurements has been recorded at the ground station at
time t , the signal has been received and transmitted back by the satellite at t − τd,
where τd is the downlink light travel time. The transmission time of the signal at
the ground station is thus given by t − τd − τu, where τu is the uplink light travel
time.

Therefore, the modeling of range measurements requires the iterative solutions
of two light-time equations for the downlink and the uplink path (cf. Fig. 6.10).
The algorithm for the downlink light-time computation was described in (6.22) and
(6.23) as part of the angle measurement modeling. For the uplink the light time is
given by the implicit equation

cτu = |r(t−τd)− R(t−τd−τu)| . (6.33)

A fixed-point iteration for the uplink with

τ (i+1)
u = 1/c · |r(t−τd)− R(t−τd−τ (i)u )| (6.34)

is performed until successive values of τu agree to better than a certain threshold,
e.g. 10−7 s. It requires one iteration step less than for the downlink, since an initial
value of τ (0)u = τd can be applied. In addition, the light-time correction to the
uplink is a factor of about 20–30 smaller than for the downlink, due to the ratio of
the inertial ground station velocity and the inertial velocity of the satellite.

The two-way range measurement ρ is then modeled from the average of the
uplink and downlink range ρu and ρd, according to

ρ = 1

2
(ρu + ρd) = 1

2c
(τu + τd) . (6.35)
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As can be shown by a first-order Taylor expansion the two-way range is almost
identical to the geometric distance between the station and the satellite at time
t−τ/2. The total light-time correction for two-way range measurements is therefore
given by 1/2 τ ρ̇. Thus the typical light-time correction is at most 80 m for low-Earth
orbiting satellites.
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Fig. 6.10. The motion of the satellite and the ground
station during the signal travel time for two-way range
measurements

Transponder Delay and Ambiguity Resolution

Up to now, it has been assumed that the satellite instantaneously retransmits the
received range signal to the ground station. Actually, the satellite transponder delays
the ranging signal and thus leads to an artificial increase of the range measurement
that has to be corrected for in the orbit determination process. A typical value for
an S-band transponder is 3000 ns, equivalent to a 450 m range bias. High-precision
range modeling has to account for the transponder delay variation with the signal
frequency, the temperature at the satellite, and the signal strength. However, typical
variations are of the order of a few nanoseconds that can be neglected for most
applications.

In addition, corrections depending on the ground station hardware have to be
applied. First, a geometrical reduction of the measurement to a common antenna
reference point has to be applied. If the two antenna axes do not intersect this
correction is not a constant, but depends on the orientation of the antenna. This
is e.g. the case for X-Y-antenna mounts for which an additional (Moyer 1971)
correction

Δρ = −b cosY (6.36)

has to be applied that depends on the Y-angle at the time of the measurement. Here
b is the antenna axis offset with typical values of 1–10 m.

Secondly, the propagation delay in the ranging equipment and the electronic
link to the antenna equipment has to be considered. This delay varies slightly
with time, for example due to changing meteorological conditions at the ground
station. Therefore, a range calibration prior to the satellite pass is performed in
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a so-called closed-loop configuration. Typical range calibration values are in the
order of several thousand nanoseconds.

Depending on the ranging method, the collected range value is ambiguous
by a certain value a. For a tone ranging system with a lowest frequency of 8 Hz
the respective one-way ambiguity is 18 750 km. Other ranging systems may even
provide range data with a varying ambiguity. The ambiguity resolution requires a
priori knowledge of the satellite position to compute the expected range ρ with
an accuracy of better than the ambiguity value. The integer ambiguity n is then
computed from minimizing the expression |ρ − na|.

Since the satellite reception and transmission antennas are not located at the
center of mass of the satellite, a corresponding correction has to be applied for high-
precision range modeling. An adequate knowledge of the instantaneous attitude is
necessary to compute the inertial antenna location with respect to the satellite’s
center of mass.

Multiple Ranging Links

The principle of two-way ranging may be generalized to arbitrary links with space-
borne as well as ground-based transmitters and receivers. An example is the four-
way ranging of the geostationary satellite Meteosat, where ranging signals are
broadcast from the Primary Ground Station (PGS) at Fucino, Italy, to the satel-
lite. The satellite retransmits the signals to a land-based transponder (LBT), an
unattended ground station near Kourou, French Guiana, that transponds the signals
via the satellite back to the PGS for reception and range measurement recording
(EUMETSAT 1999).

Another example is described in Chap. 6.1 and illustrated in Fig. 6.2, where
TDRS four-way ranging measurements are initiated by sending a ranging signal
to one of the geostationary relay satellites. From here it is forwarded to the user
spacecraft, retransmitted and linked back to the ground station after passing the
relay satellite a second time.

In each particular ranging configuration the light-time equations for the indi-
vidual signal paths is formulated and solved along the principles described before.
The case of TDRS four-way ranging is furthermore addressed in (9.23).

6.2.4 Doppler Measurements

Two-Way Range Rate

Two-way Doppler measurements are obtained from the integration of Doppler
counts over a count-time interval tc. The measured range rate may be modeled
as the difference of the two-way ranges at the end and at the beginning of the count-
time interval. Thus a total of four light-time iterations is required for the modeling
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of a single average range rate measurement (cf. Fig. 6.11). When the Doppler mea-
surement time tag t refers to the end of the count interval t2, the associated carrier
signal was transponded by the satellite at t2 − τ2u and transmitted by the ground
station at time t2 − τ2u − τ2d. Similarly, the signal at count interval start t1 = t2 − tc
was transponded at the satellite at time t1 − τ1u and broadcast from the ground
station at time t1 − τ1u − τ1d. Thus the average range rate measurement may be
modeled as

¯̇ρ(t) = c

2

(τ2u + τ2d)− (τ1u + τ1d)

tc
= 1

2

(ρ2u + ρ2d)− (ρ1u + ρ1d)

tc
, (6.37)

where the ρi = cτi denote the individual one-way ranges involved. For three-
way Doppler measurements, where the signal is transmitted from a ground station,
transponded by the satellite, and received at a different ground station, the model
is accordingly applicable.
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Fig. 6.11. The motion of the satellite and the ground
station during signal travel time for two-way Doppler
measurements

One-Way Range Rate

The model for one-way Doppler measurements is easily derived from the two-way
range rate model. Here the carrier signal is transmitted from the ground to the
satellite (DORIS) or from satellite to the ground. Considering a measurement with
time tag t that refers to the end of the count interval t2, the signal transmission time
is t2 − τ2. The beginning of the count interval is then t1 = t2 − tc and the associated
transmission time is t1 − τ1. Hence, the one-way range rate model is

¯̇ρ = c
(τ2 − τ1)

tc
= (ρ2 − ρ1)

tc
. (6.38)

It is noted that in contrast to two-way Doppler measurements, one-way Doppler
measurements require precise frequency standards both at the transmitter and at the
receiver. Nonetheless, the frequency difference of the transmitter and the receiver
should be estimated as part of the orbit determination.
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Rotational Doppler Bias

A spinning spacecraft exhibits a modulation of the two-way Doppler shift due to
the rotational motion of the spacecraft antenna onto the direction vector from the
satellite to the ground station. Following Kallemeyn & Vaughan (1996) the average
range rate during the count interval is changed by

δ ¯̇ρ = 1

tc

∫ t

t−tc
d · ω sin α sin(ωt)dt . (6.39)

Here d is the distance of the spin axis to the electric antenna center,ω is the satellite’s
angular velocity, and α is the angle between the spin axis and the direction to the
ground station. In addition to the periodic Doppler modulation, a rotational Doppler
bias is also present for circular polarized signals. To understand the principle of
this bias, a satellite antenna is considered which rotates in a right-hand sense about
the positive z-axis of the antenna zenith. As the antenna emits a right-hand circular
polarized wave along the positive z-axis the transmission frequency is increased by
the spin rate of the antenna. If the antenna emits a left-hand circular polarized signal
along the positive z-axis, the transmitted frequency is decreased by the spin rate of
the satellite. Spinning satellites cause such frequency shifts both at the reception
and at the transmission of the signal. According to Marini (1970) this frequency
shift introduces a bias

Δ ¯̇ρ = λω

2π

sR + sT/T1,2

2
(6.40)

to the range rate measurements, where λ is the signal wavelength, T1,2 is the
transponder turn-around ratio and sR and sT denote the signs of the frequency
shift on reception and transmission, respectively. Considering a satellite spinning
at two revolutions per second and a satellite antenna with the same polarization for
transmission and reception (i.e. sT = sR), the rotational Doppler bias is 28 cm/s in
the S-band.

6.2.5 GPS Measurements

Pseudorange and Carrier Phase Measurements

As introduced in (6.1.3), GPS pseudorange measurements are obtained from the
difference of the reception and transmission time of a ranging signal emitted by
the GPS satellite. Taking into account the offsets of the receiver and transmitter
clocks from GPS system time but ignoring atmospheric path delays as well as
measurement errors, the pseudorange for a receiving antenna at position rr at GPS
time t is described by the relation

ρΦ(t) = |r r (t)− r t (t − τ)| + c (δtr−δtt ) . (6.41)
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Here, r t denotes the position of the GPS satellite and can be computed from the
GPS navigation message (see Annex A.2) or interpolated from publicly available
precise ephemeris products. The signal travel time τ from the GPS satellite to the
receiver is obtained from an iterative solution of the light-time equation

τ (i+1) = 1

c
|r r(t)− r t (t − τ (i))| (6.42)

with τ (0) = 0 as a starting value. At representative distances of 19,000-25,000 km,
the light time amounts to about 65-85 ms and a single iteration is typically enough
for the observation modeling. Care must be taken, though, when describing the
motion of the GPS satellite and the receiver in an Earth-fixed coordinate system,
as it is common practice in terrestrial GPS navigation. In this case, r t (t − τ) in
(6.41) and (6.42) must be replaced by R(ω⊕τ)r t (t−τ) to express the GPS satellite
position and the receiver position in a consistent reference system (namely the
Earth-fixed system at signal reception time t) prior to computing their difference.

Along with the orbit information of the GPS satellite, the broadcast ephemeris
message also provides a second-order polynomial approximation for the satellite
clock offset with respect to GPS system time. Based on the coefficients af 0, af 1,
and af 2, the satellite clock offset

δtt (t) = af 0 + af 1(t − tc)+ af 2(t − tc)
2 (6.43)

can be predicted for any time t within several hours of the reference epoch tc.
However, the resulting expression refers to the proper time of the clock and a
supplementary correction

δtt,rel(t) = − 2

c2
(rTt vt ) (6.44)

must be added to account for periodic relativistic effects in the observed clock.
These depend on the position r t and velocity vt of the GPS satellite and vanish for
rigorously circular orbits.

Other than the GPS satellite clock offset, the clock offset δtr(t) of the receiver
clock represents an unknown quantity in the measurement model and must be
estimated within the orbit determination program along with the motion of the user
satellite.

In analogy with (6.41), the integrated carrier phase measurement may be mod-
eled as

ρφ(t) = |rr (t)− r t (t − τ)| + c (δtr−δtt)+ λN . (6.45)

The ambiguity λN is not known beforehand, but remains constant throughout con-
tinuous carrier tracking arcs. A coarse estimate of the ambiguity can be obtained
from the difference of pseudorange and carrier phase measurements but the ac-
tual value must be adjusted in the orbit determination process along with other
unknown parameters. Despite this added complexity, carrier phase measurements
are preferred to pseudorange observations for precise positioning due their notably
smaller measurement noise and multipath effects.
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Navigation Solution

The navigation solutions (x, y, z) provided by the GPS receiver are not mea-
surements in a rigorous sense, since they are actually derived from raw pseudor-
ange measurements. Nevertheless, navigation solutions may in practice be applied
as pseudo-measurements for satellite orbit determination (Carter et al. 1995, Gill
1997). The need for processing navigation solutions within an orbit determination
software, instead of using the solutions itself, may arise for various reasons. Most
notably the use of a dynamic model allows the smoothing of SA-effects, the detec-
tion of outliers, and the bridging of gaps without GPS measurements. Furthermore
a dynamic filtering of the position solution can be used to obtain reliable velocity
information. This is important, because the receiver-provided velocity solutions
exhibit typical errors of 1 m/s, which prevents their use in orbit predictions. An
inherent advantage of using navigation solutions instead of pseudoranges is their
simple measurement modeling. As the user satellite orbit may be integrated in a
mean-of-date reference system, the measurement modeling just requires the trans-
formation from the mean-of-date system to the WGS84 coordinate system, where
the navigation solution vector is given by

rWGS = Π Θ N rmod . (6.46)

Thus, any knowledge of the GPS satellite ephemerides is avoided as well as the
need for light-time iterations. This renders the use of navigation solutions especially
interesting for spaceborne applications.

6.3 Media Corrections

6.3.1 Interaction of Radiation and Atmosphere

Electromagnetic signals that are transmitted from a spacecraft traverse the Earth’s
atmosphere before they are received by a ground station. As the signals propa-
gate, the electromagnetic radiation interacts with the electrons, ions, atoms, and
molecules constituting the Earth’s plasma environment and atmosphere to a var-
ious extent. As a consequence, the signals undergo a change of direction, known
as refractive bending, and a change of the velocity of propagation. In addition, the
atmosphere affects the signal polarization and field strength.

The velocity of propagation and the wavelength of electromagnetic waves de-
pend on the refractive index n of the surrounding medium. Given the vacuum
wavelength λ and speed of light c, the corresponding values λn and cn in a medium
of refractive index n are related by the expression

n = c

cn
= λ

λn
. (6.47)
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As the refractive index of the Earth’s atmosphere deviates only slightly from unity
the refractivity

N = (n− 1) 106 (6.48)

is introduced. The refractive index depends on the material properties of the medium,
especially the dielectric constant, the permeability, and the conductivity. In the se-
quel different models of the refractive index will be discussed for the troposphere,
which is composed of neutral gas, and the ionosphere, which is made up of a plasma
of charged particles.
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Fig. 6.12. Atmospheric refraction

Irrespective of the detailed physical properties, the basic impact of the atmo-
spheric refraction on the propagation of electromagnetic signals may be understood
by considering the simplified model of a plane atmosphere with constant refractiv-
ity (Fig. 6.12). Based on Snellius’s law a signal entering the atmosphere at a zenith
distance z0, traverses the atmosphere at a smaller angle z, which is given by the
relation

n sin z = sin z0 . (6.49)

Upon substitution of the elevation E = 90◦ − z and expansion in ΔE = E − E0

one obtains the expression

ΔE = (n− 1)
1

tanE0
(6.50)

for the bending angle, where n − 1 is of the order of 3·10−4 rad or one arcminute
for the troposphere.

Aside from the signal bending the reception time of a ranging signal is delayed
due to the reduced velocity inside the atmosphere (assuming n > 1). From Fig. 6.12
the time required to traverse a layer of height h is given by τ = nh/(c sinE).
The corresponding vacuum value would be obtained from n = 1 and E = E0.
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Neglecting the small bending angle, the difference between the two values may be
expressed as a range difference

Δρ = h(n− 1)
1

sinE0
. (6.51)

The measured range value is thus larger than the one that would be obtained in the
absence of an atmosphere.

For the modeling of ionospheric refraction it is necessary to distinguish between
the refractive index nph of a single electromagnetic wave (e.g. the carrier phase)
and the refractive index ngr of wave groups (e.g. ranging signals). This is due to the
fact that the refractive index depends on the frequency f of the respective waves
in a dispersive medium like a plasma of charged particples. For a signal composed
of different harmonic frequencies the resulting wave group propagates at the group
velocity cgr = c/ngr where

ngr = nph + f
dnph

df
(6.52)

is the group refractive index. The resulting group velocity is always smaller than
the vacuum speed of light c. In contrast to this the phase velocity cph = c2/cgr is
larger than c for dispersive media. For non-dispersive media like the troposphere
both refractive indices are equal as are the group and phase velocity cn = c/n < c.

6.3.2 Tropospheric Refraction

The troposphere, composed almost totally of neutral gas, is the lower atmosphere
extending from sea surface level to approximately 42 km. The extension of the
different troposphere layers depends essentially on the temperature and the ver-
tical temperature gradient. The troposphere is a non-dispersive medium for radio
waves, hence the refractive index does not depend on the radiation frequency. The
propagation of electromagnetic waves through the troposphere is mainly affected
by the temperature T , the atmospheric pressure p, and the partial pressure of water
vapor e. An empirical expression for radio frequencies below 300 GHz relates these
parameters to the dry component

N1 = 77.624 · p[hPa]/T [K] (6.53)

and the wet component

N2 = 371900
e[hPa]
(T [K])2 − 12.92

e[hPa]
T [K] (6.54)

of the refractivity N = N1 +N2 (Goad & Goodman 1974). Since the tropospheric
refractivity is positive, the tropospheric refractive index is always greater than one.
Following Großkopf (1970) the partial pressure of water vapor, which is required
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in the above equations, can be expressed as a function of the relative humidity of
the air fh (0 ≤ fh ≤ 1) and the temperature TC :

e[hPa] = 6.10 fh exp

(
17.15 TC[◦C]

234.7 + TC[◦C]
)

. (6.55)

The above expression for the radio refractive index is accurate to better than 1%.
At sea surface level the refractivity for radio waves is about 320–380, whereas it
is 282 for optical frequencies (λ = 0.69μm) and standard atmospheric conditions
(Jeske 1988). The tropospheric refractivity decreases with increasing altitude and
approaches zero at the upper tropospheric boundary.

As shown above, the tropospheric refraction is composed of the refraction due
to dry air and a contribution due to water vapor, which is denoted as wet term. Dry air
contributions are dominant and can be modeled reasonably well. The contribution
from water vapor amounts to about 10% and can be modeled only poorly due to
the high temporal, horizontal, and altitude variations. In principle, two different
approaches can be adopted to determine the wet troposphere refraction

• Modeling of the wet refraction contribution

The water vapor contributions may be modeled using theoretical considera-
tions and observation data obtained from radio probes launched with sound-
ing rockets. However, as continuous observation data are not available, the
models have a limited validity and, moreover, imply a considerable expense
and effort.

• Measurement of the water vapor

Water-vapor measurements may be collected either from an infrared hydro-
meter or a water-vapor radiometer. Both techniques suffer from technical
problems of calibrating the amount of wet water due to clouds or rain. Fur-
thermore, considerable expenses are implied in the case of the radiometer.

A variety of refraction correction models for spacecraft tracking data has been
established in the past, ranging from simple exponential formulas to sophisticated
and numerically expensive algorithms that account for the light-path curvature in the
atmosphere by applying ray-tracing methods. In Table 6.4 the refraction corrections
for radar range and elevation data are given, as derived from the elaborate Hopfield-
Goad model for representative meteorological conditions.

Table 6.4. Tropospheric refraction for p = 938 hPa, T = 286 K, and fh = 0.73

E(◦) 1 3 5 7 10 15 20 30 40 50 70 90

ΔE(′′) 1358 836 589 449 328 222 166 106 73 52 23 0
Δρ(m) 58 34 23 17 13 9 7 5 4 3 2 2

As shown above a simple model for the tropospheric refraction of radar range
and elevation measurements is given by

ΔE = N 10−6 1

tanE
[rad] (6.56)
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and

Δρ = N 10−6 h
1

sinE
, (6.57)

where h denotes the effective scale height of the troposphere. The scale height
is about 7.5 km at sea level and may be computed from the Hopfield two-quartic
model

h = 1

5
hd − 1

5

N2

N
(hd − hw) (6.58)

(Hopfield 1969). Here the first term denotes the contribution from dry air and the
second term gives the wet contributions. The top of the dry troposphere may be
computed from hd = 148.98(T − 4.12)m (Black 1978), while the top of the wet
troposphere is hw = 12 km.

The above model yields an error of less than 10% for elevations above 5◦. This
renders the model attractive for many applications, in particular if no meteorological
parameters are available that justify the use of more elaborate models. It should be
noted, however, that errors up to 100% may arise at elevations of 1◦.

A general and accurate tropospheric refraction model is the Hopfield model,
modified by Goad to use the Saastamoinen zenith range correction (Goad & Good-
man 1974). It is applicable both to radar data as well as to optical observations. In
the Hopfield model, the dry troposphere height h1 is determined from

h1[m] = 5.0 · 0.002277

N1 · 10−6
p[hPa] , (6.59)

while the wet troposphere height h2 is given by

h2[m] = 5.0 · 0.002277

N2 · 10−6

[
1255

T [K] + 0.05

]
e[hPa] . (6.60)

The tropospheric range correction for the Hopfield model is given by a ninth-
order polynomial

Δρ = Cρ

2∑
j=1

Nj

106

9∑
i=1

αij r
i
j

i
, (6.61)

where the constant

Cρ =
[

170.2649

173.3 − 1/λ′2

] [
78.8828

77.624

] [
173.3 + 1/λ′2

173.3 − 1/λ′2

]
(6.62)

is approximately one for radio frequencies. The dimensionless signal wavelength
λ′ = λ/(1μm) and thus the term 1/λ′2 can be set to zero for radio frequencies. The
distance to the top of the dry (j = 1) and wet (j = 2) troposphere is

rj =
√√
(R⊕ + hj )2 − (R⊕ cosE)2 − R⊕ sinE . (6.63)
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The coefficients of the polynomial are defined as

α1j = 1

α2j = 4aj
α3j = 6a2

j + 4bj

α4j = 4aj (a
2
j + 3bj )

α5j = a4
j + 12a2

j bj + 6b2
j

α6j = 4ajbj (a
2
j + 3bj )

α7j = b2
j (6a

2
j + 4bj )

α8j = 4ajb
3
j

α9j = b4
j

with

aj = − sinE

hj

bj = − cos2 E

2hjR⊕
.

The tropospheric correction of average range rate data is obtained from the correc-
tion of range data (Schmid & Lynn 1978). Hence, the range rate correction depends
on the elevation angle as well as the elevation rate.

The tropospheric correction of the elevation angles according to the Hopfield
model is

ΔE = CE
4 cosE

ρ

⎡
⎣

2∑
j=1

Nj

106hj

{
7∑
i=1

(
βij r

i+1
j

i(i + 1)
+ βij r

i
j

i
(ρ − rj )

)}⎤
⎦ (6.64)

where the constant CE

CE =
[

170.2649

173.3 − 1/λ′2

] [
78.8828

77.624

]
(6.65)

is approximately one for radio frequencies and ρ is the range to the satellite. The
elevation correction coefficients are computed from

β1j = 1

β2j = 3aj
β3j = 3(a2

j + bj )

β4j = aj (a
2
j + 6bj )

β5j = 3bj (a
2
j + bj )

β6j = 3ajb
2
j

β7j = b3
j .

For optical frequencies the above equations can be applied as well, when only the
dry term is considered (N2 = 0). The azimuth measurements are not affected by
refraction.
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6.3.3 Ionospheric Refraction

From about 50 km up to a height of 1000 km the ionosphere plays the major role
for propagating electromagnetic waves. The abundance of ions and free electrons,
resulting primarily from the absorption of solar ultraviolet radiation, is the cause of
the ionospheric refraction. Due to small mass ratio of the electron and ion mass, free
electrons play a more important role than ions. The electron density at 50 km altitude
is about 108 electrons/m3 and increases with height due to the increasing intensity of
the solar radiation. A maximum electron density of 1012 electrons/m3 near sunspot
maxima can be found at about 300 km, decreasing towards higher altitudes due to
the decreasing atmospheric density. Both photochemistry and transport processes
contribute to the structure of the ionosphere, which is shown in Fig. 6.13. The
electron density profile primarily depends on the altitude, the sunspot activity as
well as day and night variations. Several regions can be identified that are designated
as D region (60–90 km), E region (105–160 km) and F region (160–1000 km). More
detailed models distinguish further the F1 region (160–180 km) and the F2 region
(200–1000 km). The D and F1 regions vanish at night, while the E region becomes
considerably weaker and the F2 region shows a reduced marking.
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Fig. 6.13. Electron density profiles at mid-latitudes based on the International Reference Ionosphere
IRI 1995 (Bilitza et al. 1993, 1995)

It is extremely difficult to construct global ionospheric models that accurately
predict the electron density. Neglecting the perturbations due to ions, the contribu-
tion of the Earth’s magnetic field, and absorption effects, the ionospheric refractive
indices are (Jeske 1988)

nph =
√√

1 − f 2
p

f 2
≈ 1 − 1

2

f 2
p

f 2
and ngr ≈ 1 + 1

2

f 2
p

f 2
, (6.66)
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where

fp = 1

2π

√√
de e

2
0

me ε0
(6.67)

is the plasma frequency. Here, de denotes the electron number density, e0 the elec-
tron charge, ε0 the vacuum dielectric constant, and me the electron mass. The
plasma frequency varies from 10 MHz (30 m wavelength) by day to 3 MHz (100 m
wavelength) at night and radio waves with longer wavelengths cannot penetrate the
ionosphere. Inserting the constants yields the expression

Nph = −40.3

[
m3

s2

]
de

f 2
(6.68)

for the ionospheric refractivity. As the refractivity is negative, the ionosphere ex-
hibits a normal dispersion with a frequency dependence that is inverse to the square
of the frequency. Thus, signals in the S-band frequency regime at 2 GHz are af-
fected sixteen times more by ionospheric refraction than X-band frequency signals
at 8 GHz. Furthermore, the described frequency dependence shows that optical
signals are affected in a negligible manner by ionospheric refraction.

Table 6.5. Representative values of the ionospheric refraction for L-band signals (1.6 GHz)

E(◦) 1 3 5 7 10 15 20 30 40 50 70 90

ΔE(′′) 123 117 114 101 88 82 43 23 10 7 2 0
Δρ(m) 38 37 36 35 33 30 27 21 18 15 13 11

The ionospheric refraction leads to a reduction of the group velocity and an
increase of the phase velocity. Since range measurements are based on timing
measurements of wave groups the range correction due to the ionosphere is given
as

Δρ=
∫ O

S

(ngr − 1)ds = +40.3

f 2

[
m3

s2

]
TEC . (6.69)

Here the total electron content TEC along the signal path s from the satellite S to
the observer O is defined as

TEC =
∫ O

S

de(s) d s . (6.70)

It provides a measure of the ionospheric perturbation of radio waves and is given in
units of 1 TECU = 1 · 1016m−2. Carrier phase measurements depend on the phase
velocity and experience a correction

Δφ

2π
λ=
∫ O

S

(nph − 1)ds = −40.3

f 2

[
m3

s2

]
TEC (6.71)
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Fig. 6.14. Variation of the TEC with the time of the year and local time for a mid-latitude station
based on the IRI 1995 model

which is opposite in sign to the range correction. Thus the measured radar range is
increased when affected by the ionosphere, while the values of integrated carrier
phase measurements are reduced.

Typical ionospheric effects on radar range and elevation data are listed in Table
6.5 for a transmission frequency of the GPS L1 carrier at 1.6 GHz. The variation
of the total electron content in a zenith column for a mid-latitude station with local
time and the date of the year is shown in Fig. 6.14.

As global ionospheric models do not, in general, provide the required modeling
accuracy, the measurement of the total electron content is an adequate approach
for determining the ionospheric refraction. Before the advent of the NAVSTAR
GPS system, the Faraday rotation of linear polarized signals emitted from the user
satellite or geostationary satellites was applied to determine the electron content
along the signal path (Llewellyn et al. 1976). This technique, however, requires
knowledge of the transmission characteristics of the satellite antenna as well as the
satellite attitude. Another approach was to determine the change in the total electron
content from building the Differenced Range Versus Integrated Doppler (DRVID).
Since range measurements are determined by the group velocity and integrated
Doppler counts by the phase velocity, both data types are affected in the same order
but different sign (Radomski & Doll 1995). This technique has mainly been applied
to correct the ionospheric and interplanetary plasma effects of deep-space probes.

As the ionospheric refraction depends on the signal frequency, the measurement
of the signal delay or the signal frequency shift in two frequency bands allows the
determination of the TEC value and the ionospheric measurement correction. This
technique is applied for the DORIS system (2036 MHz and 401 MHz), the PRARE
system (2248 MHz and 8489 MHz) as well as for NAVSTAR GPS (1575 MHz and
1228 MHz). The determination of ionospheric electron-density profiles from the
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GPS Meteorology (GPS/MET) experiment aboard the MicroLab I satellite has been
demonstrated by Hajj and Romans (1998). A GPS receiver for TEC determination
may be collocated with a conventional single-frequency tracking system to provide
the ionospheric refraction correction by interpolation of the TEC values along the
directions to the GPS satellites at the direction to the user satellite. Alternatively,
GPS-derived TEC observables from a worldwide network may be applied to derive
global TEC information models, which enable ionospheric corrections for any user
satellite (Feltens et al. 1997). Considering the GPS system, where pseudorange
measurements ρ1 at the L1 frequency f1 and pseudoranges ρ2 at the L2 frequency
f2 are available, the ionosphere-free pseudorange ρ can be derived from (6.69) as

ρ = ρ2 − (f1/f2)
2 ρ1

1 − (f1/f2)
2 ≈ −1.545ρ2 + 2.545ρ1 . (6.72)

When precision accuracy requirements force the application of ionospheric cor-
rections but measurements of the total electron content are not available, software
models have to be applied that predict ionospheric properties either restricted to a
dedicated ground station (local model) or worldwide (global model). In this case,
models like the Penn state model (Nisbet 1974) that directly simulate the photo-
chemical ionospheric reactions and processes are available as well as the empirical
worldwide Bent model (Llewellyn et al. 1973). A recent development is the param-
eterized ionospheric model (PIM), which provides a near-real-time specification of
the global ionosphere from near-real-time satellite and ground-based data (Daniell
et al. 1995).
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Exercises

Exercise 6.1 (Light-Time Iteration) Solve the light-time equation for two-way
range measurements of a polar satellite at 960 km altitude (e = 0, i = 97◦, Ω =
130.7◦) and a ground station in central Europe (λ = +11◦ East, ϕ = +48◦). The
downleg (satellite to station) and upleg (station to satellite) light-time corrections
are to be computed at 6 min, 15 min, and 24 min past the passage of the ascending
node, which is assumed to take place at 1997/01/01 0h UTC. The orbit propagation
is to be based on Keplerian motion, neglecting precession and similar corrections
in the reference system transformations.

Solution: The times of the light-time evaluation are close to the pass beginning,
culmination, and end of the pass. To reach an accuracy level of 1 mm, the downleg
light-time iteration has to consider two iterations (I-1, I-2), while the upleg light-
time iteration may already be stopped after the first iteration:

UTC Distance Down I-1 Down I-2 Up I-1 Range
hh:mm:ss [m] [m] [mm] [m] [m]

00:06:00.0 3644878.6 75.8 1.6 1.8 3644956.2
00:15:00.0 1167049.9 −6.4 0.0 0.5 1167044.0
00:24:00.0 4110978.7 −87.0 1.8 −0.7 4110891.0

Since the range and the amplitude of the range rate is largest at the beginning and
end of the satellite pass, the range correction in the downleg is most pronounced
near the rising and setting. As the light-time correction varies in proportion to the
range rate, the correction vanishes near culmination (cf. Fig. 2.13) and changes
its sign. The light-time corrections in the second iteration of the upleg (note the
different units) are always positive due to their dependence on the rate of the relative
velocity. The light-time correction in the upleg is small as compared to the downleg,
since the inertial motion of the ground station due to the Earth rotation is smaller
than the relative velocity of the satellite with respect to the station.

Exercise 6.2 (Range Rate Modeling) Compute the average two-way range rate
measurements for the scenario described in Exercise 6.1. Assume a Doppler count
interval tc of 1 s and show that the average range rate measurement can be approxi-
mated by the instantaneous Doppler value at the middle of the count-time interval.
The average and the instantaneous range rates as well as their differences are to be
computed in steps of 3 min.

Hint: The modeling of the average range rate measurement is described by (6.37),
while the instantaneous range rate follows from

ḋ0(t) = d0

d0
ḋ0 . (6.73)

Here, d0 = r(t) − R(t) denotes the geometric distance of the satellite and the
station at time t .
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Solution: In the limiting case of an infinite speed of light the average range rate
can be approximated by the expression

¯̇ρ(t) ≈ 1

tc
(d0(t)− d0(t − tc)) , (6.74)

which follows from (6.37) by substitution of the geometric distance d0 for the two-
way range ρ. The right-hand side may further be expanded into a Taylor series
around the center of the interval [t − tc, t], giving

1

tc
(d0(t)− d0(t − tc)) = ḋ0(t − tc/2)+ (t2c

...
ρ) . (6.75)

Combining both approximations then shows the near-identity

¯̇ρ(t) ≈ ḋ0(t − tc/2) (6.76)

of the measured average two-way range rate at time t and the instantaneous range
rate at the mid of the count interval. Applied to the example, the following numerical
results are obtained:

UTC ¯̇ρ(t) ḋ0(t−tc/2) Δ

hh:mm:ss [m/s] [m/s] [m/s]
00:06:00.0 −6385.694 −6385.554 −0.140
00:09:00.0 −6113.312 −6113.161 −0.151
00:12:00.0 −4575.872 −4575.720 −0.153
00:15:00.0 1488.564 1488.732 −0.168
00:18:00.0 5500.474 5500.635 −0.161
00:21:00.0 6286.690 6286.839 −0.149
00:24:00.0 6392.679 6392.813 −0.134

Here, the Taylor expansion over the count interval contributes an error of less than
9 mm/s to the overall approximation. The leading term resulting from the neglect of
the light-time correction is given by −(ρ̇2+ρρ̈)/c. In the present example this term
is responsible for the dominant errors of 10–20 cm/s. With a range rate measurement
accuracy of 1 mm/s it is obvious that both effects have to be modeled rigorously
and that the instantaneous Doppler computation is inadequate for a precise range
rate modeling.

Exercise 6.3 (User Clock Error from GPS Pseudorange) The user clock error
of the GPS Rogue receiver at Goldstone is to be determined from pseudoranges of
the PRN 1 GPS satellite. The PRN 1 position and clock errors at 1998/02/19 are
taken from a precise ephemeris of the International GPS Service (IGS)

GPS xWGS yWGS zWGS δt

hh:mm:ss [m] [m] [m] [μs]
08:00:00.0 −15504.291797 −21530.763883 −1271.498273 40.018233
08:15:00.0 −15284.290679 −21684.703684 1573.435406 40.097295
08:30:00.0 −14871.711829 −21600.510259 4391.350089 40.028697
08:45:00.0 −14242.843546 −21306.712708 7133.948741 40.154941
09:00:00.0 −13380.818523 −20837.175663 9754.366309 40.193626
09:15:00.0 −12276.418004 −20229.688085 12207.953668 40.039288
09:30:00.0 −10928.585710 −19524.421024 14453.015617 40.012677
09:45:00.0 −9344.633744 −18762.314034 16451.492281 39.883106
10:00:00.0 −7540.134384 −17983.451817 18169.574686 40.181357
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10:15:00.0 −5538.503062 −17225.491970 19578.246580 40.328261
10:30:00.0 −3370.289205 −16522.202377 20653.745961 40.039533
10:45:00.0 −1072.201838 −15902.162018 21377.940941 40.052642
11:00:00.0 1314.093678 −15387.672739 21738.615794 40.025493

To circumvent the effect of Selective Availability, the pseudoranges of PRN 1 are
evaluated only at epochs where precise SP3 position and GPS clock errors are
available. The pseudoranges on 1998/02/19 comprise the P code pseudoranges at
the L2 frequency (P2) and the C/A code pseudoranges at the L1 frequency (C1):

GPS P2 C1
hh:mm:ss [m] [m]

08:30:00.0 21096577.475 21096579.501
09:00:00.0 20519964.850 20519966.875
09:30:00.0 20282706.954 20282709.233
10:00:00.0 20375838.496 20375840.613
10:30:00.0 20751678.769 20751680.997
11:00:00.0 21340055.129 21340057.362

The user clock error is to be determined from ionosphere-free pseudoranges derived
from a suitable combination of P2 and C1. The signal travel time is to be determined
from a rigorous iteration of the light-time equation that makes use of interpolated
GPS positions. The WGS-84 coordinates of the receiver at Goldstone are

X = −2353.614128 km, Y = −4641.385447 km, Z = +3676.976501 km .

Hint: The light-time iteration is usually performed in an inertial system with the
station position vector R and the satellite position vector r . When U denotes the
transformation from the inertial to the Earth-fixed WGS84 system, the signal path
is given by

dWGS(t) = U(t) (R(t)− r(t − τ)) ,

where τ denotes the signal travel time. Making use of the approximation

U(t) ≈ Rz(ω⊕τ)U (t − τ)

the inertial position of the GPS satellite may be substituted by the corresponding
Earth-fixed position

rWGS(t − τ) = U(t − τ)r(t − τ) .

This yields the light-time equation

cτ = dWGS(t) = |Rz(ω⊕τ)rWGS(t − τ)− RWGS| (6.77)

in the Earth-fixed reference frame, which is best suited for use with common tabular
or analytical ephemerides of GPS satellites.
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Solution: The residual of the ionosphere-free pseudorange yields the user clock
bias, converted to meters, of the Goldstone GPS receiver at the time of the measure-
ment. Over a time interval of 2.5 h the clock drift can be neglected and the mean
value of the residuals gives a clock bias of 17674.77 m. In particular the following
pseudorange residuals and their deviations from the mean (Delta) are found:

GPS ClockError Delta
hh:mm:ss [m] [m]

08:30:00.0 17674.52 −0.25
09:00:00.0 17676.14 1.37
09:30:00.0 17675.59 0.82
10:00:00.0 17674.45 −0.33
10:30:00.0 17673.53 −1.25
11:00:00.0 17674.41 −0.36

A maximum variation of the pseudorange residuals of less than 3 m is found in fair
accord with the accuracy of the ionosphere-free pseudoranges.

Exercise 6.4 (Tropospheric Refraction) Compute the daily variation of the el-
evation of a geostationary satellite (a = 42 164 km, e = 0.00296, i = 0.05◦,
Ω = 150.7◦) for the ground station given in Exercise 6.1. Assume an epoch of
1997/01/01 0h UTC and compute the elevation at intervals of 3 h. Compare the
variation in elevation with the amplitude of the tropospheric refraction correction,
as derived from (6.50) for a partial pressure of dry air of 1024 hPa, and a relative
humidity of 0.7. Consider two cases with temperatures T1 and T2 of 283 K and
303 K, respectively.

Solution: The elevation is E0 = 23.363◦ at the epoch and varies over a day with
an amplitude of about 0.06◦. The maximum elevation occurs 6 h past the epoch
and the minimum elevation is reached at 18 h. The daily variation of the elevation
E from E0 together with the elevation refraction corrections ΔET1 and ΔET2 are
obtained as

UTC E − E0 ΔET1 ΔET2
hh:mm:ss [deg] [deg] [deg]

00:00:00.0 0.000 0.051 0.043
03:00:00.0 0.021 0.051 0.042
06:00:00.0 0.031 0.051 0.042
09:00:00.0 0.024 0.051 0.042
12:00:00.0 0.004 0.051 0.043
15:00:00.0 −0.017 0.051 0.043
18:00:00.0 −0.027 0.051 0.043
21:00:00.0 −0.020 0.051 0.043
24:00:00.0 −0.001 0.051 0.043

For the particular case considered, the refraction correction is of the order of the
daily elevation variation but stays essentially constant for given meteorological
conditions. The assumed temperature difference of 20 K changes the observed
elevation by about 0.008◦ which may be compared to the 0.060◦ change resulting
from the orbital inclination. At the distance of a geostationary satellite 0.001◦
corresponds to an along-track or cross-track position variation of about 700 m.
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The trajectory and measurement model developed so far provides a concise and
detailed description of a satellite’s motion with respect to an Earth-bound observer.
Besides the state variables that define the initial conditions, these models depend on
a variety of parameters that either affect the dynamical motion or the measurement
process. Due to the complexity of the applied models it is hardly possible to solve
directly for any of these parameters from a given set of observations. It is therefore
customary to linearize the relation between the observables and the independent
parameters to obtain simplified expressions that can be handled more easily. Within
a statistical orbit determination one can then determine those state and model pa-
rameters that provide the best representation of a large set of measurements using
a differential correction and parameter estimation algorithm.

A rigorous linearization of the trajectory and measurement model requires
a large number of partial derivatives, which may be divided into four different
categories:

• The State Transition Matrix

The state vector y(t0) = (rT (t0), v
T (t0))

T at some specified epoch t0 deter-
mines the form of the orbit and its orientation in space. Any change of these
initial values results in a change of position and velocity at a later epoch t

which is described by the state transition matrix
(
∂y(t)

∂y(t0)

)

6×6
= Φ(t, t0) . (7.1)

• The Sensitivity Matrix

Aside from the initial state the orbit is also a function of various parameters
pi (i= 1, . . . , np) that determine the different forces acting on the satellite.
This dependence is described by the sensitivity matrix, i.e. by the partial
derivatives

(
∂y(t)

∂p

)

6×np
= S(t) (7.2)

with respect to the force model parameters. Depending on the application in
mind, the parameter vector p may e.g. contain the drag and radiation pressure
coefficients (CD, CR), the thrust level of a maneuver or the size of certain
gravity model coefficients.
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• Partials of the measurements with respect to the state vector

The linearized dependence of a measurement z(t) on the state vector y(t) =
(rT (t), vT (t))T of the satellite at the time of the measurement is described
by the partial derivatives

(
∂z

∂y(t)

)

1×6
. (7.3)

It may be noted that the partials ∂z/∂v(t) with respect to the instanta-
neous velocity vanish for all types of range and angle observations (z =
ρ,A,E,X, Y ) if one neglects the light time and aberration correction and
considers only geometrical values.

• Partials with respect to measurement model parameters

Last but not least the predicted observations depend on certain measurement
model parameters qi (i = 1, . . . , nq) like bias values due to an insufficient
calibration of the zero point for angle readings or the transponder and ground
station delay for range measurements. More elaborate measurement models
may take care of further effects like antenna axis displacement and misalign-
ment or ground station coordinate offsets that may be estimated during an
orbit determination. The corresponding partial derivatives are given by an
nq-dimensional vector

(
∂z

∂q

)

1×nq
. (7.4)

Combining these partial derivatives yields the dependence of an individual mea-
surement z on the initial state vector y(t0), the vector p of force model parameters
and the vector q of measurement model parameters:

(
∂z

∂y(t0)

∂z

∂p

∂z

∂q

)

1×(6+np+nq)
=

( (
∂z

∂y(t)

)
· (Φ(t, t0) S(t))

∂z

∂q

)
.

(7.5)

Given the models presented earlier, the analytical computation of the individual
derivatives is tedious and cumbersome work, which provides little additional in-
sight into the underlying concepts. Nevertheless, it forms an essential part of the
overall orbit determination process, and may have a notable impact on the achiev-
able performance and speed of convergence. The required relations are therefore
derived and presented here in an adequate level of detail. Impatient readers may,
however, skip to Chap. 8 on first reading and content themselves with the fact that
any desired partial derivative could, in principle, be obtained from a numerical
difference quotient approximation.
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7.1 Two-Body State Transition Matrix

In the simplified case of unperturbed Keplerian orbits the state transition matrix and
its inverse can be expressed as an analytical function of the Cartesian coordinates
and the orbital elements. To this end, the state vector transition matrix is commonly
factorized into the product of the more simple orbital elements transition matrix
and the partial derivatives of the state vector with respect to the elements, both of
which are derived in the sequel.

7.1.1 Orbital-Elements Transition Matrix

The orbital-elements transition matrix is given by

Φα(t, t0) =
(
∂α(t)

∂α(t0)

)

6×6
, (7.6)

where

α = (a, e, i,Ω, ω,M)T (7.7)

denotes the vector of orbital elements. For an unperturbed orbit the orbital elements
at time t are the same as those at time t0 with the exception of the mean anomaly
that changes by

M(t)−M(t0) = n (t − t0) . (7.8)

Here, the mean motion

n =
√√
GM⊕
a3

(7.9)

is a function of the semi-major axis a. The orbital elements transition matrix may
therefore be written as

Φα(t, t0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
∂M(t)

∂a(t0)
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.10)

where the only non-vanishing off-diagonal element is given by the term

∂M(t)

∂a(t0)
= −3

2

n

a
(t − t0) (7.11)

that describes the effect of small changes in the semi-major axis at time t0 on the
mean anomaly M(t) at time t .
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7.1.2 Keplerian-to-Cartesian Partial Derivatives

According to the results of Chap. 2 the position r and velocity v of an unperturbed
satellite in the central field of the Earth is given by

r = x̂P + ŷQ v = ˙̂xP + ˙̂yQ , (7.12)

where the Gaussian vectors P and Q are functions of the orbital elements i, Ω
and ω that define the orientation of the orbit in space, while the coordinates x̂ and
ŷ inside the orbital plane are a function of the semi-major axis a, the eccentricity
e and the mean anomaly M . The partial derivatives of r and ṙ with respect to an
orbital element α may therefore be expressed as

∂r

∂α
= ∂x̂

∂α
P + ∂ŷ

∂α
Q

∂v

∂α
= ∂ ˙̂x

∂α
P + ∂ ˙̂y

∂α
Q (7.13)

for α = a, e, M and as

∂r

∂α
= x̂

∂P

∂α
+ ŷ

∂Q

∂α

∂v

∂α
= ˙̂x ∂P

∂α
+ ˙̂y ∂Q

∂α
(7.14)

for α = Ω , ω, i.
The partial derivatives of the in-plane coordinates with respect to a, e and M

follow from the basic equations

x̂ = a (cosE − e) ˙̂x = −
√√
GM⊕a
r

sinE

ŷ = a
√√

1−e2 sinE ˙̂y = +
√√
GM⊕a
r

√√
1−e2 cosE

(7.15)

with

r = a (1 − e cosE) . (7.16)

Since the eccentric anomaly E, which is implicitly defined by Kepler’s equation

E − e sinE = M (7.17)

as a function of e and M , does not depend on the semi-major axis a, one obtains
immediately

∂x̂

∂a
= cosE − e = x̂

a
. (7.18)

For the derivatives with respect to e and M one has to consider the dependence of
E on both quantities, which is expressed by the total differential

dE − e cosE dE − de sinE = dM (7.19)

of Kepler’s equation. The partial derivatives of E are therefore given by

∂E

∂e
= sinE

1 − e cosE
= a sinE

r
(7.20)
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and
∂E

∂M
= 1

1 − e cosE
= a

r
. (7.21)

Using these results it follows that

∂x̂

∂e
= a

(
− sinE · ∂E

∂e
− 1

)
= −a − ŷ2

r (1−e2)
(7.22)

and
∂x̂

∂M
= a (− sinE) · ∂E

∂M
=

˙̂x
n

. (7.23)

The remaining derivatives are obtained in a completely analogous way yielding

∂(x̂, ŷ)T

∂(a, e,M)T
=

⎛
⎜⎜⎜⎝

x̂

a

(
−a − ŷ2

r(1−e2)

) ˙̂x
n

ŷ

a

(
x̂ŷ

r(1−e2)

) ˙̂y
n

⎞
⎟⎟⎟⎠ (7.24)

for the dependence of the in-plane position on a, e andM , while the velocity partials
are given by

∂( ˙̂x, ˙̂y)T
∂(a, e,M)T

=
⎛
⎜⎜⎜⎜⎝

−
˙̂x

2a
˙̂x
(a
r

)2
(

2

(
x̂

a

)
+ e

1−e2

(
ŷ

a

)2
)

−n
(a
r

)3
x̂

−
˙̂y

2a

n√√
1−e2

(a
r

)2
(
x̂2

r
− ŷ2

a(1−e2)

)
−n
(a
r

)3
ŷ

⎞
⎟⎟⎟⎟⎠

(7.25)

(Broucke 1970, Long et al. 1989). The representation of these partial derivatives as
a function of x̂, ˙̂x, ŷ and ˙̂y is convenient from the computational point of view, but
one may equally well replace these quantities by the basic definitions given above.
In this case one obtains the derivatives as a function of a, e and E, where E has to
be obtained by solving Kepler’s equation for the given value of the mean anomaly
M .

In order to complete the computation of partial derivatives of the state vector
with respect to the various orbital elements we may now turn to the derivatives of
the Gaussian vectors with respect to i, Ω and ω. Since changes in these angles
correspond to rotations around the line of nodes vector n = (cosΩ, sinΩ, 0)T ,
the unit vector ez = (0, 0, 1)T and the vector W = P × Q at right angles to the
orbital plane, respectively, the partial derivatives of P and Q are given by

∂P

∂i
= n × P

∂Q

∂i
= n × Q

∂P

∂Ω
= ez × P

∂Q

∂Ω
= ez × Q

∂P

∂ω
= W × P

∂Q

∂ω
= W × Q .

(7.26)
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Evaluating the cross products finally yields

∂P

∂i
= sin(ω) · W ∂Q

∂i
= cos(ω) · W

∂P

∂Ω
=

⎛
⎝

−Py
+Px

0

⎞
⎠ ∂Q

∂Ω
=

⎛
⎝

−Qy

+Qx

0

⎞
⎠

∂P

∂ω
= +Q

∂Q

∂ω
= −P ,

(7.27)

where Px , Py , Qx and Qy are the x- and y-components of P and Q, respectively.
The same result may also be obtained by direct differentiation of the definition of
P and Q given in Chap. 2.

7.1.3 Cartesian-to-Keplerian Partial Derivatives

The partial derivatives of the orbital elements α with respect to the state vector
y = (rT , vT )T may be obtained by computing the partial derivatives of the state
vector with respect to the orbital elements and inverting the resulting 6×6-matrix
using appropriate numerical methods:

(
∂α

∂y

)

6×6
=
(
∂y

∂α

)−1

6×6
. (7.28)

More favorably, however, the inverse is obtained from the analytical relationship
(
∂α

∂r

∂α

∂v

)
= P (α,α)

(
+
(
∂v
(
∂α

)T
−
(
∂r
(
∂α

)T )
, (7.29)

where P is an anti-symmetric 6×6 matrix made up of the Poisson parentheses

P (αj , αj ) =
(
∂αi

∂r

)
·
(
∂αj

∂v

)T
−
(
∂αj

∂r

)
·
(
∂αi

∂v

)T
. (7.30)

In total, only five independent matrix elements

P (a,M) = −P (M, a) = −2

na

P (e, ω) = −P (ω, e) =
√√

1−e2

na2e

P (e,M) = −P (M, e) = −(1−e2)

na2e

P (i,Ω) = −P (Ω, i) = 1

na2
√√

1−e2 sin i

P (i, ω) = −P (ω, i) = − cot i

na2
√√

1−e2

(7.31)

exist, while all other Poisson parentheses vanish. For further details and a proof of
these relations the reader is referred to Broucke (1970).
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7.1.4 The State Transition Matrix and Its Inverse

Making use of the results obtained so far, the state transition matrix can be parti-
tioned into the product

Φ(t, t0) =
(
∂y(t)

∂α(t)

)
· Φα(t, t0) ·

(
∂y(t0)

∂α(t0)

)−1

(7.32)

of the orbital elements transition matrix and the state vector partials with respect to
the orbital elements. In evaluating this expression, care must be taken that the partial
derivatives of the state vector with respect to the orbital elements need to be evalu-
ated at two different epochs, namely t0 (right-hand matrix) and t (left-hand matrix).
As a consequence, only a small number of terms is common to the computation of
both expressions (e.g. the derivatives of the Gaussian vectors with respect to the
orientation elements). This problem may partly be overcome by improved formu-
lations for the direct computation of the state transition matrix as given in Sconzo
(1963), Goodyear (1965), and Shepperd (1985). Furthermore, it is noted that the
use of orbital elements in the above factorization introduces an artificial singular-
ity at zero eccentricity and inclination into the resulting expressions. To avoid this
singularity, one may apply equivalent, but less common expressions for equinoctial
elements (see Sect. 2.2.5) and the associated partial derivatives (Broucke & Cefola
1972, Dow 1975).

In computing the inverse of the state transition matrix, one benefits considerably
from the fact that Φ is a symplectic matrix for Keplerian orbits. As shown in more
detail in Sect. 7.2.4, Φ obeys the relation

ΦTJΦ = J with J =
(

0 +1
−1 0

)

6×6
(7.33)

(Wintner 1941, Battin 1987). Making use of the identity J 2 = −1, the inverse of
a symplectic matrix Φ is given by

Φ−1 = −JΦT J (7.34)

in much the same way as the inverse of a symmetric matrix is equal to its transpose.
Upon splitting the transition matrix

Φ(t, t0) =
(

Φrr Φrv

Φvr Φvv

)
(7.35)

into its position and velocity related blocks, the result finally takes the form

Φ−1(t, t0) =
(

+ΦT
vv −ΦT

rv

−ΦT
vr +ΦT

rr

)
. (7.36)

The inverse of the state transition matrix is thus obtained by simple rearrangement of
its elements without a need to refer to general numerical matrix-inversion methods.
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7.2 Variational Equations

Even though the state transition matrix of the two-body problem is a reasonable
approximation of the actual transition matrix, it is sometimes desirable to take into
account at least the major perturbations in the computation of Φ(t, t0). As with
the treatment of the perturbed satellite motion, one may not, however, obtain an
analytical solution anymore in this case, but has to solve a special set of differ-
ential equations – the variational equations – by numerical methods. Aside from
the increased accuracy that may be obtained by accounting for perturbations, the
concept of the variational equations offers the advantage that it is not limited to the
computation of the state transition matrix, but may also be extended to the treatment
of partial derivatives with respect to force model parameters.

7.2.1 The Differential Equation of the State Transition Matrix

The differential equation, which describes the change of the state transition matrix
with time, follows from the equation of motion of the satellite. If the state vector

y(t) =
(

r(t)

v(t)

)
(7.37)

obeys the first-order differential equation

d

dt
y(t) = f (t, y) =

(
v(t)

a(t, r, v)

)
(7.38)

then

∂

∂y(t0)

d

dt
y(t) = ∂f (t, y(t))

∂y(t0)
= ∂f (t, y(t))

∂y(t)
· ∂y(t)
∂y(t0)

. (7.39)

The state transition matrix

Φ(t, t0) = ∂y(t)

∂y(t0)
(7.40)

may therefore be obtained from

d

dt
Φ(t, t0) = ∂f (t, y(t))

∂y(t)
· Φ(t, t0) (7.41)

or

d

dt
Φ(t, t0) =

⎛
⎜⎝

03×3 13×3

∂a(r, v, t)

∂r(t)

∂a(r, v, t)

∂v(t)

⎞
⎟⎠

6×6

· Φ(t, t0) (7.42)

and the initial value Φ(t0, t0) = 16×6 .
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7.2.2 The Differential Equation of the Sensitivity Matrix

The differential equation of the sensitivity matrix that gives the partial derivatives
of the state vector with respect to the force model parameter vector may be obtained
in a completely analogous way, yielding

d

dt

∂y(t)

∂p
= ∂f (t, y(t),p)

∂y(t)
· ∂y(t)
∂p

+ ∂f (t, y(t),p)

∂p
(7.43)

or
d

dt
S(t)6×np =
⎛
⎜⎝

03×3 13×3

∂a(t, r, v,p)

∂r(t)

∂a(t, r, v,p)

∂v(t)

⎞
⎟⎠

6×6

· S(t)+
⎛
⎜⎝

03×np
∂a(t, r, v,p)

∂p

⎞
⎟⎠

6×np

.

(7.44)

Since the state vector at t0 does not depend on any force model parameter, the initial
value of the sensitivity matrix is given by S(t0) = 0.

7.2.3 Form and Solution of the Variational Equations

By combining the differential equations for the state transition matrix and the sen-
sitivity matrix one obtains the following form of the variational equations

d

dt
(Φ, S) =

⎛
⎝ 03×3 13×3

∂a

∂r

∂a

∂v

⎞
⎠

6×6

· (Φ, S)+
⎛
⎜⎝

03×6 03×np

03×6
∂a

∂p

⎞
⎟⎠

6×(6+np)

, (7.45)

which is adequate for use with numerical integration methods for the solution of
first-order initial value problems. An alternate representation, which is suitable for
methods that allow the direct integration of second-order differential equations,
may be obtained by decomposing Φ and S into

Φ =

⎛
⎜⎜⎜⎝

Φr

Φv

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂r(t)

∂(r(t0), v(t0))

∂v(t)

∂(r(t0), v(t0))

⎞
⎟⎟⎟⎠ S =

⎛
⎜⎜⎜⎝

Sr

Sv

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂r(t)

∂p

∂v(t)

∂p

⎞
⎟⎟⎟⎠ . (7.46)

Since (by changing the order of differentiation)

d

dt
(Φr , Sr) = (Φv, Sv) , (7.47)

the variational equations may then be written as

(Φ̈r , S̈r ) = ∂a

∂r
(Φr , Sr)+ ∂a

∂v
(Φ̇r , Ṡr )+

(
03×6

∂a

∂p

)
. (7.48)
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If the acceleration does not depend on the velocity, the ∂a/∂v term vanishes, which
means that the right-hand side of the second-order variational equations does not
depend on (Φ̇r , Ṡr) anymore. This fact may be useful since it allows the use of very
efficient numerical integration methods for solution of the variational equations (e.g.
Runge–Kutta–Nystrøm or Stoermer–Cowell methods).

Independent of the preferred form of the variational equations it is important
to note that the variational equations have to be integrated simultaneously with
the state vector. Otherwise the position and velocity of the satellite, which are
required to evaluate the acceleration partials in the right-hand side of the variational
equations, would be unknown. The combined integration of the state vector y, the
state transition matrix Φ and the sensitivity matrix S therefore requires the solution
of (7+np) six-dimensional first-order differential equations or, equivalently, the
same number of three-dimensional second-order differential equations. It should be
emphasized, however, that the total effort is usually much less than (7+np)-times
the effort for integrating the differential equation of the orbit alone. The reason for
this property lies in the fact that the highest amount of work during the numerical
integration is generally spent in the evaluation of the variational equations and not
in the integration routine. The total integration effort is therefore proportional to
the work required for the computation of the partial derivatives of the acceleration.
By computing these derivatives along with the acceleration itself one can make use
of common sub-expressions, which reduces the computing effort considerably.

Since accuracy requirements for the partial derivatives are generally more re-
laxed than that for the trajectory itself, it is common to apply a simplified force
model in the solution of the variational equations. While purely Keplerian state
transition matrices may cause slow convergence of iterated differential correction
methods for orbit determination, the incorporation of the lowest-order zonal gravity
field perturbation (C2,0) already provides an acceptable minimum model (see e.g.
Ballani 1988).

As pointed out by various authors, considerable care must be taken, however,
to use consistent models in the simultaneous integration of the state vector and
variational equations. This is dramatically shown by the analytical solution of the
combined equations for an equatorial orbiter and a second-order zonal gravity field
given by Rice (1967). While a purely Keplerian formulation yields a transition
matrix in fair agreement with the solution of the perturbed problem, a completely
erroneous solution is obtained after a few orbits upon combining an unperturbed
gravity field in the differential equation of the transition matrix with a second-order
gravity field in the state equations! The problem is further confirmed by numerical
studies of more elaborate force models (May 1980), giving clear indication for the
need of a consistent modeling. From a practical point of view, one may thus choose
to either perform a rigorous integration of the variational equations using the same
sophisticated model as required for the state equations or to treat the variational
equations as a separate problem. In the latter case, the state equations are once
integrated individually with the full model and once along with the variational
equations using a simplified force model (e.g. up toC2,0). Even though the trajectory
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of the simplified model diverges notably from the true orbit, the resulting state
transition matrix will nevertheless be found to closely match the actual value.

7.2.4 The Inverse of the State Transition Matrix

Aside from the state transition matrix itself, a variety of applications requires the
inverse matrix Φ−1(t, t0) to map a state vector change at time t back to the initial
epoch t0. While numerical methods are generally available and well suited to per-
forming the inversion, the special properties of the transition matrix offer various
alternatives. In the case that the inverse state matrix is of primary interest, one may
e.g. solve the adjoint matrix differential equation

d

dt
Φ−1(t, t0) = −Φ−1(t, t0) ·

(
∂f

∂y

)
(7.49)

(Curkendall 1974), which follows from (7.41) and the identity d(ΦΦ−1)/dt = 0
(Battin 1987). Like the variational equations described before, this equation is
integrated along with the state vector using the initial conditions Φ−1 = 1.

Another approach can be applied whenever the acceleration does not depend
on the velocity and, at the same time, exhibits a symmetric gradient G = ∂a/∂r.
In this case, the partial derivatives

F = ∂f

∂y
=
(

0 1
G 0

)

6×6
(7.50)

obey the relation

JF = −F TJ with J =
(

0 +1
−1 0

)

6×6
. (7.51)

As a consequence, the state transition matrix can be shown to be a symplectic matrix,
which is characterized by the relation

ΦTJΦ = J . (7.52)

Following Battin (1987) the time derivative of ΦT JΦ vanishes under the given
conditions, while the relation at epoch t0 (i.e. Φ = 1) is a trivial identity. The sig-
nificance of this property lies in the ease of determining the inverse of a symplectic
matrix. Making use of the identity J 2 = −1, the inverse is given by

Φ−1 = −JΦT J (7.53)

in much the same way as the inverse of a symmetric matrix is equal to its transpose.
The state transition matrix is, in particular, symplectic for all types of gravita-
tional forces due to the symmetry of the gravity gradient. Its inverse can then be
found from (7.36) by simple rearrangement of the matrix elements. Care should be
taken, however, that the symplectic property is evidently violated in the presence of
aerodynamic drag, in which case reference to numerical matrix inversion methods
should be made.
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7.3 Partial Derivatives of the Acceleration

The variational equations depend on the partial derivatives of the acceleration with
respect to the state and model parameters, which are discussed in more detail in the
present section.

7.3.1 Geopotential

The most important contribution to the variational equations for the state transition
matrix arises from the central term

r̈ = −GM⊕
r3

r (7.54)

of the Earth’s gravitational attraction. Using the general relation

∂rn

∂r
= ∂(x2 + y2 + z2)n/2

∂r
= n · rn−2 · rT (7.55)

it follows that

∂ r̈

∂r
= −GM⊕

∂

∂r

(
r

1

r3

)
= −GM⊕

(
1

r3
13×3 − 3r

rT

r5

)
. (7.56)

Here the factor rrT in the second term is a dyadic product, which yields a 3×3-matrix
and should not be confused with the dot product rT r . Evaluating the individual
components of ∂ r̈/∂r yields

∂ r̈

∂r
= GM⊕

r5

⎛
⎝

3x2 − r2 3xy 3xz
3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2

⎞
⎠ , (7.57)

which shows that the gravity gradient is symmetric with respect to the main diagonal
and that the sum of the diagonal elements vanishes.

Both properties follow from the fact that the gravitational attraction may be
written as the gradient

r̈ =
(
∂U

∂r

)T
(7.58)

of a potential U , which is given by

U = GM⊕
1

r
(7.59)

for the simplified case of a point mass M⊕ in the center of the Earth.
The partial derivatives of r̈ with respect to r are just the second partial deriva-

tives of U , which are clearly symmetric, since the order of differentiation with
respect to the components of r may be interchanged, i.e.

∂ÿ

∂x
= ∂2U

∂x∂y
= ∂2U

∂y∂x
= ∂ẍ

∂y
etc. (7.60)
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Since this symmetry is independent of the particular form of U , it is not only valid
for the central term of the Earth’s potential but also for all higher order harmonics.
By considering the Laplacian

ΔU = ∂2U

∂x2
+ ∂2U

∂y2
+ ∂2U

∂z2
, (7.61)

which reduces to

ΔU(r) = 1

r

∂2

∂r2
(rU(r)) = 0 (r > 0) (7.62)

in the case of the radially symmetric 1/r-potential, one may easily verify that
the sum of the diagonal elements of ∂ r̈/∂r vanishes for the attraction of a point
like body. For an extended body like the Earth the gravitational potential may be
represented by a superposition

U = G

∫
ρ(s) d3s

|r − s| (7.63)

of the 1/r-potentials arising from all mass elements dm = ρ(s) d3s and the Lapla-
cian is therefore zero, too, for all points outside the surface of the body.

The symmetry property of the matrix ∂ r̈/∂r of partial derivatives of the Earth’s
attraction with respect to the position and the condition of a vanishing sum of the
diagonal elements reduces the number of independent components that have to
be considered in the computation from nine to five. In an Earth-fixed frame these
components may conveniently be obtained from

∂ r̈

∂r
=
∑
n,m

∂ r̈nm

∂r
(7.64)

(cf. (3.33)) using expressions for the terms of degree n and order m derived by
Cunningham (1970):

∂ẍnm

∂x

(m=0)= GM⊕
R3⊕

· 1

2
·
{
(+Cn0Vn+2,2)− (n+2)!

n! · (+Cn0Vn+2,0)
}

(m=1)= GM⊕
R3⊕

· 1

4
·
{
(+Cn1Vn+2,3 + Sn1Wn+2,3)

+(n+1)!
(n−1)! · (−3Cn1Vn+2,1 − Sn1Wn+2,1)

}

(m>1)= GM⊕
R3⊕

· 1

4
·
{
(+CnmVn+2,m+2 + SnmWn+2,m+2)

+2
(n−m+2)!
(n−m)! · (−CnmVn+2,m − SnmWn+2,m)

+(n−m+4)!
(n−m)! · (+CnmVn+2,m−2 + SnmWn+2,m−2)

}

(7.65)
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∂ẍnm

∂y

(m=0)= GM⊕
R3⊕

· 1

2
·
{
(+Cn0Wn+2,2)

}

(m=1)= GM⊕
R3⊕

· 1

4
·
{
(+Cn1Wn+2,3 − Sn1Vn+2,3)

+(n+1)!
(n−1)! · (−Cn1Wn+2,1 − Sn1Vn+2,1)

}

(m>1)= GM⊕
R3⊕

· 1

4
·
{
(+CnmWn+2,m+2 − SnmVn+2,m+2)

+(n−m+4)!
(n−m)! · (−CnmWn+2,m−2 + SnmVn+2,m−2)

}

(7.66)

∂ẍnm

∂z

(m=0)= GM⊕
R3⊕

·
{
(n+1) · (+Cn0Vn+2,1)

}

(m>0)= GM⊕
R3⊕

{n−m+1

2
· (+CnmVn+2,m+1 + SnmWn+2,m+1)

+(n−m+3)!
2(n−m)! · (−CnmVn+2,m−1 − SnmWn+2,m−1)

}
(7.67)

∂ÿnm

∂z

(m=0)= GM⊕
R3⊕

·
{
(n+1) · (+Cn0Wn+2,1)

}

(m>0)= GM⊕
R3⊕

{n−m+1

2
· (+CnmWn+2,m+1 − SnmVn+2,m+1)

+(n−m+3)!
2(n−m)! · (+CnmWn+2,m−1 − SnmVn+2,m−1)

}
(7.68)

∂z̈nm

∂z
= GM⊕

R3⊕

{(n−m+2)!
(n−m)! · (+CnmVn+2,m + SnmWn+2,m)

}
. (7.69)

Here Vnm and Wnm, which follow from the recurrence relations (3.29) and (3.30),
are the same quantities that are used in the computation of the acceleration. If the
partial derivatives of the acceleration due to geopotential coefficients up toCnn and
Snn have to be calculated then Vνμ and Wνμ are required up to degree and order
n+2.

For a non-rotating Earth the expressions derived so far would directly represent
the desired partial derivatives. Due the Earth’s rotation some additional transfor-
mations are, however, required, since the components of r and r̈ in (7.65)…(7.69)
refer to a coordinate system that is aligned with the instantaneous rotation axis of
the Earth and the direction of the meridian of Greenwich. Using indices “sf” and
“ef” to distinguish between space-fixed and Earth-fixed coordinates the desired
partial derivatives in the space-fixed reference system are given by(

∂ r̈

∂r

)

sf
= U−1(t) ·

(
∂ r̈

∂r

)

ef
· U(t) , (7.70)
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where U describes the time-dependent transformation to Earth-fixed coordinates
according to

ref = U(t) · rsf and r̈sf = U−1(t) · r̈ef . (7.71)

The term (∂ r̈/∂r)ef may be computed by evaluating (7.65)…(7.69) with (x, y, z)
replaced by the Earth-fixed coordinates (xef , yef , zef). It should further be empha-
sized that both (∂ r̈/∂r)sf and (∂ r̈/∂r)ef are partial derivatives of the acceleration in
inertial coordinate systems which are rotated against each other by a given rotation
U . The acceleration in a rotating coordinate system would be different by Coriolis
and centrifugal terms.

Since the acceleration due to the Earth’s attraction does not depend on the
satellite’s velocity, the partial derivatives with respect to the position are all that is
required to compute the contribution of the geopotential to the variational equations
for the state transition matrix. In the case of the sensitivity matrix some further
partials may, however, be of interest. Neglecting the influence of Earth rotation
parameters on the acceleration the only model parameters of interest are the product
GM⊕ of the gravitational constant and the Earth’s mass as well as the gravity model
coefficients Cnm and Snm. Since GM⊕ is a multiplicative factor in the computation
of the Earth’s acceleration, the corresponding partials are simply given by

∂ r̈

∂GM⊕
= 1

GM⊕
r̈ . (7.72)

The derivatives with respect to the geopotential coefficients follow in a similar
manner from the fundamental relations for the acceleration yielding e.g.(

∂z̈

Cnm
,
∂z̈

Snm

)
= (n−m+1)

GM⊕
R2⊕

· (−Vn+1,m , −Wn+1,m ) . (7.73)

The corresponding expressions for the x and y-components may easily be derived
from (3.33).

Even though the partials with respect to GM⊕, Cnm and Snm may therefore
be computed at almost no additional cost from known quantities, they are not
considered in most orbit determination programs. This is due to the fact that the
estimation of these force model parameters is not possible for individual satellites
but requires the simultaneous consideration of a large set of observations from
different types of satellite orbits. An estimation of GM⊕, Cnm and Snm is therefore
only foreseen in specialized programs for geodetic applications (see e.g. McCarthy
et al. 1993).

7.3.2 Point-Mass Perturbations

According to (3.37) the perturbations of the Sun and the Moon in an Earth-centred
reference frame are given by

r̈ = −GM ·
(

r − s

|r − s|3 + s

|s|3
)

. (7.74)
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Only the direct gravitational attraction depends on the satellite coordinates and the
partial derivatives of the acceleration with respect to r are therefore given by

∂ r̈

∂r
= −GM

(
1

|r − s|3 13×3 − 3(r − s)
(r − s)T

|r − s|5
)

(7.75)

in analogy with (7.56). The derivatives with respect to the solar or lunar mass M
may easily be computed from

∂ r̈

∂GM
= 1

GM
r̈ (7.76)

but are again only required in special applications.

7.3.3 Solar Radiation Pressure

For the most common solar radiation pressure model (3.75) the resulting accelera-
tion varies with the satellite position in the same way as the gravitational attraction
of the Sun. The corresponding partial derivatives are therefore given by

∂ r̈

∂r
= +P
Cr

A

m
AU2

(
1

|r − s|3 13×3 − 3(r − s)
(r − s)T

|r − s|5
)

. (7.77)

Here r and s are the geocentric coordinates of the satellite and the Sun, respectively.
Due to the large distance of the Sun this contribution to the variational equations

is quite small and may therefore safely be neglected in most applications. What is
more important, however, is the partial derivative

∂ r̈

Cr
= 1

Cr
r̈ =−P


A

m

r

r3


AU2 , (7.78)

which is required to compute the influence of variations in the radiation pressure
coefficient on the satellite trajectory. This allows the estimation of Cr during an
orbit determination, which cannot usually be predicted accurately enough from
material constants and the satellite geometry.

7.3.4 Drag

Starting from the basic expression

r̈ = −1

2
CD

A

m
ρ vrvr with vr = v − ω⊕ × r (7.79)

for the acceleration due to atmospheric drag (cf. Sect. 3.5) one easily obtains the
derivative with respect to the drag coefficient as

∂ r̈

∂CD
= −1

2

A

m
ρ vrvr . (7.80)
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Furthermore, the dependence on the spacecraft velocity is described by the partial
derivatives

∂ r̈

∂v
= −1

2
CD

A

m
ρ

(
vrv

T
r

vr
+ vr1

)
. (7.81)

The partial derivatives with respect to position involve a direct term describing the
atmospheric density variation as well as a minor contribution resulting from the
changing atmospheric wind velocity:

∂ r̈

∂r
= −1

2
CD

A

m
vrvr

∂ρ

∂r
− 1

2
CD

A

m
ρ

(
vrv

T
r

vr
+ vr1

)
∂vr

∂r
. (7.82)

Introducing the cross-product matrix

X(w) =
⎛
⎝

0 −wz +wy

+wz 0 −wx

−wy +wx 0

⎞
⎠ (7.83)

to rewrite the cross-product term ω⊕ × r as X(ω⊕) r , one finally obtains the rep-
resentation

∂ r̈

∂r
= −1

2
CD

A

m
vrvr

∂ρ

∂r
− ∂ r̈

∂v
X(ω⊕) . (7.84)

Here ∂ρ/∂r describes the dependence of the atmospheric density on the spacecraft
location. Except for simplistic models like that of Harris–Priester, the complexity
of representative atmospheric density models renders the analytical computation
of the density gradient extremely cumbersome. Numerical differentiation therefore
provides a meaningful alternative, but care must still be taken to avoid singular-
ities caused by a non-smooth or non-differentiable representations of the density
functions.

7.3.5 Thrust

The thrust model developed in Sect. 3.6 represents the acceleration as a function
of the total velocity increment Δv along a set of coordinate axes defined by the
transformation matrix E. Considering the boost start and stop times as well as
the mass profile as known quantities, the acceleration depends in a linear way
on the Δv components that may be calibrated within an orbit determination. The
corresponding derivatives are easily obtained as

∂a

∂Δv
= |ṁ|
m(t)

1

− ln

(
1 − |ṁ|Δt

m0

)E (7.85)

throughout the thrust phase and zero otherwise. In case of an inertial reference
frame (E = 1) the acceleration is independent of the actual spacecraft position and
velocity. A more complicated situation is encountered for the co-moving, orbital



250 7. Linearization

frame, where the reference axes are aligned with the instantaneous radius vector,
angular momentum vector and orbital plane. Partial derivatives of the unit vectors
with respect to position and velocity may then be obtained from the basic relation

∂

∂x

f (x)

|f (x)| = 1

f

∂f

∂x
+ f

∂

∂x

1

f
= 1

f

(
1 − f f T

f 2

)
∂f

∂x
, (7.86)

where 1 − f f T is a rank-2 matrix spanning the plane perpendicular to f . Further-
more the notation of the cross-product matrix (7.83) is used to conveniently express
partial derivatives of cross-products:

∂(f (x)× g(x))

∂x
= X(f )

∂g(x)

∂x
− X(g)

∂f (x)

∂x
. (7.87)

Making use of these relations, the partial derivatives of the unit vectors

E(t) = (e1, e2, e3) (7.88)

in radial, along-track and cross-track direction with respect to the spacecraft position
are given by

∂e1

∂r
= 1

r
(1 − e1e

T
1 )

∂e2

∂r
= X(e3)

∂e1

∂r
− X(e1)

∂e3

∂r

∂e3

∂r
= 1

|r × v| (1 − e3e
T
3 ) (−X(v)) .

(7.89)

Likewise

∂e1

∂v
= 0

∂e2

∂v
= −X(e1)

∂e3

∂v

∂e3

∂v
= 1

|r × v| (1 − e3e
T
3 ) (+X(r))

(7.90)

are the partial derivatives with respect to the satellite velocity vector.

7.4 Partials of the Measurements with Respect to the State Vector

In the computation of partial derivatives that describe the dependence of a mea-
surement on the instantaneous position and velocity of the satellite one may – to
first order – neglect all light-time effects and consider the geometrical measurement
equations, only. Both angle and distance measurements may then be expressed as
functions of the topocentric local tangent coordinates s, which are related to the
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Earth-centered, space-fixed satellite position r and the Earth-fixed station coordi-
nates R by

s(t) = E (U(t)r(t)− R ) . (7.91)

Here U is again the matrix describing the transformation from space-fixed to Earth-
fixed coordinates, while

E =
⎛
⎝

eTE
eTN
eTZ

⎞
⎠ =

⎛
⎝

− sin λ + cosλ 0
− sin ϕ cos λ − sin ϕ sin λ + cosϕ
+ cosϕ cosλ + cosϕ sin λ + sin ϕ

⎞
⎠ (7.92)

is the orthonormal matrix made up by the east, north and zenith unit vectors. The
desired partials of a range or angle measurement z may then be expressed as

∂z

∂r
= ∂z

∂s
EU . (7.93)

Neglecting light-time corrections and propagation effects the partial derivative of
a range measurement with respect to the instantaneous position vector is therefore
given by

∂ρ

∂r
= ∂s

∂r
= sT

s
EU (7.94)

with s = |s|, while the partials with respect to velocity vanish completely. In a
similar manner one obtains the partial derivatives

∂ρ̇

∂r
= s ṡT − ṡsT

s2
EU (7.95)

and

∂ρ̇

∂v
= sT

s
EU (7.96)

of the instantaneous and geometric range rate from the relation

ρ̇ = ṡ = sṡ

s
. (7.97)

Using the basic expressions for azimuth and elevation one may furthermore verify
that

∂A

∂r
=
(

sN

s2
E + s2

N

−sE

s2
E + s2

N

0

)
EU (7.98)

and

∂E

∂r
=
⎛
⎝ −sEsZ

s2
√√
s2

E + s2
N

−sNsZ

s2
√√
s2

E + s2
N

√√
s2

E + s2
N

s2

⎞
⎠EU . (7.99)
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The appropriate partials for X and Y -angles are given by

∂XNS

∂r
=
(

sZ

s2
E + s2

Z

−sE

s2
E + s2

Z

0

)
EU (7.100)

and

∂YNS

∂r
=
⎛
⎝ −sEsN

s2
√√
s2

E + s2
Z

−sZsN

s2
√√
s2

E + s2
Z

√√
s2

E + s2
Z

s2

⎞
⎠EU (7.101)

as well as

∂XEW

∂r
=
(

sZ

s2
N + s2

Z

+sN

s2
N + s2

Z

0

)
EU (7.102)

and

∂YEW

∂r
=
⎛
⎝ +sNsE

s2
√√
s2

N + s2
Z

−sZsE

s2
√√
s2

N + s2
Z

√√
s2

N + s2
Z

s2

⎞
⎠EU . (7.103)

As with the range measurements, the geometric angles do not depend on the velocity
and the corresponding partials are equal to zero.

7.5 Partials with Respect to Measurement Model Parameters

The precise prediction of an observation for a given satellite position involves
various measurement model parameters like station coordinates, transponder delay,
antenna axis displacement and others. In order to assess the influence of small errors
in these parameters or to estimate their values in an orbit determination, one requires
the corresponding partial derivatives of the measurements with respect to the model
parameters. Since many parameters are of interest only in specialized applications,
the following discussion is restricted to station coordinates and simple bias values,
which are the most commonly considered measurement model parameters.

The partial derivatives with respect to the station coordinates, which are e.g.
required for geodetic purposes, follow from (7.91) and (7.93). They are closely
related to the measurement partials with respect to the satellite state vector and
may easily be derived from the expressions given in the previous section. Since

∂z

∂R
= −∂z

∂s
E = −∂z

∂r
UT , (7.104)

it is simply necessary to replace EU in any partial ∂z/∂r by −E to obtain the
corresponding value of ∂z/∂R.
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For measurement biases q = z − z∗, defined as the difference between the
actual measurement z (affected by the bias) and the corrected (bias-free) value z∗,
the corresponding partial derivatives

(
∂z

∂qi

)
(7.105)

are equal to +1 (if qi = qz is the bias value related to the measurement z) or 0 (if
qi is the bias value of some other measurement type).

7.6 Difference Quotient Approximations

Due to the complex structure of the partial derivatives described in this chapter
the computer implementation of the corresponding formulas is quite laborious and
error prone. Since a finite accuracy of the derivates is sufficient for many applica-
tions it may therefore appear preferable to replace the rigorous computation by a
simple difference quotient approximation. This technique is mainly applied to the
computation of the state transition and sensitivity matrix and is illustrated here for
the partial derivative ∂y(t)/∂Cr of the state vector with respect to the radiation
pressure coefficient.

For a given initial state y0 and the nominal coefficient Cr,0 the equation of mo-
tion is first integrated from t0 to t to obtain the reference state vector y(t, y0, Cr,0).
In parallel a varied trajectory is computed withCr,0 replaced byCr,0 +ΔCr and the
desired partial derivative is then obtained from the first-order difference quotient

∂y(t)

∂Cr

∣∣∣∣
Cr,0

≈ y(t, y0, Cr,0 +ΔCr)− y(t, y0, Cr,0)

ΔCr
. (7.106)

Since the reference trajectory is usually available from the treatment of the nominal
orbit, the partial derivatives can be computed at the expense of an additional integra-
tion of the equation of motion with slightly varied initial conditions or parameters.
The same concept may be applied to obtain the partial derivatives with respect to
other force model parameters as well as the initial conditions. If multiple partials
are required, the reference trajectory need only be computed once, yielding a total
of 7+np trajectory integrations for the computation of the state vector, the state
transition matrix and the sensitivity matrix.

Despite the obvious algorithmic simplicity, it must be emphasized, however,
that the difference quotient approximation should only be used deliberately. One
major drawback of the approach lies in the difficulty of choosing a proper value of
the parameter increment ΔCr , which is important to minimize the overall error of
the approximation. If ε is the relative global accuracy of the numerical integration,
the total error of the partial derivative is approximately given by

Δ
∂y(t)

∂Cr
≈ 1

2
ΔCr

∣∣∣∣
∂2y

∂C2
r

∣∣∣∣+ 2
ε|y|
ΔCr

. (7.107)
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Here the first term describes the discretization error which is proportional to the
increment ΔCr and the second-order Taylor coefficient in the expansion of y(Cr).
The second term results from the numerical integration errors ε|y| of both the
reference trajectory and the varied trajectory. Unless special provision is taken, the
individual integration errors are uncorrelated and therefore additive as expressed
by the leading factor of two. ΔCr must thus be sufficiently small to avoid the
linearization error described by the first term, but must be large enough to ensure a
small contribution from the integration error at the same time. Since it is difficult
to find a general solution to these conflicting requirements, a reasonable value of
the variationΔCr must usually be found by experiment for a particular application.
This is even more a problem for the computation of the state transition matrix,
which exhibits secularly growing components. Accordingly, the optimal choice of
the variations Δyi depends on the overall time interval considered.

The simple procedure outlined above may be replaced by more sophisticated
approaches to reduce either of the individual error terms. First, a symmetric differ-
ence quotient

∂y(t)

∂Cr

∣∣∣∣
Cr,0

≈ y(t, y0, Cr,0 +ΔCr/2)− y(t, y0, Cr,0 −ΔCr/2)

ΔCr
(7.108)

can be used to obtain an approximation of the derivative which is correct up to
second order in ΔCr . Event though the discretization error can thus be reduced
significantly, a separate reference trajectory is now required for each parameter.
The computational workload is thus approximately doubled, yielding a total of
1 + 2(6+np) trajectory integrations to be carried out.

The contribution of the numerical integration error may effectively be avoided
by ensuring that the integration of the reference trajectory and the varied trajectory
are performed with exactly the same integration steps (Hairer et al. 1987). Aside
from choosing independent integrations with a fixed-stepsize method, one may
also combine the individual problems into a single, 6·(7+np) dimensional vector
and integrate all trajectories simultaneously with appropriate setting of the initial
conditions and force model parameters. While each of the individual state vectors
still suffers from an integration error of approximately ε|y|, the respective errors
become highly correlated. As as result, their impact on the difference quotient is
significantly reduced.

Similar results may further be achieved by integrating the variational equations
as described earlier (cf. Sect. 7.2.3) but computing the relevant partial derivatives
of the acceleration at each time steps from a numerical difference quotient. This
approach provides great flexibility, since it also allows a joint use of analytical
and numerical derivatives. As an example, one may wish to rigorously compute
the gravity gradient from the analytical expressions described above, but refer to a
difference quotient approximation for the atmospheric density gradient due to the
non-availability of an appropriate analytical formulation.

Aside from the aforementioned accuracy problems, it has to be emphasized
that the computation of the state transition and sensitivity matrices using difference
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quotient approximations is generally computationally less efficient than the rigorous
treatment of the variational equations. This is due to the fact that the total effort for
the numerical solution of the variational equations is governed by the evaluation
of the partial derivatives of the acceleration with respect to position, velocity and
force model parameters. Due to common sub-expressions that are also required for
the computation of the acceleration itself, the expense for the additional solution of
the variational equations is notably smaller than that of the corresponding varied
trajectories. As a rule of thumb, one may expect a 2–3 times increased performance
when using variational equations instead of numerical differences.

The rigorous computation of the state transition and sensitivity matrix is there-
fore clearly preferable to the difference quotient approximation as regards precision
and efficiency. Nevertheless the partial derivatives are rarely required with full pre-
cision and one may still look for a method that yields a reasonable approximation
at moderate costs. The best way to accomplish this is to neglect small perturbations
in the computation of the variational equations. Good results may e.g. be obtained
by restricting the partials ∂a/∂r of the acceleration with respect to the satellite
position to terms involving the low-order geopotential coefficients (Ballani 1988).
In this case the computational effort for the evaluation of the variational equations
and the integration of the transition and sensitivity matrix may be reduced consid-
erably at the expense of a moderate loss in accuracy. Since the choice of the force
model considered in the variational equations is essentially free, the method may
individually be adapted to the accuracy and run-time requirements of a particular
application. For further discussion and relevant caveats the reader is again referred
to Sect. 7.2.3.

Exercises

Exercise 7.1 (State Transition Matrix) Compute the state transition matrix for a
near-circular orbit with osculating elements a = R⊕ +650 km, e = 0.001, i = 51◦
and Ω = ω = M = 0◦ at the initial epoch J2000 over a time interval of one day,
considering (a) Keplerian motion, (b) Earth oblateness and (c) a full 10×10 gravity
model. Evaluate the accuracy of approximations (a) and (b) in comparison with the
rigorous solution (c).

Hint: Choose a modified time scale τ = √√
GM⊕/a3 · t in the representation of

the state transition matrices to obtain a uniform scaling of the position and velocity
terms. The accuracy of a simplified transition matrix Φ̃ can be assessed via the
norm of the matrix

M(Φ̃) = 1 − ΦΦ̃
−1

. (7.109)

It describes how well a state error Δy at time t can be corrected by an appropriate
changeΔy0 = Φ̃

−1
Δy of the epoch state vector in a differential correction process.

Ideally, all elements of M are zero if Φ̃ matches the rigorous transition matrix Φ.
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Matrix elements up to 0.1 can generally be tolerated, implying that each step of a
differential correction process yields a 10% reduction of the residuals. Values of
1.0 or larger in contrast imply that the correction of the epoch state computed with
the approximate transition matrix is completely in error and ultimately results in
divergence of the correction process.

Solution: The integration of the variational equations for the full gravity model
yields the following state transition matrix at t = 86400 s after normalization of
the velocity components:

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−279.76389 −0.61436 −0.77128 −1.97749 −176.76882 −218.58094
5.44482 0.46365 0.46751 0.67732 2.85186 4.76225

−20.31820 0.40525 0.58659 0.64261 −12.32589 −16.24931
9.26340 0.69774 0.76639 1.06876 5.85008 7.23464

−176.39686 0.19895 −0.98557 −1.26867 −111.02555 −137.36300
−216.94806 −0.92156 −0.14293 −1.46183 −136.56202 −168.92823

⎞
⎟⎟⎟⎟⎟⎟⎠

.

A similar result is obtained for the reduced force model accounting only for the
second-order zonal gravity coefficient:

Φ̃J2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−279.73142 −0.61300 −0.76831 −1.97488 −176.73944 −218.54595
4.94588 0.46436 0.46459 0.67371 2.53764 4.37347

−20.94583 0.40252 0.58628 0.63834 −12.72045 −16.73746
10.08752 0.69945 0.76835 1.07427 6.37036 7.87800

−176.42392 0.20077 −0.98205 −1.26529 −111.03517 −137.37942
−216.90555 −0.91896 −0.13879 −1.45733 −136.52976 −168.88617

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Finally the analytical solution of the Keplerian state transition matrix is given by:

Φ̃Kep =

⎛
⎜⎜⎜⎜⎜⎜⎝

−279.15804 −0.68758 −0.84909 −2.08471 −176.75552 −218.27488
15.74647 0.37945 0.58939 0.75689 9.33762 12.75888
19.44527 0.58939 0.63001 0.93468 12.75888 14.76158

−28.38266 0.55643 0.68713 0.78578 −17.96557 −22.18563
−174.82513 0.13049 −1.06908 −1.37290 −110.35739 −136.16070
−215.89105 −1.06908 −0.32400 −1.69539 −136.16070 −168.24110

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Significant relative errors may here be observed in the third and fourth lines, which
even exhibit an erroneous sign in the major elements. Upon evaluating the above ma-
trix functional for Φ̃J2 and Φ̃Kep, one obtains maximum elementsm= maxi,j (Mi,j )

of 0.18 and 1.01, respectively. This quantifies that the accuracy of the J2 transi-
tion matrix is just about acceptable over the concerned time frame, whereas the
Keplerian approximation is clearly inadequate. Defining a threshold of m = 0.1,
the Keplerian state transition matrix is applicable for slightly more than two hours,
whereas the J2 model is valid for almost 18 hours.



8. Orbit Determination and Parameter Estimation

The equation of motion and the measurement model provide the basic framework for
describing the motion of a satellite with respect to a ground station. Given an initial
position and velocity vector and various model parameters the satellite’s position
and the expected observations can be computed at arbitrary times. Even though an
orbit prediction may require lengthy and time-consuming computations in case of
high accuracy requirements, it does not pose any algorithmic difficulties, as outlined
in the previous chapters. The situation becomes more involved, however, if one
tries to solve the inverse problem, namely the determination of orbital elements
and model parameters from a given set of observations of the satellite.

Depending on the application, it is customary to distinguish between prelim-
inary orbit determination used for the direct computation of six orbital elements
from six observations with no a priori knowledge of the spacecraft orbit and orbit
estimation (or differential correction) used for the improvement of a priori orbital
elements from a large set of tracking data. The need for a distinction between both
approaches arises essentially from two reasons. First of all the complex mathe-
matical formulation of orbit prediction and measurement modeling does not allow
a direct inversion except for the simplified case of Keplerian orbits and a coarse
measurement model. Second, the measurements employed for an orbit determina-
tion cannot be expected to be exact quantities due to inevitable measurement (and
model) errors. Some means for smoothing out these errors by considering a larger
amount of tracking data than required for an initial orbit determination are therefore
necessary for a reliable reconstruction of a satellite orbit from actual measurements.

While preliminary orbit determination is of great importance for solar system
bodies like comets and minor planets immediately following their detection, its
significance for satellite orbits is limited by regular tracking campaigns for most
satellites and orbital-element databases of reasonable accuracy. Nevertheless, a
preliminary orbit determination may still, for example, be required in the case of
launcher injection errors or for the identification of an uncatalogued spacecraft.
Most methods for preliminary orbit determination are based on Gauss’ algorithm
(cf. Chap. 2) for computing orbital elements from two position vectors (i.e. from
two sets of range and angle measurements) or three direction vectors (i.e from
three sets of angle measurements). A comprehensive discussion of these and other
analytical methods is given in Escobal (1965).

In addition to the above methods a numerical root-finding technique – the
homotopy continuation method (Allgower & Georg 1990) – has, furthermore, suc-
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cessfully been applied to the preliminary orbit determination problem. It avoids
the restrictions of analytical methods as regards the required tracking data types
by solving a system of six non-linear equations that relates six arbitrary observa-
tions to the unknown orbital elements. In contrast to other root-finding methods
the homotopy method may even be used with a bad initial guess of the orbital ele-
ments and is able to cope with multiple solutions. The method is e.g. employed at
the Goddard Space Flight Center to support preliminary orbit determination using
tracking data from both the Tracking and Data Relay Satellite System (TDRSS)
and from traditional ground-based tracking stations (Kirschner et al. 1990).

In view of their importance for practical applications of satellite orbit determi-
nation, the remaining part of the chapter is devoted to the discussion of batch and
sequential estimation techniques that may be used for the improvement of a priori
orbit information from an arbitrary set of tracking data (Fallon 1978, Tapley 1973,
Tapley 1989, Tapley et al. 2004b). While the classical batch or least-squares esti-
mator improves an epoch state estimate by processing a whole set of observations
in each run, the sequential estimator or filter processes one measurement at a time
and yields subsequent estimates of the state vector at the time of each measurement.

Both batch and sequential estimators are powerful estimation methods that
have successfully been applied to various types of orbit determination problems in
the past. While the method of weighted least-squares dates back to the end of the
18th century, where it was developed for the improvement of minor planet orbits by
Gauss, the Kalman filter was introduced some thirty years ago, only. Nevertheless, it
was immediately recognized as a fast and efficient method that is particularly suited
for on-board and real-time applications and provides a unique way of considering
process noise (Leondes 1970). As an example filters have extensively been applied
in the Apollo program (Battin & Levine 1970, Battin 1987) and for interplane-
tary navigation (Moyer 1971, Curkendall 1974, Campbell et al. 1983). The batch
least-squares method, on the other hand, is traditionally used in many programs
for operational and scientific orbit determination (e.g. GTDS (Long et al. 1989),
GEODYN (McCarthy et al. 1993), UTOPIA (Schutz & Tapley 1980), PEPSOC
(Soop 1983)), where execution time and memory considerations do not pose severe
restrictions on the ground-based and off-line operation of such programs.

8.1 Weighted Least-Squares Estimation

The basic idea of least-squares estimation as applied to orbit determination is to
find the trajectory and the model parameters for which the square of the difference
between the modeled observations and the actual measurements becomes as small
as possible, or, in other words, a trajectory which best fits the observations in
a least-squares of the residuals sense (cf. Fig. 8.1). In actuality, since different
measurements have different units and reliability, a weighting factor is applied to
each residual and it is the square of the weighted residuals which is minimized. In
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order to arrive at a mathematical formulation of this principle let

x(t) =

⎛
⎜⎜⎝

r(t)

v(t)

p

q

⎞
⎟⎟⎠ (8.1)

denote a time-dependent, m-dimensional vector comprising the satellite’s position
r and velocity v as well as the free parameters p and q that affect the force and
measurement model. No distinction need then be made between trajectory and
parameter estimation, which can both be treated in a unified way. The time-evolution
of x may always be described by an ordinary differential equation of the form

ẋ = f (t, x) (8.2)

and an initial value

x0 = x(t0) (8.3)

at epoch t0. Furthermore, let

z =
⎛
⎜⎝

z1
...

zn

⎞
⎟⎠ (8.4)

denote an n-dimensional vector of measurements taken at times t1, . . . , tn. The
observations are described by

zi(ti) = gi(ti, x(ti))+ εi = hi(ti, x0)+ εi (8.5)

or briefly

z = h(x0)+ ε . (8.6)

Here gi denotes the model value of the ith observation as a function of time ti and
the instantaneous state x(ti), whereas hi denotes the same value as a function of
the state x0 at the reference epoch t0. The quantities εi account for the difference
between actual and modeled observations due to measurement errors, which are
usually assumed to be randomly distributed with zero mean value.

The least-squares orbit determination problem may now be defined as finding
the state x

lsq
0 , that minimizes the loss function

J (x0) = ρT ρ = (z − h(x0))
T (z − h(x0)) (8.7)

(i.e. the squared sum of the residuals ρi) for a given set of measurements z. It is
noted that the given formulation of the loss function requires all measurements to be
of equal type and quality. This assumption simplifies the subsequent presentation
but will later be dropped to arrive at a completely general formulation (Sect. 8.1.2).
In order to avoid a non-unique determination of x, it is further assumed that the
number of observations n is at least equal to the number of unknowns m.
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Fig. 8.1. Least-squares orbit determination: the parameters of a reference trajectory are corrected
to find the trajectory which best fits the observations in a least-squares of the residuals sense.

8.1.1 Linearization and Normal Equations

The practical solution of the least-squares orbit determination problem is compli-
cated by the fact that h is a highly non-linear function of the unknown vector x0,
which makes it difficult or impossible to locate the minimum of the loss function
without additional information. As mentioned above, an approximate value x

apr
0 of

the actual epoch state is, however, often known, which may be used to simplify the
least-squares problem considerably.

Linearizing all quantities around a reference state xref
0 , which is initially given

by x
apr
0 , the residual vector is approximately given by

ρ = z − h(x0)

≈ z − h(xref
0 )− ∂h

∂x0
(x0 − xref

0 )

= Δz − HΔx0 .

(8.8)

Here

Δx0 = x0 − xref
0 (8.9)

denotes the difference between x0 and the reference state, while

Δz = z − h(xref
0 ) (8.10)

denotes the difference between the actual observations and the observations pre-
dicted from the reference trajectory. Furthermore, the Jacobian

H = ∂h(x0)

∂x0

∣∣∣∣
x0=x ref

0

(8.11)

gives the partial derivatives of the modeled observations with respect to the state
vector at the reference epoch t0. Using the above abbreviations, eqn. (8.8) provides
a prediction of the measurement residual after applying a correction Δx0 to the
reference state and recomputing the modeled observations h.
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The orbit determination problem is now reduced to the linear least-squares
problem of finding Δx

lsq
0 such that

J (Δx0) = (Δz − HΔx0)
T (Δz − HΔx0) , (8.12)

i.e., the predicted loss function after applying a correctionΔx0 becomes a minimum.
If the Jacobian has full rank m, i.e. if the columns of H are linearly independent,
this minimum is uniquely determined by the condition that the partial derivatives
of J with respect to Δx0 vanish:

∂(Δz − HΔx0)
T (Δz − HΔx0)

∂Δx0

∣∣∣∣
Δx0=Δx lsq

0

= 0 . (8.13)

Using the relation

∂aT b

∂c
= aT

∂b

∂c
+ bT

∂a

∂c
(8.14)

to compute the derivatives of ρT ρ, the general solution of the linear least-squares
problem may be written as

Δx
lsq
0 = (H TH )−1(H T Δz) (8.15)

after a proper rearrangement. The matrix H TH is an m-dimensional symmetric
square matrix, which is also known as the normal equations matrix. Since H was
assumed to have full rank, the inverse of H TH exists, even though it need not
actually be computed. Instead,Δx

lsq
0 may be obtained by solving them-dimensional

normal equations

(H TH )Δx
lsq
0 = (H TΔz) (8.16)

using standard techniques for positive definite linear systems of equations (e.g.
Cholesky’s algorithm).

Due to the non-linearity of h, the simplified loss function differs slightly from
the rigorous one and the value of x

lsq
0 = xref

0 + Δx
lsq
0 (cf. Fig. 8.1) determined so

far is not yet the exact solution of the orbit determination problem. It may, however,
be further improved by substituting it for the reference value xref

0 and repeating the
same procedure. Based on this idea the non-linear problem can be solved by an
iteration

x
j+1
0 = x

j
0 + (H jTH j )−1H jT (z − h(x

j
0)) , (8.17)

which is started from x0
0 = x

apr
0 and continued until the relative change of the loss

function is smaller than a prescribed tolerance for successive approximations. The
Jacobian

H j = ∂h(x0)

∂x0

∣∣∣∣
x0=xj

0

(8.18)

should be updated in each iteration to ensure an optimum convergence, but may
also be replaced by the constant value H 0. Even though the number of iterations
increases in this case, the total computational effort can often be reduced, due to
the high amount of work that is otherwise required for the integration of the state
transition matrix.
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8.1.2 Weighting

The algorithm developed so far suffers from the fact that all observations are treated
equally, even though the observation vector z is generally composed of different
measurement types. The accuracy of each measurement type may, however, easily
be accounted for by weighting all observations with the inverse of the mean mea-
surement error σi , i.e. by replacing the residuals ρi with the normalized residuals

ρ̂i = 1

σi
ρi = 1

σi
(zi − hi(x0)) . (8.19)

Here σi should consider the total expected error in the measurement due to both
random noise and systematic errors (e.g. refraction). As a result the basic least-
squares equation

Δx
lsq
0 = (Ĥ

T
Ĥ )−1(Ĥ

T
Δẑ) (8.20)

remains essentially unchanged, except that H and Δz are replaced by the modified
values

Ĥ = SH and Δẑ = SΔz . (8.21)

Here S is a square diagonal matrix

S = diag(σ−1
1 , . . . , σ−1

n ) =
⎛
⎜⎝

σ−1
1 0

. . .

0 σ−1
n

⎞
⎟⎠ , (8.22)

which divides the ith row of a matrix or vector by σi upon multiplication from the
left.

Alternatively the solution of the weighted least-squares problem may be written
as

Δx
lsq
0 = (H TWH )−1(H TWΔz) , (8.23)

using the weighting matrix

W = S2 = diag(σ−2
1 , . . . , σ−2

n ) . (8.24)

Both representations are equally well suited to handling uncorrelated measurement
errors, which are fully described by the corresponding values σi . The weighting
matrix may, however, also be used for correlated measurement errors, in which case
W becomes a non-diagonal matrix.
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8.1.3 Statistical Interpretation

According to the definition of the weighted least-squares orbit determination prob-
lem x

lsq
0 is the state that minimizes the weighted squared sum of the residuals. In

the absence of measurement and modeling errors it is obvious that x
lsq
0 is equal

to the actual state, for which all residuals vanish. As soon as the observations are
affected by measurement errors, the question arises, however, in which way these
errors influence the least-squares solution.

For this purpose let x0 and ε denote the actual state and the measurement errors.
The observation vector is then given by

z = h(x0)+ ε , (8.25)

which may be linearized to obtain

Δz = H (x0 − xref
0 )+ ε , (8.26)

where xref
0 is a reference state sufficiently close to x0. The solution of the corre-

sponding least-squares problem is given by

x
lsq
0 = xref

0 + (H TWH )−1(H TWΔz)

= x0 + (H TWH )−1(H TWε) ,
(8.27)

which shows that x
lsq
0 differs from the actual state in the presence of measurement

errors.
Some further results may be derived by neglecting any systematic errors and

considering ε as a random quantity. The statistical properties of the measurement
errors can then be described by the expected values1 of ε and εεT . These are
assumed as

E(ε) = 0 (8.28)

and

E(εεT ) = diag(σ 2
1 , . . . , σ

2
n ) , (8.29)

which means that the expected value of each component of ε is zero, that all com-
ponents are uncorrelated (E(εiεj ) = 0 for i 
= j ) and that the standard deviation

of the ith component is
√√

E(ε2
i ) = σi .

An immediate consequence of the first assumption is that the expected value
of the least-squares solution, which is also a random variable due to its dependence
on ε, is equal to the actual state:

E(xlsq
0 ) = x0 + (H TWH )−1(H TWE(ε)) = x0 . (8.30)

1The expected value or mean value of a random variable x is defined by E(x) = x̄ = ∫ sp(s)ds,
where p(s)ds is the probability that the value of x lies in the interval [s, s + ds]. Furthermore, the
variance Cov(x) = σ 2 = E((x − x̄)2) of x is defined as expected value of the squared deviation
from the mean value. The square root σ of the variance denotes the standard deviation of x. For two
random variables the quantity Cov(x, y) = E((x − x̄)(y − ȳ)) is called the covariance of x and y.
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The second important result concerns the covariance of the least-squares solution,
i.e. the quantity

Cov(xlsq
0 , x

lsq
0 ) = E((x lsq

0 − x0)(x
lsq
0 − x0)

T ) (8.31)

that describes the mean squared deviation of x
lsq
0 from the actual state. Inserting

the expression for x
lsq
0 yields

Cov(xlsq
0 , x

lsq
0 ) = (H TWH )−1(H TW )E(εεT )(WH )(H TWH )−1 , (8.32)

which may further be simplified, provided that the weighting matrix has been
choosen in accord with the measurement standard deviation. Then

W = diag(σ−2
1 , . . . , σ−2

n ) (8.33)

is the inverse of E(εεT ) and the covariance matrix is given by

Cov(xlsq
0 , x

lsq
0 ) = (H TWH )−1 , (8.34)

which is just the inverse of the normal equations matrix. The diagonal elements of
the covariance matrix yield the standard deviation

σ(x
lsq
0k ) =

√√
Cov(x lsq

0k , x
lsq
0k ) (8.35)

of the components of x
lsq
0 , while the off-diagonal terms are a measure of the corre-

lation between errors of individual components.
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Fig. 8.2. Probability distribu-
tion of the least-squares or-
bit determination solution in
the case of normally dis-
tributed measurement errors.
The shaded area covers 67% of
all cases.

Even though it is obvious that the expected value and the covariance of x
lsq
0

define an interval that most likely contains the actual state x0, some care is required
to use these data for a valuation of the orbit determination accuracy. A rigorous in-
terpretation has to account for the fact that both ε and x

lsq
0 are considered as random

variables. The expected value and the covariance therefore describe the distribu-
tion of values x

lsq
0 that would be obtained in a random experiment of repeated orbit

determinations for the same trajectory but with randomly generated measurement
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errors. If the measurement errors exhibit a normal distribution, it can be shown
that there is a 67% probability that x

lsq
0 as derived from the actual measurements

deviates from x0 by less than 1σ and a 99.7% probability that the deviation is less
than 3σ (cf. Fig. 8.2). In the case of systematic errors ε̄ there will further be an
additional offset of

δx
lsq
0 = (H TWH )−1(H TWε̄) . (8.36)

Concerning the use and interpretation of the covariance matrix, it is furthermore
important to emphasize that its correct computation relies on the a priori knowledge
of the measurement standard deviation σ(ε), which enters the weighting matrix W .
Aside from that, the covariance depends only on the partial derivatives H and
therefore on the type and distribution of measurements. The actual measurement
errors, in contrast, do not affect the computation of the covariance matrix. It is
therefore obvious that the covariance is not an a-posteriori measure of the tracking
data quality and accuracy. This can only be derived from an analysis of the final
distribution of the measurement residuals and by solving for systematic errors.

8.1.4 Consider Parameters

While the covariance matrix clearly provides a measure of the achievable orbit
determination accuracy, it is often found to be too optimistic in the presence of
systematic force and measurement model errors. This is particularly true if a large
number of redundant measurements is processed, since the computed covariance
is inversely proportional to the number of measurements within a given data arc.
The impact of systematic errors, on the other hand, does not depend on the num-
ber of data and eventually limits the attainable orbit determination accuracy. It is,
therefore, worthwhile to consider the effect of unmodeled, systematic errors in the
covariance computation. With proper assumptions on the expected size of these
errors, the resulting consider covariance matrix then provides realistic estimates of
the achievable orbit determination accuracy.

For the mathematical treatment of systematic errors in the covariance compu-
tation, the observation vector

z = h(x0, c)+ ε (8.37)

is expressed as a function of the estimation parameters x0, the consider parameters c

and the measurement noise ε. The vector c comprises those force and measurement
model parameters that are supposed to be uncertain but are not adjusted as part of
the least-squares estimation. Without loss of generality, the consider parameters are
assumed to be small quantities with an expected value of zero. The above expression
for the observation vector may then be linearized around a reference state xref

0 to
obtain the differential relation

Δz = H x(x0 − xref
0 )+ H cc + ε , (8.38)
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where H x and H c denote the partial derivatives of the modeled measurements h

with respect to x0 and c, respectively. The resulting least-squares solution

x
lsq
0 = x0 + (H T

x WHx)
−1H T

x W (H cc + ε) (8.39)

differs from the true values of the estimation parameters by an offset that depends
on both the consider parameters c and the measurement noise ε.

In the sequel, the consider parameters are assumed to be random quantities
with zero mean and covariance C that are uncorrelated with the measurement noise
(E(cεT ) = 0). The expected value

E(xlsq
0 ) = x0 + (H T

x WH x)
−1H T

x W (H cE(c)+ E(ε)) = x0 (8.40)

of the least-squares solution is then again identical to the true state. The consider
covariance matrix P c, however, is larger than the noise-only covariance

P = (H T
x WH x)

−1 , (8.41)

which is also designated as formal or computed covariance. It is given by

P c = (PH T
x W )(H cCH c + E(εεT ))(PH T

x W )T

= P + (PH T
x W )(H cCH T

c )(PH T
x W )T ,

(8.42)

where the weighting matrix W has again been taken as the inverse of the measure-
ment covariance.

While both the consider parameters c and the measurement noise ε are assumed
to be random quantities in the above formulation, their interpretation is different
and should be carefully distinguished. Data noise affects the individual measure-
ments processed in a single orbit determination. By adopting a large number of
measurements, the impact of the data noise is effectively averaged out and the un-
certainty of the estimated parameters is decreased. Consider parameters, in contrast,
are assumed to be constant throughout a single orbit determination but affected by a
given uncertainty. This is mapped into a corresponding uncertainty of the estimated
parameters and expressed by the respective contribution to the consider covariance.
As may be expected, the additive term in (8.42) does not decrease with increasing
data rate, but is essentially constant for a given data arc and tracking configuration.
The consider covariance calculus is therefore well suited to assessing the impact of
systematic errors in the orbit determination process. Typical examples of consider
parameters are measurement biases, station location errors or uncertainties in the
drag and radiation pressure model.

8.1.5 Estimation with A Priori Information

Aside from the approximate state x
apr
0 that is required to start the least-squares orbit

determination, some information on the accuracy of this value is often available. In
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order to incorporate the a priori covariance P
apr
0 into the least-squares estimation

an alternative representation of the loss function

J = ρT ρ = (Δz − HΔx0)
T (Δz − HΔx0) (8.43)

is first considered, which again assumes normalized observations. Using

Δx
lsq
0 = (H TH )−1(H T Δz) (8.44)

the loss function may also be written as

J (x0) = (Δx0 −Δx
lsq
0 )T (H TH )(Δx0 −Δx

lsq
0 )

+(ΔzT Δz −Δx
lsqT
0 H THΔx

lsq
0 )

= (x0 − x
lsq
0 )TP −1

0 (x0 − x
lsq
0 )+ const ,

(8.45)

which is a quadratic form of x0 − x
lsq
0 defined by the inverse covariance matrix

P −1
0 = H TH of x0 − x

lsq
0 . The loss-function minimum and the covariance matrix

therefore provide the same information for the least-squares estimation that is oth-
erwise contained in the measurement vector Δz and the partial derivative matrix
H .

As a consequence, an a priori estimate x
apr
0 = xref

0 +Δx
apr
0 of the state x0 can

be considered using a modified loss function

J = (x0 − x
apr
0 )TΛ(x0 − x

apr
0 )+ ρT ρ . (8.46)

Here Λ = (P
apr
0 )−1, which is also known as information matrix, is used to penalize

any deviations from x
apr
0 by an appropriate contribution to the loss function.

Since Λ denotes the inverse of the covariance matrix, it is always required to be
positive semi-definite. It can therefore be factored into a product Λ = ST S, which
is useful for locating the minimum of the combined loss function. By writing J as

J = (Δx0 −Δx
apr
0 )TΛ(Δx0 −Δx

apr
0 )

+(Δz − HΔx0)
T (Δz − HΔx0)

=
((

SΔx
apr
0

Δz

)
−
(

S

H

)
Δx0

)T ((
SΔx

apr
0

Δz

)
−
(

S

H

)
Δx0

)
(8.47)

it may be seen that the information matrix can be treated like additional observations
and the minimum is therefore obtained as

Δx
lsq
0 =

((
S

H

)T(
S

H

))−1 (
S

H

)T(
SΔx

apr
0

Δz

)
, (8.48)

which simplifies to

Δx
lsq
0 = (Λ + H TH )−1(ΛΔx

apr
0 + H TΔz) . (8.49)
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In the case of weighted observations the least-squares solution with a priori knowl-
edge is given by the corresponding expression

Δx
lsq
0 = (Λ + H TWH )−1(ΛΔx

apr
0 + H TWΔz) . (8.50)

Here both Λ and H TWH may be singular matrices and it is only required that the
sum of both matrices has a non-zero determinant. A non-singular information matrix
is, however, sufficient to ensure that the resulting normal equations can be solved
independently of H TWH . This feature is often employed to avoid singularities
in least-squares problems by giving a small a priori weight to each estimation
parameter and adding the corresponding diagonal matrix Λ to the normal equations
matrix.

The expected value of the estimated state (8.50) is equal to the actual state x0,
if the a priori information x

apr
0 is itself a random variable with mean value x0. The

covariance P 0 of the estimate is furthermore related to the a priori covariance and
the measurement information matrix by

(P 0)
−1 = (P

apr
0 )−1 + (H TWH ) . (8.51)

8.2 Numerical Solution of Least-Squares Problems

While the presentation given so far provides a comprehensive conceptual discus-
sion of the least-squares method, it does not specifically address its algorithmic
implementation. In the sequel, focus is therefore given to the numerical aspects of
least-squares estimation, which require careful attention in practical work. Readers
that are mainly interested in orbit determination methodology are advised to skip
this section on first reading and continue directly with Sect. 8.3.

8.2.1 QR Factorization

As is evident from the mathematical formulation of the least-squares problem, the
number of observations must at least be equal to the number of unknowns, but should
be considerably larger to reduce the influence of individual measurement errors.
A large number of observations may still, however, be insufficient, if the tracking
geometry and distribution do not provide enough information on all estimation
parameters. The direct solution of the normal equations2

(ATA)x = AT b (8.52)

will then give rise to numerical difficulties, even if the normal equations matrix is
not exactly singular.

2In accordance with the common notation for linear systems of equations, the symbols A, x and
b are used instead of H , Δx

lsq
0 and Δz throughout this section.
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In the case of near-singularity, the solution of the normal equations becomes ex-
tremely sensitive to small errors in the normal equation matrix, which are inevitable
when forming the product ATA with a limited machine accuracy. Considering, for
example, the simple matrix

A =
⎛
⎝

1 1
δ 0
0 δ

⎞
⎠ (8.53)

it may easily be seen that the computed value of

ATA =
(

1 + δ2 1
1 1 + δ2

)
(δ2<εmach).=

(
1 1
1 1

)
(8.54)

becomes singular, if δ is smaller than the square root of the machine accuracy εmach

(cf. Golub & Reinsch 1970).
A different treatment of the least-squares problem is possible, however, that

avoids the normal equations and yields the same accuracy with single-precision
computer arithmetic that otherwise requires a double-precision arithmetic. It is
based on a QR factorization

An×m = Qn×n
(

Rm×m
0(n−m)×m

)
(8.55)

of A into an orthonormal matrix Qand an upper triangular matrix R. Since QTQ =
QQT = 1, the loss function may be written as

J = (b − Ax)T (b − Ax)

= (QT b − QTAx)T (QT b − QTAx)

=
((

d

r

)
−
(

R

0

)
x

)T ((
d

r

)
−
(

R

0

)
x

)

= (d − Rx)T (d − Rx)+ rT r ,

(8.56)

where QT b has been partitioned into two vectors d and r of dimensionm and n−m,
respectively. This expression shows that rT r is the minimum of the loss function,
which is reached for

Rx = d . (8.57)

If A has rank m, the same is also true for R and the linear system of equations
⎛
⎜⎜⎜⎜⎜⎝

R1,1 R1,2 · · · R1,m−1 R1,m

0 R2,1 · · · R2,m−1 R2,m
...

...
. . .

...
...

0 0 · · · Rm−1,m−1 Rm−1,m

0 0 · · · 0 Rm,m

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...

xm−1

xm

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

d1

d2
...

dm−1

dm

⎞
⎟⎟⎟⎟⎟⎠

(8.58)
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has a unique solution. No further decomposition of R is required because of its
upper triangular structure. The components of x can be obtained directly from the
back-substitution

xm = dm/Rm,m

xi =
(
di −

m∑
j=i+1

Ri,jxj

)
/Ri,i i = m− 1, . . . , 1 ,

(8.59)

because all components Rij with i > j vanish. The normal equations are not re-
quired anymore when using the orthogonal transformation and the corresponding
numerical problems can therefore be avoided completely.

The same method of orthogonal transformations may also be applied to weighted
observations, if A and b are replaced by

A′ = diag(σ−1
1 , . . . , σ−1

n )A and b′ = diag(σ−1
1 , . . . , σ−1

n ) b . (8.60)

Following (8.47), an a priori information matrix Λ can further be considered by an
appropriate extension

A′′ =
(

S

A′

)
and b′′ =

(
Sxapr

b′
)

, (8.61)

where S denotes a square root of Λ (cf. (8.47)). S can easily be computed for
diagonal matrices, but a Cholesky factorization or similar operation is required to
obtain a representation of the form Λ = ST S for an arbitrary information matrix
(see e.g. Schwarz 1988, Press et. al. 1992).

Finally, the QR decomposition may be employed to facilitate the computation
of the covariance matrix by writing

Cov(x, x) = (ATA)−1 = (RTR)−1 = (R−1)(R−1)T . (8.62)

Since R is an upper triangular matrix, the same holds for its inverse R−1, which
may conveniently be obtained by solving RR−1 = 1 with the back-substitution
algorithm described above (cf. Lawson & Hanson 1974).

8.2.2 Householder Transformations

The most efficient method for performing the QR factorization is due to House-
holder (1958). It involves a total of m orthonormal transformations (cf. Fig. 8.3),
which subsequently annihilate the sub-diagonal elements of A yielding

(UmUm−1 . . .U2U1)A = QTA =
(

R

0

)

(UmUm−1 . . .U2U1) b = QT b =
(

d

r

)
.

(8.63)
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A =

⎛
⎜⎜⎜⎜⎝

× × ×
× × ×
× × ×
× × ×
× × ×

⎞
⎟⎟⎟⎟⎠

U 1A =

⎛
⎜⎜⎜⎜⎝

× × ×
0 × ×
0 × ×
0 × ×
0 × ×

⎞
⎟⎟⎟⎟⎠

U 2U1A =

⎛
⎜⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 ×
0 0 ×

⎞
⎟⎟⎟⎟⎠

U 3U2U 1A =

⎛
⎜⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠

Fig. 8.3. Triangularization of a 5 × 3 matrix by a sequence of Householder Transformations

An individual Householder transformation is defined as

U = (1 − 2wwT ) = UT (8.64)

where wwT denotes the outer product of a unit vector w and its transpose. The
orthonormality of U follows from the fact that

UTU = U2 = 1 − 4wwT + 4wwTwwT = 1 (8.65)

for wTw = |w|2 = 1, which also means that U is its own inverse. Since vectors at
right angles to w are not affected by U , while w is mapped into −w, it may seen
that U corresponds to a reflection at a hyperplane perpendicular to w (cf. Fig. 8.4).

e he

ĥ

h

w

Hyperplane ⊥ w

Fig. 8.4. Householder Transformation

By a proper choice of w, a vector h of lengthh can be mapped into a multiplehe
of the unit vector e = (1, 0, . . . , 0)T , which is zero except for the first component.
For this purpose w must be a unit vector in the direction of the difference vector
h/h− e and is therefore given by

w = h/h− e

|h/h− e| = h/h− e√√
2(1 − h1/h)

. (8.66)
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Using the same expression with h replaced by the first column vector of A, one
obtains the first transformation matrix U 1 = 1 − 2w1w

T
1 that eliminates all sub-

diagonal elements in the first column of A. The same principle may then be applied
to determine the transformations U2, . . . ,Un that convert the remaining columns
and yield the desired upper triangular matrix R.

For further details on the algorithm and an efficient computer implementation
of Householder transformations in least-squares problems the reader is referred to
standard text books like Golub & van Loan (1989) or Schwarz (1988).

8.2.3 Givens Rotations

A second type of orthonormal transformations that may be used to perform a QR
factorization is known as Givens rotations (Givens 1958). A single n-dimensional
transformation matrix

U i,k(φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

+c +s
. . .

−s +c
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.67)

is an identity matrix except for the elements
(
Uii Uik

Uki Ukk

)
=
(+c +s

−s +c
)

=
(+ cosφ + sinφ

− sinφ + cosφ

)
, (8.68)

which define a rotation by an angle φ in the (ik)-plane. Since UT
ikU ik = 1, the

matrix is in fact orthonormal and therefore does not change the Euclidean norm of
a vector.

When applied to an n×m matrix A= (Aij ) from the left, U ik affects only lines
i and k, while the remaining lines are unchanged. The new elements of A′ = U ikA

are given by

A′
ij = +c · Aij + s · Akj (j = 1, . . . , m)

A′
kj = −s · Aij + c · Akj .

(8.69)

If c and s are chosen as(
c

s

)
= 1√√

A2
ii + A2

ki

(
Aii

Aki

)
(8.70)

then

A′
ii =

√√
A2
ii + A2

ki

A′
ki = 0 .

(8.71)
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⎛
⎜⎜⎜⎜⎜⎝

× × ×
× × ×
× × ×
× × ×
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

U 1,2→

⎛
⎜⎜⎜⎜⎜⎝

× × ×
0 × ×
× × ×
× × ×
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

U 1,3→

⎛
⎜⎜⎜⎜⎜⎝

× × ×
0 × ×
0 × ×
× × ×
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

U 2,3→

⎛
⎜⎜⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
× × ×
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

U 1,4→

⎛
⎜⎜⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 × ×
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

U 2,4→

⎛
⎜⎜⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 ×
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

U 3,4→

⎛
⎜⎜⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 0
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

→ . . .

Fig. 8.5. Row-wise triangularization of an n× 3 matrix by a sequence of Givens rotations

In other words, the element A′
ki vanishes.

While the Householder transformation which eliminates all sub-diagonal el-
ements in a column of A, a Givens rotation reduces only one element to zero at
a time. This gives the freedom to process one row after another as indicated in
Fig. 8.5. The complete transformation is then given by

(UnUn−1 . . .U 3U2)A = QTA =
(

R

0

)

(UnUn−1 . . .U 3U2) b = QT b =
(

d

r

)
.

(8.72)

Here

U i = Umin(i−1,m),i . . .U2,iU1,i (8.73)

denotes the sequence of rotations required to eliminate the sub-diagonal elements
in the ith row of A.

The advantage of a row-by-row transformation is that the QR factorization can
already be computed with parts of the design matrix A and the vector b. Denoting
the ith row of A by aTi and the ith element of b by bi , the measurement equations

aTi x = bi i = 1, . . . , n , (8.74)

can be processed one-by-one with the sequential accumulation algorithm. This is
illustrated in Fig. 8.6.

A sequence of m Givens rotations for each measurement transforms the given
upper triangular system of linear equations Rx = d and a single data equation
aT x = b into the upper triangular system R′x = d ′ and the scalar b′. Assuming
that the sum of the residuals squared before the triangularization was |r|2, its value
after processing of the new measurement equation is given by

|r ′|2 = |r|2 + (b′)2 . (8.75)
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⎛
⎜⎜⎝
R1,1 R1,2 R1,3

0 R2,2 R2,3

0 0 R3,3

a1 a2 a3

⎞
⎟⎟⎠ x =

⎛
⎜⎜⎝

⎛
d1

d2

d3⎝
b

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝
R1,1 R1,2 R1,3

0 R2,2 R2,3

0 0 R3,3

0 a2 a3

⎞
⎟⎟⎠ x =

⎛
⎜⎜⎝

d1
⎛
d2

d3⎝
b

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝
R1,1 R2,2 R2,3

0 R2,2 R2,3

0 0 R3,3

0 0 a3

⎞
⎟⎟⎠ x =

⎛
⎜⎜⎝

d1

d2
⎝ d3⎝
b

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

R′
1,1 R

′
1,2 R

′
1,3

0 R′
2,2 R

′
2,3

0 0 R′
3,3

0 0 0

⎞
⎟⎟⎠ x =

⎛
⎜⎜⎝
d ′

1
d ′

2
d ′

3
⎝
b′

⎞
⎟⎟⎠

Fig. 8.6. Accumulation of a data equation by Givens rotations. For each step, boxes indicate the
values affected by the transformation that annihilates the leading non-zero element of the data
equation.

With start values of R = 0 and b = 0 the algorithm can be applied to process all
data equations recursively.

The only quantities which have to be stored during the sequential accumulation
of all measurement equations are the upper triangularm×mmatrix R, the vector d,
and the Euclidean norm of the residual vector |r |. The overall storage requirements
are therefore considerably smaller than for Householder factorization of an n×m

design matrix A.

8.2.4 Singular Value Decomposition

Aside from the QR decomposition discussed so far, a singular value decomposition
may be used to analyze a given least-squares problem and solve it in a numerically
stable manner. The method is well suited to detecting and overcoming a possible
singularity or near singularity of the least-squares equations and is therefore recom-
mended for all ill-conditioned problems despite an increased computational effort
as compared to other techniques (Lawson 1971).

The singular value decomposition of the n×m partial derivative matrix A is
denoted by

A = UDV T , (8.76)

where

D = diag(d1, . . . , dm) (8.77)

is a diagonal m×m matrix. U and V are orthonormal matrices of dimension n×m
and m×m, which means that both UTU and V TV are equal to the m dimensional
identity matrix.

The quantities d1 ≥ d2 . . . ≥ dm ≥ 0 are known as singular values. There are
exactly k positive singular values for a matrix of rank k ≤ m, whereas the remaining
m−k values dk+1, . . . , dm are zero. Since

ATA = V D2V T = V diag(d2
1 , . . . , d

2
m)V

T , (8.78)
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each column vector vi of V is an eigenvector of the normal equations matrix and
the singular value di is the non-negative square root of the associated eigenvalue
λi = d2

i .
In view of the effort required for an eigenvalue analysis it is not surprising that

the computation of the singular value decomposition is also much more involved
than that of a simple QR factorization. By a sequence of Householder transforma-
tions, which are alternately applied from the left and right, A is first converted into
a bi-diagonal matrix, in which all elements are zero except those in the diagonal
and immediately above it. Next an iterative sequence of orthogonal transformations
is applied, which retains the bi-diagonal form but tends to eliminate the elements
in the upper diagonal and finally converges to a diagonal matrix containing the sin-
gular values. For a detailed discussion of the algorithm, which is beyond the scope
of this presentation, the reader is referred to Golub & Reinsch (1970) or Golub &
van Loan (1989). Useful computer implementations are furthermore described in
Lawson & Hanson (1974) or Press et al. (1992).

In order to illustrate the application of singular value decomposition to least-
squares problems, the loss function

J = (b − Ax)T (b − Ax) (8.79)

is considered. Making use of the singular value decomposition of A and of the
definitions

s = V T x t = UT b (8.80)

the condition

(ATA)x = AT b (8.81)

for the loss function minimum can be replaced by the equivalent expression

D2s = Dt . (8.82)

For non-singular normal equations the inverse of D exists and the solution of the
least-squares problem is then given by s = D−1t or

x = V D−1UT b =
m∑
i=1

uTi b

di
vi . (8.83)

Here ui and vi are used to denote the column vectors of U and V , respectively.
If the rank of A is less than m, however, only the first k components of s can

be determined from (8.82) according to
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s1
...

sk
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t1/d1
...

tk/dk
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8.84)
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The remaining components are arbitrary, but can be fixed by the additional require-
ment of choosing x in such a way that the norm |x| = √√

xT x is as small as possible.
Since xT x = sT s, this requirement is equivalent to setting si = 0 for all i > k.
The solution of the degenerate least-squares problem is therefore given by

x =
k∑
i=1

uTi b

di
vi , (8.85)

which is the same as (8.83), except that all terms corresponding to zero singular
values are discarded.

The same principle may also be applied in the case that A has full rank but
is nevertheless near-singular as indicated by a high ratio d1/dm of the largest and
smallest singular value. This ratio, which is also known as the condition number of
the normal equations matrix, gives a general indication of the quality with which
the solution is defined by the given measurements. Since the singular values appear
in the denominator of (8.83), it is evident that x is particularly sensitive to changes
in the measurement vector b for small di . In order to avoid a deterioration of the
solution it may therefore be preferable to neglect contributions associated with small
singular values. A useful solution (Lawson 1971) of the least-squares problem may
then be obtained by replacing all singular values below a given limit dmin by zero
and proceeding as in the case of degenerate normal equations. As a result the loss
function is slightly higher than the exact minimum. This is preferable, however, to a
solution that is far off the correct value due to the strong influence of measurement
errors.

As a general means for avoiding singularities one may employ a fixed limit
dmin/d1 = α for truncating the singular values, where α is a predefined value some
orders of magnitude above the machine accuracy εmach. Improved results for a
particular least-squares problem may furthermore be obtained from an analysis of
the sequence of singular values as well as the associated solution and loss function
value. Considering

d1 d2 . . . dm

x = uT1 b

d1
v1+uT2 b

d2
v2+. . .+ uTmb

dm
vm

J (x) = bT b−(uT1 b)2−(uT2 b)2−. . .−(uTmb)2vm

(8.86)

one may then select a value for dmin, which reduces the loss function to an acceptable
value but does not give rise to a large value of x.

8.3 Kalman Filtering

The least-squares or batch estimation method yields an estimate of the epoch state
vector by processing the complete set of observations in each iteration. Therefore,



8.3 Kalman Filtering 277

it requires that all measurements to be considered in an orbit determination are
available before the a priori information can be improved. This makes least-squares
estimation less convenient for real-time or near-real-time applications that call
for a quasi-continuous update of the state information with each observation. In
addition, the least-squares method requires the estimate of the epoch state vector
to fit the entire data span, which makes it suceptible to dynamical model errors and
the assumption of constant measurement biases. An alternative estimation method
which copes with these problems, is known as sequential estimation or Kalman filter
referring to the pioneering work of Kalman (1960) and Kalman & Bucy (1961).

8.3.1 Recursive Formulation of Least-Squares Estimation

Despite evident differences between least-squares estimation and the Kalman filter,
both methods can be related to each other by a variety of intermediate formulations.
In order to derive the filter equations from the least-squares method, one may con-
sider a situation in which the whole set of observations is partitioned into statistically
independent batches or subsets and ask how the estimated epoch state changes by
including successive batches into the estimation.

Upon processing a single batch of measurements z, an a priori estimate x−
0 =

xref
0 +Δx−

0 and its covariance P −
0 are assumed to be available either from the pro-

cessing of previous data batches or from initial information. As usual, all quantities
are linearized about a common reference state xref

0 . Based on the solution (8.50) of
the general least-squares problem, the measurements and the a priori estimate can
now be combined into an improved estimate

Δx+
0 = P +

0

(
(P −

0 )
−1Δx−

0 + H TWΔz
)

. (8.87)

Here, the a-posteriori covariance matrix

(P +
0 ) =

(
(P −

0 )
−1 + (H TWH )

)−1
(8.88)

represents the increased knowledge of x0 resulting from both the a priori informa-
tion and the latest data batch.

In order to relate the new estimate x+
0 to the previous estimate x−

0 , one substi-
tutes the a priori information matrix by the difference

(P −
0 )

−1 = (P +
0 )

−1 − (H TWH ) (8.89)

of the a-posteriori information matrix and the measurement information matrix.
This yields the basic expression

Δx+
0 = Δx−

0 + P +
0 H TW (Δz − HΔx−

0 ) (8.90)

for a recursive formulation of least-squares estimation. The matrix

K = P +
0 H TW (8.91)
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maps the residuals

ρ = Δz − HΔx−
0 = z − h(xref

0 )− HΔx−
0 (8.92)

into an appropriate correction of the estimate x−
0 and is known as Kalman gain. The

vector ρ represents residuals with respect to reference values defined by the estimate
x−

0 . It is computed from the measurements z, the reference-model observations
h(xref

0 ) and a linear correction H (x−
0 −xref

0 ) that accounts for the difference between
x−

0 and the reference state.
A recursive formulation of the orbit determination problem as given above

has already been suggested by Swerling (1959) but could not gain widespread
acceptance. For practical applications (8.90) suffers from the fact that the direct
computation of the covariance matrix P +

0 from (8.88) requires the inversion of an
m×m-matrix in each step with m denoting the dimension of the estimation vector
x0. To remove this deficiency the product K = P +

0 H TW can be replaced by the
equivalent expression

K = P −
0 H T

(
W−1 + HP −

0 H T
)−1

. (8.93)

Even though this expression seems to be more involved at first sight, it turns out to
be more efficient, if the size of each data set is small compared to the dimension
m. In particular, this is the case when each batch consists of a single observation
only. The matrix is then reduced to a scalar quantity and the inverse is obtained by
a simple division.

The validity of substitution (8.93) follows from the relation

H T + H TWHPH T = H T + H TWHPH T

⇔ H TW (W−1 + HPH T ) = (P −1 + H TWH )PH T

⇔ (P −1 + H TWH )−1H TW = PH T (W−1 + HPH T )−1 ,

(8.94)

which is based on a matrix inversion lemma attributed to A. S. Householder (see
Bierman 1977). Considering, furthermore, the identities

P −
0 = P +

0 (P
+
0 )

−1P −
0

= P +
0

(
(P −

0 )
−1 + H TWH

)
P −

0

= P +
0 + (P +

0 H TW )HP −
0

= P +
0 + KHP −

0 ,

(8.95)

the Kalman gain K may also be employed to compute the updated covariance
matrix

P +
0 = (1−KH )P −

0 (8.96)

without the need to invert the normal equations matrix.
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Recursive Estimation Algorithm

Combining the results obtained so far, the recursive least-squares estimation al-
gorithm proceeds in the following way. Given the a priori and reference state x0

0,
the associated covariance P 0

0 and the measurement batches zI (I = 1, . . . , N )
recursive estimates xI0 of the epoch state x0 as well as the associated covariance
matrices P I

0 are computed for each batch (I = 1, . . . , N ) via the steps Kalman-gain
computation, epoch state vector update and epoch covariance update

KI = P I−1
0 H T

I (W
−1
I + H IP

I−1
0 H T

I )
−1

xI0 = xI−1
0 + KI ( zI − hI (x

0
0)− H I (x

I−1
0 − x0

0) )

P I
0 = ( 1 − KIH I )P

I−1
0 .

(8.97)

While the above expressions are general enough to handle an arbitrary number of
measurements per batch, the Kalman-gain computation is optimized for processing
only a small number of measurements per step. Thus each batch will usually com-
prise a vector of measurement taken at a common epoch with possible correlations
or a single, scalar observation. Uncorrelated measurements can always be processed
one at a time3, in which case the vector zI is replaced by the scalar measurement
zi , the weighting matrix W I is replaced by the scalar weighting factor wi = σ−2

i

and the Kalman gain matrix KI becomes a vector ki with the same dimension (m)
as the state vector x0. Similarly, the Jacobian H I = ∂zI /∂x0 reduces to a 1×m

matrix (i.e. a row vector), which means that products of the form HPH T or Hx

are scalar quantities, too. The resulting set of equations may then be written as

ki = P i−1
0 H T

i (σ
2
i + H iP

i−1
0 H T

i )
−1

xi0 = xi−1
0 + ki(zi − hi(x

0
0)− H i(x

i−1
0 − x0

0))

P i
0 = ( 1 − kiH i )P

i−1
0 .

(8.98)

In the expression for the covariance update care should be taken that kiH i denotes
the dyadic product of the Kalman gain (a column vector) and the measurement
partials (a row vector). Unlike the dot product that results in a scalar value, the
dyadic product yields an m×m matrix.

Independent of the subdivision of the measurement vector into individual
batches the state estimate and covariance obtained after processing the last ob-
servation is identical to the one that would have been obtained in the first iteration
of the standard least-squares method. The recursive formulation may be used, how-
ever, to obtain state estimates and covariances after each measurement without the
need to collect all observations before inverting the normal equations.

3Appropriate transformations for the treatment of vector observations with correlated measure-
ment errors are discussed in Andrews (1968).
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8.3.2 Sequential Estimation

Even though the recursive least-squares estimation allows an on-line monitoring of
the way in which each observation improves the epoch state estimate, the method
cannot readily be used to obtain estimates of the state vector at the measurement
times. This requires a propagation of both the state vector and its covariance between
the times of successive observations and yields the classical sequential estimation
or Kalman filter algorithm.

In the sequel it is assumed that a single data set zi contains only observations
taken at the same time ti . As an example a batch of measurements may consist
of a pair of azimuth/elevation values that have been obtained simultaneously from
the antenna or it may consist of a single range measurement taken independently.
Starting from the state and covariance at a previous epoch ti−1 the measurement
vector zi can then be used to obtain an improved state vector at the measurement
epoch ti together with the associated covariance. For that purpose let

xref
i = x(ti; x(t0)=xref

0 ) = x(ti; x(ti−1)=xref
i−1) (8.99)

denote the state vector that is obtained by propagating the epoch reference state
xref

0 from t0 to ti or, alternatively, by propagating xref
i−1 from ti−1 to ti . Furthermore,

let

Φ i = Φ(ti, ti−1) = ∂xref
i

∂xref
i−1

= Φ(ti, t0)Φ(ti−1, t0)
−1 (8.100)

denote the state transition matrix from epoch ti−1 to epoch ti , which follows from
the solution of the appropriate variational equations.

Using these quantities, the state vector x+
i−1 (obtained from data up to and

including time ti−1) may be employed to predict an a priori state vector

x−
i = xref

i + Φi (x
+
i−1−xref

i−1) (8.101)

at epoch ti . The corresponding a priori covariance at that epoch follows from

P −
i = E

(
(x−

i −E(x−
i ))(x

−
i −E(x−

i ))
T
)

= E
(
Φi(x

+
i−1−E(x+

i−1))(x
+
i−1−E(x+

i−1))
TΦT

i

)

= Φ i P
+
i−1 ΦT

i ,

(8.102)

where P +
i−1 is the covariance of x+

i−1. Since the observations zi have not yet been
taken into account, the information contained in x−

i and P −
i is exactly the same as

that in x+
i−1 and P +

i−1 except for the epoch to which these values refer.
In order to incorporate the new measurements and update the a priori informa-

tion, the residual vector ρi is expressed as a function of quantities referring to ti
instead of t0:

ρi = zi − hi(x
ref
0 )− H i(x

−
0 −xref

0 )

= zi − gi(x
ref
i )− Gi(x

−
i −xref

i ) .
(8.103)
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Here hi , which models the observations at time ti in terms of the state at epoch t0,
has been replaced by the equivalent function

gi(ti, x(ti)) = hi(ti, x(t0)) , (8.104)

which models the observations in terms of the state vector at the measurement time
(cf. (8.5)). Accordingly, the Jacobian H i has been factored into

H i = ∂hi

∂xref
0

= ∂gi

∂xref
i

∂xref
i

∂xref
0

= GiΦ(ti, t0) with Gi = ∂gi

∂xref
i

(8.105)

to obtain the desired expression for the residual vector. Similarly, the Kalman gain
is formulated as

K i = P −
i GT

i (W
−1
i + GiP

−
i GT

i )
−1 , (8.106)

which maps the residuals into a state vector correction at the measurement epoch
ti .

Linearized Kalman Filter

Combining the results obtained so far, the sequential estimation algorithm or Kalman
filter proceeds by computing estimates x+

i of the state vector at the measurement
times ti (i = 1, . . . , n) as well as the associated covariance matrices P +

i via se-
quential time and measurement update steps (Fig. 8.7).

The time update phase starts with the integration of the equation of motion and
the variational equations from ti−1 to ti in order to obtain the reference state xref

i

and the transition matrix Φ i = ∂xref
i /∂xref

i−1. Using these quantities the previous
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Fig. 8.7. The linearized Kalman filter (LKF) refers all measurements and state corrections to a
common reference trajectory. Initially, when the covariance is still small, the filter output closely
matches the observations (shaded circles). Later on, the filter approaches the true trajectory and
becomes less sensitive to new data. Due to the increasing difference between the reference state and
the estimated trajectory the filter output may become erroneous in case of non-linearities.
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estimate x+
i−1 and the associated covariance matrix P +

i−1 may then be propagated
to the time ti of the most recent measurement:

x−
i = xref

i + Φi (x
+
i−1 − xref

i−1)

P −
i = Φi P

+
i−1 ΦT

i .
(8.107)

The subsequent measurement update phase comprises the computation of the
Kalman gain as well the state and covariance update:

Ki = P −
i GT

i (W
−1
i + GiP

−
i GT

i )
−1

x+
i = x−

i + K i

(
zi − gi(x

ref
i )− Gi (x

−
i − xref

i )
)

P +
i = ( 1 − K iGi )P

−
i .

(8.108)

The filter starts with x+
0 = xref

0 and P +
0 = P ref

0 .

8.3.3 Extended Kalman Filter

The sequential processing of a given set of measurements corresponds essentially
to a single iteration of the least-squares estimation method. For a successful appli-
cation of the basic Kalman filter the deviations between the reference state and the
estimated state must therefore be small enough to neglect any non-linearities in the
system dynamics and the measurement modeling. In order to avoid this restriction
and make full use of the advantages of sequential estimation for orbit determina-
tion purposes the Extended Kalman Filter has been developed (Fig. 8.8). It may
be derived from the basic Kalman filter by resetting the reference state xref

i−1 to the
estimate x+

i−1 at the start of each step.
The time update phase of the extended filter thus comprises the propagation

of the previous estimate x+
i−1 from ti−1 to ti and the simultaneous solution of the
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Fig. 8.8. The extended Kalman filter (EKF) makes use of the latest estimate to propagate the state
vector and the state transition matrix. This makes the EKF less sensitive to non-linearities than the
linearized Kalman filter.
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variational equations for the state transition matrix. As a result one obtains the
predicted state vector x−

i and the associated covariance matrix P −
i :

x−
i = x(ti; x(ti−1)=x+

i−1)

P −
i = Φi P

+
i−1 ΦT

i .
(8.109)

The measurement update phase remains the same as for the basic Kalman filter,
except for the simplified state update equation:

K i = P −
i GT

i (W
−1
i + GiP

−
i GT

i )
−1

x+
i = x−

i + K i

(
zi − gi(x

−
i )
)

P +
i = ( 1 − K iGi )P

−
i .

(8.110)

The filter starts with x0 = x
apr
0 and P 0 = P

apr
0 . Due to the regular update of the

reference state non-linearities are reduced to a minimum and within a few steps the
filter may arrive at a solution that would otherwise require multiple iterations.

Some price has to be paid, however, for the improved performance of the
extended Kalman filter that results from an increased computational effort for the
state and covariance propagation. When using the same reference orbit for the
processing of all measurements in the basic Kalman filter, only one initial value
problem has to be solved by numerical integration. The reference state and state
transition matrix at the time of a particular measurement can then be obtained
by interpolation independent of the stepsize control employed for the integration.
In case of the extended filter a separate initial value problem has to be solved
for each measurement to be processed, and the required restart of the integration
method may then result in a considerable increase in computing time. Typically,
low-order single-step integration methods like the 4th-order Runge–Kutta scheme
are therefore employed in real-time orbit determination programs based on extended
Kalman filters.

8.3.4 Factorization Methods

As with the batch least-squares method the performance of a Kalman filter may
deteriorate considerably under certain conditions unless special care is taken to
reduce the impact of numerical errors in the computation. The problem is more
serious, however, in case of the Kalman filter, since it must often be implemented
in single precision arithmetic to speed up the computation in real-time or on-board
applications.

A simple, but efficient method of coping with these difficulties consists of
using the Joseph algorithm (Bucy & Joseph 1968) for the update of the covariance
matrix. Since the covariance P i becomes smaller and smaller as new observations
are processed, round-off errors in the update formulas

P +
i = ( 1 − K iGi )P

−
i (8.111)
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may ultimately result in a matrix with small negative or zero eigenvalues, which
does not represent the true covariance matrix anymore and leads to a failure of the
filtering algorithm. Rewriting the update formula as

P +
i = ( 1 − K iGi )P

−
i

= ( 1 − K iGi )P
−
i − P +

i GT
i KT

i + P +
i GT

i KT
i

= ( 1 − K iGi )P
−
i ( 1 − K iGi )

T + P +
i GT

i KT
i

(8.112)

and making use of K i = P +
i GT

i W i one may, however, obtain an alternative update
formula

P +
i = ( 1 − K iGi )P

−
i ( 1 − K iGi )

T + K iW
−1
i KT

i , (8.113)

which ensures that P +
i is always positive definite irrespective of errors in K i or

1−K iGi . With minor modifications the stabilized update, which has here been
derived for the extended Kalman filter, may equally well be applied to other forms
of recursive and sequential estimators.

Further methods, which are more closely related to techniques employed for a
numerical stable solution of the least-squares problem, make use of an appropriate
factorization of the covariance matrix (or information matrix). By updating the
factorization instead of the covariance matrix an annihilation of near-equal numbers
is avoided and the filter becomes less sensitive to round-off errors. Single precision
arithmetic may then be used to obtain an accuracy that would otherwise require
twice the word length.

The square root factorization method due to Potter and Andrews (see Battin
1987, Bierman 1977) utilizes a factorization of the form

P i = SiS
T
i (8.114)

and replaces the update formula for P i by an update formula for its square root Si .
An equally stable but computationally more efficient method is the UDUT -Filter
developed by Bierman (1977), which makes use of a factorization into an upper
triangular matrix U and a diagonal matrix D.

Further details and reviews of various types of square root filters and factor-
ization methods for sequential estimation are given in Kaminsky et al. (1971) and
Bierman (1977). As regards the computer performance and resource requirements,
factorization methods have been shown to be fully compatible with simple for-
mulations of the Kalman filter provided that they are coded in an optimal way (cf.
Bierman 1977, Campbell et al. 1983). For practical applications the use of advanced
Kalman filter implementations is considerably facilitated by appropriate software
libraries (see e.g. Bierman & Bierman 1984, Branyon et al. 1988).

8.3.5 Process Noise

A phenomenon that is likely to occur in the practical application of a Kalman filter
is the filter’s divergence from the actual solution after processing a certain amount
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of data. Initially, the state uncertainty and the corresponding covariance matrix is
sufficiently high to allow an appropriate correction of the state vector with each
new observation. As more and more measurements are processed, however, both the
covariance matrix and the Kalman gain approach zero, which may ultimately inhibit
further improvements of the state vector. Any errors that arise from small non-
linearities, round-off errors or simplifications of the force and measurement model
will then be propagated without further correction by subsequent measurements
and result in an erroneous and diverging state estimate.

A possible way of coping with this problem consists of adding a small noise term
to the covariance matrix in each step that inhibits the matrix from getting smaller
and smaller. The method arises from the concept of process noise, which affects
the system dynamics in much the same way as the measurement noise affects the
observations. The differential equation describing the evolution of the state vector
is supplemented by a term u(t) to represent stochastic modeling errors inherent in
the description of the dynamical system:

ẋ = f (t, x)+ u(t) . (8.115)

As an approximation of the actual modeling errors, u(t) is assumed to be a random
variable with mean value

E(u(t)) = 0 (8.116)

and covariance

E(u(t)u(t ′)) = Q(t)δ(t − t ′) . (8.117)

The covariance may be time-dependent, but no time correlation is assumed to exist
as expressed by the Dirac delta function δ(t − t ′). Frequently, the latter property
is expressed by the term white noise in contrast to colored noise which exhibits a
correlation in time.

Since the expected value of the process noise is zero, it does not affect the
orbit on the average. The state estimate may therefore be propagated as usual
by solving the equation of motion without consideration of the noise term. The
covariance propagation formula is modified, however, to account for an increased
state uncertainty due to the presence of process noise. Since each time interval
[t, t+dt] within ti−1 and ti gives rise to a contribution Q(t)dt to the covariance at
time t , the predicted covariance at ti is given by

P −
i = Φ(ti, ti−1)P

+
i−1Φ

T (ti, ti−1)+
ti∫

ti−1

Φ(ti, t)Q(t)ΦT (ti, t)dt , (8.118)

where the integral can be obtained analytically for simple dynamical systems
(Brown & Hwang 1997). Alternatively, the matrix differential equation

dP (t)

dt
=
(
∂f

∂x

)
P (t)+ P (t)

(
∂f

∂x

)T
+ Q(t) (8.119)
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with initial conditions P (ti−1) = P +
i−1 is integrated along with the state vector in

the continuous discrete Kalman filter to obtain continuous covariance information
between the measurement updates (see. e.g. Halain et al. 1998).

If Q does not depend on t and if the interval between subsequent measurements
is small enough to neglect deviations of the state transition matrix from unity, the
covariance propagation may further be simplified yielding

P −
i = Φ(ti, ti−1)P

+
i−1Φ

T (ti, ti−1)+ Q (ti − ti−1) . (8.120)

TheQ-matrix thus contributes to an increase of the covariance in each step and can
be used to balance the subsequent decrease due to the processing of a measurement.

Taking into account process noise gives the filter a fading memory characteris-
tics, which means that past observations have a gradually decreasing effect on the
state estimate. By increasing the Q-matrix, both the covariance and the Kalman
gain increase, thus making the filter more sensitive to new observations. A small
value of theQ-matrix is necessary, on the other hand, to avoid large state corrections
in the event of erroneous observations. In practical applications the Q-matrix may
be determined by simulations in order to find a proper balance between process and
measurement noise and ensure an optimum filter performance.

An alternative approach has been developed by Wright (1981), which builds
a covariance based on physical models of error contributions such as drag, grav-
ity, and propulsion system performance as well as measurement characteristics.
This technique is particularly robust and overcomes problems encountered in the
traditional modeling of process noise.

8.4 Comparison of Batch and Sequential Estimation

As has been pointed out in the introduction, the common estimation techniques
employed for orbit determination purposes are closely related to each other and a
smooth transition is possible from the batch least-squares method to the various
forms of Kalman filter. Each type of estimator has inherent advantages and disad-
vantages and a trade-off is usually required to select the most suitable estimation
method for a particular application:

• Measurement processing and state correction: The classic batch least-squares
method computes the epoch state estimate after processing the full set of ob-
servations. If improved epoch state estimates are required after each measure-
ment, a formulation involving Givens rotations or the recursive least-squares
method may be used. The Kalman filter in contrast processes a single scalar
or vector measurement at a time and yields sequential state estimates at the
measurement times.

• Treatment of non-linearities: Due to the non-linear relation between the epoch
state vector and the modeled measurements, multiple iterations are required
in the least-squares method to compute a state estimate that actually mini-
mizes the loss function. Using the extended Kalman filter these iterations may
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in general be avoided, since the reference solution is changed with each ob-
servation. Problems are more likely, however, in the case of large deviations
between the a priori state and the actual state as well as poor management of
the covariance.

• Computer implementation: When using a Kalman filter for orbit determi-
nation there is no need for storing measurements from previous time steps.
Storage requirements are therefore smaller than for the least-squares method,
in which various data have to be stored for subsequent iterations.

• Numerical stability: Both filters and least-squares estimators may be sub-
ject to numerical problems in the case of bad observability as indicated by
an ill-conditioned normal equations matrix or covariance matrix. Numeri-
cally stable algorithms employing different types of matrix factorizations are
available, however, for both estimation techniques. The increase in comput-
ing effort and storage requirement is generally negligible and the stabilized
algorithms can therefore be recommended for most applications.

• Divergence: A divergence of the least-squares solution from one iteration to
the next may occur in rare instances of bad observability, a bad initial state
estimate and high non-linearities. All of these could also cause a Kalman
filter to diverge. In addition divergence of the state estimate from the true
solution is likely to occur in a Kalman filter, when the covariance becomes
small and the filter gets insensitive to new observations. Process noise may
be incorporated into the filter to avoid divergence but heuristic assumptions
and simulations are often required to determine the appropriate noise model
for a particular situation, unless a physical description of the process noise
density matrix is available.

• Process noise: A unique feature of Kalman filters as compared to the least-
squares method is the incorporation of process noise into the estimation pro-
cess. Aside from being required to avoid filter divergence problems, it may
be employed to get more realistic covariance predictions in the presence of
unmodeled accelerations. Furthermore, it may be used to reduce the influ-
ence of past observations on the state estimate as compared to more recent
observations.

• Influence of bad data points: The batch estimator and the recursive least-
squares method process all data points using a common reference trajectory.
This facilitates the handling of bad data points, which may be recognized by
residuals that are considerably larger than the average value. In general the
least-squares technique is therefore more robust and easier to handle than
the Kalman filter. The latter requires a careful balancing between a priori
covariance, measurement weighting and process noise to allow a rejection
of bad data points. For example, a Q-matrix, which is too large, will allow
larger measurement errors to be accepted. One which is too small may allow
good measurements to be rejected.
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Traditional applications in which Kalman filters are preferred to batch least-squares
techniques include the on-board navigation of manned or unmanned spacecraft
requiring a real-time state estimate (Battin & Levine 1970). Filtering techniques are,
furthermore, used in the field of interplanetary orbit determination and navigation.
By incorporating appropriate process noise, unmodeled statistical accelerations due
to attitude thruster activities or radiation pressure modeling simplifications may be
accounted for, which provides more realistic estimates of the injection error near
the target planet (Campbell et al. 1983).

The batch least-squares method on the other hand is commonly employed for
off-line orbit determination of Earth-bound satellites (Long et al. 1989, Soop 1983)
and for the estimation of geodetic parameters from satellite orbits (McCarthy et al.
1993). A comparison indicating a good agreement of orbit determination results
from precision batch least-squares and sequential estimation programs (GTDS,
RTOD/E) for satellites tracked by the Tracking Data and Relay Satellite System
(TDRSS) has recently been established by a study conducted on behalf of the God-
dard Space Flight Center (Oza et al. 1992). Similar conclusions have been obtained
by Halain et al. (1998) for single and multi-station tracking of geostationary satel-
lites.
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Exercises

Exercise 8.1 (Givens Rotations) The following sequence of measurements zi of
a physical quantity z(t) has been collected at non-equidistant times ti :

i 0 1 2 3 4 5 6
ti 0.04 0.32 0.51 0.73 1.03 1.42 1.60
zi 2.63 1.18 1.16 1.54 2.65 5.41 7.67

From a graphical representation of the measurements a quadratic relation between
z and t may be suspected. Employ a least-squares estimation with Givens rotations
to adjust a second-order polynomial

z(t) = c0 + c1 ·t + c2 ·t2 (8.121)

to the data points (adopted from Schwarz 1988).

Solution: Inserting the measurement zi and times ti into (8.121) yields an overde-
termined linear system of equations Ax = b with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0.04 0.0016
1.0 0.32 0.1024
1.0 0.51 0.2601
1.0 0.73 0.5329
1.0 1.03 1.0609
1.0 1.42 2.0164
1.0 1.60 2.5600

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

x =
⎛
⎝
c0
c1
c2

⎞
⎠ b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.63
1.18
1.16
1.54
2.65
5.41
7.67

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Upon processing each individual data equation using Givens rotations, the following
values for the square-root information matrix R and the transformed measurement
vector d are obtained:

R0 =
⎛
⎝

+1.0000 +0.0400 +0.0016
+0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000

⎞
⎠ d0 =

⎛
⎝

+2.6300
+0.0000
+0.0000

⎞
⎠

R1 =
⎛
⎝

+1.4142 +0.2546 +0.0735
+0.0000 +0.1980 +0.0713
+0.0000 +0.0000 +0.0000

⎞
⎠ d1 =

⎛
⎝

+2.6941
−1.0253
+0.0000

⎞
⎠

R2 =
⎛
⎝

+1.7321 +0.5023 +0.2102
+0.0000 +0.3344 +0.1791
+0.0000 +0.0000 +0.0432

⎞
⎠ d2 =

⎛
⎝

+2.8694
−1.0973
+0.4660

⎞
⎠

R3 =
⎛
⎝

+2.0000 +0.8000 +0.4485
+0.0000 +0.5070 +0.3860
+0.0000 +0.0000 +0.1093

⎞
⎠ d3 =

⎛
⎝

+3.2550
−0.7997
+0.8806

⎞
⎠

. . .

R6 =
⎛
⎝

+2.6458 +2.1355 +2.4697
+0.0000 +1.4050 +2.3719
+0.0000 +0.0000 +0.6179

⎞
⎠ d6 =

⎛
⎝

+8.4059
+4.9335
+3.4646

⎞
⎠

Using backsubstitution, one finally obtains the solution:
⎛
⎝
c0
c1
c2

⎞
⎠ = R−1

6 d6 =
⎛
⎝

+2.749198
−5.954657
+5.607247

⎞
⎠
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Exercise 8.2 (Least-Squares Orbit Determination) The Bangalore ground sta-
tion, located in India at R = (+1344.0, +6069.0, 1429.0) km, has collected six
sets of range and angle tracking data of a telecommunications satellite in geosta-
tionary transfer orbit:

Date UTC A [◦] E [◦] ρ [km]
1995/03/30 00:20:00.0 196.280 49.179 6606.330
1995/03/30 00:40:00.0 148.760 55.273 11459.583
1995/03/30 01:00:00.0 133.129 53.164 15939.297
1995/03/30 01:20:00.0 126.894 52.313 19747.028
1995/03/30 01:40:00.0 124.077 52.575 22978.426
1995/03/30 02:00:00.0 122.943 53.574 25728.145

According to the launcher agency, the nominal position and velocity with respect
to the Earth equator and equinox are given by

r(t0) = (−6335.0, −3728.0, −579.0)km
v(t0) = (+2.1680, −9.2630, −1.0795)km/s

at the time t0 = 1995/03/30 00:00 UTC of injection. Determine the achieved injec-
tion state from the above observations using a batch least-squares fit. How many
iterations are required and how accurate is your result, assuming that the standard
deviation of the measurements amounts to σA = 0.01◦ ·cos(E), σE = 0.01◦ and
σρ = 10 m?

Hint: The above observations match a Keplerian orbit with epoch state vector

r(t0) = (−6345.0, −3723.0, −580.0)km
v(t0) = (+2.1690, −9.2660, −1.0790)km/s

neglecting precession, nutation, UT1-UTC, light time and refraction. The same
model is recommended for the orbit determination process.

Solution: The following residuals are obtained in the first and second iteration:

1st Iteration 2nd Iteration
Date UTC A [◦] E [◦] ρ [m] A [◦] E [◦] ρ [m]

1995/03/30 00:20:00.0 0.100 −0.002 5479.1 0.001 0.002 −4.5
1995/03/30 00:40:00.0 0.063 0.044 14250.5 −0.001 0.001 0.8
1995/03/30 01:00:00.0 0.055 0.063 28320.9 −0.001 0.001 10.0
1995/03/30 01:20:00.0 0.065 0.081 45272.4 −0.001 0.000 24.7
1995/03/30 01:40:00.0 0.083 0.100 64708.7 −0.001 0.000 43.7
1995/03/30 02:00:00.0 0.108 0.120 86542.9 −0.000 0.000 66.1

Thereafter, all residuals vanish to the given number of digits. Likewise, the a priori
state vector is corrected to the final value within two iterations:

Parameter A priori Δ1 Δ2 Final σ

x [m] −6335000.0 −9946.9 −53.1 −6345000.0 276.9
y [m] −3728000.0 5188.3 −188.3 −3723000.0 737.0
z [m] −579000.0 −1124.8 124.8 −580000.0 829.8
ẋ [m/s] 2168.0000 0.8918 0.1082 2169.0000 0.6520
ẏ [m/s] −9263.0000 −3.0983 0.0983 −9266.0000 0.5226
ż [m/s] −1079.5000 0.3216 0.1784 −1079.0000 0.3695

The standard deviation of the achieved estimate amounts to roughly 1km in position
and 1 m/s in velocity.
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Exercise 8.3 (Orbit Determination by Extended Kalman Filter) Process the
measurements and auxiliary data given in Exercise 8.2 in an extended Kalman
filter to determine the spacecraft state vector at the time of each measurement. To
initialize the filter, assume an a priori standard deviation of 10 km viz. 10 m/s in
each axis. Compute the position and velocity error with respect to the true Keplerian
orbit after each time and measurement update and compare your results with the
standard deviation obtained from the diagonal elements of the covariance matrix.

Hint: Instead of processing the simultaneous azimuth, elevation and range mea-
surements in a three-dimensional vector update of the Kalman filter, three consec-
utive scalar updates can be employed. This saves the need for a three-dimensional
matrix inversion in the computation of the Kalman gain.

Solution: The uncertainty of the epoch state vector propagates into a 30 km and
24 m/s standard deviation of position and velocity at the time of the first measure-
ment. Because the combination of two angle measurements and a range measure-
ment provides a three-dimensional position fix, the position uncertainty is decreased
to less than 2 km after processing the first set of observations. The velocity knowl-
edge, on the other hand, is only improved after processing the next data set. Due
to the absence of measurement and model errors in the given example, the filter
finally achieves an actual accuracy in the range of 100 m and 1-10 cm/s, which may
be compared to the statistical uncertainties of 3 km and 0.5 m/s.

Δ|r| σ(|r|) Δ|v| σ(|v|)
Date UTC Update [m] [m/s] [m] [m/s]

1995/03/30 00:20:00.0 t 9321.4 29905.8 10.2672 24.0682
A 1113.8 22177.0 8.3429 19.8879
E 498.8 18155.2 8.6497 18.8681
ρ 44.2 1623.6 8.5132 12.2137

1995/03/30 00:40:00.0 t 10320.2 14727.9 8.9699 12.1528
A 6599.9 12044.8 5.9084 10.1173
E 5786.9 8548.2 5.3129 7.7209
ρ 237.5 2713.7 0.3564 2.5002

1995/03/30 01:00:00.0 t 646.0 5338.6 0.3368 2.2941
A 292.4 4435.5 0.1985 1.9658
E 275.6 3256.8 0.1939 1.5474
ρ 66.7 2767.3 0.0318 1.1352

1995/03/30 01:20:00.0 t 98.3 3924.7 0.0297 1.0344
A 100.2 3642.8 0.0315 0.9723
E 62.6 2979.8 0.0201 0.8003
ρ 61.1 2969.9 0.0191 0.7867

1995/03/30 01:40:00.0 t 80.1 3779.6 0.0178 0.7179
A 80.7 3556.2 0.0186 0.6812
E 57.2 3094.4 0.0135 0.5955
ρ 56.1 3087.9 0.0125 0.5862

1995/03/30 02:00:00.0 t 68.7 3696.8 0.0117 0.5349
A 68.8 3513.9 0.0121 0.5113
E 52.2 3159.3 0.0093 0.4608
ρ 52.3 3153.0 0.0089 0.4571



9. Applications

The presentation of statistical estimation methods given in the previous chapter
forms the final building block in the derivation of fundamental models and methods
for satellite orbit prediction and determination. Focus is now given to the practical
aspects by discussing selected applications, each of which emphasizes certain key
elements:

• an Orbit Determination Error Analysis illustrates the use of consider covari-
ance studies in the design of tracking systems for geostationary communica-
tions satellites,

• a section on Real-Time Orbit Determination discusses the design and ap-
plication of a dynamical Kalman filter for autonomous orbit determination
based on on-board navigation measurements and, finally,

• concepts of satellite-satellite tracking and multi-satellite orbit adjustment are
demonstrated in the section on Relay Satellite Orbit Determination.

Each section comprises a dedicated computer program, which deepens the under-
standing of the interaction of numerical trajectory models, measurement processing,
and estimation methods in related software systems. Upon performing realistic case
studies and processing real-life data, the reader should be able to collect hands-on
experience and gain a better understanding of the underlying models and methods.

9.1 Orbit Determination Error Analysis

In the mission design of geostationary satellite projects, certain requirements on
the orbit determination accuracy are commonly imposed to ensure safe and fuel-
optimal spacecraft control. Each satellite must be maintained within given limits
of the sub-satellite longitude and latitude that have been assigned by international
agreement. A minimum position knowledge is required e.g. to avoid violations of
the specified deadband and to avoid proximities with other satellites. A consider
covariance analysis is helpful to answer the following questions:

• Can a given knowledge of the orbital elements be achieved with the planned
tracking configuration?

• What is the impact of the systematic errors in the station location or the
ranging calibration onto the resulting orbit determination accuracy?

• How quickly, and to what accuracy can the orbit be recovered after a maneuver
and how does the maneuver calibration uncertainty affect the evolution of the
predicted spacecraft orbit?

O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications,   
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While answers to the above questions might also be obtained from a Monte-Carlo
simulation, a large number of cases would be required to obtain the desired statistical
information. Using the type of orbit determination error analysis described below,
results can generally be obtained much faster and with less computational effort.
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Fig. 9.1. Motion of a satellite in the vicinity of a geostationary point

9.1.1 A Linearized Orbit Model

As their name implies, geostationary satellites maintain an essentially fixed position
with respect to the surface of the Earth. This is made possible by inserting the
spacecraft into a circular, equatorial orbit at an altitude of roughly 36 000 km. Here
its mean motion matches the Earth’s rotation rate of one revolution per 23h56m and
the spacecraft thus remains fixed with respect to the surface of the Earth. While an
ideal geostationary motion is prevented by the perturbations of the Earth’s aspherical
gravity field, the lunisolar gravity and the solar radiation pressure, it is common
practice to actively control a satellite in a box of 100–150 km width around a nominal
geostationary longitude.

Due to its special nature the actual motion of a (near-)geostationary satellite
may conveniently be described in a co-rotating equatorial reference frame, which
is centered at the ideal geostationary position (Fig. 9.1). The coordinates r =
(x, y, z)T in this frame are related to the inertial coordinates r̂ (as referred to the
true equator and equinox) by the relation

r = Rz(Θ+λ0) r̂ − (a0, 0, 0)T . (9.1)

Here λ0 and a0 = 42 164.0 km denote the geographic longitude and the radius of
the geostationary reference point.

The transformation into the rotating reference frame gives rise to Coriolis terms
and centripetal accelerations, which may, however, be simplified by linearization
around the circular reference orbit. The resulting equations of motion

ẍ − 2nẏ − 3n2x = ax
ÿ + 2nẋ = ay
z̈ + n2z = az

(9.2)
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relate the coordinates x (radial direction), y (along-track direction), and z (cross-
track direction) to the perturbing accelerations (ax, ay, az) and are known as Hill’s
equations or Clohessy–Wiltshire equations (Clohessy & Wiltshire 1960). The quan-
tity n denotes the mean motion of the reference orbit and is equal to the Earth’s
rotation rate when considering the motion near a geostationary point.

In the simplifying case of unperturbed, Keplerian motion the equations can
be integrated in closed form (cf. Vallado 1997). For given initial conditions y0 =
(x0, y0, z0, ẋ0, ẏ0, ż0)

T the position at time t after the initial epoch is given by

x(t) = −(3x0+2ẏ0/n)cos(nt) + (ẋ0/n)sin(nt) + (4x0+2ẏ0/n)

y(t) = +(6x0+4ẏ0/n)sin(nt) + (2ẋ0/n)cos(nt)
−(6x0+3ẏ0/n)(nt)+ (y0−2ẋ0/n)

z(t) = (z0)cos(nt) + (ż0/n)sin(nt) .

(9.3)

As may already be recognized from the Clohessy–Wiltshire equations, the mo-
tion along the z-axis (i.e. in north-south direction) is a harmonic oscillation that
is completely decoupled from the motion in the x-y-plane. The motion within the
equatorial plane is more complex and comprises a constant offset from the geo-
stationary reference point, a linear drift in the along-track direction (y-axis) and a
superimposed oscillation. The latter results in an ellipse which is twice as large in
the along-track direction as in the radial direction. The constant offset

Δa = 4x0 + 2ẏ0/n (9.4)

in radial direction corresponds to a difference between the actual semi-major axis
and the geostationary radius. It is responsible for the observed drift of

aΔn = −3

2
nΔa = −(6nx0 + 3ẏ0) (9.5)

in the +y-direction (see (9.3)).
The above equations may be supplemented by the corresponding expressions

for the velocity vector and rearranged to obtain a linear relation

y(t) = Φ(t) y0 (9.6)

between the instantaneous state vector y and the epoch state vector y0. The state
transition matrix Φ, which maps the initial state to the state at time t , does not
depend on the actual orbit and involves time-dependent terms only. It is given by
the expression

Φ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 − 3c 0 0 s/n 2(1 − c)/n 0
6(s − nt) 1 0 2(c − 1)/n 4s/n− 3t 0

0 0 c 0 0 s/n

3ns 0 0 c 2s 0
6n(c − 1) 0 0 −2s 4c − 3 0

0 0 −ns 0 0 c

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9.7)
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where s and c denote the sine and cosine of phase angle nt , respectively. Within the
linearized orbit model, the motion of a (near-)geostationary satellite may conve-
niently be described in terms of the epoch state vector using elementary linear and
harmonic functions of time. Even more, the partial derivatives with respect to the
initial values are obtained at no extra cost along with the prediction of the trajectory
itself.

Based on the description of the spacecraft orbit in the geostationary reference
frame, one may compute the modeled observations (azimuth A, elevation E, and
range ρ) using suitably adapted relations for the topocentric position of the satellite.
For a station at longitude λ= λ0 +Δλ, latitude ϕ and Greenwich coordinates R,
the spacecraft position s measured in the local east, north, and zenith direction is
given by

s = s0 + Er (9.8)

with

s0 = E
(
(a0, 0, 0)T − Rz(λ0)R

)
(9.9)

and

E =
⎛
⎝

− sinΔλ + cosΔλ 0
− sin ϕ cosΔλ − sin ϕ sinΔλ + cosϕ
+ cosϕ cosΔλ + cosϕ sinΔλ + sinϕ

⎞
⎠ . (9.10)

Here Δλ is the ground station longitude relative to the direction of geostationary
point, which is offset from the Greenwich meridian by the angle λ0. Azimuth,
elevation, and range as well as the associated partial derivatives with respect to
the spacecraft position in the geostationary frame are then obtained using relations
presented earlier (cf. Chaps. 6 & 7).

Due to the near-constant observation geometry, the partial derivatives can be
evaluated at the nominal geostationary point (i.e. r = 0) without sacrificing accu-
racy. As a consequence the partial derivatives

∂(A,E, ρ)

∂y0
≈ ∂(A,E, ρ)

∂r

∣∣∣∣
r=0

∂r

∂y0
=
[
∂(A,E, ρ)

∂s0
E

]
Φ1...3,1...6 (9.11)

may be factored into the product of a term that depends only on the station geom-
etry and a second term that depends only on the measurement time with respect
to initial epoch. This factorization unveils a fundamental degeneracy of the geo-
stationary orbit determination problem, which is discussed in more detail in Soop
(1983, 1994). Each component of the spacecraft position vector (9.3) and the state
transition matrix (9.7) exhibits a time dependence, which is fully described by the
superposition

f (t) = f0 + f1t + fc cos(nt)+ fs sin(nt) (9.12)

of a sinusoidal and a linear motion with corresponding parameters fi . Based on
the above assumption of a constant observation geometry, the variation of the mea-
surements with time is a linear combination of state transition matrix elements.
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Therefore, the general time dependence of each measurement type is also fully
described by a four-parameter model comprising e.g. a sine and cosine amplitude,
a drift and an offset. This is illustrated by a sample set of azimuth and elevation
measurements shown in Fig. 9.2.
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Fig. 9.2. Sample azimuth and elevation measurements of a geostationary satellite.

Evidently, it is impossible to uniquely determine six orbital elements or state
vector components from a single set of measurements that depends on four param-
eters only, irrespective of the length of the data arc. To cope with this problem, it is
mandatory to combine different measurement types (e.g. range and angles) or to use
more than one tracking station (e.g. dual station ranging) in the orbit determination
of geostationary satellites. Even though the degeneracy described above is strictly
valid only for the linearized orbit model, the conclusions are likewise applicable to
the practice. Both perturbations and non-linearities in the true orbit model are gen-
erally insufficient to allow a well-conditioned adjustment of all orbital parameters
from a single measurement type.

9.1.2 Consider Covariance Analysis

The orbit and measurement model derived in the previous section provides the basis
for a consider covariance analysis of geostationary satellite orbit determination.
In accordance with common practice, range and angle tracking from up to two
ground stations is discussed in the sequel. Among the possible set of consider
parameters, focus is given to measurement biases, i.e. systematic offsets of the
range and angle measurements from their true values. Besides having a major
impact on the achievable orbit determination accuracy, these parameters are easily
treated in the error analysis due to the simple structure of the associated partial
derivatives. They are thus well suited to illustrating and understanding the concepts
behind more sophisticated consider covariance studies.
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In total, the problem formulation comprises up to twelve parameters, including
the epoch state vector y0 as well as the biasesΔA1,ΔE1,Δρ1 andΔA2,ΔE2,Δρ2

of the range and angle measurements from the first and second ground stations. The
whole set may be partitioned into a vector x of estimation parameters and a vector
c of consider parameters. As an example one might study tracking from a single
station, in which the estimation parameter vector xT = (yT0 , ΔA,ΔE) comprises
the epoch state vector and the azimuth and elevation biases of the tracking station,
whereas the range bias Δρ is the only consider parameter vector.

Partial derivatives H y0 = ∂z/∂y0 of the measurements with respect to the
epoch state vector are computed as outlined in the previous section. Biases constitute
additive terms in the respective measurement equation, which e.g. takes the form

z = hρ(y0, t)+Δρ + ε (9.13)

for a range measurement. The partial derivatives HΔ = ∂z/∂Δ with respect to a
bias parameter are thus equal to one if the station and type of the bias matches
that of the respective measurement (e.g. ∂A1/∂ΔA1 = 1) but zero otherwise (e.g.
∂A1/∂Δρ1 = 0, ∂A2/∂ΔA1 = 0).

For an assumed tracking schedule, as defined by the time and type of each
measurement as well as the applied ground station, one can thus form the partial
derivatives

H = (H x,H c) (9.14)

of the full measurement vector z with respect to the selected estimation vector x and
the consider parameters c. Using these, the noise-only covariance and the consider
covariance as defined in (8.41) and (8.42) can be computed for given values of the
measurements weights σi and the consider parameter covariance C = Cov(c, c).
In the practical implementation a QR decomposition is preferred, however, which
is based on a sequential processing of the partial derivatives using Givens rotations
(Fig. 8.6). Subject to proper ordering of the various parameters (estimation param-
eters first, consider parameters last), the transformation yields an upper triangular
matrix

QT (diag(σ−1
i )·H ) = R =

(
Rxx Rxc

0 Rcc

)
, (9.15)

which, as a sub-block, contains the upper triangular square-root information matrix
Rxx of the estimation parameters. Together with the rectangular sub-block Rxc, it
may be used to form both the noise-only covariance

P = R−1
xx R−T

xx (9.16)

and the consider covariance

P c = P + (R−1
xx Rxc)C(R

−1
xx Rxc)

T . (9.17)

In view of its shape, the required inversion of Rxx may again be performed by the
back-substitution algorithm for triangular matrices.
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For further analysis it is useful to compute the variance of the semi-major a
axis from the state vector covariance. Making use of (9.4) the partial derivatives of
a with respect to the epoch state vector are given by

∂a/∂y0 = (4, 0, 0, 0, 2/n, 0) . (9.18)

This, finally, yields the desired variance

Cov(a, a) = (∂a/∂y0)Cov(y0, y0)(∂a/∂y0)
T , (9.19)

as a function of the 6×6 covariance matrix of the state vector components. In
contrast to other orbital elements, errors in the semi-major axis affect the mean
motion and thus give rise to secularly increasing errors in the predicted spacecraft
orbit. Based on Kepler’s third law, a semi-major axis error Δa results in an along-
track position offset of 3πΔa per day for a geostationary satellite. The semi-major
axis variance is thus particularly important to assess the accuracy with which an
orbit can be propagated based on the estimated epoch state vector.

In a similar fashion, pre- and post-multiplication with the state transition matrix
yields the covariance

Cov(y(t), y(t)) = Φ(t)Cov(y0, y0)Φ
T (t) (9.20)

of the state vector at an arbitrary epoch t . Concerning the interpretation of the
velocity covariance, care has to be taken of the fact that the results refer to the
rotating reference system used to describe the geostationary satellite motion. In
order to obtain the covariance of the inertial velocity vector v̂ in the radial, along-
track and cross-track direction, the above results have to be properly mapped using
the differential relation

∂ ŷ

∂y
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −n 0 1 0 0

+n 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9.21)

between the state vector in the inertial system and the rotating system, which is a
direct consequence of (9.1).

9.1.3 The GEODA Program

The algorithms discussed so far are implemented in the GEODA program for orbit
determination error analysis of geostationary satellites. The user may choose a
combination of range and angle tracking data from up to two stations at a specified
data rate. In addition to the measurement standard deviation, the standard deviation
of a systematic bias may be specified for each data type. Depending on the choice of
the user, biases are either treated as estimation parameters or consider parameters.
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GEODA can thus be used to assess a wide range of tracking configurations and orbit
determination concepts.

All input parameters are collated in the GEODA.inp file, a sample of which is
reproduced below:

Subsatellite longitude [deg] : -72.0
Station 1 (lon [deg], lat [deg], alt [m]) : -58.7 -34.4 0.0
Angles (noise & bias [deg], step [h], est.bias) : 0.02 0.05 0.1 1
Range (noise & bias [m], step [h], est.bias) : 2.0 20.0 3.0 0
Station 2 (lon [deg], lat [deg], alt [m]) : -64.6 +31.6 1000.0
Angles (noise & bias [deg], step [h], est.bias) : 0.02 0.05 0.0 0
Range (noise & bias [m], step [h], est.bias) : 2.0 20.0 0.0 0
Tracking interval [h] : 24.0
Prediction interval [h] : 336.0

Each line starts with a 50 character comment field describing the contents of the sub-
sequent data. The actual input starts in column 51 and blanks are used to separate
individual items. Following the input of the subsatellite longitude of the geosta-
tionary satellite, the user has to specify the geodetic coordinates and the applicable
tracking types for up to two stations. Aside from the standard deviations of the mea-
surement noise (σA, σE , σρ) and bias (σΔA, σΔE , σΔρ) the time between subsequent
measurements and an estimation flag are given independently for angle tracking
(azimuth and elevation) and ranging. The estimation flag is set to 1, if the respec-
tive measurement bias shall be adjusted along with the state vector component. A
value of 0 indicates that the bias is treated as consider parameter with the specified
uncertainty. Finally the total tracking interval and a prediction interval have to be
entered. The latter one specifies the time over which predicted position and velocity
uncertainties are generated by the program at discrete three-hour steps.

9.1.4 Case Studies

The following case studies illustrate the analysis of the achievable orbit determi-
nation performance for an Argentinian communications satellite near 72◦ West
longitude. Two ground stations at Buenos Aires and Cordoba are considered with
geodetic coordinates and assumed tracking parameters as given in Table 9.1. Vari-
ous configurations are analyzed, which are based on single-station range and angle
tracking as well as dual-station ranging. Special consideration is, furthermore, given
to short-arc orbit determination. The full set of test cases is summarized in Table
9.2.

Table 9.1. Station parameters for GEODA case studies

Name λ ϕ h σA,E σΔA,ΔE σρ σΔρ

BUA -58.7◦ -34.4◦ 0 m 0.02◦ 0.05◦ 2 m 20 m
CDB -64.6◦ -31.6◦ 1000 m 0.02◦ 0.05◦ 2 m 20 m
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Table 9.2. Tracking configuration for individual GEODA study cases

Case Description

A1 One day of angle measurements (1/6m) and ranging (1/3h) from BUA station; bias
parameters considered

A2 Same as A1, but azimuth & elevation biases estimated
A3 Same as A2, but for CDB station

B1 One day ranging (1/3h) from BUA and CDB stations; range biases considered
B2 Same as B1, but CDB range bias estimated

C1 12 hours angle measurements (1/6m) and ranging (1/30m) from BUA station; angle
biases estimated, range bias considered

C2 6 hours ranging (1/30m) from BUA and CDB stations; range biases considered

Table 9.3. Epoch state vector accuracies for individual GEODA study cases

σx σy σz σẋ σẏ σż σa
Case Type [m] [m] [m] [m/s] [m/s] [m/s] [m]

A1 Noise 104.0 347.0 1073.9 0.0215 0.0076 0.0785 7.8
Consider 170.5 4463.3 1088.4 0.3234 0.0093 0.0792 123.6

A2 Noise 104.1 368.9 1073.9 0.0234 0.0076 0.0785 8.5
Consider 104.1 716.6 1073.9 0.0505 0.0076 0.0785 8.5

A3 Noise 99.5 863.7 1087.4 0.0616 0.0072 0.0795 14.6
Consider 99.5 1363.0 1087.4 0.0985 0.0072 0.0795 14.6

B1 Noise 1.9 76.7 6.9 0.0056 0.0001 0.0006 1.8
Consider 52.5 2207.8 7.0 0.1607 0.0019 0.0010 52.3

B2 Noise 7.4 262.3 6.9 0.0191 0.0003 0.0006 7.4
Consider 7.4 668.0 6.9 0.0487 0.0003 0.0006 7.4

C1 Noise 168.8 2208.8 1553.1 0.1579 0.0115 0.2233 65.7
Consider 168.8 2292.7 1553.1 0.1641 0.0115 0.2233 65.7

C2 Noise 13.4 519.0 31.0 0.0379 0.0005 0.0021 13.5
Consider 58.7 2199.6 31.3 0.1605 0.0022 0.0021 57.2

The use of single-station range and angle measurements (cases A1 to A3) allows
the orbit to be determined with an accuracy of roughly 100 m in radial direction
(x) as well as 1 km in along-track (y) and normal (z) direction. A comparison of
cases A1 and A2 (Table 9.3) shows that the estimation of angle biases is essential
to reduce the impact of systematic measurement errors on the resulting orbit. The
range bias cannot, however, be estimated together with the angle biases in a single
station configuration, since the resulting least squares equations would be close to
singular. It mainly affects the accuracy by which the along-track position and the
radial velocity component can be determined. As may be recognized from cases
A2 and A3, use of the Buenos Aires station promises better orbit determination
results than that of Cordoba despite an equal tracking performance. This fact may
be attributed to a more favorable tracking geometry of the Buenos Aires station
caused by the larger longitude and latitude offset with respect to the sub-satellite
point.
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Fig. 9.3. Evolution of the predicted position accuracy for single station range and angle tracking
(Case A2)

The evolution of the radial, along-track, cross-track and total position accuracy
for case A2 is illustrated in Fig. 9.3. The individual errors exhibit little to no orbital
periodicity due to the continuous coverage of the tracking arc. While the uncertainty
in the radial and normal component remains essentially constant, the tangential
component varies in a quadratic way as a consequence of the semi-major axis error.

Dual-station ranging (cases B1 and B2) allows for a notable improvement of
the radial and cross-track position vector component as well as the tangential and
cross-track velocity over the single-station scenario. The along-track position and
the radial velocity, however, remain sensitive to the range bias and are 1–2 orders
of magnitude less accurate than the other components. The estimation of one range
bias (Case B2) is possible in the dual-station configuration and recommended to
minimize the impact of systematic errors on the solution.

While one or two-day tracking is generally considered as a standard for the
determination of a geostationary satellite orbit, shorter data arcs may be desirable
e.g. after maneuvers or in contingency situations. As shown by cases C1 and C2 a
reasonable accuracy can already be achieved with half a day of single-station range
and angle measurements or even six hours of dual-station ranging. In the latter case
care should be taken, not to a estimate any bias at all, since the resulting normal
equations would be ill-conditioned and result in a large formal covariance. For even
shorter data arcs, it is difficult to separate the periodic and linear part in the daily
variation of each measurement, which severely reduces the overall condition of the
estimation problem.
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9.2 Real-Time Orbit Determination

The increasing number of GPS receivers for spaceborne applications has revitalized
the interest in real-time and on-board orbit determination to increase the space-
craft autonomy and reduce the required amount of ground operations. Aside from
high-precision applications that require a direct processing of raw code and phase
measurements, the orbit determination can be based on the navigation solution gen-
erated by most of the GPS receivers. In general position values are provided with
a spherical 1σ accuracy of about 100 m (cf. Table 6.2), whereas velocity is only1

accurate to 1 m/s in representative spaceborne receivers. Using a Kalman filter and
an appropriate dynamical model, the inherent measurement noise may be reduced
considerably and much more accurate state vectors be obtained.

The filtering of the SPS (Standard Positioning Service) data provides various
benefits for on-board navigation. These are mainly related to the fact that the result-
ing trajectory is constrained by the dynamical laws of motion, whereas subsequent
GPS position solutions are essentially uncorrelated. As such, the adjusted orbit
information is less sensitive to the intentional deterioration of the GPS measure-
ments (Selective Availability) than the navigation solution itself. In addition, the
dynamical modeling allows a smooth interpolation of the trajectory, a bridging of
data gaps and a detection of erroneous measurements. Finally, the Kalman filter
provides precise velocity information as part of the estimated state vector, which
results from the accumulation of position knowledge over extended data arcs.

9.2.1 Model and Filter Design

For on-board applications, computer resources are generally much more constrained
than for ground operations due to limitations of processor speed and memory. A
careful selection of dynamical models, reference systems, integration methods,
and estimation methods is therefore required in the design of onboard navigation
systems.

Force Model: The GPS navigation data to be processed in the present application
have been collected as part of the GPS/MET experiment (Hajj et al. 1995) on-board
the MicroLab-1 satellite. The spacecraft was launched in 1995 and orbits the Earth
at an altitude of roughly 740 km. At this altitude, the acceleration is dominated by
the gravity field of the Earth including higher-order terms in the spherical harmonics
expansion. Lunisolar gravity on the other hand provides only minor perturbations
for satellites in low-Earth orbits as does the solar radiation pressure for satellites with
representative area-to-mass ratios (cf. Fig. 3.1). From the Harris–Priester density
tables (Table 3.8) it may further be concluded that atmospheric drag does not impose
major perturbations in the relevant altitude range. To illustrate these considerations,

1Considering a typical low-Earth orbit a position knowledge of 100 m represents the same relative
accuracy as a velocity knowledge of 0.1 m/s.
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Table 9.4. Maximum impact of perturbative forces onto the MicroLab-1 trajectory for orbit pre-
dictions up to 6 hours: (a) Earth oblateness (J2), (b) difference of 4 × 4 gravity field and J2, (c)
difference of 10 × 10 and 4 × 4 gravity field, (d) difference of 15 × 15 and 10 × 10 gravity field, (e)
difference of 20 ×20 and 15 ×15 gravity field, (f) solar gravity, (g) lunar gravity, (h) solar radiation
pressure, (i) drag. All values in [m]

t [h] (a) (b) (c) (d) (e) (f) (g) (h) (i)

0.5 8700 210 91 11 3 0 1 0 0
1.0 10000 680 240 22 6 1 2 0 0
1.5 21000 750 240 22 6 3 4 0 1
3.0 33000 1600 340 69 6 5 7 1 4
6.0 71000 1800 570 130 18 9 14 2 14

the orbit of MicroLab-1 has been integrated over a period of 6 hours, taking into
account various force models of increasing complexity.

Based on the results collected in Table 9.4, the lunisolar gravitational perturba-
tions (f, g) are certainly smaller than the measurement accuracy of about 100 m over
the times of interest and the same holds for the effect of solar radiation pressure (h)
as well as aerodynamic drag (i). Measurable effects on the spacecraft trajectory are
caused by harmonic terms up to degree and order 15 in the Earth’s gravity field (a-d),
if one considers propagation times of up to 6 hours. Restricting oneself to half-hour
intervals or tolerating errors up to 1 km, it is possible, however, to apply a reduced
model of degree and order 10. Considering, furthermore, that the computational
workload for evaluating the acceleration is essentially proportional to the square of
the maximum order, the reduced model offers a factor-of-two performance gain at
a tolerable loss in accuracy. A 10×10 gravity model is, therefore, considered as a
baseline for the implementation of a real-time orbit determination process.

Reference System: Since GPS based position measurements refer to an Earth-fixed
(WGS84) reference an appropriate transformation to (or from) the inertial frame
must be applied in the data processing. The same holds for the computation of
the acceleration vector, which is most easily formulated in the Earth-fixed frame
but must be expressed in the inertial frame for integrating the equation of motion.
A proper choice of the reference system is therefore advisable to minimize the
overall computational effort. For the present purpose an almost inertial coordinate
system is suggested, which is aligned with the instantaneous Earth equator and the
mean equinox. Taking into account that polar motion introduces offsets of about
ten meters only, at the surface of the Earth, the transformation from Earth-fixed
WGS84 positions rWGS to inertial coordinates r may then be established as

r = R−1
z (GMST(t))rWGS . (9.22)

Here GMST denotes the Greenwich Mean Sidereal Time at a given instant t . Devi-
ations from a truly inertial coordinate system arise from the neglect of precession
and nutation that slightly alter the orientation of the equator and equinox. The time
scale of these changes is much longer, however, than the typical data span of several
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revolutions required for a reliable orbit adjustment. As such, the associated changes
of the reference system have no practical impact on the performance of the orbit
determination process.

Estimation and Integration: Before discussing the choice of a suitable numerical
integration method for the equation of motion, a brief consideration of the overall
estimation concept is required. While a least-squares method would ensure a high
degree of robustness in the handling of non-linearities or the rejection of erroneous
measurements, it would necessitate an on-board storage of a large measurement
batch to allow multiple iterations. A Kalman filter is therefore preferable, which
processes each measurement exactly once as soon as it is collected. In this case,
however, an extended Kalman filter must be selected to cope with the non-linearity
of the orbit determination problem. The associated change of the reference trajec-
tory in each update step does, however, imply a frequent restart of the numerical
integration. Even for a data rate of only one value per five minutes, a high-order in-
tegration method would be forced to work at a non-optimal stepsize. Considering in
addition the complexity and storage requirements of elaborate single-step methods,
low-order Runge–Kutta methods turn out to be best suited for the envisaged usage.
Furthermore, no stepsize control is required for near-circular orbits. In the sequel
the well-known 4th-order Runge–Kutta method will be applied, which provides a
particularly simple set of coefficients. As a baseline, a 30 s step size is adequate to
integrate the orbit to the desired accuracy.

State Transition Matrix: Another issue that has to be addressed in the design of the
orbit determination process concerns the modeling of the state transition matrix be-
tween consecutive steps. While a rigorous integration of the variational equations
would ensure full consistency between the trajectory model and the associated
partial derivatives, it is generally too cumbersome to be applied in real-time sys-
tems. Simple Taylor expansions may, on the other hand, cause problems if the time
between consecutive data points covers a notable fraction of the orbit. As a com-
promise, a Keplerian formulation of the state transition matrix is therefore applied
in the RTOD program.

Process Noise: Last but not least, a suitable process noise model has to be consid-
ered in the design of the extended Kalman filter. For the present purpose a simple
model is adequate, since measurements are provided at almost equidistant time steps
throughout the whole data arc. It is therefore sufficient to add a constant process-
noise matrix Q = diag(w2

pos, w
2
vel) to the predicted covariance in each time update

step. Position and velocity variances as given by the diagonal elements of Q are
selected in accordance with the expected trajectory modeling errors arising in the
propagation from one measurement to the next. All off-diagonal elements of Q are
set to zero. Suitable values of wpos and wvel are best found by experiment and de-
pend on the data interval, the assumed measurement accuracy, and the accuracy of
the dynamical model. In the present application nominal process-noise parameters
of 0.5 m and 0.5 mm/s are applied for a five-minute data interval, which helps to
avoid a filter divergence without sacrificing the achievable accuracy.
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9.2.2 The RTOD Program

The RTOD program processes a sequence of GPS navigation data and auxiliary
information provided in the RTOD.dat file. Aside from a single header line that
may be skipped on reading, the file contains one record per time with a structure
as described in Table 9.5. Following the date and GPS time tag, the position and
velocity vector in the WGS84 system as determined by the GPS receiver are given
in the initial columns. To evaluate the filter performance, the actual spacecraft
position and velocity in the rotating, Earth-fixed system is furthermore provided as
determined from a least-squares orbit determination with an elaborate force model.
Both position and velocity measurements from the first data record are used to derive
the inertial state vector of the spacecraft, which is required to initialize the filter
and to start the trajectory integration. Subsequent measurement updates make use
of the position measurements only, which provide a much better relative accuracy
than the velocity data.

Table 9.5. Structure of the RTOD data file

Cols. Description

1– 10 Date (yyyy/mm/dd)
13– 24 GPS time (hh:mm:ss.sss)
28– 37 Measured position x (WGS84 system, in [m])
39– 48 Measured position y (WGS84 system, in [m])
50– 59 Measured position z (WGS84 system, in [m])
63– 72 Measured velocity ẋ (WGS84 system, in [m/s])
74– 83 Measured velocity ẏ (WGS84 system, in [m/s])
85– 94 Measured velocity ż (WGS84 system, in [m/s])
98–107 True position x (WGS84 system, in [m])

109–118 True position y (WGS84 system, in [m])
120–129 True position z (WGS84 system, in [m])
133–142 True velocity ẋ (WGS84 system, in [m/s])
144–153 True velocity ẏ (WGS84 system, in [m/s])
155–164 True velocity ż (WGS84 system, in [m/s])

A supplementary setup file RTOD.inp is used to control and modify the filter
performance. The individual parameters comprise the gravity-field order and the
step size applied in the numerical trajectory integration as well as the measure-
ment standard deviation, the a priori statevector uncertainty and two state-noise
parameters for controlling the addition of process noise. An edit (or culling) level
is, furthermore, specified, to allow the rejection of bad measurements. It serves as
a threshold for the identification of outliers and is specified in units of the mea-
surement standard deviation σ . Assuming a Gaussian error distribution, more than
99% of all measurements should exhibit errors of less than 3σ . Measurements, for
which the ratio of the residual and the standard deviation exceeds an edit level of
about three should therefore be considered as erroneous data points and discarded.

Each line of the input file provides a single parameter following a 30-character
comment. Representative parameter values are given in the subsequent listing:
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Gravity model order (<=20) : 10
Integration step size [s] : 30
Measurement sigma [m] : 100
A priori sigma position [m] : 1000
A priori sigma velocity [m/s]: 10
State noise position [m] : 0.5
State noise velocity [m/s] : 0.0005
Edit level (sigma) : 3.0

The output of the RTOD program comprises a copy of the setup parameters and
a table of filter outputs at each step. The table is made up of 13 blank separated
columns, giving the time t since epoch (Col. 1, in [s]), the filtered Earth-fixed
position r (Col. 2–4, in [m]) and the measurement and solution errors. The latter
parameters comprise the difference |rGPS − r ref | between the measured position
and the reference orbit (Col. 5), the standard deviation σr of the estimated position
(Col. 6) and the error |r − r ref | of the estimated position (Col. 7). Corresponding
quantities are provided for the errors of the velocity (Col. 8–10) and the semi-major
axis (Col. 11–13). For information, measurements rejected by the filter are marked
by an asterisk immediately following the measurement error.

9.2.3 Case Studies

The following case studies are based on a 24-hour data arc of GPS measurements
collected by a TurboStar receiver as part of the GPS/MET experiment on October
1, 1996. The measurements are sampled at a rate of one point per five minutes,
yielding an average of 20 measurements per orbit. The data noise as derived from
the root-mean-square deviation from the reference trajectory amounts to roughly
110 m in position and 2.5 m/s in velocity.

Table 9.6. Filter parameters for selected case studies

Parameter Case A Case B Case C

Gravity model order n 10 10 4
Integration step size Δt [s] 30 60 30
Measurement standard deviation σxyz [m] 100 100 100
A priori std. dev. position σpos [m] 1000 1000 1000
A priori std. dev. velocity σvel [m/s] 10 10 10
State noise position wpos [m] 0.5 0.0 10.0
State noise velocity wvel [m/s] 0.0005 0.0000 0.0100
Edit level 3.0 3.0 3.0

To start with, the nominal filter performance is illustrated in case A (cf. Table
9.6). The equation of motion is integrated in 30 s steps and includes perturbations
due to the harmonic gravity field of the Earth up to degree and order 10. The a priori
standard deviation of the initial state taken from the first data point is assumed to be
1 km and 10 m/s, respectively, for the position and velocity coordinates. While this
is about a factor of 10 worse than the actual measurement standard deviation, the
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adopted values ensure that the filter starts properly, even if the initial measurement
is affected by larger than average errors.
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Fig. 9.4. Nominal filter performance for GPS/MET orbit determination (case A): error of the esti-
mated position (bold line), standard deviation of the estimate (narrow line) and GPS measurement
errors (dots).

Results of the corresponding RTOD run are summarized in Fig. 9.4, which shows
the measurement residuals, the error of the estimated position and the standard
deviation computed by the filter. The filter takes about three hours (two revolutions)
before it converges to a steady-state behavior. During the initial phase the filter
is affected by pronounced errors of two consecutive measurements that amount
to 250 m and 500 m, respectively. The latter value exceeds the 3σ (=300 m) data
editing criterion, which results in a rejection of the corresponding measurement and
an associated increase in the propagated position covariance. During the steady-
state phase the filter approaches a constant position standard deviation of roughly
50 m. This equilibrium value results from a balance between the information gain
due to the processing of new measurements and the covariance increase caused by
the addition of process noise in the state update phase. The deviation between the
estimated position and the reference trajectory is generally less than the computed
standard deviation and amounts to 25 m on average (r.m.s.) after the initial two
hours. Thus, the filtered positions are more accurate than the measured positions
by a factor of four to five, which clearly illustrates the advantage of a dynamical orbit
determination over the purely kinematic GPS position solutions. The benefit is even
more pronounced for the velocity determined by the filter, which is approximately
100 times more accurate (2.5 cm/s r.m.s.) than the velocity values provided by the
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Fig. 9.5. Nominal filter performance for GPS/MET orbit determination (case A): error of the esti-
mated velocity (bold line), standard deviation of the estimate (narrow line) and GPS measurement
errors (dots).
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Fig. 9.6. Nominal filter performance for GPS/MET orbit determination (case A): error of the esti-
mated semi-major axis (bold line), standard deviation of the estimate (narrow line) and error of the
semi-major axis computed from the GPS position/velocity measurements (dots).
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Fig. 9.7. Filter divergence due to numerical integration errors in the absence of process noise (case
B): error of the estimated position (bold line), standard deviation of the estimate (narrow line) and
measurement errors (dots).
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Fig. 9.8. Compensation of low-order gravity model errors by increased process noise (case C):
error of the estimated position (bold line), standard deviation of the estimate (narrow line) and
measurement errors (dots).
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Fig. 9.9. Compensation of low order gravity model errors by increased process noise (case C): error
of the estimated semi-major axis (bold line), standard deviation of the estimate (narrow line) and
error of the semi-major axis computed from the position/velocity measurements (dots).

GPS receiver itself (Fig. 9.5). The semi-major axis derived from the estimated state
vector is accurate to about 3 m r.m.s. (cf. Fig. 9.6).

An example of moderate filter divergence is given by case B, in which slight
propagation errors have been introduced by selecting a larger than nominal inte-
gration step size. At the same time, no process noise is added, which makes the
filter continuously less receptive to new measurements. For up to seven hours (4–5
revolutions) the filter output closely matches that of case A. Thereafter, however,
the position error starts to increase past the formal standard deviation and the so-
lution differs from the true position by up to 100 m (Fig. 9.7). Case B obviously
lacks a sufficient amount of process noise to compensate the inherent model errors,
whereas both factors are properly balanced in case A.

An extreme case of model error compensation is, furthermore, presented in
case C, where the degree and order of the gravity field have been reduced from ten
to four. At the same time the process noise has been increased by a factor of 20 over
case A, which results in a steady-state position uncertainty of about 100 m. While
the root-mean-square position and velocity errors are approximately doubled during
the steady-state phase in comparison to case A, the filtered solution and its variance
become sensitive to erroneous data and data gaps (Fig. 9.8). More importantly one
may note a ten-fold increase of the semi-major axis error and standard deviation in
comparison to case A (Figs. 9.6 and 9.9). As a rule of thumb, the observed peak
error of Δa = 50 m would result in a 500 m along-track error after one orbit or
about 7 km after one day.
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9.3 Relay Satellite Orbit Determination

The United States’ Tracking and Data Relay Satellite System (TDRSS) provides
tracking services for all major US space observatories and research satellites as
well as the manned Space Shuttle. Even though the system is essentially unique,
it provides a representative example of satellite-satellite tracking techniques and is
discussed here to illustrate the modeling of signal paths across multiple transponders
as well as the adjustment of multiple spacecraft trajectories.
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Fig. 9.10. Principle of TDRS four-way ranging measurements.

9.3.1 Mathematical Models

As illustrated in Fig. 9.10, TDRS ranging measurements are initiated by sending a
ranging signal to one of the geostationary relay satellites. From here it is forwarded
to the desired user spacecraft, retransmitted and linked back to the ground station
after passing the relay satellite a second time. Designating the time of signal recep-
tion at the ground station by t and by rS/C, rTDRS, and rG/S the inertial position
vectors of the user satellite, the TDRS satellite, and the ground station, respectively,
one obtains the implicit equations

τ1 = 1/c · |rTDRS(t−τ1)− rG/S(t)|
τ2 = 1/c · |rS/C(t−τ1−τ2)− rTDRS(t−τ1)|
τ3 = 1/c · |rTDRS(t−τ1−τ2−τ3)− rS/C(t−τ1−τ2)|
τ4 = 1/c · |rG/S(t−τ1−τ2−τ3−τ4)− rTDRS(t−τ1−τ2−τ3)|

(9.23)
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for the individual light times. Starting from initial values of zero, the light times are
consecutively determined from these relations using a simple fixed-point iteration.
The resulting values then yield the modeled four-way range

ρ = c

2
· (τ1 + τ2 + τ3 + τ4) . (9.24)

Neglecting the relative motion of the station and the two satellites, the 4-way range
is equal to the sum of the distances from the ground station to the relay satellite and
from the relay satellite to the user satellite.

The measurement noise and the systematic errors of the TDRS ranging system
are generally less than 10 m, which implies that the motion of the user spacecraft, the
relay satellite, and the ground station must be modeled to a similar level of accuracy.
Since most of the user satellites tracked by the TDRS system orbit the Earth at
altitudes of several hundreds of kilometers, the force model must as a minimum,
comprise the harmonic gravity field of the Earth as well as the acceleration due to
atmospheric drag. The geostationary relay satellite, on the other hand, is notably
affected by lunisolar gravitational perturbations and solar radiation pressure. In
order to avoid different models for the various satellites concerned, a common
model comprising all of the above-mentioned perturbations should be considered.
A gravity field model up to degree and order 20 is recommended to describe the
motion of user satellites at altitudes of 500–1000 km with the desired accuracy.

For a compatible modeling of the ground station position, polar motion and
true sidereal time must be considered to describe the Earth’s rotation. In addition,
nutation and precession need to be accounted in the transformation to a common
inertial reference frame (e.g. the mean equator and equinox of J2000). For an
adequate modeling of the Greenwich hour angle, knowledge of Universal Time
UT1 is required to better than 0.01 s.

In accordance with Sect. 7.2.3, the variational equations for the state transition
matrix may be based on a simplified force model comprising only the second-order
zonal harmonics in the gravity field. Along with the state transition matrix, the
sensitivity matrix describing the state vector partials with respect to the drag and
solar radiation pressure coefficients is integrated to allow an adjustment of these
parameters within the orbit determination.

9.3.2 The TDRSOD Program

The TDRSOD program performs a least-squares orbit determination using TDRS
four-way range measurements. Based on an appropriate set of measurements the
orbital parameters of a single user spacecraft and up to two relay satellites can be
adjusted simultaneously. Tracking data are provided in the TDRSOD.dat file, which
contains one record per time with a structure as described in Table 9.7. A single
header line serves to label each column and is skipped upon reading. Following the
epoch of the measurement the ground station and spacecraft identification numbers
as well as the four-way relay range are given in each line.
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Table 9.7. Structure of the TDRSOD tracking data file

Cols. Description

1–10 Date (yyyy/mm/dd)
13–24 UTC time (hh:mm:ss.sss) of signal reception
26–30 Station number
32–34 TDRS identification number (ID)
36–46 Range measurement (in [m]) corrected for refraction

A supplementary setup file TDRSOD.inp provides a priori state vectors and
spacecraft-related parameters for the user and TDRS satellites as well as relevant
auxiliary information. The individual parameters comprise the total number (≤ 2)
and IDs of the TDRS satellites, the total number (≤ 2) and IDs of the employed
ground stations, the desired number of iterations, the UT1−UTC and UTC−TAI
time differences, as well as the current pole coordinates, all of which are given at
the beginning of the input file. Following the initial epoch, the state vectors of the
user spacecraft and the specified number of TDRS satellites are provided together
with the associated a priori standard deviations. The spacecraft-related information
is complemented by the specification of each satellite’s mass, area, drag coefficient,
and radiation pressure coefficient, as well as the related a priori uncertainties of the
latter parameters. The file closes with a section providing the coordinates of the
specified number of ground stations.

Each line provides a single parameter starting at column 26. The initial char-
acters are ignored on input and serve to describe the meaning of the respective
quantities. Representative parameter values are given in the subsequent listing:

TDRS : 2 4 5
Stations : 2 161 162
Iterations : 4
UT1-UTC, UTC-TAI [s] : +0.49 -32.00
x-pole,y-pole ["] : -0.00651 +0.36588
Epoch (UTC) : 1999/09/01 00:00:00.000
x UARS [m] : 1476200.0 1000.0
y UARS [m] : 5996200.0 1000.0
z UARS [m] : -3209000.0 1000.0
vx UARS [m/s] : -3854.0000 1.0
vy UARS [m/s] : 3778.5000 1.0
vz UARS [m/s] : 5302.2000 1.0
m [kg], A [m^2] : 5968.3 27.22
CD, sigma(CD) : 2.3 1.0
CR, sigma(CR) : 1.3 0.1
x TDRS-4 [m] : +20174293.6 1.0
y TDRS-4 [m] : -37024903.8 1.0
z TDRS-4 [m] : -982925.2 1.0
vx TDRS-4 [m/s] : +2696.9634 0.001
vy TDRS-4 [m/s] : +1471.5074 0.001
vz TDRS-4 [m/s] : -100.5261 0.001
m [kg], A [m^2] : 1668.9 40.0
CD, sigma(CD) : 2.3 0.001
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CR, sigma(CR) : 1.3915 0.001
x TDRS-5 [m] : -40783913.5 100.0
y TDRS-5 [m] : 10622599.3 100.0
z TDRS-5 [m] : 992633.1 100.0
vx TDRS-5 [m/s] : -774.3896 0.1
vy TDRS-5 [m/s] : -2976.0955 0.1
vz TDRS-5 [m/s] : 18.8994 0.1
m [kg], A [m^2] : 1718.4 40.0
CD, sigma(CD) : 2.3 0.1
CR, sigma(CR) : 1.4062 0.1
Sta WHSK/161 (xyz) [m] : -1539385.74 -5160953.12 +3408202.16
Sta WH2K/162 (xyz) [m] : -1539390.43 -5160968.83 +3408176.45

The TDRSOD program uses the DE multistep method to integrate the state vector
as well as the state transition and sensitivity matrix for each individual satellite
from specified initial conditions. Considering the widely different orbital periods
of the low-Earth user satellite and the geostationary relay satellites, the respective
trajectories are integrated independently of each other using the most appropri-
ate integration stepsize for each orbit. Interpolation over multiple steps is used to
interpolate the solution during the light time iteration.

The least-squares adjustment is performed over the specified number of itera-
tions, during each of which the observation residuals and the computed parameter
corrections are output. No data editing or convergence check is performed to main-
tain a simple overall program structure. A priori standard deviations are expected for
all estimation parameters, which should be selected in accordance with the expected
uncertainty of the respective state vector component or force model parameter.

9.3.3 Case Study

In the subsequent application TDRS range measurements of NASA’s Upper Atmo-
sphere Research Satellite (UARS) are processed, which were collected on Septem-
ber 1, 1999. The data set comprises 14 batches of 10–15 minutes duration each,
which are evenly distributed over the entire day. Out of these, three batches have
been obtained via the TDRS-4 satellite, located at 41.0◦ West longitude, while the
remaining measurements were performed with TDRS-5 at 174.3◦ West longitude.
All data have previously been corrected for refraction.

Orbits of the two TDRS satellites have independently been derived from ground-
based tracking and serve as a priori information for the UARS orbit determination.
The corresponding state vectors, as referred to the Earth’s mean equator and equinox
(EME2000), are collated in Table 9.8 together with relevant spacecraft parameters.
In addition, Table 9.9 provides the coordinates of the WHSK and WH2K antennas
of the White Sands ground station complex, which were employed in the four-way
ranging measurements via TDRS-4 and TDRS-5, respectively.

For a proper performance of the least-squares orbit determination, a priori
standard deviations need to be specified for the state vector components as well
as the drag and solar radiation pressure coefficients. In the absence of actual a
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Table 9.8. A priori orbit and spacecraft parameters of UARS, TDRS-4, and TDRS-5 for the epoch
1999/09/01 00:00 UTC

UARS TDRS-4 TDRS-5

x [m] +1476200.0 +20174293.6 +40783913.5
y [m] +5996200.0 −37024903.8 +10622599.3
z [m] −3209000.0 −982925.2 +992633.1
ẋ [m/s] −3854.0000 +2696.9634 −774.3896
ẏ [m/s] +3778.5000 +1471.5074 −2976.0955
ż [m/s] +5302.2000 −100.5261 +18.8994

m [kg] 5968.3 1668.9 1718.4
A [m2] 27.22 40.0 40.0
CD 2.3 2.3 2.3
CR 1.3 1.3915 1.4062

Table 9.9. White Sands antenna locations

Station No. x [m] y [m] z [m]

WHSK 161 −1539385.74 −5160953.12 +3408202.16
WH2K 162 −1539390.43 −5160968.83 +3408176.45

priori statistics, appropriate values may be obtained from a consideration of the
orbital characteristics, the tracking geometry, and the data distribution. In the case
of the user satellite, which is tracked over roughly 15 revolutions with a sufficient
coverage during each orbit, one may expect a reliable determination of its orbital
elements from the given measurements. In accord with the given number of digits,
an uncertainty of 1 km and 1 m/s in each axis is therefore assumed for the initial
position and velocity of the UARS satellite. Neither of these values puts a stringent
constraint on the resulting least-squares solution, as does the assumed standard
deviation of 1.0 for the drag coefficient. For the solar radiation pressure coefficient,
on the other hand, the a priori standard deviation is set to 0.1, in accordance with
the uncertainty in the knowledge of relevant material properties.

For the Tracking and Data Relay Satellites, which orbit the Earth at geosta-
tionary altitude, drag does not impose any orbit perturbations and thus cannot be
calibrated during the orbit determination. An a priori standard deviation of 0.1 for
the respective CD coefficients therefore merely serves to avoid a singularity of the
resulting normal equations. In fact, the a priori value (2.3) will not be changed at all
within the least-squares adjustment. Concerning the other parameters, it is recalled
that TDRS-4 tracking data are only available for a limited number of data arcs,
while TDRS-5 tracking essentially covers the whole day. In view of the even sam-
pling of the TDRS-5 orbit, the four-way range measurements performed via this
satellite can therefore be employed to improve its orbit along with that of the user
satellite. This is accomplished by assuming a priori standard deviations of 100 m
and 0.1 m/s for position and velocity as well as 0.1 for the CR coefficient. These
figures take care of the fact that the TDRS-5 orbit has already been determined
with good accuracy from independent tracking data and, at the same time, avoid
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unrealistic parameter corrections in case of potential correlations between orbital
parameters of the user satellite and the TDRS satellite. Finally, a priori standard
deviations of 1 m (position), 1 mm/s (velocity), and 0.001 (CD, CR) are adopted
for the TDRS-4 satellite, which essentially constrains its orbit to the given a priori
trajectory. Due to the inadequate coverage of this satellite’s 24-hour orbital period
with tracking data, it would not be possible to independently determine or improve
its trajectory from the given UARS ranging measurements.

Table 9.10. Adjusted orbit and spacecraft parameters of UARS, TDRS-4 and TDRS-5 for epoch
1999/09/01 00:00 UTC

UARS TDRS-4 TDRS-5

x [m] +1476163.0± 12.9 +20174293.6± 1.0 +40783910.4± 13.5
y [m] +5996245.6± 11.5 −37024903.8± 1.0 +10622602.5± 43.5
z [m] −3208799.5± 17.2 −982925.2± 1.0 +992611.7± 55.1
ẋ [m/s] −3854.0030±0.0071 +2696.9636±0.0003 −774.3906±0.0031
ẏ [m/s] +3778.3897±0.0163 +1471.5076±0.0004 −2976.0954±0.0007
ż [m/s] +5302.2419±0.0136 −100.5264±0.0010 +18.8998±0.0050

CD 2.6125±0.1632 2.3000±0.0010 2.3000±0.1000
CR 1.3002±0.1000 1.3915±0.0010 1.4538±0.0366
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Fig. 9.11. Residuals of TDRS four-way ranging measurements of the UARS satellite collected on
Sept. 1, 1999. Triangles indicate measurements taken via TDRS-4, while diamonds refer to the
TDRS-5 relay satellite.

Representative values for the adjusted orbital parameters are given in Ta-
ble 9.10, while the corresponding residuals are shown in Fig. 9.11. In total, the
a priori state vector of the user spacecraft is corrected by about 200 m and 0.1 m/s,
with formal uncertainties being a factor 5 to 10 smaller. The initial state vectors of
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the TDRS satellites remain essentially unchanged, except for the z-component of
the TDRS-5 satellite that is modified by 25 m. As expected, the drag coefficients of
the geostationary relay satellites are completely unaffected, while the user satellite’s
solar radiation pressure coefficient is virtually the same as before the adjustment.
On the other hand, the drag coefficient of the user satellite and the solar radiation
pressure coefficient of TDRS-5 can be adjusted with good confidence and improved
significantly over the default a priori values.

The residuals obtained during the final iteration exhibit an overall measurement
and modeling accuracy of 5–10 m. Obviously, the distribution of residuals does not
comply with the assumption of random noise but indicates the presence of system-
atic errors. In the absence of independent tracking data for either the user satellite
or the TDRS satellites, it is not, however, possible to uniquely attribute these errors
to either an incomplete modeling of perturbative forces, an incomplete account of
media corrections in the preprocessing, or systematic errors in the measurement
process.



Appendix A

A.1 Calendrical Calculations

The civilian calendar which measures time in terms of years, months, and days
provides a convenient and well-established time scale for our daily life. It is not,
however, well suited to finding the time difference between two dates or advancing
a date by a certain time increment. To cope with this difficulty, a continuous day
count is often used in astronomical computations, which is known as the Julian
Date. It is attributed to Joseph Justus Scaliger, who introduced a “Julian Period” of
7 980 Julian years for chronological purposes (see Derwshowitz & Reingold 1997,
Moyer 1981).

The Julian Date (JD) is the number of days since noon January 1, 4 713 BC
including the fraction of day. It thus provides a continuous time scale which, for all
practical purposes, is always positive. Counting starts at noon for historical reasons,
to avoid a change of date in the middle of astronomical observations. Presently, the
Julian Day numbers are already quite large (well over two millions) and it is also
desirable to start counting at midnight. Therefore, a Modified Julian Date (MJD)
is defined as:

MJD = JD − 2 400 000.5 . (A.1)

A table of Modified Julian Dates for the beginning of each month between 1975
and 2020 is given in Table A.1.

Interconversion to civil calendar date and time is often done by tables, however,
there also exist a number of numerical algorithms. The method described here is
based upon Meeus (1978, 1991) and requires several points to be considered:

• Civil time is expressed in year (Y ), month (M), and day (D). Both D and
Julian Day may include fraction of days.

• The years BC are counted astronomically in all formulas. E.g. 1 BC would
be the year Y = 0 and 10 BC corresponds to the year Y = −9.

• The Julian Day begins at 12h o’clock midday.

• The Julian calendar is used until 4th October 1582 AD, which corresponds
to JD < 2 299 160.5. The average length of the year in the Julian calendar
was taken as 365.25 days which implied one extra day every fourth year. The
true length of the mean solar year, however, is about eleven minutes less. By
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Table A.1. Modified Julian Date at day 0.0 of each month. To obtain the MJD of a given date, add
the day and fractions of day to the tabulated value for the respective month and year. Example:
MJD(2000 Jan. 1, 12h) = 51543 + 1.5 = 51544.5.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1975 42412 42443 42471 42502 42532 42563 42593 42624 42655 42685 42716 42746
1976 42777 42808 42837 42868 42898 42929 42959 42990 43021 43051 43082 43112
1977 43143 43174 43202 43233 43263 43294 43324 43355 43386 43416 43447 43477
1978 43508 43539 43567 43598 43628 43659 43689 43720 43751 43781 43812 43842
1979 43873 43904 43932 43963 43993 44024 44054 44085 44116 44146 44177 44207
1980 44238 44269 44298 44329 44359 44390 44420 44451 44482 44512 44543 44573
1981 44604 44635 44663 44694 44724 44755 44785 44816 44847 44877 44908 44938
1982 44969 45000 45028 45059 45089 45120 45150 45181 45212 45242 45273 45303
1983 45334 45365 45393 45424 45454 45485 45515 45546 45577 45607 45638 45668
1984 45699 45730 45759 45790 45820 45851 45881 45912 45943 45973 46004 46034
1985 46065 46096 46124 46155 46185 46216 46246 46277 46308 46338 46369 46399
1986 46430 46461 46489 46520 46550 46581 46611 46642 46673 46703 46734 46764
1987 46795 46826 46854 46885 46915 46946 46976 47007 47038 47068 47099 47129
1988 47160 47191 47220 47251 47281 47312 47342 47373 47404 47434 47465 47495
1989 47526 47557 47585 47616 47646 47677 47707 47738 47769 47799 47830 47860
1990 47891 47922 47950 47981 48011 48042 48072 48103 48134 48164 48195 48225
1991 48256 48287 48315 48346 48376 48407 48437 48468 48499 48529 48560 48590
1992 48621 48652 48681 48712 48742 48773 48803 48834 48865 48895 48926 48956
1993 48987 49018 49046 49077 49107 49138 49168 49199 49230 49260 49291 49321
1994 49352 49383 49411 49442 49472 49503 49533 49564 49595 49625 49656 49686
1995 49717 49748 49776 49807 49837 49868 49898 49929 49960 49990 50021 50051
1996 50082 50113 50142 50173 50203 50234 50264 50295 50326 50356 50387 50417
1997 50448 50479 50507 50538 50568 50599 50629 50660 50691 50721 50752 50782
1998 50813 50844 50872 50903 50933 50964 50994 51025 51056 51086 51117 51147
1999 51178 51209 51237 51268 51298 51329 51359 51390 51421 51451 51482 51512
2000 51543 51574 51603 51634 51664 51695 51725 51756 51787 51817 51848 51878
2001 51909 51940 51968 51999 52029 52060 52090 52121 52152 52182 52213 52243
2002 52274 52305 52333 52364 52394 52425 52455 52486 52517 52547 52578 52608
2003 52639 52670 52698 52729 52759 52790 52820 52851 52882 52912 52943 52973
2004 53004 53035 53064 53095 53125 53156 53186 53217 53248 53278 53309 53339
2005 53370 53401 53429 53460 53490 53521 53551 53582 53613 53643 53674 53704
2006 53735 53766 53794 53825 53855 53886 53916 53947 53978 54008 54039 54069
2007 54100 54131 54159 54190 54220 54251 54281 54312 54343 54373 54404 54434
2008 54465 54496 54525 54556 54586 54617 54647 54678 54709 54739 54770 54800
2009 54831 54862 54890 54921 54951 54982 55012 55043 55074 55104 55135 55165
2010 55196 55227 55255 55286 55316 55347 55377 55408 55439 55469 55500 55530
2011 55561 55592 55620 55651 55681 55712 55742 55773 55804 55834 55865 55895
2012 55926 55957 55986 56017 56047 56078 56108 56139 56170 56200 56231 56261
2013 56292 56323 56351 56382 56412 56443 56473 56504 56535 56565 56596 56626
2014 56657 56688 56716 56747 56777 56808 56838 56869 56900 56930 56961 56991
2015 57022 57053 57081 57112 57142 57173 57203 57234 57265 57295 57326 57356
2016 57387 57418 57447 57478 57508 57539 57569 57600 57631 57661 57692 57722
2017 57753 57784 57812 57843 57873 57904 57934 57965 57996 58026 58057 58087
2018 58118 58149 58177 58208 58238 58269 58299 58330 58361 58391 58422 58452
2019 58483 58514 58542 58573 58603 58634 58664 58695 58726 58756 58787 58817
2020 58848 58879 58908 58939 58969 59000 59030 59061 59092 59122 59153 59183
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1582 AD the error in the Julian calendar, which was introduced in 45 BC,
had accumulated to more than ten days. This led to the calendar reform under
Pope Gregory XIII.

• The Gregorian calendar is used from 15th October 1582 AD onwards corre-
sponding to JD ≥ 2 299 160.5. The average length of the year in this calendar
is 365.2425 days which deviates by less than half a minute from the mean
solar year of 365.2422 days. In practice this is accomplished by inserting one
extra day every fourth year, but omitting this three times per four hundred
years. By convention, every year whose number can be divided by four is
a leap year except when it is also divisible by one hundred. However, those
years where the year number is divisible by four hundred are again leap years.
In leap years the intercalary day 29th February is inserted.

The function entier(x) or, briefly, [x] will be used extensively in the subsequent
algorithms. It is defined as the smallest integer which is smaller than or equal to x,
i.e.

[x] ≤ x < [x]+1 . (A.2)

For positive numbers [x] is equal to the integral part int(x) of x. For negative (non-
integer) numbers, however, it is the integral part of xminus one. Negative arguments
have been carefully avoided in the expressions given below. The entier(x) function
can therefore also be written as int(x) for all permitted dates.

A.1.1 Modified Julian Date from the Calendar Date

The handling of leap years in the computation of the Modified Julian Date is facil-
itated by letting the year run from March 1 until the end of February. To this end Y
and M are replaced by the quantities

y =
{
Y − 1 if M ≤ 2
Y otherwise

(A.3)

and

m =
{
M + 12 if M ≤ 2
M otherwise .

(A.4)

The number of days since March 1 at the beginning of a month M can then be
expressed as [30.6(m+1)] − 122 as illustrated in Table A.2.

Leap days in the Julian and Gregorian Calendar are taken into account by the
auxiliary quantity

B =
{ −2 + [(y + 4716)/4] − 1179 until 4 Oct. 1582

+[y/400] − [y/100] + [y/4] from 10 Oct. 1582 .
(A.5)

The Modified Julian Date including the fraction of day, is then given by:

MJD = 365y − 679004 + B + [30.6001(m+1)] +D (A.6)
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Table A.2. Annual day count

Month Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

M 3 4 5 6 7 8 9 10 11 12 1 2
Days 31 30 31 30 31 31 30 31 30 31 31
[30.6(m+1)] − 122 0 31 61 92 122 153 184 214 245 275 306 337

Here, the multiplication factor of m + 1 is taken as 30.6001 rather than 30.6 in
order to avoid numerical errors in case of limited floating-point accuracy.

Some simplifications are possible, if only a limited time interval is considered.
E.g. B can be replaced by a fixed value of −15 +[Y/4] between 1 March 1900 and
28 February 2100, because the year 2000 is a regular leap year.

A.1.2 Calendar Date from the Modified Julian Date

The computation of the calendar date from the Modified Julian Date requires a
number of intermediate steps. First, the integer Julian Day (i.e. the Julian Date at
noon) is determined:

a = [MJD] + 2400001 . (A.7)

At the same time the fraction of day, q, is given by the decimal part of the Modified
Julian Date:

q = MJD − [MJD] . (A.8)

Two auxiliary quantities b and c are defined as

b =
{

0 if a < 2299161 (Julian calendar)
[(a−1867216.25)/36524.25] otherwise (Gregorian calendar)

(A.9)

and

c =
{
a + 1524 if a < 2299161 (Julian calendar)
a + b − [b/4] + 1525 otherwise (Gregorian calendar) .

(A.10)

The next step is to calculate the auxiliary quantities

d = [(c−121.1)/365.25] , (A.11)

e = [365.25d] (A.12)

and

f = [(c−e)/30.6001] . (A.13)

Finally, the calendar date is obtained from the following three steps: the day of the
month (D) is given by

D = c − e − [30.6001f ] + q , (A.14)
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the month of the year (M) follows from

M = f − 1 − 12[f/14] (A.15)

and the year (Y ) in astronomical reckoning is determined by

Y = d − 4715 − [(7+M)/10] . (A.16)

It is again possible to simplify the computation somewhat if only a limited time
interval is considered. E.g. the computation of the auxiliary quantities a, b, and c
can be focussed into c = [(JD + 0.5)]+ 1537 if only the interval March 1900 until
2100 is taken into account.
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A.2 GPS Orbit Models

The Global Positioning System (GPS) makes use of two dedicated representations
of the GPS satellite orbits, which are known as almanac and (broadcast) ephemeris1.
Both parameter sets are transmitted as part of the GPS navigation message and en-
able a GPS receiver to compute positions of the GPS satellites with different levels
of accuracy. Almanac data are mainly used to determine the constellation of visible
satellites above the horizon, to select the best satellites for navigation, and to deter-
mine approximate Doppler shifts for improved signal acquisition. The ephemeris
parameters, on the other hand, provide a much more accurate description of the
spacecraft trajectory that is essential for the computation of precise user-position
fixes. In accord with the envisaged usage, the low-accuracy almanac parameters are
always provided for the full constellation of active satellites, whereas each satellite
transmits ephemeris parameters for itself, only.

Conceptionally, both the almanac and the ephemeris model are based on a Ke-
plerian elements representation of the orbit with a suitably chosen set of correction
terms modeling any deviation from an unperturbed ellipse. This enables a particu-
larly compact parameter set at the price of a moderate computational burden. For
further details the reader is referred to the respective Navstar GPS Interface Control
Document (ICD-GPS-200 1997) as well as van Dierendonck et al. (1978). The latter
reference addresses the rational behind the design of the GPS navigation message
and the recommended computational algorithms.

Table A.3. Conventional values of specific constants employed in GPS almanac and ephemeris
models (ICD-GPS-200, 1997)

Parameter Value Description

GM⊕ 398600.5·109 m3/s2 WGS84 Gravitational coefficient
ω⊕ 7.2921151467·10−5 s−1 WGS84 Earth rotation rate
π 3.1415926535898

By convention a specific set of constants based on the (old) WGS84 system
is to be applied in both the almanac and ephemeris models that is reproduced in
Table A.3. Readers should be aware that the latest refinement of WGS84 constants
(NIMA 1997) has not resulted in an update of the above standard.

Times are referred to the GPS system time, which differs from TAI by a constant
offset of 19 s and matched UTC when it was introduced in January 1980. The
standard epoch 6.0 January 1980 GPS Time (JD(GPS) 2 444 244.5) serves as origin
for the GPS specific week count. A GPS week starts on Sunday 0.00 GPS Time
and the first week, starting at the standard epoch, is assigned the week count 0.

1The terminology “broadcast ephemeris” (see Hofmann-Wellenhoff et al. 1997) is used to ex-
plicitly distinguish the orbit information transmitted as part of the GPS navigation messsage from
high-precision GPS ephemerides distributed in tabular form by e.g. the IGS and NIMA.
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Accordingly, the week number for arbitrary dates is given by

WN =
[

JD(GPS) − 2 444 244.5

7

]
(A.17)

where brackets denote the entier function introduced in (A.2). Vice versa, GPS
week WN starts at Julian Date

JD(GPS) = 2 444 244.5 + 7·WN . (A.18)

Within a GPS week, times are typically specified in seconds past the start of week,
yielding a count of at most 604 800 s.

A.2.1 Almanac Model

Aside from the reference epoch, the almanac message of each satellite comprises
a total of seven orbit-related parameters (Table A.4). These resemble the classical
Keplerian elements but differ in various GPS-specific details. Instead of the semi-
major axis, its square root is given in the almanac to simplify computation of the
mean motion. The inclination is specified relative to a reference value of iref =
54◦, which is about one degree smaller than the nominal inclination of the GPS
constellation. All angular elements are given in units of semi-circles equivalent
to π radians or 180◦. Special care is required in the interpretation of Ω0 which
must not be confused with the inertial right ascension Ω of the ascending node as
used with classical Keplerian elements. To be precise, Ω0 defines the orientation
of the orbital plane at the almanac reference epoch, but referred to the Greenwich
meridian at the start of the respective GPS week. The parameter is thus related to
the right ascension of the ascending node Ω and the Greenwich Sidereal Time Θ
by the expression

Ω0 = Ω(ta)−Θ(t0) , (A.19)

where t0 denotes the start of the GPS week and ta is the almanac reference epoch (as
defined by the WNoa and toa counts). Due to the Earth’s oblateness the inertial right
ascension of the ascending node experiences a secular change of Ω̇ ≈ −0.04◦/d,
which is also specified as part of the almanac message. This allows the instantaneous
Greenwich longitude λΩ of the ascending node to be computed from

λΩ(t) = Ω(t)−Θ(t)

≈ Ω(ta)+ Ω̇(t − ta)−Θ(t0)− ω⊕(t − t0)

= Ω0 + Ω̇(t − ta)− ω⊕(t − t0)

(A.20)

for arbitrary times t . After solving Kepler’s equation

E − e sin(E) = M = M0 +
√√
GM⊕
a3

(t − ta) (A.21)
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Table A.4. GPS almanac parameters

Parameter Description Units

WNoa Almanac reference epoch (part 1):
GPS week number (mod 256)

toa Almanac reference epoch (part 2):
fraction of current GPS week

[s]

√√
a Square root of semi-major axis [

√√
m]

e Eccentricity
δi Inclination offset from reference value of

iref = 0.3 semi-circles
[semi-circles]

Ω0 Longitude of the ascending node at the
weekly epoch

[semi-circles]

Ω̇ Rate of change of the right ascension of the
ascending node

[semi-circles/s]

ω Argument of perigee [semi-circles]
M0 Mean anomaly at reference epoch [semi-circles]

a0 Spacecraft clock offset from GPS time [s]
a1 Clock frequency offset [s/s]

for the eccentric anomaly at the time of interest, the position of the GPS satellite in
the Earth-fixed WGS84 system can be computed from the common expressions

rWGS84 = Rz(−λΩ)Rx(−iref −δi)Rz(−ω)
⎛
⎝

a (cosE−e)

a
√√

1−e2 sinE
0

⎞
⎠ (A.22)

of the two-body problem (cf. Chap. 2). An alternative, but mathematically equiva-
lent computational scheme is specified in ICD-GPS-200 (1997) for use within GPS
receivers. It takes care of the GPS specific data representation and should be used
instead of the generalized formulation introduced above whenever full consistency
with the ICD is desired.

A.2.2 Broadcast Ephemeris Model

The model associated with the GPS ephemeris parameters is essentially similar to
the almanac model introduced above, but provides for a better representation of the
GPS orbits by additional secular and periodic perturbations. For reference, the full
parameters set is reproduced in Table A.5.

The ephemeris model first applies a correction Δn to the computed mean mo-
tion. Accordingly, Kepler’s equation for the eccentric anomaly is solved with a
value

M = M0 +
(√√

GM⊕
a3

+Δn

)
(t − te) (A.23)
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Table A.5. GPS broadcast ephemeris parameters

Parameter Description Units

WNoe Ephemeris reference epoch (part 1):
GPS week number (mod 1024)

toe Ephemeris reference epoch (part 2):
fraction of current GPS week

[s]

√√
a Square root of semi-major axis [

√√
m]

Δn Correction to mean motion [semi-circles/s]
e Eccentricity
i0 Inclination at reference epoch [semi-circles]
di/dt Rate of change of inclination [semi-circles/s]
Ω0 Longitude of the ascending node at the

weekly epoch
[semi-circles]

Ω̇ Rate of change of the right ascension of the
ascending node

[semi-circles/s]

ω Argument of perigee [semi-circles]
M0 Mean anomaly at reference epoch [semi-circles]
Crc, Crs Amplitude of (co)sine harmonic correction

term to the orbital radius
[m]

Cuc, Cus Amplitude of (co)sine harmonic correction
term to the argument of latitude

[rad]

Cic, Cis Amplitude of (co)sine harmonic correction
term to the inclination

[rad]

af 0 Spacecraft clock offset from GPS time [s]
af 1 Clock frequency offset [s/s]
af 2 Clock frequency drift [s/s2]

of the mean anomaly. Here te is the ephemeris reference epoch as defined by the
counters WNoe and toe. Based on the perifocal coordinates

x̂ = a (cosE−e)

ŷ = a
√√

1−e2 sinE
(A.24)

one obtains the (uncorrected) argument of latitude

ū = ω + arctan(ŷ/x̂) (A.25)

from which the periodic corrections

δr = Crs sin(2ū) + Crc cos(2ū)

δu = Cus sin(2ū) + Cuc cos(2ū)

δi = Cis sin(2ū) + Cic cos(2ū)

(A.26)

to the argument of latitude (u), the radius (r), and the inclination (i) can be computed.
Making use of the appropriately corrected elements

r = a (1−e cosE)+ δr

u = ū+ δu

i = i0 + di/dt (t − te)+ δi

λΩ = Ω0 + Ω̇(t − te)− ω⊕(t − t0)

(A.27)
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one finally obtains the desired position

rWGS84 = Rz(−λΩ)Rx(−i)
⎛
⎝
r cosu
r sin u

0

⎞
⎠ . (A.28)

Again, a slightly different, but mathematically equivalent formulation is specified
in ICD-GPS-200 (1997). It should be applied whenever full consistency with the
ICD is desired.
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As a supplement to this book, additional resources are provided on Springer’s
Extra Materials Server http://extra.springer.com/. Owners of the printed
book can download a zip archive SatOrbEM.zip after entering the ISBN number.

.

B.1 Internet Resources

A wealth of data as well as software that could not be provided within this book is
available via the Internet and the World Wide Web. We have, therefore, compiled a
set of useful URL resources with a focus on data that require frequent updates. All
addresses may conveniently be accessed via the hyperlink file SAT.html available
in theSatOrbEM.zip archive. Links are ordered by topics and accompanied by brief
textual descriptions (cf. Fig. B.1). It is emphasized, however, that the given list is
in no way comprehensive and that server names and files are subject to changes
without further notice.

Fig. B.1. Useful internet links provided in SAT.html

Downloading this content should require a code given in the printed book

O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications,   
DOI 10.1007/978-3-642-58351-3, © Springer-Verlag Berlin Heidelberg 2000 

329



330 Appendix B

B.2 Source Codes on Springer’s Extra Materials Server

B.2.1 Contents

The SatOrbEM.zip archive on the Extra Materials server provides a comprehensive
library of C++ modules as well as programs to solve the exercises given at the end of
each chapter. After downloading the archive and unapcking it to a working directory
(here C:\Sat) the following directories and files are obtained.

Directory Description

C:\Sat\Source\ Source codes of library modules (header and implementation
files)
SAT_Const.h, SAT_DE.h, SAT_DE.cpp,
SAT_Filter.h, SAT_Filter.cpp, SAT_Force.h, SAT_Force.cpp,
SAT_Kepler.h, SAT_Kepler.cpp, SAT_RefSys.h, SAT_RefSys.cpp,
SAT_Time.h, SAT_Time.cpp, SAT_VecMat.h, SAT_VecMat.cpp

Source codes for solutions to exercises
Exercise_2_1.cpp, …, Exercise_2_6.cpp,
Exercise_3_1.cpp, …, Exercise_3_4.cpp,
Exercise_4_1.cpp, …, Exercise_4_3.cpp,
Exercise_5_1.cpp, …, Exercise_5_3.cpp,
Exercise_6_1.cpp, …, Exercise_6_4.cpp,
Exercise_7_1.cpp,
Exercise_8_1.cpp, …, Exercise_8_3.cpp

Application programs
GEODA.cpp, RTOD.cpp, TDRSOD.cpp

\InOut\ Output of exercise programs
Exercise_2_1.out, …, Exercise_8_3.out

Input data for application programs
GEODA_A1.inp, …, GEODA_C2.inp, RTOD_A.inp, …, RTOD_C.inp,
RTOD.dat, TDRSOD.inp, TDRSOD.dat

Output of application programs
GEODA_A1.out, …, GEODA_C2.out, RTOD_A.out, …, RTOD_C.out
TDRSOD.out

\Win32\ Executable programs (Windows 32-bit Version)
GEODA.exe, RTOD.exe, TDRSOD.exe

\Linux\ Executable programs (Linux Version)
GEODA, RTOD, TDRSOD

Unix archives of input/output files, executable programs (Linux
only) and source code (incl. makefile)
satio.tar, satexe.tar, satsrc.tar

The SAT_Lib library comprises elementary operators, functions, and classes, which
are common to the various exercises but may also be applied by the reader to develop
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his/her own applications. In total the library comprises nine modules, each covering
a specific and well defined scope:

SAT_Const.h Mathematical and astronomical constants
SAT_DE.h Numerical integration of differential equations
SAT_Filter.h Kalman filtering and least-squares estimation
SAT_Force.h Satellite force model
SAT_Kepler.h Keplerian orbit computation
SAT_RefSys.h Reference system transformations
SAT_Time.h Calendrical computations
SAT_VecMat.h Vector and matrix arithmetics

Making use of the header files SAT_*.h, the required modules can be included
into the application programs in an easy way. The associated implementations are
provided in the corresponding files SAT_*.cpp , which can be compiled separately
and linked in the form of object or library files. Excluded from this is theSAT_Const
module, which requires no implementation part and consists of a header file only.

B.2.2 System Requirements

For a painless application of the programs we recommend the installation on a
personal computer with the following minimum characteristics:

• Intel processor 1 GHz or equivalent,
• 256 MB memory,
• 100 MB free hard disk space,
• CD drive,
• Windows XP/7 or OpenSuSE Linux 10.3 operating system,
• Microsoft Visual Studio 2005 (Windows) or GNU C++ 4.2 (Linux).

B.2.3 Executing the Programs

The SatOrbEM.zip archive on the Extra Materials server contains pre-compiled
versions of the application programs described in Chap. 9. To run these programs
on a PC with the Windows operating system unpack the archive as discussed above
and copy the files in the C:\Sat\Win32 folder to an appropriate working directory
(e.g., C:\Sat\Exe) on the hard disk. The input data files from the folder Sat\InOut
folder should then be copied to the same folder. After the command interpreter has
been started (by running cmd.exe) and switching to the chosen program folder, the
individual programs may be run as in the following example:

C:\Sat\Exe>TDRSOD TDRSOD.inp TDRSOD.dat
TDRS Orbit Determination
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Iteration 1

Date UTC Sta TDRS obs [m] comp [m] o-c [m]
1999/09/01 00:22:01.000 162 5 79010.2586 79010.2408 17.78

...

For all programs the input files may be specified in the command line (see Table
B.1). Using the redirection operator (>), the default screen output may, furthermore,
be written to an arbitrary output file.

Table B.1. Executing the application programs with optional command-line arguments

Name Arguments Default setup Default data

GEODA [setup-file] [>output-file] GEODA.inp
RTOD [setup-file [data-file]] [>output-file] RTOD.inp RTOD.dat
TDRSOD [setup-file [data-file]] [>output-file] TDRSOD.inp TDRSOD.dat

The advice just given applies in a similar manner to running the programs under
Linux. After creating a suitable directory and copying the files from the unpacked
archive, the programs may be started by entering the corresponding program names,
provided the working directory is contained in the path. As under Windows, input
and output files may be specified in the command line under Linux.

If the names of the input data files are not correctly reproduced under Linux
upon reading the CD, there is a Unix tar archive available. This may be unpacked
with the commands

tar -xvf /cdrom/Sat/Linux/satio.tar

and copied into the current working directory.

B.2.4 Compilation and Linking

In the sequel, the basic steps for generating executable programs under the Windows
and Linux operating systems are described.

For use under the Windows operating system, we assume that all source files
are available in a subdirectory C:\Sat\Source\ after unpacking the archive from
the Extra Materials Server. Within with Microsoft Visual Studio 2005, the various
programs (for exercises and applications) as well as a common library are treated
as individual “projects”. These projects are combined in a common workspace
or “solution”. After starting Visual Studio, a first project is created through the
Project.New Project menu to build the library from the generic modules. This
library can later be linked to the individual programs. Within the New Project
dialog, an Empty Project is selected from the available templates. Furthermore, the
project’s Name (SAT_Lib) as well the desired Location (C:\Sat) and Solution Name
(Prj) need to be specified. The latter items define the root directory (C:\Sat\Prj)
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for all files maintained by Visual Studio within the current set of projects. Con-
firm by OK to complete the allocation of this project and the overall workspace.
Subsequently the source and header files of the library modules are added to the
SAT_Lib project by calling the menu Project.Add Existing Item ... and selecting
all files within the C:\Sat\Source\ folder, which adhere to the naming scheme
SAT_*.*. By default, Visual Studio will try to build an exectuable program from
these source files. Therefore, it is necessary to change the Configuration type in the
Configuration Properties.General.Project Defaults field of the Project.Properties
menu of the SAT_Lib project from Application (*.exe) to Static Library (.lib). Now,
the library can be completed by selecting the Build.Build SAT_Lib menu. Visual
Studio compiles all source files and then links the resulting object files into a static
library SAT_Lib.lib.

The Exercises Exercise_2_1 to Exercise_8_3 and the application programs
(GEODA, RTOD, TDRSOD) are treated as independent projects within the Sat\Prj

workspace. In the sequel this is illustrated for the RTOD program. Start the New
Project dialog from the File.Add.New Project menu. Then select an Empty Project,
specify its Name (RTOD) and Location (C:\Sat\Prj). Select the new project in the
“Solution Explorer”, then add the source file RTOD from the source directory via the
Project.Add Existing Item ... dialog. Finally, select the Project.Project dependen-
cies ... menu and check the SAT_Lib check box in the resulting dialog. This makes
the respective header files known to the compiler and informs the builder that this
library is required for linking the RTOD program. The executable module RTOD.exe
is finally created by selecting Build.Build RTOD and can subsequently be found
in the C:\Sat\Prj\debug folder. For further hints we refer to the comprehensive
documentation of the Microsoft C++ compiler and the Visual Studio environment.

Under the Linux operating system the individual programs can directly by built
from a console using the GNU C++ compiler. Again, it is advisable to combine all
modules SAT_* in a library libSAT.a using the shell commands:

> g++ -c SAT*.cpp # Compilation of library modules
> ar rc libSAT.a SAT*.o # Generation of library from object files

Assuming that all relevant files are contained in the same directory, the main pro-
grams can subsequently be built by the commands

> g++ Exercise_2_1.cpp -o Exercise_2_1 -lSAT -L.
> g++ Exercise_2_2.cpp -o Exercise_2_2 -lSAT -L.
> ...
> g++ TDRSOD.cpp -o TDRSOD -lSAT -L.

For ease of use, a make file is provided as part of the satsrc.tar archive, which
performs all steps in a single run.
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B.2.5 Index of Library Functions

The following compilation summarizes all identifiers of public types, constants,
functions, and classes provided by the individual modules.

<< Output operator for dates, vectors, and matrices
() Access to vector and matrix components
= Assignment of vectors and matrices
+ Addition of vectors and matrices
+= Vector addition
- Subtraction of vectors and matrices
- Unary minus (vector, matrix)
-= Vector subtraction
* Multiplication (scalar, vector, matrix)
/ Division by a scalar
abserr Public element of DE class specifying the absolute accuracy

requirement
AccelDrag Acceleration due to atmospheric drag
AccelHarmonic Acceleration due to harmonic gravity field of central body
AccelMain Total acceleration of an Earth-orbiting satellite
AccelPointMass Acceleration due to point-mass perturbation
AccelSolrad Acceleration due to solar radiation pressure
Accumulate Method of class LSQ for accumulation of data equations
Arcs Arcseconds per radian
AU Astronomical unit [m]
AzEl Azimuth, elevation and, optionally, partials from local tangen-

tial coordinates [m]
CalDat Calendar date and time
c_light Velocity of light [m/s]
Col Column vector of a matrix
Cov Method of class EKF returning the current covariance
Cov Method of class LSQ for covariance computation
Cross Cross product of 3-dimensional vectors
Date Auxiliary class for output of dates
Data Method of class LSQ returning the transformed right-hand side

of the data equations
DE Class for numerical solution of differential equations
DE_BADACC Enumerator of type DE_STATE (Flag for too stringent accuracy

requirements)
DE_DONE Enumerator of type DE_STATE (Flag for successful integration

step)
Define Method of DE class defining the differential equation
DEfunct Function prototype for differential equations
Deg 180◦/π
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DE_INIT Enumerator of type DE_STATE (Integrator restart)
DE_INVPARAM Enumerator of type DE_STATE (invalid input parameters)
Density_HP Atmospheric density based on Harris–Priester model
DE_NUMSTEPS Enumerator of type DE_STATE (Permitted number of steps ex-

ceeded)
DE_STATE Enumeration type for status codes of class DE inegrator
DE_STIFF Enumerator of type DE_STATE (Suspect of stiff problem)
Diag Diagonal matrix from vector of diagonal elements
Diag Method of Matrix class returning the vector of diagonal ele-

ments
Dot Dot product of two vectors
Dyadic Dyadic vector product
EccAnom Eccentric anomaly for elliptic orbits
EclMatrix Transformation matrix from equator to ecliptic
EKF Extended Kalman filter class
Elements Orbital elements from position and velocity
Elements Orbital elements from two positions
EqnEquinox Equation of the equinoxes [rad]
f_Earth Flattening of the Earth
FindEta Sector–triangle ratio
GAST Greenwich Apparent Sidereal Time
Geodetic Class for handling geodetic coordinates
GHAMatrix Earth rotation matrix
GM_Earth Product of gravitational constant × mass of Earth [m3/s2]
GM_Moon Product of gravitational constant × lunar mass [m3/s2]
GM_Sun Product of gravitational constant × solar mass [m3/s2]
GMST Greenwich Mean Sidereal Time
GPS_TAI Method of IERS returning GPS–TAI time difference [s]
GPS_UTC Method of IERS returning GPS–UTC time difference [s]
Grav Earth gravity model
GravModel Data structure for gravity model parameters
Id Identity matrix
IERS Class for handling of Earth rotation parameters
Illumination Fractional illumination of a spacecraft near the Earth
Init Method of DE class for initialization of a new initial value prob-

lem
Init Method of class EKF for initialization of a Kalman filter
Init Method of class LSQ for initialization of a least-squares problem

(with or without a priori information)
Integ Method of class DE for performing an integration step
Intrp Method of class DE for interpolation of solution
Inv Inversion of general square matrix
InvUpper Inversion of upper triangular matrix
LSQ Least-squares estimation class
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LTCMatrix Transformation from Greenwich coordinates to local tangential
coordinates

LTC_Matrix Method of class geodetic returning the transformation to local
tangential coordinates

Matrix Matrix class
MeanObliquity Mean obliquity of the ecliptic
MeasUpdate Method of class EKF performing the measurement update of

Kalman filter parameters
Mjd Modified Julian Date
MJD_J2000 Modified Julian Date at epoch J2000
Moon Low-precision lunar coordinates
Norm Euclidean norm of a vector
NutMatrix Nutation matrix
omega_Earth Earth rotation rate [rad/s]
PermitTOUT Public element of DE class controlling integration past the spec-

ified output point
pi π

pi2 2π
PoleMatrix Polar motion matrix
Position Method of class Geodetic computing Cartesian from geodetic

coordinates
PrecMatrix Precession matrix
P_Sol Solar radiation pressure at 1 AU [N/m2]
R_Earth Earth radius [m]
R_Moon Lunar radius [m]
R_Sun Solar radius [m]
R_x Matrix describing elementary x-axis rotation
R_y Matrix describing elementary y-axis rotation
R_z Matrix describing elementary z-axis rotation
Rad π/180◦
relerr Public element of DE class specifying the relative accuracy re-

quirement
RK4 Class for 4th-order Runge–Kutta integration
RK4funct Function prototype for differential equations
Row Row vector of a matrix
Set Method of class IERS for initialization of Earth orientation pa-

rameters
SetCol Method of Matrix class for assignment of a column vector
SetRow Method of Matrix class for assignment of a row vector
size Method of Vector class returning the number of vector ele-

ments
size1 Method of Matrix class returning the first dimension (number

of rows)
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size2 Method of Matrix class returning the second dimension (num-
ber of columns)

slice Method of Vector class for extraction of a sub-vector
slice Method of Matrix class for extraction of a sub-matrix
Solve Method of class LSQ for solution of a least-squares problem by

backsubstitution
Sqrt Method of Vector class returning the square-roots of all vector

elements
SRIM Method of class LSQ returning the square-root information ma-

trix
State Method of class EKF returning the current state vector
State Position and velocity from Keplerian elements
State Public element of DE class specifying the current integrator

status
StatePartials Partial derivatives of state vector w.r.t. Keplerian elements
StdDev Method of class EKF returning the current standard deviation
StdDev Method of class LSQ for computing the standard deviation of

the solution
Step Method of RK4 class performing a single integration step
Sun Low-precision solar coordinates
Time Method of class EKF returning the current time
TimeUpdate Method of class EKF performing the time update of Kalman

filter parameters
T_J2000 Epoch J2000 (in Julian centuries since J2000)
Transp Matrix transposition
TT_TAI Method of IERS class returning TT–TAI time difference [s]
TT_UTC Method of IERS class returning TT–UTC time difference [s]
TwoBody State vector propagation and transition matrix for Keplerian

orbits
UTC_TAI Method of IERS returning UTC–TAI time difference [s]
UT1_UTC Method of IERS returning UT1–UTC time difference [s]
VecPolar Three-dimensional vector from polar coordinates
Vector Vector class
x_pole Matrix of class IERS returning the x-coordinate of the Earth’s

pole [rad]
y_pole Matrix of class IERS returning the y-coordinate of the Earth’s

pole [rad]
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A Runge–Lenz vector
A Cross-section (surface area)
A Avogadro number
A Moment of inertia with respect to the x-/y-axes
A Azimuth
C Moment of inertia with respect to the z-axis
CD Drag coefficient
CR Radiation pressure coefficient
Cnm Potential coefficient
D Torque vector
D Diagonal matrix
D
 Solar torque vector

Mean solar torque vector
D Mean elongation of the Moon from the Sun
E Earth-fixed to local-tangent transformation matrix
E Expectation value
E Eccentric anomaly
E Elevation
E Energy
ET Ephemeris Time
F Force vector
F Mean distance of the Moon from the ascending node of its orbit
F10.7 Index measuring solar UV radiation at 10.7 cm
G Jacobian matrix (partial derivatives of measurement vector

with respect to the state vector)
G Gravitational constant
GMST Greenwich Mean Sidereal Time
H Jacobian matrix (partial derivatives of measurement vector

with respect to the epoch state)
H0 Atmospheric density scale height
H Sun-satellite hour angle
H Macro step size
I Moment of inertia
J Loss function
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Jn Zonal potential coefficient of degree n
JD Julian Date
K Kalman gain
K Knudsen number
Kp Three-hourly planetary geomagnetic index
L0 Mean longitude of the Moon
M Mean anomaly
M Mass
M0 Mean anomaly at reference epoch
MJD Modified Julian Date
N Nutation matrix
N Particles per unit volume
N Auxiliary quantity for transformation of geodetic coordinates
N Accumulated Doppler counts
N Integer cycle ambiguity
P Gaussian vector (in direction of perigee)
P Precession matrix
P Covariance matrix
P Period
Pn Legendre polynomial of degree n
Pnm Associated Legendre polynomial of degree n and order m
P
 Solar radiation pressure at 1 AU
Q Gaussian vector (perpendicular to perigee)
Q Orthonormal matrix
Q Process-noise covariance matrix
R Upper triangular matrix
R Station position vector
Rx,Ry,Rz Matrices describing rotations around the x, y, z-axes

Universal gas constant
R Radius of a celestial body
R Upper triangular matrix
R⊕ Equatorial radius of the Earth
S Sensitivity matrix
S Square root of the weighting matrix
SΛ Square root of the information matrix
S Area of sector bounded by two position vectors
Snm Potential coefficient
T Time in Julian centuries since J2000
T Absolute temperature
T1,2 Satellite transponder turn-around ratio
Teqx Epoch of reference equinox in Julian centuries since J2000
Tn Chebyshev polynomial of order n
T∞ Exospheric temperature
TAI International Atomic Time
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TCB Barycentric Coordinate Time
TCG Geocentric Coordinate Time
TDB Barycentric Dynamic Time
TDT Terrestrial Dynamic Time
TT Terrestrial Time
U Transformation matrix (inertial to Earth-fixed)
U Orthonormal matrix
U i Elementary Householder transformation matrix
U ik Elementary Givens rotation matrix
U Potential
U2 Potential due to tides
UT Potential of tide-induced gravity
UT Universal Time
UTC Coordinated Universal Time
V Orthonormal matrix
Vnm Potential function
W Gaussian vector perpendicular to the orbital plane
W Weighting matrix
Wnm Potential function
XEW, YEW X/Y-angles using antenna with East/West mount
XNS, YNS X/Y-angles using antenna with North/South mount
Z Height
Zx Height of inflection point

a Acceleration vector
a Semi-major axis
a Ambiguity
a Albedo of the Earth
ai Coefficient of Chebyshev expansion
aij Runge–Kutta(–Nystrøm) coefficients
ap Three-hourly planetary amplitude index
a′
i Chebyshev coefficient for derivative of a function
b Ecliptic latitude
bi Runge–Kutta(–Nystrøm) coefficients
c Aerial velocity or specific angular momentum vector
c Velocity of light ( c = 299 792 458 m/s)
c Element of Givens rotation matrix
ci Runge–Kutta coefficients
di Singular value
e Unit vector
e Orbital eccentricity
e Local truncation error
e Eccentricity of reference ellipsoid
f Vector function
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f Orbital-plane unit vector
f Flattening of the Earth (f ≈ 1/298.257)
f Frequency
g Modeled measurement vector
g Orbital-plane unit vector
g Gravitational acceleration
gj (i) Coefficient of variable stepsize multistep method
h Aerial velocity (specific angular momentum) vector
h Modeled measurement vector
h Equinoctial element (eccentricity vector component)
h Altitude (height above reference ellipsoid)
h Step size
i Orbital inclination
ki Function values for use in Runge–Kutta methods
k Equinoctial element (eccentricity vector component)
l Angular momentum vector
l Mean longitude
l Typical satellite dimension
l Mean anomaly of the Moon
l Ecliptic longitude
l′ Mean anomaly of the Sun
m Satellite mass
n Surface normal unit vector
n Mean motion
n Particle number density
nij Elements of nutation matrix
p Polynomial approximation of vector-valued function
p Force model parameter vector
p Semi-latus rectum
p Equinoctial element (inclination vector component)
p Order of numerical integration method
p Precession in longitude
pij Elements of precession matrix
pν Impulse of a photon
q Measurement model parameter vector
q Equinoctial element (inclination vector component)
q0 Fraction by volume of atmospheric constituents
r Geocentric satellite position vector
ṙ Geocentric satellite velocity vector
r̈ Geocentric satellite acceleration vector
r
 Geocentric position vector of the Sun
r Geocentric satellite distance
s Position vector
s Satellite position in local tangent coordinates
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s Tide constituent
t Time
t0 Reference epoch
u Process noise
ui Mid-point rule approximation in extrapolation method
u Argument of latitude
v Geocentric satellite velocity vector
v Geocentric satellite velocity
w Householder transformation vector
x, y, z Geocentric satellite coordinates
ẍ, ÿ, z̈ Geocentric satellite acceleration
x̂, ŷ Satellite coordinates with respect to the orbital plane
xp, yp Pole coordinates
x0 Reference epoch state

x
lsq
0 Least-squares estimate of reference epoch state

y State vector
y0 State vector (initial value)
z Measurement vector
z Auxiliary angle in description of precession
z Height in km
z Measurement
zx Height of inflection point in km

Δ Area of triangle formed by two position vectors
ΔE Transfered photon energy
ΔT Ephemeris Time − Universal Time difference
ΔT∞ Exospheric temperature correction
Δm Mass element
Δp Transfered photon impulse
Δt Time interval
Δx0 Reference state correction
Δz Measurement residuals relative to reference orbit
Δε Nutation in ecliptic latitude
Δψ Nutation in ecliptic longitude
Θ Earth rotation matrix
Θ Greenwich sidereal time
Λ Information matrix
Λ Auxiliary angle in description of precession
Π Polar motion transformation matrix
Π Auxiliary angle for description of precession
Φ GPS code phase
Φ Increment function
Φ State transition matrix
Φ Solar radiation flux
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Ψ Geocentric angle between satellite and apex of density bulge
Ω Right ascension (or longitude) of the ascending node

α Orbital elements vector
α Right ascension
αi Thermal diffusion coefficient
α
 Right ascension of the Sun
β Ecliptic latitude
βmj Adams–Bashforth coefficient
β∗
mj Adams–Moulton coefficient
γ Angle
γj Adams–Bashforth coefficient
γ ∗
j Adams–Moulton coefficient
δ Declination
δ Dirac delta function
δj Coefficient of Stoermer method
δ∗
j Coefficient of Cowell method

δnm Kronecker symbol
(
δnm =

{
1
0

}
for

{
n=m
n 
=m

})

ε Measurement noise vector
ε Emissivity of the Earth
ε Reflectivity
ε Mean obliquity of the ecliptic
ε Coefficient of reflectivity
ε′ True obliquity of the ecliptic
εj Error coefficient of mid-point rule approximation
ζ Auxiliary angle in description of precession
η Numerical approximation of initial value problem
η Ratio of sector to triangle
θ Angle between incoming radiation and surface normal
θs Angle of the weighted sum of Doodson variables
ϑ Auxiliary angle in description of precession
κ Love number
κ ′
n Ocean-load deformation coefficient
λ Geocentric longitude (positive towards the East)
λ Mean free path length
λ Error constant of Runge–Kutta–Nystrøm method
λ Wavelength
λ Ecliptic longitude
μ∗ Ratio of the Earth’s and the Moon’s mass (μ∗ ≈ 81.3)
ν True anomaly
ν Shadow function
π 3.1415926…
π Angle between ecliptic of epoch and fixed reference ecliptic
ρ Residual vector
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ρ Density
ρ Range (topocentric distance)
ρΦ GPS code pseudorange
ρφ GPS carrier pseudorange
ρ̇ Range rate (topocentric velocity)
¯̇ρ Average range rate
σ Fraction of integration step size
σi Measurement weight
σϕ Phase noise
σρ̇ Range rate noise
τ Time within unit interval
τ Signal travel time
φ Rotation angle
φ Geocentric latitude
φ GPS carrier phase
φj (i) Backward difference of variable stepsize multistep method
ϕ Geodetic/geographic latitude
ϕ′ Geocentric latitude
ψ Lunisolar precession
ω⊕ Angular velocity vector of the Earth
ω Argument of perigee (or perihelion)
ω Angular velocity
ω Inclination of mean equator with respect to reference ecliptic

∇n Backwards difference of order n
0n×m Null matrix of dimension n×m

1n×n n-dimensional identity matrix
⊕ Earth

 Sun
◦ Degree
a · b Dot product of two vectors
aT b Dot product of two vectors
AT Transposed matrix
A−1 Inverse matrix
A−T Inverse of transposed matrix

The elementary rotation matrices are defined as

Rx(φ) =
⎛
⎝

1 0 0
0 +cosφ +sinφ
0 −sinφ +cosφ

⎞
⎠ Ry(φ)=

⎛
⎝

+cosφ 0 −sinφ
0 1 0

+sinφ 0 +cosφ

⎞
⎠ Rz(φ)=

⎛
⎝

+cosφ +sinφ 0
−sinφ +cosφ 0

0 0 1

⎞
⎠ .
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Batch estimation 276
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– estimation 196
BIH 162,183
– system 171
BIPM 162
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Calendar 319
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– Clenshaw algorithm 74
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– error 206
Clohessy–Wiltshire equations 295
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Consider
– covariance 266
– covariance analysis 297
– parameters 265
Conventional International Origin 171,183
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Coordinate system
– equatorial 25
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Coordinate time 163
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– polar 25
– spherical 25
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Corrector step 138,140
Correlation 264
Covariance 263
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– matrix 264
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Cunningham algorithm 66,68
Cycle slip 207
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– solar 157
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Density
– atmospheric 54
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– exponential interpolation 89
– Harris–Priester model 89,303
– Helium polynomial coefficients 99
– Jacchia models 91
– Jacchia polynomial coefficients 96,97
– scale height 86
Development Ephemerides 75
Dielectric constant 220
Difference quotient 253
Differential equation 117,129,141,240
– of sensitivity matrix 241
– of state transition matrix 240
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Doppler
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– effect 199
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– atmospheric 54
– coefficient 84,315
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Earth
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– axis 25
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– density structure 53
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– mass 15
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– plasma 219
– plate motion 209
– polar motion 183
– radiation pressure 107
– rotation 33,53,158
– rotation rate 294
– spin period 165
– tides 108,209
Earth Orientation Parameters 171
Eccentric anomaly 22,29
Eccentricity 18,29,42
– of Earth orbit 157
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– coordinates 72
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Electron density 227
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– partials 251
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Energy law 20
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Ephemeris Time 158,160
Equation
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– Euler’s 182
– Hill’s 295
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– regularization 153
– of relativistic motion 111
– variational 241
Equator 25,169
Equatorial
– coordinates 72
– plane 25
Equinoctial elements 30
Equinox 25,27,170
– true 181
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ERS 50,197,202
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Euler
– equations 182
– step 118
EUVE 198
Exospheric temperature 92
Expected value 263
Extrapolation methods 147
– Bulirsch sequence 149
– comparison 150
– stepsize control 149

Faraday rotation 227
Feed 194
Fixed-point iteration 48,313
FK5 catalog 170
Flattening 60,189
– dynamical 183
Force
– binormal 83
– lift 83
– radially symmetric 53
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– velocity-dependent 54
Four-way ranging 215
Free molecular flow 84
Fundamental plane 80

GAST 181
Gauss C. F. 43,258
Gauss–Jackson method 145,154
Gaussian orbit determination 39
Gaussian vectors 27,31
General relativity 110,162
Geocentric Coordinate Time 163
GEODA 299,332
Geodetic
– coordinates 186,192
– datums 185
GEODYN 154,258
Geoid 62
Geomagnetic
– activity 92
– index 88
– index prediction 102
– storms 88
Geopotential 56
– coefficients 58,68,172,233,246
– partials 244
GEOS 62,63
Geosat 63
Geostationary
– orbit 21
– radius 294
– satellite 29,154,294
GFZ 202
Givens rotations 272,289
GLONASS 186
GMST 165
GMT 157
Goddard Space Flight Center 63,199
GPS 171,203,204,303,324
– ε process 207
– almanac 324,325
– broadcast ephemeris 324,326
– clock dither 207
– empirical forces 112
– multipath 208,218
– navigation data 205,303
– position fix 207
– signal frequencies 204
– tracking of satellites 61
– week 324
GPS Time 158,162,324
GPS/MET 303
Gravimetry 61

Gravitational constant 15
Gravity
– coefficients 57
– gradient 243,244
– JGM-3 coefficients 64
– models 61
– normalized coefficients 58
– potential 56

– recurrence relation 66
Great circle 32
Greenwich
– Apparent Sidereal Time 181
– Hour Angle 33,158,165
– Mean Sidereal Time 158,165
– Mean Time 157
– meridian 33,186
GRGS 202
Ground track 32
– shift 51
GSFC 63
GTDS 154,258
Gyroscope 53,172,182

Harmonic oscillation 295
Helmert transformation 186
Heterosphere 87
Hill’s equations 295
Hohmann transfer 47
Homosphere 87
Homotopy continuation method 257
Horizontal plane 37
Hour angle 33
Householder transformation 270
Humidity 222
Hydrogen 161
Hyperbola 19
Hypersonic continuum flow 84

IAU 163
ICRS 170
IEEE 154,155
IERS 167
– Bulletin A 184
– Bulletin B 166,184
– Bulletin C 168
– Reference Pole 171,183
IGN 202
ILS 183
Impulse, specific 105
Inclination 25,28,42
– of mean equator 174
Increment function 118,133
Information matrix 267,268,270
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International
– Astronomical Union 163
– Atomic Time 158,162
– Celestial Reference System 170
– Earth Rotation Service 167
– Latitude Service 183
– Terrestrial Reference System 171
Internet 329
Interpolant 129
Interpolation
– in multistep methods 140
– Newton’s formula 134,142
– polynomial 132,140
Inverse
– of covariance matrix 267
– of symplectic matrix 239,243
Ionosphere 225
– path delay 198
– refraction 226
ITRS 171

J2000 163
Jacobian 260
Jason 202
JPL Ephemerides 75
Julian Date 319
Jupiter 54

Kalman filter 258,276,303
– continuous discrete 286
– extended 282
– factorization 283
– linearized 281
– process noise 284
Kalman gain 278
Kaula rule 58
Kepler J. 15
Kepler’s equation 23,32,48,326
– iterative solution 23
Kepler’s laws
– first 18
– second 17
– third 23,174
Kepler’s problem 16,130
Knudsen number 84

L1/2 frequency 204
LAGEOS 54,63,202
Landsat 198
Laplace vector 17
Laplacian orbit determination 39
Laser 202
– ranging 61,202
Latitude

– geocentric 186
– geodetic 186
– geograpical 32
Law
– energy 20
– Kepler’s first 18
– Kepler’s second 17
– Kepler’s third 23,174
– of areas 17
– of gravity 15
– vis-viva 20,47
Leap seconds 169
Least-squares estimation 258
Legendre polynomials 56,66
– addition theorem 57
– associated polynomials 57,58
Light time 208,234,313
– equation 210,213,215
Line of nodes 26,30
Linearization 233,260
Linux 332
LLR 171
Local tangential system 211
Local truncation error 119,135,146
Longitude
– geocentric 186
– geodetic 186
– geograpical 33
– mean 30
Loss function 259
– with a priori information 267
Love number 109
Lunar laser ranging 76,171

Major tone 196
Maneuver 47,104,105
Mass
– flow rate 105
– point-like 53
– relativistic effects 110
Matrix
– consider covariance 266
– covariance 264
– Earth rotation 181
– elementary rotation 27
– information 267,268
– Jacobian 260
– normal equations 261
– nutation 180
– orthonormal 269
– polar motion 185
– precession 176
– sensitivity 233
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– state transition 233
– symplectic 239
– upper triangular 269
– weighting 262
Mean anomaly 23,43
Mean longitude 30
Mean motion 23,28
Mean Sun 157
Mean value 263
Measurement
– accuracy 196–199,201,202
– model 257
– update 282
– vector 259
Mercury 76
Mesosphere 87
Meteorological data 202
Meteosat 215
Metric 162
Micro-step 148
MicroLab-1 303
Microwave signal 161
Mid-point rule 147
Mode coupler 194
Modified Julian Date 33,319
– from calendar date 321
Molniya 35
Moment of inertia 172,183
Monopulse 194
Moon
– libration 76
– low precision coordinates 70
– mean torque 174
– orbit perturbations due to the 53
Multipath effects 208,218
Multistep methods 132
– comparison 146
– Gauss–Jackson method 145
– interpolation 140
– second sum method 145
– Stoermer–Cowell 143
– variable order and stepsize 141

NAG 131,143
NASA 63
National Bureau of Standards 161
Navigation solution 207
Newcomb S. 157,160
Newton I. 16
Newton’s law 15
Newton’s method 24,48
NIMA 63
Non-singular elements 30

Normal distribution 265
Normal equations 260
Normal points 203
North pole 25,170
Numerical integration 74,83,107,117,209,

241,253,305
– comparison of methods 151
Nutation 76,170,171,178
– angles 178
– IAU 1980 theory 179
– in longitude 181

Oblateness 35
Obliquity of the ecliptic 71
Occulation 80
Ocean tide 209
One-way measurements 193,199
Orbit
– form 17
– geostationary 21
– geostationary transfer 34,48
– Molniya 34
– near-circular 29,154
– near-equatorial 29
– sun-synchronous 50
Orbit determination
– batch estimation 258
– from three sets of angles 43
– from two position vectors 40
– preliminary 39,51,257
– real-time 283,303
– sequential estimation 258
Orbital elements 28
– classical 29
– from position & velocity 28
– from two positions 42
– non-singular 30
– osculating 49
– transition matrix 235
Orbital period 20,23
Orbital plane 17,25,32
Osculating elements 49

P code 205
Parabola 19
Partial derivatives 30,233,260
– difference quotient 253
– of acceleration 244
– of Keplerian elements 236
– of measurements 250,252
– w.r.t. Keplerian elements 238
PECE method 138
Penumbra 81



Index 367

PEPSOC 154,258
Perigee 18,47
– argument of 26
Photon, impulse of 77
Plane
– ecliptic 169
– equatorial 25,169
– horizontal 37
– orbital 17,25,32
Plasma frequency 226
Plate motion 209
PN code 197,198
Point-mass
– acceleration 69
– partials 247
Poisson parentheses 238
Polar motion 183,209
Polarization of signal 217,219
Pole
– BIH 183
– celestial 181
– CIO 183
– IERS reference 183
– of the ecliptic 174
– true celestial 178
Polynomial interpolation 132
Position fix 207
Post-Newtonian approximation 163
PPS 204
PRARE tracking system 61,197
Precession 71,170–172
– free Eulerian 182
– in longitude 176
– lunisolar 174
– planetary 176
Precise GPS Code 205
Precise Positioning Service 204
Predictor–Corrector method 138
Probability distribution 264
Process noise 284,305
Proper time 163
Pseudorange 206,217
PZ-90 186

QR factorization 269,298
Quadrant 25,28,29
Quasar 171

Radius vector 17
Random variable 263
Range measurement 193,196
– 4-way 313
– calibration 214

Range rate measurement 193,201,216
Recurrence relation
– Adams–Bashforth coefficients 135
– Adams–Moulton coefficients 137
– divided differences 142
– geopotential 246
Recursive estimation 277
Reflection 77
– diffuse 85
– elastic 85
– specular 85
Reflectivity 77,78
Refraction 220
Regular elements 30
Regularization 153
Relativity 162
– effects of Sun 111
– planetary motion 75
– satellite motion 110
Remote sensing 29,47,50
Residuals 259,318
Resonance 161
Retro-reflector 43
Retrograde 25
Richardson extrapolation 147
Right ascension 25
– of ascending node 26,28,42
– Sun 157
RK4 method 119,154
Rotation matrix 27
RTOD 306,332
Rubidium 161
Runge–Kutta methods 118
– continuous 127
– embedded 121
– explicit 120
– performance 129
– RK4 119,283,305
– stepsize control 121
Runge–Kutta–Nyström methods 123
Runge–Lenz vector 17,30

SA 207
Satellite
– area-to-mass ratio 85
– attitude 106
– box-wing shape 79
– geodetic 54,154
– geostationary 29,154,198,294
– GPS 191
– mass 77,84,105
– propulsion systems 105
– remote sensing 29,47,50
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– signal travel time 208
– surface area 77
– telecommunications 21
– tracking 61,193
– transponder 196,200,214
Satellite laser ranging 10,61,171,202
Satellite-satellite tracking 61,312
Scale height 86
Scaliger J. J. 319
Schwarzschild radius 111
Seasat 62,63
Secant 118
Second
– Ephemeris 160
– SI 158,162
Second sum method 145
Sector–triangle ratio 40
Sectorial gravity coefficients 58
Selective Availability 207,303
Semi-latus rectum 18,28,42
Semi-major axis 18,28
– variance 299
Sensitivity matrix 233
– differential equation 241
Sequential estimation 280
Shadow
– cone angle 81
– conical model 80
– transits 83
– vertex 81
Shuttle 198
SI second 158,162
Sidereal Time 33,165,171
– apparent 181
Signal travel time 208
Singular value decomposition 274
Singularity 29,276
SLR 10,61,171,202
Solar
– cycle 103
– flux 77,103
– flux prediction 102
– radiation pressure 54,77
– radiation pressure coefficient 78,315
Solid Earth tide 209
Space shuttle 198
Space-Time 162
Specific impulse 105
Specular reflection 85
Speed of light 165
Spherical harmonics 56
Spheroid 53
SPOT 63,202

SPS 204
Sputnik 62,98
SST 61
Stability 287
– of atomic clocks 162
– of Earth rotation 162
– of multistep methods 139
Standard deviation 263
Standard Positioning Service 204
State transition matrix 233
– differential equation 240
– for orbital elements 235
– inverse 239,243
– linearized orbit model 295
– two-body problem 239
State vector 118,233,240
Statistics 263
Stella 63
Stepsize control 121,131,149,155
Stern–Gerlach magnet 161
Stoermer–Cowell methods 143
Stratosphere 87
Sun
– dynamo model 104
– fraction of light 83
– low precision coordinates 70
– mean 157
– orbit perturbations due to 53
– radio flux 88
– relativistic effects 111
– rotation period 88
– spot cycle 88
– torque 174
Sunspot numbers 103
Symplectic matrix 239,243
Système International 158

TAI 158,162
Taylor expansion 118
TCB 164
TCG 163,171
TDB 164
TDRSOD 313,332
TDRSS 63,198,312
TDT 163
TEC 198
Telecommand 197
Temperature, exospheric 54,92
Terrestrial Dynamical Time 163
Terrestrial Time 158,163
Tesseral gravity coefficients 58
Third-body forces 108
Three-way Doppler 200
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Thrust 105
– force 104
– partials 249
– performance 105
Thruster activity 104
Tidal
– force 70
– friction 167
– station displacement 209
Tide 209
Time 157
– coordinate 163
– ΔT 167
– proper 163
Time update 281
Tone-ranging system 196
TOPEX/POSEIDON 61,107,112,198,199,202
Topocentric 37
Total electron content 226
Tracking unit 194
Transfer ellipse 47
TRANSIT 186
Transponder 43,196,200,214,234,312
Tropical year 160
Troposphere 87,221
– refraction 222
True anomaly 18,29,43
TT 158,163
Two-body problem 16,129
– state transition matrix 239
Two-way measurements 193

UARS 315
Ultrastable oscillator 202
Umbra 81
United States Naval Observatory 162
Universal Time 157
– UT1 158,167
– UT1R 167
– UTC 158,168

USNO 162
UT 157
UT1 167
UTC 158,168
UTOPIA 154,258

Vanguard 62
Variance 263
Variational equations 241
Velocity
– areal 17,28
– at apogee 47
– at perigee 47
– transformation 191
– two-body problem 24
Velocity increment 105
Venus 54,76
Vernal equinox 25,170
Very Long Baseline Interferometry 171
Vis-viva law 20,47
VLBI 171

Water vapor pressure 221
Weighting 262
WGS84 185,304,324
White Sands 199
Wind model 85
Windows 331
World Geodetic System 185

X-angle 213
– partials 252

Y code 205
Y-angle 213
– partials 252

Zenith distance 220
Zonal gravity coefficients 58
Zone of exclusion 198



Underlined numbers indicate a rounding of the original value to the given number of digits. 
DE405 constants refer to the TDB time system.

Astrodynamical Constants

Quantity Value References and Remarks

Time
MJD(J2000) 51 544.5 IAU 1976 (Seidelmann 1992)
TT–TAI 32.184 s IAU 1991 (Seidelmann 1992)
GPS–TAI –19 s Hofmann-Wellenhof et al. (1997)

Universal
c 299 792 458 m/s IAU 1976 (Seidelmann 1992)
G 6.673·10–20 km3 /(kg s2) Cohen & Taylor 1987

Earth
GM 398 600.4415 km3/s2 JGM-3
J2 0.00108263 JGM-3
R 6378.137 km WGS-84 (NIMA 1997)
f 1/298.257223563 WGS-84 (NIMA 1997)
 0.7292115·10–4 rad/s Moritz 1980

Sun
GM 1.32712440018·1011 km3/s2 DE405 (Standish 1998)
AU 149 597 870.691 km DE405 (Standish 1998)
R 6.96·105 km Seidelmann 1992
P 4.560·10–6 N/m2 IERS 1996 (McCarthy 1996)

Moon
GMM 4 902.801 km3/s2 DE405 (Standish 1998)
aM 384 400 km Seidelmann 1992
RM 1738 km Seidelmann 1992

Satellites
rGEO 42 164 km 23h56m04s orbital period
vGEO 3.075 km/s
rGPS 26 561 km 11h58m02s orbital period
vGPS 3.874 km/s
rLEO 6678 ... 7878 km 300 ... 1500 km altitude
vLEO 7.726 ... 7.113 km/s
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