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Abstract

In this thesis, steps are taken toward better separation of geomagnetic field sources at the core and litho-
sphere, by accounting in new ways for the available prior information while modelling satellite magnetic
data. Probabilistic inversion is carried out based on a forward scheme using Green’s functions for Laplace’s
equation in spherical geometry with Neumann boundary conditions. Inversion is accomplished through
direct sequential simulation based on ordinary Kriging, for a source surface defined by an approximate
equal area grid. Prior information is implemented through semi-variogram analysis and generation of
local conditional probability distributions at the source surface. The prior information used, consists of
training images of the core mantle boundary field from core dynamo simulations, and for the lithosphere
field, from models of remanent magnetization of the oceans in combination with full Earth models of
induced magnetization. Stochastic prior realizations of the core mantle boundary and lithosphere field,
which converge toward the target statistics, are achieved through spherical direct sequential simulation.
In addition, probabilistic and regular inversion using synthetic and Swarm satellite observations have been
attempted at the core mantle boundary. In this case, it is possible to derive smooth least squares solu-
tions, as well as posterior realizations which have a mean that converges toward fitting the observations.
It is found that posterior realizations can be generated through the use of observations with less than
global coverage, by way of an approximate global coverage method. This allows for faster computations.
However, results indicate that better posterior realizations are found when using global observations,
showing the approximate global coverage method, as being a poor approximation in this implementation
of the geomagnetic vector field description using Green’s functions. Lack of posterior convergence to
observation fit shows that longer simulations should be carried out, but the current results looks promis-
ing in this regard. Finally, the developed systems offer possibilities for including prior information from
more than one source, and possible expansion of the estimation to two simultaneous estimation locations.
Such implementations may open the door to new source separation techniques in the future.
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Chapter 1

Introduction

Earth is permeated by a magnetic field. The main field is generated by dynamo action in Earth’s core,
while other sources include electrical currents in the magnetosphere and ionosphere, magnetized rocks
in the crust, and induced electrical currents in the oceans and mantle. The electrical currents in the
outer atmosphere are considered distinctly external, with the collective rest considered internal. For
centuries, scientists have measured the sum of all field sources directly through Earth-bound methods,
before culminating with measurements of global coverage during the age of spaceflight, and hence,
satellites. Despite differences in available technology, a common trait throughout the time of geomagnetic
measurements, is that those with the knowledge at hand seek to explain them. A main tool in this
endeavour has been global models of Earth’s magnetic field (see e.g. Hulot et al., 2015), first developed
by Carl Friedrich Gauss around 1830 and leading up to modern results such as the global-research-driven
International Geomagnetic Reference Field (IGRF, Thébault et al., 2015). The IGRF is a continuously
updated (semi-decennial) global field model of the main field and its secular variation. It is derived from
proposals of sophisticated models such as CHAOS-6 from Finlay et al. (2016).
Parallel to the development of global field models, is the understanding of core dynamics. For the majority
of geomagnetic research history, these two concepts have not been tightly linked (see e.g. Olson, 2015).
Only late in the twentieth century, did understanding reach a level that could explain dynamo action
in Earth’s core as being the main source of the geomagnetic field. Since then, and with increasing
computational power, developments in core dynamo simulation continue to improve. Modern numerical
simulation efforts (Aubert, 2017) now allow the generation of highly resolved training images of the core
field. In addition, these numerical simulation results can be expressed in the same mathematical form as
observation-based global models of Earth’s magnetic field.

1.1 Global models of Earth’s magnetic field

The description of Earth’s global magnetic field mainly used today is still based on Gauss’ work of spher-
ical harmonic analysis (SHA). I here give a brief description following Kono (2015) and Geomagnetism
lectures at Technical University of Denmark. In order to arrive at the description, two assumptions are
made. The quasi-static approximation and zero electrical current density at observation height. The two
approximations allow Ampère’s law (with Maxwell addition) as seen in equation 1.1.1, to go to zero.
Note which assumption affect each part of the equation.

∇×B = µ0J︸︷︷︸
zero current

+µ0ε0
∂

∂t
E︸ ︷︷ ︸

quasi-static

≈ 0 (1.1.1)

Here I denote B as the magnetic field vector (also known as magnetic flux density), J as electric current
density, µ0 is magnetic permeability in vacuum, ε0 is vacuum permittivity, and E is the electric field
vector. Note that strictly, B = µrµ0H, where µr is relative permeability, and H is magnetic field
intensity. Geomagnetic observations measure H, not B, but in the atmosphere, relative permeability is
approximately one, leading to a simple relation between measurements and magnetic flux density. This
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has led to B being referred to as the "magnetic field vector".
The validity of the assumptions as applied to the global geomagnetic field descriptions are generally
accepted. The quasi-static approximation depends on the field changing sufficiently slowly, and this
being the case can be shown through scale analysis. The current free region is an approximation,
the ionosphere at satellite altitude is known to have small electrical currents as mentioned. However,
accepting the assumptions leading to a curl-free magnetic field vector, it is now possible to describe the
global magnetic field through a scalar potential, V , since the curl of the gradient of a (twice-differentiable)
scalar field is always zero.

∇×B = ∇× (−∇V ) = 0 → B = −∇V (1.1.2)

Here the negative sign is convention. This relation between magnetic field vector and scalar potential
can be taken further through Gauss’ law for magnetism, leading to Laplace’s equation.

∇ ·B = ∇ · −∇V = 0 → ∇2V = 0 (1.1.3)

Which has a solution through spherical harmonic expansion. In spherical coordinates it is of the form
given in equation 1.1.4.

V (r, θ, φ) = a

∞∑
n=1

n∑
m=0

{ internal field︷ ︸︸ ︷[
gmn cosmφ+ hmn sinmφ

](
a

r

)n+1

+
[
qmn cosmφ+ smn sinmφ

](
r

a

)n
︸ ︷︷ ︸

external field

}
Pmn (cos θ)

(1.1.4)

This description of the scalar potential field is given as a function of radius, r, co-latitude, θ, and
longitude, φ. In addition, a is a reference radius, usually chosen at Earth’s surface. The collection of gmn ,
hmn , qmn , and smn are Gauss coefficients of degree n and order m, and finally Pmn are Schmidt-normalized
associated Legendre functions also of degree n and order m. Spherical harmonic analysis like this allow
upward and downward continuation. E.g. a model estimated from observations at satellite altitude, may
infer information about the geomagnetic field at the core mantle boundary (CMB) or Earth’s surface.
Note the association with internal field sources and external field sources as dictated by the relative radii
fractions. Finally, this field description may be arranged as a system of linear equations, with the Gauss
coefficients as model parameters. Using inversion techniques it is thus possible to determine a global
model of Earth’s magnetic field.

1.2 Source separation: core and lithosphere

As shown in equation 1.1.4, separation of the internal and external field is well described by spherical
harmonic analysis. What is not as well defined, but indeed a well known problem in geomagnetism, is
separation of the sources that contribute to these fields. The lithosphere and core field separation problem
is usually shown through the squared magnetic intensity, Wn(r) = 〈|B|2〉, by looking at internal sources
only. This is defined through the Lowes-Mauersberger spectrum seen in equation 1.2.1.

Wn(r) = (n+ 1)
(
a

r

)2n+4 n∑
m=0

{
(gmn )2 + (hmn )2

}
(1.2.1)

Which can be computed at some radius, r, for each degree in the spherical harmonic model. A spectrum
of this kind is shown in figure 1.2.1. Here it is computed for three global field models, CM4, CHAOS-4,

2
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and a lithosphere field model, MF7. Note the sharp change in power spectrum around degree 14. This is
taken to be the point at which field source dominance in SH models change, specifically a change from
the core to lithosphere field. As such, this overlap inhibits us from seeing the core field above degree 14
and the lithosphere field below degree 14. In practical terms, due to the nature of spherical harmonic
functions, this means that we can’t resolve large scale features of the lithosphere field, and small scale
features of the core field.

Figure 1.2.1: Spatial power spectrum of the field of internal origin at Earth’s surface, as described by
field models CM4, CHAOS-4, and the lithosphere field model, MF7. From Hulot et al. (2015).

1.3 A probabilistic approach

This thesis aims at working toward achieving better core and lithosphere separation. With increasing
capabilities of simulations based on core dynamics, it is thought that including such information may lead
to good alternative methods. Especially if it is possible to include prior information about the core and
crust at the same time, in addition to satellite observations. In this regard, the direct sequential simulation
Markov-Chain Monte Carlo methods used in the Matlab toolbox SIPPI (Hansen and Mosegaard, 2013a,b)
was found to be interesting. Here, two-point statistical information from training images are used to
invert systems of linear equations in Cartesian geometry. Inspired by this implementation, as well as
the underlying GSLIB library (Deutsch and Journel, 1998), this thesis is based on my development of a
geostatistical simulation tool, suitable for spherical geometry. The tool incorporates two-point statistical
conditioning of training images, to do probabilistic inversion of a system of linear equations describing the
geomagnetic vector field through direct sequential simulation. Something which hasn’t been attempted
before.

3



Chapter 2

Theory

This section describes the underlying theory behind the inverse problem to be solved through direct
sequential simulation. The forward problem under consideration is derived from the same physical con-
siderations used to set up the spherical harmonic expansion description of the geomagnetic scalar potential
outlined in the introduction. These physical considerations lead to Laplace’s equation, and where spheri-
cal harmonic functions is a conventional solution to the homogenous equation, another solution is found
by subjecting Laplace’s equation to the use of Green’s second identity with Neumann type inhomogenous
boundary conditions. As solution I use the work of Hammer (2018), in which a thorough derivation of a
Green’s function description of the geomagnetic vector field can be found.
In addition, I describe the relevant theory in regards to generating realizations of a random variable on
a defined grid through the two-point statistical method of Kriging based direct sequential simulation. In
this endeavour I follow established geostatistical work such as Deutsch and Journel (1998), Oz and Xie
(2003), and Hansen and Mosegaard (2008).

2.1 The forward problem through Green’s functions

2.1.1 Green’s function description of the geomagnetic vector field

The wanted Green’s function solution to the governing equation of the geomagnetic field potential is
found in Hammer (2018) chapter 5. The solution is given by equation 2.1.1.

Bk(r) =
∮
S

Gk(r, r′)Br(r′)dS =
∫ 2π

0

∫ π

0
Gk(r, r′)Br(r′) sin θ′dθ′dφ′ (2.1.1)

This is the forward problem under consideration. Specifically, it is the exterior Green’s function description
linking the geomagnetic vector field at an observation location, r, to the radial field at a source location,
r′, below the observation location. The full solution includes an interior Green’s function term, accounting
for external sources, as well as secular variation of the sources. These have been omitted, as only internal
sources and observations separated in time below the shortest secular variation, are considered. For
equation 2.1.1, k = r, θ, φ are the vector field components, Gk(r|r′) is the exterior Green’s function, and
Br(r′) is the radial field at source surface dS = sin θ′dθ′dφ′. The exterior Green’s functions are defined
by equations 2.1.2-2.1.4.

Gr = 1
4π

h2(1− h2)
f3 (2.1.2)

Gθ = −1
r

∂Ni
∂µ

[cos θ sin θ′ cos(φ− φ′)− sin θ cos θ′] (2.1.3)

Gφ = 1
r

∂Ni
∂µ

[sin θ′ sin(φ− φ′)] (2.1.4)
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Where the expressions in equations 2.1.5-2.1.7 are defined for simplicity of appearance in the above
equations.

1
r

∂Ni
∂µ

= h

4π

[
1− 2hµ+ 3h2

f3 + µ

f(f + h− µ) −
1

1− µ

]
(2.1.5)

h = r′

r
, f = R

r
, R =

√
r2 + r′2 − 2rr′µ (2.1.6)

µ = cos θ cos θ′ sin θ sin θ′ cos(φ− φ′) (2.1.7)

Here r, θ, and φ are the geographic spherical polar coordinates of the observation location, and r′, θ′, φ′
are the source locations.

2.1.2 Discretization of the forward problem

Integral equation 2.1.1 can be approximated by equation 2.1.8 over a collection of discrete NS source grid
points, defined on the source surface dS. Naturally, it follows that the approximation accuracy increases
with increasing grid size/resolution.

Bk(r) ≈
NS∑
m=1

Gk(r, r′m)Br(r′m) sin θ′m∆θ′m∆φ′m (2.1.8)

Here ∆θ′m and ∆φ′m are discretizations of the differentials dθ′ and dφ′, the product of which can be seen
as the integration area. Performing this approximation requires knowledge of source grid parameters,
such that a definition of ∆θ′m∆φ′m is possible for each grid location, r′m, and that the sum of each
approximate integration area approaches the total area, the product of the integration limits. This is
described by equation 2.1.9.

NS∑
m=1

∆θ′m∆φ′m = 2π2 (2.1.9)

If this is done correctly such that the condition is upheld reasonably, the expression can now be used to
equate the magnetic field components atNobs satellite observation locations, to a matrix kernel associated
with observation and source geometry, and the radial field at NS source locations of e.g. the core mantle
boundary or Earth’s surface.

2.2 The inverse problem through ordinary Kriging

2.2.1 Ordinary Kriging

For each radial field source target location, rt, Ordinary Kriging can be used to find the best linear
unbiased estimate of the random variable at said target location. This is accomplished by considering
available known realizations of the random variable. In this case a target source variable, Br(r′t), subject
to observations, Bk(ri). Consider the linear system as given in equation 2.2.1, depending only on
observation values and the weighting factors known as the Kriging weights, ωi.

B̂r(r′t) =
Nobs∑
i=1

ωiBk(ri) (2.2.1)

In order to ensure exact estimation, the difference between the expected value of the estimator, E{B̂r(r′t)},
and the estimated parameter, E{Br(r′t)}, should be zero. Writing out the difference leads to equation
2.2.2, following lecture notes by Nielsen (2004) in conjunction with Journel and Huijbregts (1978).

5
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E

{
Br(r′t)− B̂r(r′t)

}
= E

{
Br(r′t)−

Nobs∑
i=1

ωiBk(ri)
}

E

{
Br(r′t)

}
−
Nobs∑
i=1

ωiE

{
Bk(ri)

}
= 0

E

{
Br(r′t)

}
=
Nobs∑
i=1

ωiE

{
Bk(ri)

}
(2.2.2)

In order to ensure minimum difference in expected values, it is clear that the Kriging weights should sum
to one for all radial field source target locations, rt. This is the required condition for the estimator to
be unbiased. Equation 2.2.3 expresses this unbiasedness condition as a sum, and vectorized with 1 as a
vector of ones.

Nobs∑
i=1

ωi = 1Tω = 1 (2.2.3)

In addition to being unbiased, Kriging minimizes estimation variance. A useful expression arises from
vectorization and substitution of the linear system in equation 2.2.1, into the following general expression
for estimation variance.

σ2
est = E

{(
Br(r′t)− B̂r(r′t)

)2}
= V

{
Br(r′t)− B̂r(r′t)

}
= V

{
Br(r′t)− ωBk(r)

}
= V

{
Br(r′t)

}
+ ωTC

{
Bk(r)

}
ω − 2ωTC

{
Br(r′t),Bk(r)

}
For simplicity, I write the variance and covariances above as seen in equation 2.2.4.

σ2
est = σ2

exp + ωTCω − 2ωT c (2.2.4)

Where σ2
exp is the expected variance of the estimated parameter, C is the observation to observation

covariance matrix, and c is the radial field source target to observation covariance vector. Minimization
of the estimation variance is achieved through the method of Lagrange multipliers. The optimization
problem is given by equation 2.2.5.

minimize σ2
exp + ωTCω − 2ωT c (2.2.5)

subject to 1Tω − 1 = 0

Choosing the Langrange multiplier as −2Λ, the Lagrange function follows in equation 2.2.6.

L = σ2
exp + ωTCω − 2ωT c+ 2Λ(1Tω − 1) (2.2.6)

Differentiation with respect to the Kriging weights and the lagrange multiplier, and equating to zero,
yields equations 2.2.7 and 2.2.8.

∂L
∂ω

= 2Cω − 2c+ 2Λ1T = Cω − c+ Λ1T = 0 (2.2.7)
∂L
∂Λ = 21Tω − 2 = 1Tω − 1 = 0 (2.2.8)

6
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With a bit of rearrangement, these two equations can be set up as a single system of linear equations,
the ordinary Kriging system given in equation 2.2.9.

[
C 1
1T 0

][
ω

Λ

]
=
[
c

1

]
(2.2.9)

Merging C and the Lagrange related one vectors intoK, the Kriging weights and the Lagrange multiplier
into λ, and c and the single one into k, I present, in notation following Hansen and Mosegaard (2008),
the ordinary Kriging system in equation 2.2.10.

Kλ = k (2.2.10)

Solving the ordinary Kriging system to get the Kriging weights, ω, and the Lagrange multiplier Λ, can be
done by inversion or similar linear systems solutions. Once the Kriging weights and Largrange multiplier
are known, it is possible to determine the Kriging mean, µK , and Kriging variance σ2

K . These results
represent the mean and variance of a Gaussian probability density function at the target source location,
conditional to known observations. The Kriging mean is simply the initial linear system that was laid out
in equation 2.2.1, here vectorized in equation 2.2.11.

µK = ωTBk(r) (2.2.11)

And a simple expression for the Kriging variance is found from writing out the top row of the ordinary
Kriging system shown in equation 2.2.9.

Cω + Λ1 = c

Cω = c−Λ1

And inserting into the estimation variance that was minimized from equation 2.2.4.

σ2
K = σ2

exp + ωT (c−Λ1)− 2ωT c
= σ2

exp + ωT c− ωTΛ1− 2ωT c
= σ2

exp − ωTΛ1− ωT c

Arriving at a simple expression for the Kriging variance in equation 2.2.12 by way of the unbiasedness
condition, 1Tω = 1.

σ2
K = σ2

exp − ωT c−Λ (2.2.12)

2.2.2 Ordinary Kriging applied to the Green’s function description

In order to get the best linear unbiased estimate of the random variable at a target source location,
conditional on available observations, it should now be clear that the ordinary Kriging system of equation
2.2.10 is to be solved. This will lead to the Kriging weights and Lagrange multiplier allowing computation
of the random variable statistics, the Kriging mean and variance. In the case being considered here, the
Green’s function description of equation 2.1.8 is the link between observations and the target random
variables at radial field source locations. The ordinary Kriging system of equation 2.2.10 is a method by
which this system can be inverted, such that the random variable can be estimated through the linear

7
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system of the Kriging mean and variance in equations 2.2.11 and 2.2.12. This collection of required
equations are shown in 2.2.13.

Bk(r) ≈
NS∑
m=1

Gk(r, r′m)Br(r′m) sin θ′m∆θ′m∆φ′m

Kλ = k

µK = ωTBk(r)
σ2
K = σ2

exp − ωT c−Λ

(2.2.13)

Using the Kriging system defined in the first row of 2.2.9, and given Nobs observations, Bk(r), the system
depends on the Kriging weights, the data to data covariance, and the data to source target covariance.
This can be written out as the sum seen in 2.2.14.

Nobs∑
j

ωjC

{
Bk(ri), Bk(rj)

}
= C

{
Bk(ri), Br(r′t)

}
∀i = 1, . . . , Nobs (2.2.14)

Where ωj are the Kriging weights, C
{
Bk(ri), Bk(rj)

}
are the data to data covariances, and C

{
Bk(ri), Br(r′t)

}
the data to target covariances. Using the Green’s function description of the geomagnetic field of equa-
tion 2.1.8, the covariance expressions can be substituted as seen in equation 2.2.15 and 2.2.16, where
the integration area factor is written ∆x = sin θ′x∆θ′x∆φ′x for simplicity.

C
{
Bk(ri), Bk(rj)

}
= C

{ NS∑
m=1

Gk(ri, r
′
m)Br(r′m)∆m,

NS∑
n=1

Gk(rj , r
′
n)Br(r′n)∆n

}

=
NS∑
m=1

NS∑
n=1

Gk(ri, r
′
m)Gk(rj , r

′
n)∆m∆nC

{
Br(r′m), Br(r′n)

}

Ci,j =
NS∑
m=1

NS∑
n=1

Gk(ri, r
′
m)Gk(rj , r

′
n)∆m∆nC(r′m, r′n) (2.2.15)

C
{
Bk(ri), Br(r′t)

}
= C

{ NS∑
m=1

Gk(ri, r
′
m)Br(r′m)∆m, Br(r′t)

}

=
NS∑
m=1

Gk(ri, r
′
m)∆mC

{
Br(r′m), Br(r′t)

}

ci =
NS∑
m=1

Gk(ri, r
′
m)∆mC(r′m, r′t) (2.2.16)

This shows that the Kriging system depend on two geometric factors, the Green’s function kernel, Gk,
subject to the integration area factor, as well as the target source covariance matrices C(r′m, r′n) and
C(r′m, r′t). The target source covariance terms can be found from modelling of training images and will
be covered in chapter 3. The covariances take the matrix shapes given in 2.2.17.

C =


C(r′1, r′1) C(r′1, r′2) . . . C(r′1, r′n)
C(r′2, r′1) C(r′2, r′2) . . . C(r′2, r′n)

...
... . . . ...

C(r′m, r′1) C(r′m, r′2) . . . C(r′m, r′n)

 , Cs =


C(r′1, r′t)
C(r′2, r′t)

...
C(r′m, r′t)

 (2.2.17)

8



CHAPTER 2. THEORY

Where C(r′x, r′y) are the covariance between two points of a given spherical distance on the target source
surface. Given observations, Bk(r), equation 2.2.15 and 2.2.16 can be written out as the k vector and
K matrix of the ordinary Kriging system in equation 2.2.10.

c =


Gk(r1, r

′
1)∆1 Gk(r1, r

′
2)∆2 . . . Gk(r1, r

′
m)∆m

...
... . . . ...

Gk(ri, r
′
1)∆1 Gk(ri, r

′
2)∆2 . . . Gk(ri, r

′
m)∆m

 ·

C(r′1, r′t)
C(r′2, r′t)

...
C(r′m, r′t)



k =



∑NS

m=1 Gk(r1, r
′
m)∆mC(r′m, r′t)∑NS

m=1 Gk(r2, r
′
m)∆mC(r′m, r′t)
...∑NS

m=1 Gk(ri, r
′
m)∆mC(r′m, r′t)
1



C =


Gk(r1, r

′
1)∆1 Gk(r1, r

′
2)∆2 . . . Gk(r1, r

′
m)∆m

...
... . . . ...

Gk(ri, r
′
1)∆1 Gk(ri, r

′
2)∆2 . . . Gk(ri, r

′
m)∆m

 ·

C(r′1, r′1) C(r′1, r′2) . . . C(r′1, r′n)
C(r′2, r′1) C(r′2, r′2) . . . C(r′2, r′n)

...
... . . . ...

C(r′m, r′1) C(r′m, r′2) . . . C(r′m, r′n)



·


Gk(r1, r

′
1)∆1 Gk(r2, r

′
1)∆1 . . . Gk(rj , r

′
1)∆1

Gk(r1, r
′
2)∆2 Gk(r2, r

′
2)∆2 . . . Gk(rj , r

′
2)∆2

...
... . . . ...

Gk(r1, r
′
n)∆n Gk(r2, r

′
n)∆n . . . Gk(rj , r

′
n)∆n



K =


∑
Gk(r1, r

′
m)Gk(r1, r

′
n)∆m∆nC(r′m, r′n) . . .

∑
Gk(r1, r

′
m)Gk(rj , r

′
n)∆m∆nC(r′m, r′n) 1

... . . . ...
...∑

Gk(ri, r
′
m)Gk(r1, r

′
n)∆m∆nC(r′m, r′n) . . .

∑
Gk(ri, r

′
m)Gk(rj , r

′
n)∆m∆nC(r′m, r′n) 1

1 . . . 1 0


Ensuring the summations given by equation 2.2.15 and 2.2.16, where in the above, the single summation
represents

∑NS

m=1
∑NS

n=1 for brevity. From these two matrices, the Kriging weights and Lagrange multiplier
can be found by inversion of K, as given by equation 2.2.18, or by other linear system solutions.

λ = K−1k, λ =


ω1
...
ωi

Λ

 (2.2.18)

The Kriging mean and variance can then finally be determined from these parameters and the available
observations.

µK = ωTBk(r)
σ2
K = σ2

exp − ωT c−Λ

9
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2.3 Direct Sequential Simulation

For each radial field source target location, Kriging lets us compute the best linear unbiased estimate,
however, in order to infer information about the local probability distributions beyond the mean, variance,
and Gaussian shape, direct sequential simulation is used. In addition, direct sequential simulation allow
reproduction of the prior two-point statistical information in a training image, like the covariance structure
used in Kriging.

2.3.1 Sequential simulation

Sequential simulation is an application of conditional probabilities to infer random variable estimates
based on known information, and sequentially generate posterior realizations of the Gaussian random
field. Deutsch and Journel (1998) considers the complementary cumulative distribution function (CCDF)
of N random variables, Zi, conditioned on an arbitrary set of known variables, n.

ccdfN (z1, ..., zN |n) = P{Zi ≤ zi, i = 1, ..., N |n} (2.3.1)

N samples can be drawn from this type of CCDF in N steps, estimating the random variables while
increasing the conditioning in each step. The process is the following.

1. A value is drawn from the Z1 CCDF, this draw is denoted z1 and becomes part of the conditional
set of known variables n, such that it grows to n+ 1 known variables.

2. Values are drawn sequentially until all N random variables have been estimated. The conditional
set of known variables grow by one for each draw.

The process requires computation of N CCDFs taking the form of equation 2.3.2.

P{Z1 ≤ z1|n}
P{Z2 ≤ z2|(n+ z1)}
P{ZN ≤ zN |(n+ z1 + ...+ zN−1)}

(2.3.2)

The complete sampling of N random variables constitute one realization of the Gaussian random field.
Further realizations simply require rerunning the process. As Kriging estimates represent the mean and
variance of the local Gaussian probability density function, conditional to known variables, it is a useful
method for finding the basis of correct sequential Gaussian CCDFs. In order to apply this concept to
ordinary Kriging of the Green’s function description of geomagnetic vector field observations, such that
the correct non-Gaussian local probability density functions are used, further measures need to be used.
These measures result in direct sequential simulation with histogram reproduction.

2.3.2 Direct sequential simulation with histogram reproduction

To generate the covariance information needed for ordinary Kriging in equation 2.2.14, I explained that
training images would need to be used. The same is true for direct sequential simulation (DSSIM). A prior
two-point statistical idea of the radial field at the target source locations are needed in order to define
a target histogram. In chapter 3 I outline the specifics of these training images to be used. The goal
with DSSIM is to generate realizations of a non-Gaussian random field, in which the mean of realizations
has mean and prior statistics reproduced, while honoring available observations. To achieve this, a range
of local probability density functions conditioned to the target histogram are generated. Following Oz
and Xie (2003), this is accomplished by first normal-score transforming the target histogram as given in
equation 2.3.3.

yh = G−1
n (Fh(zh)) (2.3.3)

10
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Here, yh is the normal-score transformed histogram values, Gn is a standard normal Gaussian cdf, Fh is
the target histogram cdf, and zh are the histogram values undergoing transformation. The cdf inverse is
the quantile function, given in this case by G−1

n . Knowing the normal-score transformation from equation
(2.3.3), a back-transformation to the original histogram is possible through equation 2.3.4.

zh = F−1
h (Gn(yh)) (2.3.4)

This is a tool that can be used to generate local conditional distributions by substituting yh for non-
standard normal-score values, as given by equation 2.3.5. Where ZF is a matrix of the local conditional
distributions, G−1

mv are quantile functions for a range of non-standard normal distributions with given
means and variances, and q are regularly spaced values between zero and one, defining the local conditional
distribution size/resolution.

ZF = F−1
h (Gn(G−1

mv(q))) (2.3.5)

Defined like this, these local conditional distributions will have the correct shape conditional to the target
histogram, a certain mean, µF , and a certain variance, σ2

F . As mentioned, performing ordinary Krig-
ing will yield an estimated Kriging mean and variance of the local Gaussian distributions, i.e. the wrong
shape. As such, finding the correct local conditional distribution amounts to finding the back-transformed
Gaussian distribution with mean and variance closest to the Kriging mean and variance.
Thus the target histogram enables the possibility of drawing samples from correctly shaped local con-
ditional distributions. However, this ensures reproduction of the histogram, as well as its mean and
variance, only if the applied local conditional distribution has mean and variance equal to the Kriging
mean and variance (Journel, 1994). This further requires that the found local conditional distributions
are scaled from near, to precisely the Kriging mean and variance. For a value sampled from one of the
local conditional distributions, this can be achieved using equation 2.3.6.

zs = (zF − µF ) · σk
σF

+ µk (2.3.6)

Here zs is the final simulated value, zF is the sample from the correctly shaped conditional distribution,
µF is the mean, and σF is the standard deviation of that same distribution, with µk and σk being the
Kriging mean and variance. Adding the above methods to the usual sequential simulation, direct sequen-
tial simulation proceeds as shown below. This procedure will ensure that simulations lead to a posterior
probability density function (pdf) of the source radial field with correct mean, variance, covariance struc-
ture, and histogram.

1. Compute a lookup-table of local conditional distributions.

2. Determine a random path through the target source locations.

3. At each location in the random path, the Kriging mean, µk, and variance, σ2
k, are calculated

using all available observations and previously simulated values. Only the nearest values
may need to be used in cases of large amounts of available variables.

4. Find the correct local conditional distribution. This corresponds to the Gaussian distribution
closest to the Kriging mean and variance pre-back-transformation.

5. A simulated value is drawn from this correctly shaped local conditional distribution.

6. The simulated value is scaled such that it originates from a correctly shaped local conditional
distribution, with mean and variance equal to the Kriging mean and variance.

7. The simulated value is added to the conditional data for use in the rest of the simulation.

8. 3.-7. is repeated until all target source locations have been visited.

11
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2.3.3 DSSIM of ordinary Kriging applied to the Green’s function description

With the addition of accounting for previously simulated values in DSSIM, the ordinary Kriging system
must expand. The new system will include values determined at the radial field source target locations,
and as such there is a need to include a covariance matrix between all variables at the source, as well
as cross-covariance matrices from the values at the source to the observations. In addition, I include
covariance associated with observation errors as CE . This results in the ordinary Kriging system shown
in equation 2.3.7.

Kλ = k→


Cobs +CE Ccr 1

CT
cr CS 1

1T 1T 0



ωobs

ωS

Λ

 =


cobs

cS

1

 (2.3.7)

The cross-covariances are simply a collection of the previously used observation to target source covari-
ance, cobs, while the source to source and source to current target covariances are given directly by the
modelled training image covariance. These matrices are shown in 2.3.8.

Ccr =



∑NS

m=1 Gk(r1, r
′
m)∆mC(r′m, r′t1) . . .

∑NS

m=1 Gk(r1, r
′
m)∆mC(r′m, r′ts)∑NS

m=1 Gk(r2, r
′
m)∆mC(r′m, r′t1)

...
∑NS

m=1 Gk(r2, r
′
m)∆mC(r′m, r′ts)

...
...

...∑NS

m=1 Gk(ri, r
′
m)∆mC(r′m, r′t1) . . .

∑NS

m=1 Gk(ri, r
′
m)∆mC(r′m, r′ts)



CS =


C(r′1, r′1) . . . C(r′1, r′n)

... . . . ...
C(r′m, r′1) . . . C(r′m, r′n)

 , cS =


C(r′t1, r

′
t)

...
C(r′ts, r

′
t)


(2.3.8)

The ordinary Kriging system is still solved by inversion or similar, the only difference being, that part of
the Kriging weights are now associated with the previously simulated values as shown in 2.3.9.

λ = K−1k, λ =


ωobs

ωS

Λ

 (2.3.9)

Similarly, the Kriging mean and variance now depend on observations and previously simulated values, as
well as both types of target covariance. The Kriging mean and variance computation is shown in equation
2.3.10. These results are then used to sample from the correctly shaped conditional distributions.

µK =
[
ωobs

ωS

]T
·

[
Bk(r)
B̂r(r′ts)

]

σ2
K = σ2

exp −

[
ωobs

ωS

]T
·

[
cobs

cS

]
−Λ

(2.3.10)

This concludes the direct sequential simulation implementation of ordinary Kriging applied to the Green’s
function description of the geomagnetic vector field. I now move on to the details of implementing the
above, while using prior information from training images. This is followed by a description of used
synthetic and Swarm satellite observations, as well as a description of the developed Python tool, in
which it is all implemented.

12



Chapter 3

Data

In order to carry out sequentially simulated ordinary Kriging as described in chapter 2, four methods have
been used to handle and set up prior data. A pre-defined grid is necessary to work as the target source
locations, training images of the target source work as prior information, semi-variogram modelling of
the training images define required covariances, and correctly shaped local conditional distributions are
needed to sample the simulation values. In the following I describe the origin and method by which these
concepts have been implemented for use in spherical direct sequential simulation. In addition, a part of
this chapter is dedicated to the used synthetic and Swarm satellite observations, followed by an overview
of my spherical direct sequential simulation tool, bringing theory and data implementation together.

3.1 Approximate equal area grid

In the approximated integration of the Green’s function description of the geomagnetic vector field, a
grid of well known geometric properties is essential to properly define the differentials. One such grid
can be found implemented in Matlab, and is a grid of locations covering approximate equal areas on the
sphere. The implementation is formally called the Recursive Zonal Equal Area (EQ) Sphere Partitioning
Toolbox and is based on Leopardi (2005). Figure 3.1.1 shows examples of this partitioning method. The
grid is made from a unit sphere partition into regions optimized on equal area and small diameter, with
the grid locations as the center point of these regions.

(a) (b)

Figure 3.1.1: Examples of recursive zonal equal area sphere partitioning. (a) shows a partitioned sphere
of 33 areas from Leopardi (2005). (b) shows an Earth radius scaled grid of center points, for a partition
of 10,000 areas using the Recursive Zonal Equal Area Sphere Partitioning Toolbox.
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Properly defining the integration differentials can be done with the information seen on the sphere cross
section of figure 3.1.2. The figure shows how the equal area spherical partition is defined through a
certain amount of latitudinal collars and two polar caps. The collar edges are given by the red lines and
the collar edge colatitude angles by the blue lines. The polar caps will have a single grid point and the
collars an amount depending on the size of the partition.

Figure 3.1.2: Partitioning system as shown in Leopardi (2005). A partition consists of two polar caps,
a certain amount of collars, and a certain amount of areas in each collar, each with a center location.
The red lines show the edges of the collars and the blue lines the colatitude angle to each collar edge.
my shows the amount of areas in each collar for this specific partition.

The colatitudinal collar edge angles, θx, the amount of collar grid points, my, and the latitudinal angle
width of each collar, ∆z, as shown in figure 3.1.2, is available for any given partition. Through these, a
simple definition of each grid location differential is achieved by equation 3.1.1.

∆θ′c = θi − θi−1 = ∆z, ∆φ′c = 2π
my

(3.1.1)

Where (θ′c, φ′c) is a collar with associated actual grid locations, (θ′m, φ′m), depending on the number of
partitioned areas in each collar. From this, it is given that grid points of the same collar have identical
differentials. Naturally, this is an approximation of the infinitesimal differentials of the integration, as
such, with increasing grid size the sum of all approximated differentials should approach the product of
the integration limits as previously described in equation 2.1.9 and repeated below. If this doesn’t hold,
the used grid size may be too small.

NS∑
m=1

∆θ′m∆φ′m = 2π2

Finally, the approximate equal area grid is not just used during simulation to properly estimate integration.
It is the surface on which the training image is generated and also how, through spherical distances from
grid location to grid location, the covariance is modelled by semi-variogram analysis.
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3.2 Training images

Training images encompass all prior information available for the simulation in the form of the covariance
model and local conditional distributions. The first training image originate from core dynamo simulations
through the work of Aubert (2017) and targets the radial field at the core mantle boundary. The model
consists of Gauss coefficients up to degree 60 and has been determined at an approximate equal area
grid with radius rcmb = 3480.0 km, using design matrices by Olsen (2018). Examples of the computed
training images can be seen in figure 3.2.1, where they have been generated on a large grid with 100,000
target locations. A version is generated simultaneously each time with the latitudinal trend / dipole
removed. This is necessary for semi-variogram modelling.

(a) Radial field model at the core mantle boundary.

(b) Latitudinal mean removed

Figure 3.2.1: Training images for the radial field at the core mantle boundary derived from a spherical
harmonic model up to degree 60. The model is based on core dynamo simulations by Aubert (2017). (a)
is the full model while (b) has the latitudinal mean removed.
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The second training image is from modelling the remanent magnetization of the oceans in combination
with a full Earth model of induced magnetization (Masterton, 2013). The model has Gauss coefficients
up to degree 256, however, only up to degree 100 has been utilized here due to computational memory
constraints. The training image is again the radial field computed in an approximate equal area grid, but
this time with a lithospheric radius, rLS = 6371.2 km, at Earth’s surface. The training image can be seen
in figure 3.2.2, where it has been generated on a large grid with 100.000 target locations. While these
examples have been generated on large grids, any desirable size and radius of grid is possible.

Figure 3.2.2: Training image for the radial field at Earth’s surface derived from a spherical harmonic
model up to degree 100. The model is based on modelling of remanent magnetization in the oceans
combined with a full Earth model of induced magnetization (Masterton, 2013)

Note that since the training images are produced from models based on spherical harmonic expansion,
they are not defined at the poles, but the grids do include the poles. These locations will have to be
removed or estimated based on nearby points. Their exact values won’t have a great impact as the
training image information is only explicitly used through modelling/analysis of the overall statistical
structure. This will be in the form of histograms for local conditional distribution generation and second
order stationary spatial variability for semi-variogram modelling, neither of which take exact position into
account.

3.3 Semi-variogram modelling of training images

In order to define the covariance based Kriging systems discussed in chapter 2, semi-variogram models
are used. In general, a covariance function is a traditional measure for the spatial variability of a random
variable (RV). The covariance function for a RV with realizations separated spatially and with the intrinsic
hypothesis that their expected values are constant, is given by equation 3.3.1.

C(u,h) = E

{
[(Z(u)− µ)][Z(u+ h)− µ]

}
(3.3.1)

Where E{} denotes the expected value, Z is a random variable, u is a location in space, h is a vector
pointing to a second location, and µ is the mean of the random variable. In semi-variogram analysis, the
covariance of data to be analysed is assumed to only depend on separation distance. In other words, it
is second order stationary such that C(u,h) = C(h).
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Applying this principle to a location with itself (h = 0), it follows that under these conditions the random
variable has the same variance everywhere in considered space.

C(u, 0) = C(0) = E

{
(Z(0)− µ)(Z(0)− µ)

}
= E

{
(Z(0)− µ)2

}
= V ar{Z} (3.3.2)

Assuming validity in the intrinsic hypothesis of constant exptected value (mean) and second order station-
arity, a semi-variogram is then defined through the two simple relations given in equation 3.3.3, following
Deutsch and Journel (1998). The first relation connects covariance to semi-variograms as needed in
Kriging.

γ = C(0)− C(h), ∀u

γ = 1
2E
{

[Z(u)− Z(u+ h)]2
} (3.3.3)

Where γ is a semi-variogram value for a location in the grid, u, with respect to some other location at
u + h. In implementation, semi-variogram values are calculated by ordering the squared location-pair
difference values, [Z(u)− Z(u+ h)]2, for all grid locations in accordance to distance from each other.
These distances are denoted the lag, h. Once the values are ordered according to lag, the mean is taken
over equal ranges of lags followed with division by two.
The semi-variogram of the full core mantle boundary and lithosphere training images can be seen in figure
3.3.1. Note the upward trend of the CMB and how very few values are available at small lags for the
lithosphere. For the CMB the trend indicates a non-constant mean in the training image, and for the
lithosphere a larger grid may be needed to properly resolve the semi-variogram.

(a) CMB (b) Lithosphere

Figure 3.3.1: Semi-variograms of the core mantle boundary and lithosphere training images for a source
grid of 10,000 locations.

There are many possible models that can be applied to characterize these semi-variograms. In this case
an exponential, double spherical, or nested exponential and Gaussian model has primarily been used here.
The nested model is seen in equation 3.3.4, where C0 is called the nugget effect (not to be confused with
C(0) = V ar{Z}), C0 + C1 + C2 the sill, and a the range of the model.

γ(h) = C0 + C1
(

1− exp
(
− 3h

a

))
+ C2

(
1− exp

(
− (3h)2

a2

))
(3.3.4)
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The nugget is a discontinuity at h = 0 due to uncertainty or small scale variability, the sill is the training
image variance, and the range is the point of no correlation between the source locations. In figure 3.3.2
models have been fit to the training image semi-variograms. A nested exponential and Gaussian, as well
as a double spherical model for the core mantle boundary, and an exponential model for the lithosphere.
The nugget has been set to zero, the sill is the semi-variance value at the leveled out part of the model,
and the range is the lag at which the model levels out. The lag is set to zero as analysis excluding
longer scale variability show the true nugget to be close to zero in both cases. It is difficult to capture
the structure of both in a single model fit, as the number of lags required to see small scale variability
quickly overwhelms the long scale variability. As seen, a model has also been generated from the CMB
training image with latitudinal mean removed. This is to get around the intrinsic hypothesis not being
valid, while not leaving out modelling data. Note that not all data is used in modelling the dipole CMB
semi-variogram. Including more data will disturb the small scale fit for this particular model. In addition,
the double spherical model has been determined from visual inspection.

(a) CMB w/ dipole (b) CMB w/o dipole

(c) CMB double spherical (d) Lithosphere

Figure 3.3.2: (a) and (b) Nested exponential and Gaussian semi-variogram models of the core mantle
boundary training image. (c) Double spherical semi-variogram model of the core mantle boundary training
image. (d) Exponential semi-variogram model of the lithosphere training image. All models have been
generated from a source grid of 10,000 locations.
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3.4 Local conditional distributions

In sequential simulation, conditional probabilities are used to infer values of a random variable on a spatial
grid, based on available observations and previously determined values of the random variable. Kriging
is a method of determining these conditional probabilities based on available values and a covariance
function linking them. What Kriging specifically yields, is the mean and variance of the local normal
probability density function, conditional to known variables. However, in direct sequential simulation the
local probability density functions are not normal distributions, but depends on the available data, also
called the target histogram. Luckily, it is possible to generate the proper local probability densities prior to
running direct sequential simulation. These local probability densities are the contents of the conditional
distribution table. The local probability densities can take any appropriate shape as long as values can be
drawn from them such that increasing draws move toward the shape of the local probability distribution.
Here they are quantile functions (QFs), also called inverse cumulative distribution functions.
In the following I describe my current process of generating a conditional distribution table for spherical
direct sequential simulation. In brief, the target histogram is first normal score transformed and then used
as input for back-transformation of a range of normal quantile functions, varying in mean and variance.
This is accomplished either by loading Fortran scripts from GSLIB (Deutsch and Journel, 1998) as used in
VISIM (Hansen and Mosegaard, 2008) and SIPPI (Hansen and Mosegaard, 2013a), or directly in Python
using the function QuantileTransformer from the scikit-learn API by Buitinck et al. (2013). This brief
explanation is outlined in figure 3.4.1.

Start generating conditional quantile function table
input: data, quantile function size (N)

Linearly spaced array: 0.0 < to < 1.0, size N

Normal space Data space

Normal transformed data

Linearly spaced arrays:
−3.5 to 3.5, size M, and 0.0 < to 1.0, size V

For each pair in the arrays,
compute normal quantile function

Normal score transform of data

Conditional transformed quantile functions
(CQFs)

Generate conditional CQF tables
CQF means: M-by-V

CQF variances: M-by-V
CQFs: M-by-V-by-N

Figure 3.4.1: Flowchart showing the process of generating correctly shaped local conditional distributions
with data in the form of training images.

The algorithm is activated with the data (training image histogram) and desired size, N, of the QFs as
input. Then a linearly spaced array of size N, ranging from near zero to near one is generated. Excluding
zero and one, as the QFs become infinite here. Moving on in the algorithm, the computations are split into
two spaces, normal and data. From data space, the target histogram is normal score transformed such
that its values resemble the standard normal distribution (mean zero, variance one). In normal space, two
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linearly spaced arrays are generated. One ranging across the likely values of the standard normal random
variable (about −3.5 to 3.5) and the other from near zero variance to the standard normal variance of
one. Each pair in these two arrays are now used to compute a normal QF, with mean and variance
given by the pairs. This is why the variance can’t be zero, as it is used in division to scale the standard
normal QF to a normal QF close to the desired mean and variance. These generated normal QFs are now
transformed into data space using the parameters from the normal score transform of the data. After
transformation, the conditional QFs (CQFs) represent the local probability density functions desired for
direct sequential simulation. In addition to the CQFs, their mean and variances are saved in tables such
that the correct function can be found given Kriging mean and variances. It is important to note that the
found mean and variance of the CQFs are only approximately equal to the Kriging mean and variances,
however, scaling according to Oz and Xie (2003) can be used to correct this as explained in chapter 2. In
the following sections I further explain the concepts of normal score transformation, quantile functions,
and conditional transformation (back-transformation from normal space to data space).

3.4.1 Normal score transformation

Normal score transformation can be applied to any histogram. The result is scaling and spreading of the
histogram values such that they follow a standard normal distribution. In figure 3.4.2, the histogram of
the lithospheric and core mantle boundary training images have been normal score transformed through
the available methods (Fortran and Python based). The specifics of the Fortran method are described
in appendix C. Note how the histogram values are successfully scaled down to the standard normal
distribution value range (about −3.5 to 3.5).

Figure 3.4.2: Target histogram for lithospheric training image with its normal score transformations
using Fortran and Python methods.
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3.4.2 Quantile functions and conditional transformation

The quantile function, or inverse cumulative distribution, is associated with a probability distribution of
a random variable. Specifically, it is a function of the probability that the random variable is less than or
equal to its function value.

F (P (Z ≤ F )) = ZF for 0 ≤ P (Z ≤ F ) ≤ 1 (3.4.1)

Here F is the quantile function, Z is the random variable, ZF is a value of the random variable, and
P (Z ≤ F ) is the probability that the random variable is less than or equal to the function value. Figure
3.4.3 shows the lithosphere and core training image quantile functions in relation to normal quantile
functions using the same mean and variance.

Figure 3.4.3: Quantile function comparisons between lithosphere (left) and core (right) model with a
normal distribution of the same mean and variance as the respective models.

These differences are what makes the direct sequential simulation method necessary, due to Kriging only
estimating the mean and variance of the local normal pdf. The method is based on the transformation
of the data QF into the normal QF described in section 3.4.1 (with the additional scaling down to the
standard normal QF). This is a reversible transformation that can be used to transform local normal
distributions into local conditional distributions. As previously described I use quantile functions to
represent the distributions, as such, to end up with a table of conditional QFs, first a table of normal
QFs are generated. The normal QFs are generated from ranges of mean and variance such that they
cover most of the standard normal distribution (about mean: −3.5 to 3.5, and var: 0.0 to 1.0). These
ranges are shown in equations 3.4.2 and 3.4.3. Note the 0.0 in the mean range, I have found it very
important to include this midpoint. From these ranges, normal quantile functions are computed for the
M ×V pairs, this is illustrated in equation 3.4.4. The form of these normal quantile functions are shown
in figure 3.4.4a, for the full mean range with constant variance at 0.5.

mM =
[
−3.5 . . . 0.0 . . . 3.5

]
(3.4.2)

vV =
[
≈ 0.0 . . . 1.0

]
(3.4.3)

QF (m, v) =


QF (m0, v0) QF (m0, v1) . . . QF (m0, vV )
QF (m1, v0) QF (m1, v1) . . . QF (m1, vV )

...
... . . . ...

QF (mM , v0) QF (mM , v1) . . . QF (mM , vV )

 (3.4.4)
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(a) Normal QFs.

(b) Lithosphere, Fortran. (c) Core, Fortran.

(d) Lithosphere, Python. (e) Core, Python.

Figure 3.4.4: The range of normal quantile functions for conditional transformation are shown in 3.4.4a
for the full mean range −3.5 to 3.5 with constant variance at 0.5. The back-transformed quantile
functions follow in figure 3.4.4b to 3.4.4e (with model type and method used for computation shown).

In figure 3.4.4b to 3.4.4e the normal quantile functions have been back-transformed using the normal
data transformation of the lithosphere and core training image respectively.
These conditionally transformed quantile functions are the final contents of the conditional distribution
table. The table is illustrated in equation 3.4.5 where the conditional quantile functions are denoted
CQF . Note that their position in the table still depend on the defined normal mean and variance ranges.
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CQF (m, v) =


CQF (m0, v0) CQF (m0, v1) . . . CQF (m0, vV )
CQF (m1, v0) CQF (m1, v1) . . . CQF (m1, vV )

...
... . . . ...

CQF (mM , v0) CQF (mM , v1) . . . CQF (mM , vV )

 (3.4.5)

In addition to the transformed quantile functions themselves, tables of the expected value (mean) and
variance are saved as well. These are illustrated in equations 3.4.6 and 3.4.7, with shorthand E and V ar
for brevity.

E

[
CQF (m, v)

]
= E(m, v) =


E(m0, v0) E(m0, v1) . . . E(m0, vV )
E(m1, v0) E(m1, v1) . . . E(m1, vV )

...
... . . . ...

E(mM , v0) E(mM , v1) . . . E(mM , vV )

 (3.4.6)

V ar

[
CQF (m, v)

]
= V ar(m, v) =


V ar(m0, v0) V ar(m0, v1) . . . V ar(m0, vV )
V ar(m1, v0) V ar(m1, v1) . . . V ar(m1, vV )

...
... . . . ...

V ar(mM , v0) V ar(mM , v1) . . . V ar(mM , vV )

 (3.4.7)

The length of the CQFs depend on the normal quantile functions generated. Given a QF length of N ,
the conditional distribution table has size N ×M × V , with the mean and variance tables having size
M × V . The resulting mean and variances of the CQFs are illustrated in figure 3.4.5 for each training
image, such that each point represents a conditional transformed quantile function of the shown mean
and variance.

Figure 3.4.5: Spread of the mean and variance for the conditional distributions. The lithosphere is
shown to the left and the core to the right. Each point represents a conditional transformed quantile
function.
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3.5 Synthetic satellite observations

The last piece needed before simulations can be run, is having useful observations to base the simulations
on. I perform extensive preliminary testing with a set of synthetic observations of the same origin as the
core mantle boundary training images. That is, they are based on core dynamo simulation by Aubert
(2017). The target location in this case is satellite altitude at 300 km above Earth’s surface. This puts
the synthetic observations at an optimistic low altitude, which normally occur late in a satellites active
life, but yield the best measurements.
Figure 3.5.1 show synthetic observations for the radial component of the geomagnetic vector field at
satellite altitude. The Green’s function description encompass all three components, latitudinal, longitu-
dinal, and radial, however only the radial component has been considered in this project. While setting up
the Kriging system, 1 nT2 of observation covariance noise is added as described in chapter 2. In addition,
the pole locations not defined by the spherical harmonic model has been removed from the synthetic
observation sets.

(a) 100,000 synthetic radial field observations

(b) 3,000 synthetic radial field observations

Figure 3.5.1: Synthetic observations for the radial field at the satellite altitude derived from a spherical
harmonic model up to degree 60. The model is based on core dynamo simulations by Aubert (2017). (a)
is synthetic observations generated on a grid of 99,998 locations (b) is a grid of only 2,998 locations.
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3.6 Satellite observations from Swarm

The final results are based on radial field observations from the Swarm satellites over a three month
period from April-June 2018. Swarm is a constellation of three satellites (alpha, beta, charlie) in polar
orbits, grouped as shown on the illustration in figure 3.6.1. The observations have been selected following
the criteria used for the CHAOS-6 geomagnetic field model (Finlay et al., 2016). These criteria follow
selection only during dark, i.e. as the Sun is 10 degrees below the horizon, as well as geomagnetically
quiet conditions. Specifically, vector field data is only selected when the field strength due to magneto-
spheric ring currents changes with less than 2 nT/h and when the geomagnetic activity index is below the
threshold, Kp ≤ 20 for latitudes of ±55° in Quasi-Dipole (QD) coordinates (coordinate system defined
from magnetic field lines, see Richmond, 1995).
The datum rate of selection was every 5 minutes from ESA’s L1b Swarm 1 Hz data files, with vector
alignment of Swarm vector magnetometer and star camera provided by CHAOS-6. The available ob-
servation amount is 2,773, 2,509, and 2,696 radial field observations respectively for alpha, beta, and
charlie, leading to a total of 7,978 observations. The used radial field satellite observations selected from
Swarm alpha can be seen on figure 3.6.2.

Figure 3.6.1: The Swarm satellite constellation. From: esa.int/spaceinimages

Figure 3.6.2: 2,773 radial field observations from Swarm alpha.
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3.7 Geostatistical tool: SDSSIM

Grid
Approximate equal area at source target

Training images
Core mantle boundary or Lithosphere field

Semi-variogram model
exponential + Gaussian, exponential, or double spherical

Local conditional distribution LUT
Generated from:

CMB training image with or without dipole
Lithosphere training image

Observations
Synthetic or Swarm

Green’s function kernels

Spherical direct sequential simulation
Observation and simulation neighborhood

or
All observations and simulation neighborhood

Random path through source target

Ordinary Kriging on neighborhoods

conditional distribution look-upAdd estimate to simulation data

Scale conditional sample

Figure 3.7.1: Flowchart showing the developed spherical direct sequential simulation algorithm structure.

The theory in chapter 2 and the data structures described in this chapter are implemented in a Python
tool of my own development. It is inspired by the Matlab toolbox SIPPI (Hansen and Mosegaard, 2013a),
which includes VISIM (Hansen and Mosegaard, 2008), and underlying GSLIB structures (Deutsch and
Journel, 1998). I currently refer to this tool as SDSSIM, for spherical direct sequential simulation, and it
is planned to be made publicly available shortly after the conclusion of the defense of this thesis.
The interaction of structures leading into SDSSIM and the base SDSSIM algorithm is seen in figure 3.7.1.
Arrows indicate where each data structure is used. The algorithm follows the process of direct sequential
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simulation with histogram reproduction as described with greater detail in section 2.3.2, and does so by
implementation of Green’s function kernels in an ordinary Kriging system as described in sections 2.2.2
and 2.3.3. Altering the SDSSIM algorithm allow for investigations into certain aspects of direct sequential
simulation. Two alternate systems have been used in testing during next chapter, I describe these below.

3.7.1 Algorithm for stochastic realizations of the prior

Stochastic realizations of the prior can be generated by only considering the simulation neighborhood.
Through this method, it is possible to determine whether the prior conditioning is working as intended,
as random realizations should be generated whose mean is centered on the target semi-variogram and
histogram.
The used ordinary Kriging system setup changes such that there is no reliance on Green’s functions,
only the semi-variogram model. The ordinary Kriging system for this case, as well as Kriging mean and
variance, is shown in equation 3.7.1.

Kλ = k→

[
CS 1
1T 0

][
ωS

Λ

]
=
[
cS

1

]

µK = ωTSB̂r(r′ts)

σ2
K = σ2

exp − ωTScS −Λ

(3.7.1)

Figure 3.7.2 shows the algorithm, which is identical to the general system, except for the only neighbor-
hood under consideration being previously simulated values (the source neighborhood).

Spherical direct sequential simulation
Simulation neighborhood only

Random path through source target

Ordinary Kriging on neighborhood

conditional distribution look-upAdd estimate to simulation data

Scale conditional sample

Figure 3.7.2: Flowchart showing the algorithm when generating stochastic realizations with SDSSIM.
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3.7.2 Algorithm for sequential least squares estimation

A least squares estimate of available observations is also possible through direct sequential simulation. In
this case, only observations are considered. This leads to the ordinary Kriging system shown in equation
3.7.2, where the Kriging mean and variance is also given.

Kλ = k→

[
Cobs +CE 1

1T 0

][
ωobs

Λ

]
=
[
cobs

1

]

µK = ωTobsBk(r)

σ2
K = σ2

exp − ωTobscobs −Λ

(3.7.2)

Figure 3.7.2 shows the algorithm, which removes the conditional look-up and scaling of the general sys-
tem. Note that the path in this case doesn’t need to be random, as each estimate will always be based
on the same observation neighborhood (if not all the observations).

Spherical direct sequential simulation
Observation neighborhood or all observations

Path through source target

Ordinary Kriging on neighborhoods

Add estimate to simulation data

Figure 3.7.3: Flowchart showing the algorithm when generating sequential least squares estimations
with SDSSIM.

3.7.3 Solving the ordinary Kriging system in Python

A large part of the algorithm is solving the ordinary Kriging system well and efficiently. The possi-
bilities available in Python that are also applicable to the implemented system is direct inversion, LU-
decomposition, or least squares through singular-value decomposition (SVD). The ill-conditioned nature
of the ordinary Kriging system has led to the use of least squares through singular-value decomposition.
This is a slower approach than LU-decomposition, but less prone to accumulating errors. In solving the
ordinary Kriging system, the system is found to have full column rank in all tested cases, indicating an
exact solution to the linear system.
In Python it is possible to use accelerated libraries designed for Nvidia type graphics processing units
(GPUs). This is currently only available for the LU-decomposition system solver, but is expected to be
released for least squares SVD. This may be a way to generate faster realizations in the future.
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Tests and Results

I now present the results of implementing the data described in chapter 3 with the theory described
in chapter 2. This is an attempt to give a probabilistic description of the geomagnetic vector field, as
observed by satellites, at source target locations. The two source target locations under consideration are
the core mantle boundary and the lithosphere at Earth’s surface. Due to time limitations the lithospheric
field is only considered for stochastic realizations of the prior pdf, while the core mantle boundary field
is implemented in full such that posterior realizations using synthetic and real satellite observations are
generated. In all cases, the values used to set up the Kriging system are part of the available observations
and previously simulated values. I denote the amount of values used, as the observation and source
neighborhood respectively. The use of these neighborhoods is due to computational/time constraints
in solving large systems of linear equations. Formally, all observations and previously simulated values
should be used, but neighborhoods of correct shape and size may still yield good approximations as shown
by Hansen and Mosegaard (2008). The neighborhoods are chosen by ordering of the values with respect
to the covariance model and Green’s function for the source and observations respectively. The size of
the source target grid and observation grids will be investigated in the tests described below. Extensive
testing of the implementation with available computer resources, has shown that a source grid of 5,000
and observation grid of 2,998 (no poles) locations, are reasonable with respect to computation time when
larger numbers of realizations are required.
The chapter starts with two preliminary sections, the first testing the stochastic nature of sampling the
prior pdf described by the training images, and the second testing reproduction of synthetic observations
unconditional to previously simulated values. Once these capabilities are demonstrated, the rest of the
chapter focus on the possibilities of generating posterior realizations reproducing the prior training image
statistics given the observational data. In the following, note that I often refer to the core mantle bound-
ary field training image and it’s histogram as either including or excluding the dipole. This is not strictly
a correct description. The training image in the excluding case has had the latitudinal mean removed,
which corresponds to more than just removing the dipole, but I still refer to it as such for simplicity, and
use the terms interchangeably. In table 4.0.1, I give an overview of the parameters that have been tested
in each section dealing with synthetic observations (or none) of this chapter.

Test simulations overview

prior observations prior + observations

CMB CMB CMB
Source neighborhood Observation neighborhood Neighborhoods

Smooth LSQ Grid size
Lithosphere
Source neighborhood

Table 4.0.1: Parameters tested in this chapter.
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4.1 Diagnostics description

Before showing results I here give a general overview of the test diagnostics used throughout this chapter,
to ensure clarity. Figure 4.1.1 is a typical plot of relevant information in regards to the success of direct
sequential simulation.
The upper left plot is an observation reproduction histogram. This is a histogram of the target, pre-
dictions, and the mean of the predictions. The target (black line) is the histogram of synthetic or
real observations at satellite altitude, depending on which is used. The predictions (grey lines) are his-
tograms of each posterior realization at satellite altitude, as computed by the forward problem described
in equation 2.1.8. Finally, the mean (red dotted line) is the mean of the predictions computed for each
observation location. E.g. for 100 realizations there will be, at any given observation location, an asso-
ciated observation value and 100 predicted values. The mean is the mean of these 100 values at each
observation location, plotted as a histogram. In addition, statistics parameters are shown for the target
(observations) and the mean (prediction mean). This plot is expected to show the posterior realizations
as a spread around the target, with the mean approaching a fit of the target. For infinite realizations this
should be reflected by identical values in the statistics overview of observations and prediction mean.

Figure 4.1.1: Diagnostics example of direct sequential simulation result. Depicted are an observation
reproduction histogram (upper left), a CMB estimation histogram (upper right), root-mean-square misfits
to the observations (middle left), the semi-variogram fit (middle right), observation reproduction residuals
(lower left), and the CMB estimation residuals (lower right).
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The upper right plot is a similar histogram plot, but for the source target, i.e. the CMB or lithosphere
field, using the training image histograms. In this case the shown plot is for the CMB and includes
both the histogram for the training image with and without dipole. This plot has the same expectation,
the realizations should be a spread around the target, with the target depending on used prior and test
type. In general, when realizations are conditional to observations, this data will condition toward the
prior with dipole, as the dipole is part of the observation values. However, the target histogram used
to generate the local conditional distributions, will be conditioned toward by the previously simulated
values. For unconditional realizations, the target is always the histogram used in generating the local
conditional distributions. The middle left plot is a histogram of observation prediction root-mean-square
misfit. The RMS value is computed for each collection of realization values (amount Nsim) at each
observation location. This is an estimate of overall spread for each mean prediction value. Lower values
indicate sharper posterior probability density function.
The middle right plot show various relevant semi-variograms depending on the semi-variogram model
used. Similarly to the other plots, the posterior realization semi-variograms are shown in grey with
their mean value in black. In addition to this, the semi-variogram model used for the simulation is
shown in orange, along with the data upon which it is based in blue. Finally, in the case shown here,
the target semi-variogram is known from the training image and is shown in green. This is the semi-
variogram which the posterior realizations are expected to reproduce from conditioning to the synthetic
observations. Knowing this allow tests to be carried out giving an indication of how small an observation
neighborhood is possible, without losing reproduction of large scale variability structure. This is crucial
before using real observations, as no true semi-variogram is known at the source target in that case,
and small neighborhoods are desired in order to carry out many realizations. In addition, note the small
scale fit to the model semi-variogram. This fit is of interest as it shows impact of the prior knowledge,
which should be conditioning the posterior realization to follow the model semi-variogram as far as the
observations allow it. In this synthetic case, it is a very close fit since the observations and prior have the
same origin. The final two plots at the bottom left and right are both histograms of residuals. The left
histogram is the residuals of prediction values at satellite altitude, with respect to the used observations.
The right histogram is the residuals of estimated values at the source target, with respect to the prior
training image reference. Again the mean is computed for each collection of predictions/estimates, at
the respective observation and source target location. The mean realization statistics show the statistics
of the residuals as one big cluster, with the mean statistics being for the mean residual alone (black line).
The intention for the observation prediction residual plot is to give a closer look at the mean fit to the
target, as this is harder to see from simulation to simulation in the field prediction histogram alone. In
contrast, the prior residuals should indicate a general fit to the prior without getting too close, as this
would indicate over-conditioning to the training image.
Figure 4.1.2 show the two semi-variogram models used to compute observation conditional results. One
is modelled from the CMB without dipole and the other with the dipole. While both are technically
stationary covariance functions through equation 3.3.3, the double spherical model has range beyond the
longest distance between two locations on the CMB grid, i.e. stationarity is never reached.

(a) SV for CMB w/o dipole (b) SV for CMB w/ dipole

Figure 4.1.2

31



CHAPTER 4. TESTS AND RESULTS

4.2 Sampling the prior

In order to ensure correct implementation of direct sequential simulation, unconditional realizations of
the prior training image should produce stochastic realizations reproducing the target statistics (Journel,
1994). In the following, I test this capability for a 5,000 location source grid, NS = 5000, while varying
the source neighborhood size, Nnsv. Ideally, realizations should be generated until the mean converges
to the target, and longer stochastic realizations not shown here confirm that the mean converges in the
current implementation. However, these tests express the stochastic results for simulation sizes equivalent
to the full simulations to be run, which due to time constraints are 100 realizations.
For the core mantle boundary field, the effect of training image choice with or without dipole in generating
the local conditional distributions have been investigated. The differences in the histograms obtained
with and without the dipole are shown on figure 4.2.1. Stochastic realizations using the prior histogram
without the dipole is included in this section, with the other case available in appendix D.1.1. Table
4.2.1 gives an overview of the testing parameters. Note that the source neighborhoods are defined as a
fraction of the total grid. Given the use of an approximate equal area grid, this is a rough measure of
the source neighborhood area, which becomes more accurate towards the end of a simulation as more
simulated values are available.

Figure 4.2.1: Histogram of the CMB field prior training image with and without the dipole removed

Test overview for sampling the prior
Source target: Core mantle boundary field Source target: Lithospheric field

Source neighborhood Source neighborhood
CMB grid size NS = 5000 Lithosphere grid size NS = 5000
Nnsv Nnsv

A1 NS/1000 B1 NS/1000
A2 NS/500 B2 NS/500
A3 NS/100 B3 NS/100
A4 NS/50 B4 NS/50

Semi-variogram type exp + Gau Semi-variogram type exp
Realizations 100 Realizations 100

Table 4.2.1: Parameters used and under consideration for direct sequential simulation of priors.
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4.2.1 CMB field with dipole removed

Four stochastic simulations are run with increasing neighborhood size, for a core mantle boundary training
image with the dipole removed. Figure 4.2.2 and the table below it show the statistics for each simulation,
and figure 4.2.3 shows samples of the realizations. The realizations show a very uniform fit to the semi-
variogram model for varying neighborhood sizes. In addition, the histogram fit clearly realized the target
w/o dipole as expected, although with some outliers of smaller peaks across the tests. The mean fit looks
to be distributed around zero with values up to ±3000 nT, and the standard deviation fit is improving
from the smallest neighborhood to the three larger, with no conclusive improvement between those. The
large mean fit distribution is an indication of more realizations being required to run a full simulation. The
sample realizations appear stochastic across tests and resemble the structure of the prior. As expected,
computation time increases with a larger neighborhood size.

Figure 4.2.2: Stochastic simulation realizations and their statistics reproduction of the dipole removed
CMB training image. Source grid size is NS = 5000 and each simulation consists of 100 realizations.
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Test Mean [nT ] Std.dev. [nT ] Compute time [hrs]

A1 1.644e+ 03 4.37e+ 05 0.26
A2 −3.003e+ 03 4.42e+ 05 0.265
A3 2.996e+ 03 4.45e+ 05 0.38
A4 −2.963e+ 03 4.45e+ 05 0.65

Target −1.863e− 12 4.43e+ 05 N/A

(a) Realization examples

(b) Prior reference

Figure 4.2.3: (a) Sample realizations for each simulation run. (b) CMB training image used to generate
local conditional distributions.
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4.2.2 Lithosphere field at Earth’s surface

Testing of the source neighborhood size for the lithosphere field is also carried out with four stochastic
simulations of increasing neighborhood size. Figure 4.2.4 and the table below it show the statistics fit
for each simulation, and figure 4.2.5 show samples of the realizations. It is seen that increasing the
neighborhood size improves the semi-variogram fit, however the target histogram fits do not reach a
good reproduction of statistics. This is most clear from the standard deviation of the realizations, which
improve toward the target with increasing neighborhood, but never reach it. The mean fit is off by an
order of magnitude for all tests, with no notion of ordered approach to the target, this is similar to
the previous test. For the sample realizations, while some do appear to reproduce the prior structure,
there is a tendency of the global mean being either positive or negative compared to the prior reference.
Further tests have shown that the statistics reproduction improves for much larger grids. However, due
to the system size requirements following this increase in size, no attempt has been made to use synthetic
observations with the lithosphere. As such, further tests have been omitted.

Figure 4.2.4: Stochastic simulation realizations and their statistics reproduction of the lithosphere
training image. Source grid size is NS = 5000 and each simulation consists of 100 realizations.
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Test Mean [nT ] Std.dev. [nT ] Compute time [hrs]

B1 −5.918e− 01 36.2 0.24
B2 6.541e− 01 31.1 0.245
B3 8.868e− 01 27.8 0.37
B4 4.444e− 01 27.7 0.66

Target −2.293e− 02 19.7 N/A

(a) Realizations

(b) Prior reference

Figure 4.2.5: (a) Sample realizations for each simulation run. (b) Lithosphere training image used to
generate local conditional distributions.
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4.3 Reproducing synthetic satellite observations

Here I describe tests showing the direct sequential simulation algorithm capability of reproducing magnetic
field observations at satellite altitude. An overview of the tests carried out is found in table 4.3.1. In
section 4.3.1, sizes of observation neighborhoods and their influence on ability to reproduce the training
image statistics are scrutinized. Finally, in section 4.3.2 it is tested whether fitting the observations in
a smooth least squares (LSQ) sense is possible using DSSIM, followed by an attempt at LSQ fitting
observations with an approximate global coverage (AGC) neighborhood in section 4.3.3. In appendix
D.2.1, an extra simulation of 1000 realizations is shown conditional to all synthetic observations. This
test shows that there is convergence progress toward observation fit for increased amounts of realizations.
In all the tests presented here, an observation error estimate of 1nT has been added to the ordinary Kriging
system, through the error covariance matrix described in section 2.3.3.

Test overview for reproducing observations by estimation of the CMB field
Grid size, NS = 5000. Total observations, Nobs = 9998

D.2.1 All synthetic observations 4.3.2 LSQ
Semi-variogram type exp + Gau Semi-variogram type exp + Gau
Realizations 1000 Realizations 1
Neighborhood size all Neighborhood size all
Conditional dist. type no dipole Conditional dist. type no dipole

4.3.1 Obs. neighborhood influence 4.3.3 AGC LSQ
Neighborhood size Semi-variogram type exp + Gau
S01 Nobs/100 Realizations 1
S02 Nobs/90 Neighborhood size Nobs/3
S03 Nobs/80 Conditional dist. type no dipole
S04 Nobs/70
S05 Nobs/60
S1 Nobs/50
S2 Nobs/40
S3 Nobs/30
S4 Nobs/20
Semi-variogram type exp + Gau
Realizations 100
Conditional dist. type no dipole

Table 4.3.1: Parameters under consideration for direct sequential simulation of synethetic observations.

4.3.1 Influence of the chosen observation neighborhood

First I investigate whether it is feasible to reproduce the target statistics using less than global observation
coverage. In this test, the range of observation neighborhoods investigated are from one hundredth of
the total available observations, to one twentieth. I distinguish the observation neighborhoods through a
naming convention as given in table 4.3.1, with S0X denoting neighborhoods generally overestimating,
and S1 to S4 generally underestimating the semi-variogram fit.
The neighborhoods can also be expressed as a fraction of the radial Green’s function, previously defined
in equation 2.1.2. This is most easily shown as a function of the angular distance. Neighborhood sizes S1
to S4 is plotted according to angular distance on figure 4.3.1 along with an example of the neighborhood
surface grid size in test S4. The training image statistics fit for the tests designated S1 to S4 are seen
on figure 4.3.2 and the table below it, with tests S01 to S05 on figure 4.3.3 and the table below that.
Observation reproduction and residuals for tests S1 to S4 are found on figure 4.3.4. The histogram mean
is generally close to the target, with the largest neighborhood, S4, being closest. The computational
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time is naturally rising with neighborhood size, reaching 4.5− 7 hours for the 100 realizations in S3 and
S4. The smaller neighborhood taking longer time is due to different CPU’s used. In all test cases (S1
to S4 and S01 to S05) the histogram shape follows the prior training image with the dipole included,
this is despite the semi-variogram model and local conditional distributions being based on the training
image without the dipole. Clearly this information is coming directly from the observations, showing the
information they provide. From tests S1 to S4 the semi-variogram and standard deviation fit appear
to change from slightly underestimating, to underestimating more, before finally estimating the semi-
variogram with dipole. From the shape of the Green’s function alone, this is unexpected as the function
steadily decreases, suggesting an improving estimate with larger neighborhoods as structures further
away are accounted for. The smaller neighborhoods of tests S01 to S05 show the estimation leading
down to the near semi-variogram fit of S1. Here we see the semi-variogram fit over-estimating for very
small neighborhoods such as S01, but improving for increasing neighborhoods until it is fitting well at one
sixtieth the total surface area in S05. However, note the small scale fit differences between S05 and S4, the
larger neighborhood of S4 is reproducing the model fit at small lags, whereas S05 is not. The discrepancy
is further seen on the observation reproduction of S4 at the bottom of figure 4.3.4, and S05 in figure
4.3.5. Specifically, when reaching the largest neighborhood of S4, there is a significant difference in the
mean of the residuals becoming smaller as the number of realizations increases, compared to the smaller
neighborhoods, except at S05, which appear to converge faster than the surrounding neighborhood sizes,
albeit not as sharply as S4. It seems both neighborhoods may reproduce realizations that are valid in the
prior sense, but once the size of neighborhood S4 is reached, smaller structures are reproduced. Further
evidence of this is seen in figure 4.3.6, where slightly sharper features stand out for the realizations and
mean in neighborhood S4.

(a)

(b)

Figure 4.3.1: (a) Fraction of Green’s function considered for the test neighborhoods S1...S4 with
respect to angular distance from the target location. Each colour shows the increase in angular distance
considered from the previous test. (b) Radial Green’s function for the observation neighborhood in test
S4 according to grid locations, the neighborhood is approximately one twentieth the total surface area.

38



CHAPTER 4. TESTS AND RESULTS

Figure 4.3.2: Test S1 to S4 simulation realizations conditional only to available observations and their
statistics reproduction of the CMB training image. Source grid size is NS = 5000 and total observations
are Nobs = 9998, each simulation consists of 100 realizations.

Test Mean [nT ] Std.dev. [nT ] Compute time [hrs]

S1 −93.67 5.64e+ 05 0.97
S2 169.5 5.51e+ 05 1.23
S3 210.2 5.54e+ 05 6.65
S4 −8.12 5.86e+ 05 4.5

Target 13.65 5.9e+ 05 N/A
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Figure 4.3.3: Test S01 to S05 simulation realizations conditional only to available observations and their
statistics reproduction of the CMB training image. Source grid size is NS = 5000 and total observations
are Nobs = 9998, each simulation consists of 100 realizations.

Test Mean [nT ] Std.dev. [nT ] Compute time [hrs]

S01 341.7 6.58e+ 05 0.41
S02 698.1 6.52e+ 05 0.44
S03 −51.78 6.43e+ 05 0.49
S04 −12.24 6.23e+ 05 0.57
S05 −765.6 5.92e+ 05 0.67

Target 13.65 5.9e+ 05 N/A
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Figure 4.3.4: Observation reproduction and residuals for tests S1 to S4, top to bottom.
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Figure 4.3.5: Observation reproduction and residuals for test S05.

(a) S05 (b) S4

Figure 4.3.6: Realization samples and the mean of all realizations for test S4 and S05.

4.3.2 Smooth least squares solution

The most important part of the simulation is ensuring adherence to the observations. This makes it
important to test whether the system is capable of reproducing the observations without conditioning
on previously simulated values. For direct sequential simulation, this can be done through the sequential
least squares estimation method given by Hansen and Mosegaard (2006). In this implementation, the
method is achieved by calculating the ordinary Kriging weights using all observations at each location in
the CMB field grid, through solving the linear system in equation 2.3.9. Note that I solve these systems
using SVD as described in section 3.7 and that there is no contribution from previously simulated values in
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this case. Once the ordinary Kriging weights are computed, the Kriging mean and variance is found from
equation 2.3.10, which is used as the estimate. This generates a realization that is equivalent to a smooth
least squares solution. The SDSSIM implementation is shown in section 3.7.2. In a probabilistic sense
related to conditioning on previously simulated values, this solution represents the most likely value of the
local conditional distributions at each target source location. However, note that no information about
local distribution shape is retained, this solution is also the most likely when assuming local Gaussian
distributions. Figure 4.3.7 shows the observation reproduction and data residuals for such a sequential
least squares estimation, and figure 4.3.8 shows the resulting radial core field estimation. The observation
reproduction through forward modelling of the estimated core values clearly agree very well, with similar
mean and variance as that of the target observations. This is more clearly shown through the data
residuals, which are distributed around zero with a spread lower than the added synthetic noise of 1 nT.
The estimated radial core field shows a smooth solution as expected.

Figure 4.3.7: Observation reproduction and residuals for a sequential least squares estimation using
2,998 synthetic satellite observations at 300 km above Earth’s surface with 1 nT noise added.

Figure 4.3.8: Sequential least squares estimation of the radial field at the core mantle boundary us-
ing 2,998 synthetic satellite observations at 300 km above Earth’s surface. The estimated values are
determined on an approximate equal area grid of 5,000 locations.
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4.3.3 LSQ solution with approximate global coverage neighborhood

It has now been shown that LSQ estimation using all available observations produce an estimate re-
sembling the smooth least squares solution. However, in order to utilize the simulated values such that
conditioning increases throughout the simulation, smaller neighborhoods must be used to avoid very
large Kriging systems and long computation. An approximate global coverage (AGC) neighborhood for
the used observations was devised as an attempt at this. It is a neighborhood centered on the latitude
and longitude of the target point at the core mantle boundary, with all nearby values considered out to
a defined range, followed by a geometric progression of randomly sampled observations as distance to
the target point increases. Figure 4.3.10 shows an example of such a neighborhood. The smooth least
squares solution of using the AGC neighborhood is presented on figure 4.3.9 and 4.3.11. A fit within the
synthetic data errors of 1 nT is not achieved using this method, however, it approaches reasonable values
with a standard deviation of 16.6 nT for the residuals. Further optimizations through better integration
approximation may be possible. Note that the CMB field estimation histogram is not reproduced, and
neither is the observation semi-variogram. This illustrates that the least squares result, while being the
maximum likelihood estimate, is an unlikely sample of the posterior.

Figure 4.3.9: Diagnostics for the sequential least squares solution using the approximate global cov-
erage neighborhood. Depicted are the observation reproduction histogram (upper left), the CMB field
estimation histogram (upper right), the root-mean-square misfit to the observations (middle left), the
semi-variogram fit (middle right), the observation reproduction residuals (lower left), and the CMB esti-
mation residuals (lower right).
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Figure 4.3.10: Example of approximate global coverage neighborhood for 2,998 observations, with
approximately one third sampled as conditional data.

Figure 4.3.11: Realization of sequential least squares solution with approximate global coverage neigh-
borhood, estimating the core mantle boundary field on a 5,000 location grid.
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4.4 Observations + prior

In this section I present results of full spherical direct sequential simulation, where each source target
estimate is conditional to both synthetic observations and the previously simulated values. In all the
results an observation error estimate of 1nT has been added to the ordinary Kriging system, through the
error covariance matrix described in section 2.3.3. I draw upon the test results from section 4.2 and 4.3
to configure the Kriging system. An overview is given in table 4.4.1. In addition, a small test has been
made to ensure that neighborhood sizes are chosen such that histogram and semi-variogram reproduction
is still accomplished, this is available in appendix D.3.1.

Parameter overview for posterior realizations at the CMB using synthetic observations

4.4.1 AGC neighborhood observations + prior
Grid sizes CMB Observations

NS = 5000 ND = 2998
Neighborhood sizes CMB Observations
(A) NS/50 ND/3
(B) NS/50 ND/3
Semi-variogram type
(A) exp + Gau
(B) double spherical
Conditional dist. type
(A) no dipole
(B) dipole
Realizations 100

4.4.2 Increased core grid size
Grid sizes CMB Observations

NS = 15000 ND = 2998
Neighborhood sizes CMB Observations

NS/50 ND/3
Semi-variogram type exp + Gau
Realizations 10
Conditional dist. type no dipole

4.4.3 All observations + prior
Grid sizes CMB Observations

NS = 15000 ND = 2998
Neighborhood sizes CMB Observations

NS/50 ND/1
Semi-variogram type exp + Gau
Realizations 5
Conditional dist. type no dipole

Table 4.4.1: Parameters under consideration for direct sequential simulation of synthetic observations
+ prior information.

I use different algorithm configurations, all leading to posterior realizations of the core mantle boundary
field, conditional to observations and previously simulated values. These configurations start with an
AGC observation neighborhood based estimate of 2,998 synthetic observations, for 5,000 source location
estimates of the CMB radial field. Here I show results from two different configurations, (A) and (B),
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wherein the difference lies in the used semi-variogram and conditional distribution type. (A) is based
on the exponential + Gaussian semi-variogram model, with conditional distributions from the CMB field
training image without dipole. (B) is based on the double spherical semi-variogram model, with condi-
tional distributions from the CMB field training image with dipole. The semi-variogram types were shown
in section 3.3 and conditional distribution generation in section 3.4. Following the test of systems (A)
and (B), the source location grid is increased in size to 15,000. Finally, posterior realizations are made
while including all available synthetic observations. This is done for a system of 2,998 total synthetic
observations. In the last two cases, these systems increase computation time through more, and in the
second case, larger Kriging systems needed to be solved, resulting in fewer realizations available due to
time constraints.
In the following sections I go over the results in detail, but a brief overview of the posterior observation
prediction fits and residuals, are found in the table below as a comparison reference. As a final note, the
neighborhood considered at the core mantle boundary is not approximate global coverage, but rather the
nearest simulated values. This is a cut off at the neighborhood size value, determined as some fraction
of the total available locations. This neighborhood method is the same as the one used for stochastic
realizations in section 4.2. An example of such a neighborhood is seen in figure 4.4.1. Note the missing
values of the cluster, these are field estimates yet to be determined.

Figure 4.4.1: Source target neighborhood for the estimation of a single radial field value at the core
mantle boundary during direct sequential simulation.

Result Obs. mean [nT ] Obs. std.dev. [nT ] Res. mean [nT ] Res. std.dev. [nT ]

(A) 139.8 5.28e+ 04 −139 113
(B) 146.5 5.28e+ 04 −146 113
4.4.2 −36.79 5.28e+ 04 37.8 223
4.4.3 13.12 5.27e+ 04 −12.1 129

Target 0.98 5.28e+ 04 N/A N/A
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4.4.1 AGC neighborhood observations + prior

(A) Posterior realization diagnostics
semi-variogram model: exponential + Gaussian, Conditional distributions: excluding dipole

Figure 4.4.2: Diagnostics for (A) of 100 realizations using 2,998 synthetic observations with a target
source grid of 5,000 locations. The simulation is conditional to previously simulated values and synthetic
observations. An exponential + Gaussian semi-variogram model has been used and the local conditional
distributions are based on the prior training image without dipole. Depicted are an observation repro-
duction histogram (upper left), a CMB estimation histogram (upper right), root-mean-square misfits to
the observations (middle left), the semi-variogram fit (middle right), observation reproduction residuals
(lower left), and the CMB estimation residuals (lower right).

Figure 4.4.2 shows the diagnostics for (A). These are 100 realizations using an AGC neighborhood for one
third of the total synthetic observations and a source neighborhood for 100 previously simulated values.
Histogram and semi-variogram shapes are followed and the mean observation prediction is approaching a
fit to the target. The observation residuals show the mean prediction at a mean of −139 nT with standard
deviation 113 nT. This is larger than expected, possibly indicating 100 realizations may not be enough
to characterize the solution fully. The computation time for these 100 realizations are ∼ 80 hours.
In order to find a faster converging solution, the (B) system was set up, and the results are shown in figure
4.4.3. Here a double spherical semi-variogram model is used, as an attempt to include the dipole training
image as prior for the local conditional distributions. This circumvents the issues present in reproducing
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the prior histogram for stochastic simulations, as shown in appendix D.1.1. However, looking at the
simulation in figure 4.4.3, it appears very similar to the previous system. One difference may be found
with the small scale semi-variogram reproduction. This is not being reproduced as well in the double
spherical case (B). As a point of note, the residual mean and variance of both simulations are nearly the
same. This may suggest that the presently used Kriging system won’t converge on the LSQ solution or
that the rate of convergence is the same.

(B) Posterior realization diagnostics
semi-variogram model: double spherical, Conditional distributions: including dipole

Figure 4.4.3: Diagnostics for (B) of 100 realizations using 2,998 synthetic observations with a target
source grid of 5,000 locations. The simulation is conditional to previously simulated values and synthetic
observations. A double spherical semi-variogram model has been used and the local conditional distribu-
tions are based on the prior training image with included dipole. Depicted are an observation reproduction
histogram (upper left), a CMB estimation histogram (upper right), root-mean-square misfits to the ob-
servations (middle left), the semi-variogram fit (middle right), observation reproduction residuals (lower
left), and the CMB estimation residuals (lower right).

Figure 4.4.4 show examples from the posterior realizations of system (A). From visual inspection of the
results, they do appear to reproduce the structures as expected from the LSQ solution previously shown.
This is most visibly seen from the triangular positive radial field structure located in the superimposed
Indian Ocean. Figure 4.4.5 show samples of the ordinary Kriging weights, and resulting magnitude of the
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estimating linear system, according to conditional data index. The observation neighborhood is visible,
with ordered beginning followed by random geometrically ordered sampling, and lastly small weights for
the target source neighborhood. Note how the conditional observations drop off in influence according to
distance from the target, as well as the minor conditioning supplied by the previously simulated values.
The conditioning from previously simulated values amount to a few nanotesla.

(A) Example realizations
semi-variogram model: exponential + Gaussian, Conditional distributions: excluding dipole

Figure 4.4.4: Example realizations for (A). Included are a plot of the residuals at the CMB and for the
observation reproduction at satellite altitude, as well as the mean of realizations, conditional observations,
and the CMB training image.
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(A) Example ordinary Kriging weights

Figure 4.4.5: Sampled ordinary Kriging weights and resulting magnitude of the estimating linear system
according to conditional data index, for (A). The samples are picked at the shown simulation progression
fraction [%] for one posterior realization.

4.4.2 Increased core grid size

The sorce grid size is now increased to 15,000 locations. Figure 4.4.6 shows 10 realizations using an
AGC neighborhood for one third of the total synthetic observations, and a cut-off neighborhood for 300
previously simulated values. An exponential + Gaussian semi-variogram model has been used and the
local conditional distributions are based on the prior training image without dipole. Histogram and semi-
variogram shapes are followed and the mean observation prediction is approaching a fit to the target. The
observation residuals show the mean prediction at a mean of 37.8 nT with standard deviation 223 nT.
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Large grid posterior realizations with AGC observation neighborhood
semi-variogram model: exponential + Gaussian, Conditional distributions: excluding dipole

Figure 4.4.6: Diagnostics for DSSIM of 10 realizations using 2,998 synthetic observations with a target
source grid of 15,000 locations. The simulation is conditional to previously simulated values and synthetic
observations. An exponential + Gaussian semi-variogram model has been used and the local conditional
distributions are based on the prior training image without dipole. Depicted are an observation reproduc-
tion histogram (upper left), a CMB field estimation histogram (upper right), root-mean-square misfits to
the observations (middle left), the semi-variogram fit (middle right), observation reproduction residuals
(lower left), and the CMB estimation residuals (lower right).

This larger grid approached a reasonable level of fit faster, reaching similar residual statistics at one
tenth the realizations compared to (A) and (B), while improving the observation prediction RMS fit.
However, these ten realizations in a 15,000 source location grid, require similar computation time as
100 realizations using the 5,000 source location grid. In addition, note the small scale semi-variogram
reproduction. Compared to the smaller grid, this is not being reproduced very well. In the previous
section I indicated this being caused by a different semi-variogram model, but in this case, the simulation
has been carried out with prior models previously displaying good fit at small scale variability. This
may indicate a need for larger neighborhoods of previously simulated values, to allow more conditioning
influence, when using larger grids, even when the neighborhood area is scaled.
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4.4.3 All observations + prior

Here I show a simulation of five realizations conditional to all available observations. The simulation
was made with a setup of 2,998 synthetic observations and a target source grid of 15,000 locations.
The very few realizations make the statistics unsure, however, they do appear to fit the histogram
and semi-variogram, as well as approach mean reproduction of the observations. Observation prediction
residuals improve over previous methods, but computation time per realizations has increased significantly.
Computationally, 100 realizations using AGC on a 5,000 CMB field grid also takes an equivalent amount
of time as the 5 realizations shown here. A similar simulation of 15,000 target source locations and 998
synthetic observations can be found in appendix D, figure D.3.2. The results of that simulation are less
well estimating than this one, showing that an increase in observation density while using global coverage
increases precision.

Large grid posterior realizations using all observations
semi-variogram model: exponential + Gaussian, Conditional distributions: excluding dipole

Figure 4.4.7: Diagnostics for DSSIM of 5 realizations using 2,998 synthetic observations with a target
source grid of 15,000 locations. All 2,998 synthetic observations have been used as conditional data. An
exponential + Gaussian semi-variogram model has been used and the local conditional distributions are
based on the prior training image without dipole. Depicted are an observation reproduction histogram
(upper left), a CMB field estimation histogram (upper right), root-mean-square misfits to the observations
(middle left), the semi-variogram fit (middle right), observation reproduction residuals (lower left), and
the CMB estimation residuals (lower right).
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4.5 SDSSIM with Swarm satellite observations

I now present the results of applying my spherical direct sequential simulation tool to real satellite obser-
vations from Swarm alpha, one out of the three available data sets as described in section 3.6. To begin,
a sequential least squares estimate is shown, using all Swarm alpha observations. Following that, I present
two posterior realizations (C) and (D). (C) uses a nearest simulated value neighborhood for estimates
at the core mantle boundary, and an approximate global coverage neighborhood for observations. (D)
uses all available satellite observations, and is not conditional to simulated values at the core mantle
boundary. In all these results, a naive observation error estimate of 10nT has been added to the ordinary
Kriging system, through the error covariance matrix described in section 2.3.3. An overview of all the
parameters used to compute the following results, can be seen in table 4.5.1, as well as an overview of
the resulting observation prediction fit and residuals in table 4.5.2.

Overview for estimates of the CMB field using Swarm alpha observations

4.5.1 Sequential LSQ
CMB grid size NS = 5000
No. of observations ND = 2773
Semi-variogram type exp + Gau
Observation neighborhood all
Conditional dist. type no dipole
Realizations 1

4.5.2 Posterior realizations
CMB grid size NS = 5000
No. of observations ND = 2773
Neighborhood sizes CMB Observations
(C) NS/25 ND/3
(D) 0 all
Semi-variogram type
(C) exp + Gau
(D) exp + Gau
Conditional dist. type
(C) no dipole
(D) no dipole
Realizations 100

Table 4.5.1: Parameters used to compute results for direct sequential simulation of Swarm alpha satellite
observations.

Result Obs. mean [nT ] Obs. std.dev. [nT ] Res. mean [nT ] Res. std.dev. [nT ]

Seq. LSQ 1.096e+ 04 3.04e+ 04 −3.22e− 05 4.93
(C) 1.101e+ 04 3.06e+ 04 −56.5 213
(D) 1.095e+ 04 3.04e+ 04 5.68 181

Target 1.096e+ 04 3.04e+ 04 N/A N/A

Table 4.5.2: Observation prediction fit and residual results for the estimates determined from Swarm
alpha satellite observations.
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4.5.1 Sequential LSQ with Swarm alpha observations

Figure 4.5.1 and 4.5.2 show the results of sequential least squares estimation on the observations from
Swarm alpha. The estimation is carried out by use of SDSSIM as shown in flowchart 3.7.3. As can be
seen on the plot as well as table 4.5.2, the data fit is well within the error estimate of 10nT . This is a
good indication that the implementation works well for noisy non-synthetic observations.

Figure 4.5.1: Radial field plot of estimates from sequential least squares at the core mantle boundary
using Swarm alpha satellite observations. The estimated values are determined on an approximate equal
area grid of 5,000 locations, using 2,773 satellite observations. 10nT noise has been added to the system
prior to computing the solution.

Figure 4.5.2: Prediction fit for sequential least squares estimation of the radial field at the core mantle
boundary using Swarm satellite observations.
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4.5.2 Posterior realizations from Swarm alpha observations

The final results of this thesis are posterior realizations using Swarm alpha observations. In the following
I present two such cases, (C) and (D). (C) computes the posterior realizations identically to the method
used for the synthetic case, with AGC and nearest simulated value neighborhoods, while (D) uses all
observations and no previously simulated values. As such, (D) may not strictly be a realization of the
posterior. However, the result in the previous section showing that previously simulated values contribute
very little to each estimate, may lead to the use of more observation data being a better approximation
than estimation with approximate global neighborhoods.

(C) Example realizations
semi-variogram model: exponential + Gaussian, Conditional distributions: excluding dipole

Figure 4.5.3: Example realizations for (C). Included are a plot of the residuals at the CMB and for the
observation reproduction at satellite altitude, as well as the mean of realizations, conditional observations,
and the CMB training image.

Figure 4.5.3 shows examples of realizations from (C). Clearly it is possible to generate posterior realizations
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of real satellite observations, and as expected, the realization structure is similar to the sequential least
squares estimate. However, there is not a lot of structure from the prior CMB field training image being
reproduced, and the latitudinal trend (dipole) is less pronounced.

(C) Posterior realizations conditional to previously simulated values
semi-variogram model: exponential + Gaussian, Conditional distributions: excluding dipole

Figure 4.5.4: Diagnostics for (C) of 100 realizations using an approximate global coverage neighborhood
on available Swarm alpha observations with a target source grid of 5,000 locations. An exponential +
Gaussian semi-variogram model has been used and the local conditional distributions are based on the
prior training image without dipole. Depicted are an observation reproduction histogram (upper left),
a CMB field estimation histogram (upper right), root-mean-square misfits to the observations (middle
left), the semi-variogram fit (middle right), observation reproduction residuals (lower left), and the CMB
estimation residuals (lower right).

Figure 4.5.4 and 4.5.5 are the statistics diagnostics for (C) and (D) respectively. It is immediately ap-
parent that these two simulations are very similar. Some differences are found in the statistics, where
(C) is fitting slightly better to the observations. However, the CMB field training image statistics fit is
roughly the same, indicating both are equally well conditioned on the prior. This is despite (D) not being
conditioned on previously simulated values. It is possible that the prior covariance information in the
Green’s kernel as shown in section 2.2.2 and implemented through the semi-variogram, combined with
global observation coverage, make up for any information gained from previously simulated values. In
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this case, the only information gain possible, besides possible implementation changes, may be to use all
available observations in conjunction with the previously simulated values, as seen for the synthetic case
in section 4.4.3.

(D) Posterior realizations unconditional to previously simulated values
semi-variogram model: exponential + Gaussian, Conditional distributions: excluding dipole

Figure 4.5.5: Diagnostics for SDSSIM of 100 realizations using all available Swarm alpha observations
with a target source grid of 5,000 locations. An exponential + Gaussian semi-variogram model has
been used and the local conditional distributions are based on the prior training image without dipole.
Depicted are an observation reproduction histogram (upper left), a CMB field estimation histogram
(upper right), root-mean-square misfits to the observations (middle left), the semi-variogram fit (middle
right), observation reproduction residuals (lower left), and the CMB estimation residuals (lower right).

This concludes the results. I now move on to a discussion where I give my thoughts on the preceding
findings and possible improvements to achieve better posterior realizations.
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Discussion

This chapter contains a discussion of my implemented spherical direct sequential simulation tool and the
results achieved through it. First a comparison is made with simple inversion of the linear systems, upon
which my results are based. From this, ideas related to inversion in the implementation are explained.
This is followed by a general critique of the implementation’s shortcomings and limitations, and my ideas
for a path to be taken in order to improve the current implementation further.

Improving and expanding the Kriging system solution

Consider the two least squares estimates of the core mantle boundary radial field in figure 5.0.1. These
have been computed by solving the linear system of equations shown in equation 5.0.1, by the same SVD
method as used for my Kriging system. Here sin θ′m∆θ′m∆φ′m has been absorbed into Gd(r, r′).

Br(r) ≈
NS∑
m=1

Gr(r, r′m)Br(r′m) sin θ′m∆θ′m∆φ′m

Br(r) ≈ Gd(r, r′)Br(r′)

(5.0.1)

From the estimate, this looks to be readily solved by least squares in the case of synthetic observations,
but in the noisy case of real satellite observations, the system is ill-conditioned leading to instability. In
the case of my implemented ordinary Kriging system, the covariance expression shown in equation 5.0.2,
is the essential kernel being inverted.

Ci,j =
NS∑
m=1

NS∑
n=1

Gk(ri, r
′
m)Gk(rj , r

′
n)∆m∆nC(r′m, r′n) (5.0.2)

Note the parallels of the double Green’s function kernel product to normal equations, as that is essentially
what it is. Inversion of this Green’s kernel product by the same SVD system solver is unstable, even for
the synthetic case. However, noise estimates are added to get around this issue, leading to the well fitting
sequential LSQ results shown in section 4.3.2 and 4.5.1. This is a rather simple solution that I haven’t
fully explored, and I find it plausible that related methods such as regularization may improve upon the
current noise + SVD based solution. However, an immediate issue here may be computational speeds,
as the Python SVD solver is very efficient by acceleration through the Intel Math Kernel Library (MKL).
Finally, the motivation for this thesis has been to work toward separation of core and lithosphere field
sources, and the current implementation seems open to expansion in aid of this endeavour. For instance,
the ordinary Kriging system could be expanded through observations from sources other than satellites,
e.g. ground observations, as seen in equation 5.0.3. Where CG is a Green’s function kernel covariance
expression, as currently in use for the satellite observation implementation. Of course what is really
desired, is a system which estimates both the core and lithosphere simultaneously, conditional to each
other. A naive expression of such a system may be in an expansion of the Kriging linear weighting scheme
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as illustrated in equation 5.0.4. Whether this is feasible as a Kriging system requires more thought, as I
have been unable to find applications of such a system in literature.

Kλ = k→


Csat +CE1 Ccrg Ccrs 1

CT
crg CG +CE2 Ccrgs 1

CT
crs CT

crgs CS 1
1T 1T 1T 0



ωsat

ωG

ωS

Λ

 =


csat

cG

cS

1

 (5.0.3)

[
B̂r(r′t1)
B̂r(r′t2)

]
=
[
ωT1Br(r1)
ωT2Br(r2)

]
(5.0.4)

(a)

(b)

Figure 5.0.1: Radial field plots of estimates from singular value decomposition least squares at the
core mantle boundary. (a) is inversion of synthetic observations and (b) is inversion of Swarm alpha
observations.

Limits and optimizations

In my eyes, this SDSSIM implementation is a struggle between needing to use as many observations as
possible, as dictated by the Green’s function implementation, and wanting to use as little as possible
to reach good computational speed. This dichotomy is an issue, since no good balance has been found
for small observation neighborhoods. In addition, small source grids are also desired for computational
efficiency, limiting the effectiveness of the integration approximation.
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It is possible that the solution is to brute force realizations using neighborhoods and grids as large as
possible, but a more wanted solution would be one that always produces posterior realizations close to
the observation fit. In previous sequential simulation, one method has been to use likelihood functions
in a Monte Carlo framework, however, the current implementation does not produce model realizations
very fast, rendering this option unlikely. Other methods will probably have to be used if this is to be
achieved.
With regards to the results, no presented posterior realizations in this thesis, have a mean solution con-
verged on the expected LSQ result. I present in table 5.0.1 an outline of the simulation structures I think
may be useful in reaching such a result, given more time for research and implementation.
First is a continuation of what I consider the best result presented here. The Green’s function solution
appear to only improve with more observations, and in the available result of a simulation using all obser-
vations in section 4.4.3, only 5 realizations have been generated. An easy and immediate step is to allow
such a solution to run for a longer time, e.g. 10 realizations, to see if the mean converges significantly.
If it does, an even longer simulation could be run.
Another solution readily present in literature, is updating the implementation to modelling based on
anisotropic semi-variograms. This would allow a better coding of the training image information into
the system. Considering the CMB field training image in figure 3.2.1, I think this might partly alleviate
the issue of previously simulated values having a very small conditional effect, as there are clearly large
latitudinal structures present. Currently these structures are most likely underestimated, or not present
in a proper geometric fashion, in the isotropic semi-variogram models.
Another shorter term improvement might be found through investigating the stochastic realizations of
the prior. These realizations are an image of how the previously simulated values work, when no condi-
tional observations are present. Currently, these realizations do tend to the prior statistics for the mean
of realizations, but single realizations fluctuate less than expected. I.e. each realization appears to be
realized in a way that closely follows the shape of the semi-variogram model, only at different scales. If
there is an issue here, I’m not certain where it is introduced. Expert opinions may be needed to clarify
this possible issue.
Finally, implementation of different system solutions are entirely possible, either through the ideas ex-
pressed in this discussion, or some other method of implementation to be chosen. Such changes to the
implementation may naturally lead to better individual realization fit and/or mean convergence of all the
realizations, which will hopefully lead to a new source separation technique eventually.

Roadmap for producing posterior realizations that fit to observations

1. All obs. + prior 3. Prior
CMB grid size NS = 15000 CMB grid size NS = 15000
Semi-variogram type exp + Gau Semi-variogram type exp + Gau
Realizations 10-100 Realizations 100
Obs. neighborhood size all Obs. neighborhood size 0
Conditional dist. type no dipole Conditional dist. type no dipole
Estimated timeline 1 month Estimated timeline 1 month

2. Anisotropic SV 4. Alternative Kriging
CMB grid size NS = 15000 CMB grid size NS = 15000
Total observations Nobs = 2773 Total observations Nobs = 2773
Obs. neighborhood size Nobs/3 Obs. neighborhood size Nobs/3
Semi-variogram type NEW Semi-variogram type exp + Gau
Realizations 100 Realizations 100
Conditional dist. type unknown Conditional dist. type no dipole
Estimated timeline 1 month Estimated timeline unknown

Table 5.0.1: Possible simulations to be conducted in the future, with the aim of fitting to observations.
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Conclusion

This thesis has documented a practical implementation of probabilistic inversion of satellite magnetic
data. The forward scheme being inverted is a geomagnetic vector field description, using Green’s func-
tions for Laplace’s equation in spherical geometry, with Neumann boundary conditions. The inversion
itself is accomplished through ordinary Kriging based spherical direct sequential simulation with histogram
reproduction. This is carried out as an approximate integration solution on an approximate equal area
grid. With semi-variogram analysis, and generation of local conditional distributions through normal
score transformation, statistical prior information from training images have been implemented as part
of the solution. The prior information used consists of training images of the core mantle boundary
and lithosphere field. These training images originate from core dynamo simulations for the core mantle
boundary, and models of remanent magnetization of the oceans in combination with full Earth models of
induced magnetization for the lithosphere. The implementation has resulted in a geostatistical Python
tool, currently called Spherical Direct Sequential Simulation (SDSSIM), which is planned to be made
publicly available. Using this tool, realizations of the radial geomagnetic field have been generated from
the prior, with synthetic observations from core dynamo simulation, and with observations from the
Swarm satellite constellation, ranging from April-June 2018.
Extensive results have been documented. Stochastic behaviour in realizations of different sizes of sim-
ulation neighborhoods, are tested for the prior core mantle boundary and lithosphere field. These tests
show approximate reproduction of the statistical prior information for the mean of realizations, with more
realizations needed to reach convergence. For the core mantle boundary field, synthetic and Swarm
satellite observations are shown to be reproduced in a smooth least squares sense, using a sequential
least squares method. This is a previously unexplored method of inversion in geomagnetic field mod-
elling. It is demonstrated that computation of posterior realizations of the core mantle boundary field
is possible. The realizations are generated using global observation coverage and an approximate global
observation coverage method. The results indicate that the use of global observations generate better
posterior realizations, showing approximate global observation coverage, as being a poor approximation
in the implementation of the geomagnetic vector field description using Green’s functions. All posterior
realizations display a mean converging toward fitting the observations, but a fit is not reached, and will
require more realizations. As such, longer simulations should be carried out to display proper convergence
on the target statistics. Having said that, the produced results look promising.
Some issues are found in the prior implementation, visible through very little conditional effect of pre-
viously simulated values in the simulations. This issue may be alleviated by further development of
anisotropic semi-variogram modelling or alternatives to the current Kriging system solution. Finally, the
systems developed here offer future possibilities for including prior information from more than one source,
and possible expansion of the estimation to two simultaneous estimation locations. Such implementation
may open the door to new source separation techniques.
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Appendix A

Initial project plan

Project plan for Master’s thesis titled:

Probabilistic inversion of satellite magnetic data using geostatistical simu-
lation in spherical geometry

Overview

Our current understanding of the geomagnetic field is that it has internal and external sources. Further,
the internal sources are separated in the primary field, arising from dynamo processes in Earth’s fluid core,
and the smaller magnitude lithospheric field, from long-timescale cooling of heated magnetized rocks.
In geomagnetic field modelling, internal field separation is a well known problem. Large scales are
dominated by the core field, small scales by the lithospheric field. The issue is, that they might both have
significant structures at the scale they don’t dominate. It is currently hard to distinguish the overlap,
leading to issues with interpretation of large-scale lithospheric and small-scale core tendencies. The aim
of this master’s thesis is a better separation of the core and lithospheric geomagnetic field.
The thesis will be based on a recently developed geostatistical simulation tool suitable for spherical
geometry. The tool is capable of generating stochastic model realizations, based on semi-variogram
analysis and direct sequential simulation. It is currently tested on stochastic model simulations of a
synthetic core mantle boundary field. This project will continue from these results, with the goal of
including satellite magnetic data to generate well separated models of the global core and lithospheric
fields. The project outline is shown below.

1. Simulation of synthetic lithospheric field [September 2018]

2. Inclusion of measured satellite data [October 2018]

3. Realization of posterior probability density function [October/November 2018]

4. Comparison with Markov chain Monte Carlo methods [November 2018]

5. Modelling [November/December 2018]

• Separate core and lithosphere
• Joint model, core+lithosphere

6. Comparison with traditional models [December/January 2018]

7. Documentation [Full project period]
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Thesis project details

The first part of the project is a direct continuation of generating stochastic results with synthetic fields.
A synthetic lithospheric field model is available and will be used to further test the capabilities of the
previously developed tool. The additional synthetic testing will hopefully give an idea of the modelling
behaviour when generating results for the lithosphere. This is important as I intend to generate models of
both the core and the lithosphere. In addition, I will also look into including anisotropy in the developed
tool. Currently it is assumed that the field realizations are directionally independent, while the synthetic
models suggest dependence.
Once this is accomplished, real data will be included. This will be geomagnetic measurement data
originating from the satellites CHAMP and Swarm. In comparison to the synthetic fields, real data will
not be available at the exact grid locations of the model. It is thus necessary to include them as "soft"
data. In this case, soft means inferring the data at grid locations using physical principles. This will be
done using Green’s functions in relation to boundary conditions, when solving Laplace’s equation for the
magnetic scalar potential in current free regions of the outer atmosphere.
Once data is included, it will be possible to generate conditional prior realizations, which in combination
with Bayes’ theorem, can be used to generate posterior realizations. Essentially, these will be collections
of possible field models making out a probability density function for the field value at each grid location.
The intention is then to investigate whether the computational efficiency is fast enough, to allow the
use of Markov chain Monte Carlo (MCMC) methods as a possible way to generate better posterior
realizations. The modelling will be attempted for the core, the lithospheric, and the joint field.
Finally, I will scrutinize the resulting models in comparison with traditional geomagnetic field models.
Here I hope to see some indication that the simulation step can aid in generating better geomagnetic
field models in the future. The process and results will naturally be documented in the final thesis paper.
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Thesis project agreement





Appendix C

VISIM: Creating a conditional
distribution table

This section describes the core process of generating a conditional distribution table in VISIM, based on
Fortran scripts from GSLIB. First a target data histogram is normal score transformed through the function
nscore.f, then a selection of quantile functions are back transformed through the function backtr.f. The
details of these two functions are explained below.

nscore.f

The normal transform function has input and output as given by the following box.

Input

1. Number of data [nd]

2. Data values to be transformed [vr(nd)]

3. Trimming limits [tmin/tmax]

4. Weighting to be equal or specified [iwt]

5. Weight for each data [wt(nd)]

6. Temporary storage space [tmp(nd)]

7. Write transform table file on/off [lout]

8. Use method for discrete data on/off [disc]

Output

1. Normal scores [vrg(nd)]

2. Error flag [ierror]

Given the input the function proceeds with the following computations.
Sort data values
First, data values are sorted in ascending order using a sorting algorithm.
Gaussian inverse
Running through indices 1 to nd, the input weights are defined by the index value and number of data.
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wt(i) = i/nd (C.0.1)

While running through indices, the defined weight is used as input to gauinv.f. The input to this function
is a cumulative probability value, hence the additive weight definition. The function gauinv.f computes
the inverse of the standard normal cumulative distribution. The computation is based on the following
equations and originate from Statistical Computing, by W.J. Kennedy, Jr. and James E. Gentle, 1980,
p. 95.

y =

√
log
(

1.0
wt(i)2

)
(C.0.2)

vrg(i) = y + ((((y · p4p3) · y + p2) · y + p1) · y + p0)
((((y · q4q3) · y + q2) · y + q1) · y + q0) (C.0.3)

Here pn and qn are specific numerically determined constants used in the original algorithm.
Back-sort data values
Created arrays are sorted back such that they follow the input structure using the same sorting algorithm.

backtr.f

Back-transformation of generated quantile functions are handled by backtr.f. The back transform function
has input and output as given by the following box.

Input

1. Normal score value to be back-transformed [vrgs]

2. Number of values [nt]

3. Data values [vr(nt)]

4. Normal transformed data values [vrg(nd)]

5. Limits for tail models [zmin/zmax]

6. Lower tail model specification [ltail]

7. Parameter for lower tail model [ltpar]

8. Upper tail model specification [utail]

9. Parameter for upper tail model [utpar]

10. Use method for discrete data on/off [discrete]

Output

1. Back transformed normal score value [vbt]

Given the input, the function proceeds with the following computations. The function only handles single
values, so in order to get a full back-transform, it is iterated through the normal distribution values.
In the function there are options to handle tail values with linear or power models, however, the most
straightforward solution is to disable them. In that case, the back-transformation is handled solely through
the power interpolation function, powint.f.
Power interpolation
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Prior to using power interpolation, an index, j, representing the value closest to the value to be back-
transformed, is located in the normal transformed data distribution, vr(nt). Then power interpolation is
computed based on the following criteria.

vrg(j + 1)− vrg(j) < ε = 1.0e− 20 (C.0.4)

If the criteria is true, the following interpolation is computed.

vbt = (vr(j + 1) + vr(j))
2.0 (C.0.5)

If the criteria is not true, the following interpolation is computed.

vbt = vr(j) +
(
vr(j + 1) + vr(j)

)
·
(

vrgs− vrg(j)
vrg(j + 1)− vrg(j)

)
(C.0.6)

This continues until all the desired conditional probability distributions have been generated.
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Extra results and figures

D.1 Sampling the prior

D.1.1 CMB field with dipole

Figure D.1.1: Stochastic simulation realizations and their statistics reproduction of the full CMB prior
training image. Source grid size is NS = 5000 and each simulation consists of 100 realizations.
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In order to test the core mantle boundary source neighborhood, four stochastic simulations are run with
increasing neighborhood size. This test is carried out with the CMB training image with dipole included
as target histogram. The target statistic fit results are shown in figure D.1.1 and the table below it,
with examples of the generated realizations in figure D.1.2. From the fit statistics it is immediately clear
that the mean of semi-variogram realizations move toward the prior model with increasing neighborhood
size. However, the shape of the realization histograms seem to better follow that of the target with
smaller neighborhoods. For these neighborhoods the mean of semi-variogram realizations also fit the
semi-variogram w/ dipole better, though unintentionally. The histogram mean in all cases is orders of
magnitude above the target, with the standard deviation being closer. As expected, computation time
increases with a larger neighborhood size. From the sample realizations it is seen that these CMB field
estimates often result in realizations with a large mean toward either end of the prior reference value
range.

(a) Realization examples

(b) Prior reference

Figure D.1.2: (a) Sample realizations for each simulation run. (b) CMB field training image used to
generate local conditional distributions.

Test Mean [nT ] Std.dev. [nT ] Compute time [hrs]

A1 4.062e+ 04 5.75e+ 05 0.25
A2 2.962e+ 04 6.24e+ 05 0.26
A3 1.688e+ 04 5.97e+ 05 0.375
A4 2.114e+ 03 6.54e+ 05 0.64

Target 13.65 5.9e+ 05 N/A
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D.2 Reproducing synthetic satellite observations

D.2.1 Test simulation using all synthetic observations

Given enough realizations of the posterior, the mean should converge to the smooth least squares solution
(Hansen and Mosegaard, 2006). In this section I show the results of a simulation with 1,000 realizations
conditional to all available synthetic observations, but no simulated values. This is only an approximation
of the posterior, as posterior realizations require conditioning to the previously simulated values. This
may be a good approximation if conditioning from previously simulated values is small. Figure D.2.1 show
the relevant simulation diagnostics. The observation reproduction histogram indicates some convergence
toward the target for the mean of realizations. However, it is not completely converged, indicating either
a requirement for more than 1,000 realizations, that the observation information alone is not enough, or
that the target can’t be reached with the current system configuration (grid sizes, Kriging method, etc.).
The histogram shape is reproduced, but not very tightly for individual realizations, with the same being
the case for the semi-variogram fit. The integration residuals expresses the residuals of the observation
prediction, if the CMB training image (with dipole) is used in the forward problem directly. As such I
consider it a measure of how well the numerical integration is approximated given the geometry of the
core grid used. In this case it is not a perfect approximation and better results would be gained from a
larger core grid. The observation reproduction residuals are in accord with the observation reproduction
histogram. The mean converges toward fitting the observations, but hasn’t been reached yet.

Figure D.2.1: Diagnostics for simulation of 1,000 realizations conditional to 9,998 synthetic observations,
estimating the magnetic field at the core mantle boundary on a 5,000 location grid. Depicted are the
observation reproduction histogram (upper left), the CMB field estimation histogram (upper right), the
integration residuals (middle left), the semi-variogram fit (middle right), the observation reproduction
residuals (lower left), and the residuals of the CMB field of the realizations to the synthetic true field
(lower right).
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Figure D.2.2 shows sample realizations and their equivalent observation predictiond when using the CMB
estimate to compute the forward problem. One interesting feature points toward the CMB estimates
being posterior realizations that reproduce the smooth least squares solution for the mean of realizations.
The smooth least squares solution later shown in figure 4.3.7 (the solution based on dipole removal) has
a distinct triangular feature with positive radial field value, depicted in the superimposed Indian Ocean.
This triangular feature is present in the estimates shown in figure D.2.2, whereas a smooth rounded fea-
ture is found on the small neighborhood based estimates of figure 4.3.6, as well as on the dipole inclusion
LSQ estimate at the bottom of figure 4.3.7.

Figure D.2.2: Sample realizations for simulation of 1,000 realizations conditional to 9,998 synthetic
observations, estimating the core mantle boundary on a 5,000 location grid. Included are a plot of the
residuals at the CMB and for the observation reproduction at satellite altitude, as well as the mean of
realizations, conditional observations, and the CMB training image.
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D.2.2 Smooth least squares solution comparison for target histogram choice

Figure D.2.3: Observation reproduction and residuals for a sequential least squares estimation using
3,000 synthetic satellite observations at 300 km above Earth’s surface with 1 nT noise added. The top
plots show the result for a prior histogram without the dipole and the bottom plots for the full prior
histogram.
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D.3 Observations + prior

D.3.1 Reproducing target statistics

Using both synthetic observations and previously simulated values require the combined neighborhoods
explored in section 4.2 and 4.3. Figure D.3.1 show reproduction of the target statistics using similar
neighborhoods as previously, in a combined simulation. Histogram reproduction is similar independent of
synthetic observation neighborhood size, but semi-variogram reproduction still require a certain threshold
to be reached. Previously investigated was a synthetic observation neighborhood of ND/20, where ND is
the total observations. Figure D.3.1 show that reproduction is still ensured for the larger neighborhood of
size ND/10. Small scale semi-variogram reproduction still seems insured by smaller neighborhood sizes,
such as the shown NS/100.

Test overview for reproducing target statistics at the CMB

Neighborhood sizes CMB Observations
A1 NS/100 ND/50
A2 NS/100 ND/10

Semi-variogram type exp + Gau
Realizations 100
Conditional dist. type no dipole

Table D.3.1

Figure D.3.1: Training image statistics fit for posterior realizations using both synthetic observations
and previously simulated values.

78



APPENDIX D. EXTRA RESULTS AND FIGURES

D.3.2 All observations + prior

Figure D.3.2: Diagnostics for DSSIM of 10 realizations using 1,000 synthetic observations with a target
source grid of 15,000 locations. The simulation is conditional to previously simulated values and all
available synthetic observations. Depicted are an observation reproduction histogram (upper left), a
CMB estimation histogram (upper right), root-mean-square misfits to the observations (middle left), the
semi-variogram fit (middle right), observation reproduction residuals (lower left), and the CMB estimation
residuals (lower right).
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SDSSIM_1.2: geostatistics Python
tool

E.1 SDSSIM_setup

1 def SDSSIM_setup(*args, setup_type = 'core', N = 'default', condtab_compiler = ...
'Python', savefig = 'no', dpi = 100, figsize=(16,16), gensize=18, fontsize=18, ...
fontsize_sub = 14):

2 import matplotlib.pyplot as plt
3 cmap = plt.cm.PuOr_r
4 #cmap = plt.cm.Spectral_r
5

6 if setup_type == 'core':
7 grid_radius = 3480.0 # Earth core mantle boundary
8 type_model = 'Julien_core'
9 unit = '[nT]'

10 n_sh = 60
11 if N == 'default':
12 N = 30000
13 elif setup_type == 'surface':
14 grid_radius = 6371.2
15 type_model = 'Masterton_surface'
16 unit = '[nT]'
17 n_sh = 100
18 if N == 'default':
19 N = 30000
20 elif setup_type == 'sat':
21 grid_radius = 6371.2 + 300.0
22 type_model = 'Julien_synth_dat_300km'
23 unit = '[nT]'
24 n_sh = 60
25 if N == 'default':
26 N = 20000
27 elif setup_type == "swarm":
28 grid_radius = None
29 type_model = "swarm"
30 unit = '[nT]'
31 n_sh = None
32

33 sdssim_setup = {"N":N, "type":setup_type, "type_model":type_model, ...
"unit":unit, "n_sh":n_sh, "grid radius":grid_radius, "figsize":figsize, ...
"gensize":gensize, "fontsize":fontsize, "dpi":dpi, "savefig":savefig, ...
"cmap":cmap, "condtab_compiler":condtab_compiler, "fontsize_sub":fontsize_sub}

34

35 return sdssim_setup
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E.2 SDSSIM_grid

1 def calc_spherical_distances(grid_core, setup_core):
2 from SDSSIM_utility import haversine
3 import numpy as np
4 lat_mesh, lon_mesh = np.meshgrid(grid_core["grid latitude"],grid_core["grid ...

longitude"])
5 grid_core["grid spherical distances"] = haversine(setup_core["grid radius"], ...

lon_mesh, lat_mesh, lon_mesh.T, lat_mesh.T)
6 return grid_core
7

8 def eqsp(N,dim):
9

10 """
11 Calculate equal area spherical partitioned grid and plot
12

13 """
14

15 """
16 Initialization
17 """
18 import matlab
19 import matlab.engine
20 #from mpl_toolkits.basemap import Basemap
21 #import matplotlib.pyplot as plt
22 import numpy as np
23 #import scipy.io as sio
24 N = N
25 dim = dim
26

27 """
28 Start MATLAB Engine API for Python
29 -This enables calls to Matlab functions through Python.
30 """
31

32 eng = matlab.engine.start_matlab()
33

34 """
35 Set up floats suitable for inputs to Matlab functions
36 dim: dimension of S^d unit sphere being embedded into R^(d+1).
37 N: number of wanted regions of equal area and on the unit sphere.
38 """
39

40 if 'dim' not in locals():
41 print('Dimension (dim) not specified')
42 return
43

44 if 'N' not in locals():
45 print('Grid size (N) not specified')
46 return
47

48 if not isinstance(dim, float):
49 print('Dimension (dim) must be float type')
50 return
51

52 if not isinstance(N, float):
53 print('Grid size (N) must be float type')
54 return
55

56 """
57 Calling Matlab functions from the eq_sphere_partitions toolbox:
58 eng.double(Matlab double output): Python class to hold array of MATLAB type ...

double.
59 eng.eq_point_set_polar(dim,N): Coordinates of central point for each ...

partitioned area in polar coordinates
60 eng.eq_point_set(dim,N): Coordinates of central point for each partitioned ...

area in cartesian coordinates
61 """
62

63 points_polar = eng.double(eng.eq_point_set_polar(dim,N))
64 points_cart = eng.double(eng.eq_point_set(dim,N))
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65

66 """
67 Import numpy library for matrix manipulation
68 np.asmatrix(Python array): Converts Python array to matrix.
69 """
70

71 points_polar = np.asmatrix(points_polar)
72 points_cart = np.asmatrix(points_cart)
73

74

75 longitude = points_polar[0,:]*180/np.pi
76 latitude = 90 - points_polar[1,:]*180/np.pi
77

78 grid = np.asmatrix(np.array([np.asarray(longitude), ...
np.asarray(latitude)]).reshape(2,int(N)))

79

80 lon_s = np.asarray(grid[0,:]).ravel()
81 lat_s = np.asarray(grid[1,:]).ravel()
82

83 s_cap, n_regions = eng.eq_caps(dim,N,nargout=2) # nargout = number of outputs ...
(for when you know a function returns more than one output)

84 s_cap = np.asmatrix(eng.double(s_cap))
85 n_regions = np.asmatrix(eng.double(n_regions))
86

87

88

89 #eqsp_cap_region = eng.double(eng.eq_caps(dim,N))
90 #eqsp_cap_region = np.asmatrix(eqsp_cap_region)
91

92 """
93 Spherical distance between all points
94 -Each row in sph_d_all is spherical distance from one point to all others,
95 going through the points as ordered in points_cart.
96 """
97

98 # Runtime is very long for 30.000 points
99

100 #sph_d_all = np.zeros([int(N),int(N)])
101

102 #for x in range(0, int(N)):
103 # points_cart = np.asmatrix(points_cart)
104 # points = np.multiply(points_cart[:,x], np.mat(np.ones([3,int(N)])))
105

106 # points_cart = matlab.double(np.asarray(points_cart).tolist())
107 # points = matlab.double(np.asarray(points).tolist())
108

109 # spherical_distance = eng.double(eng.spherical_dist(points,points_cart))
110 # spherical_distance = np.asmatrix(spherical_distance)
111 # print(x)
112 # sph_d_all[x,:] = spherical_distance
113

114 """
115 Stop MATLAB Engine API for Python
116 """
117 eng.quit()
118

119

120 EQSP = {'N':N, 'dim':dim, 'Polar coords':points_polar, 'Latitude':lat_s, ...
'Longitude':lon_s, 's_cap':s_cap, 'n_regions':n_regions}

121 #EQSP = {'N':N, 'dim':dim, 'Polar coords':points_polar, 'Latitude':lat_s, ...
'Longitude':lon_s, 'eqsp_cap_region':eqsp_cap_region}

122

123 #return EQSP, sph_d_all
124 return EQSP
125

126 def eqsp_grid(N, grid_radius, sph_d_loadmat=False, sph_d_loadpy=True, ...
latlon_load=True):

127 import hdf5storage
128 import numpy as np
129

130 grid_sph_d = None
131 s_cap = None
132 n_regions = None
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133 #eqsp_cap_region = None
134

135 if sph_d_loadmat == True:
136 mat = hdf5storage.loadmat('saved_variables/sph_d_all.mat')
137 grid_sph_d = mat['sph_d_all']
138

139 if sph_d_loadpy == True:
140 from SDSSIM_utility import variable_load
141 grid_sph_d = variable_load('saved_variables/grid_sph_d.npy')
142 grid_sph_d = np.multiply(grid_radius,grid_sph_d)
143

144 if latlon_load == True:
145 from SDSSIM_utility import variable_load
146 grid_lat = variable_load('saved_variables/grid_lat.npy')
147 grid_lon = variable_load('saved_variables/grid_lon.npy')
148 else:
149 EQSP = eqsp(float(N),2.0)
150 grid_lat = EQSP['Latitude']
151 grid_lon = EQSP['Longitude']
152 s_cap = EQSP['s_cap']
153 n_regions = EQSP['n_regions']
154 #eqsp_cap_region = EQSP['eqsp_cap_region']
155

156 return grid_lat, grid_lon, grid_sph_d, s_cap, n_regions
157

158 def SDSSIM_grid(N, grid_radius, *args, savegrid = False, custom_grid = False, ...
calc_sph_d = False):

159 """
160 Grid function setting up the grid used in SDSSIM
161 grid_lat: [N, np.array]
162 grid_lon: [N, np.array]
163 grid_sph_d: [N-by-N, np.matrix]
164 """
165

166 if savegrid == True:
167 from SDSSIM_utility import variable_save
168 import numpy as np
169 grid_lat, grid_lon, grid_sph_d, s_cap, n_regions = eqsp_grid(N, ...

grid_radius, sph_d_loadmat=True, sph_d_loadpy=False, latlon_load = False)
170 variable_save('saved_variables/grid_lat', grid_lat)
171 variable_save('saved_variables/grid_lon', grid_lon)
172 variable_save('saved_variables/grid_sph_d', grid_sph_d)
173 print('Spherical distances saved are for a unit sphere. Returned spherical ...

distances are scaled to grid radius %0.1f km' % grid_radius)
174 grid_sph_d = np.multiply(grid_radius,grid_sph_d)
175 sdssim_grid = {"N":N, "grid latitude":grid_lat, "grid longitude":grid_lon, ...

"grid spherical distances":grid_sph_d, "grid radius":grid_radius}
176 else:
177 if custom_grid == False:
178 grid_lat, grid_lon, grid_sph_d, s_cap, n_regions = eqsp_grid(N, ...

grid_radius, sph_d_loadmat=False, sph_d_loadpy=True, latlon_load = ...
False)

179 else:
180 if calc_sph_d == False:
181 grid_lat, grid_lon, grid_sph_d, s_cap, n_regions = eqsp_grid(N, ...

grid_radius, sph_d_loadmat=False, sph_d_loadpy=False, ...
latlon_load = False)

182 else:
183 import numpy as np
184 from SDSSIM_utility import haversine
185 grid_lat, grid_lon, grid_sph_d, s_cap, n_regions = eqsp_grid(N, ...

grid_radius, sph_d_loadmat=False, sph_d_loadpy=False, ...
latlon_load = False)

186 lat_mesh, lon_mesh = np.meshgrid(grid_lat,grid_lon)
187 grid_sph_d = haversine(grid_radius, lon_mesh, lat_mesh, ...

lon_mesh.T, lat_mesh.T)
188

189 sdssim_grid = {"N":N, "grid latitude":grid_lat, "grid longitude":grid_lon, ...
"grid spherical distances":grid_sph_d, "grid radius":grid_radius, ...
"s_cap":s_cap, "n_regions":n_regions}

190 return sdssim_grid
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E.3 SDSSIM_data

1 """
2 data for SDSSIM
3 """
4

5 def rem_mean_lat(data, lat):
6 import numpy as np
7 lat_lim_save = np.empty([0,0],dtype=int)
8 lat_mean_save = np.empty([0,],dtype=float)
9 for n in range(-90,90):

10 lat_lim = np.logical_and(n≤lat, lat≤(n+1))
11 if any(lat_lim):
12 lat_mean = np.mean(data[lat_lim])
13 data[lat_lim] = data[lat_lim] - lat_mean
14 lat_lim_save = np.append(lat_lim_save, np.argwhere(lat_lim))
15 lat_mean_save = np.append(lat_mean_save, ...

lat_mean*np.ones(len(np.argwhere(lat_lim))))
16

17 lat_return_mean = np.array([lat_lim_save,lat_mean_save]).T
18 return data, lat_return_mean
19

20

21 def synth_model(N, lat, lon, r = 6371.2, n_deg=60, type_model = 'Julien_core', ...
custom_gauss = None, remmean = False, dipole = True):

22 import numpy as np
23 import GMT_tools as gt
24

25 rad = np.pi/180
26 a = 6371.2
27

28 A_r, A_theta, A_phi = gt.design_SHA(r/a*np.ones([N-2]), ...
(90.0-lat[1:-1])*rad,lon[1:-1]*rad, n_deg)

29

30 G = np.vstack((A_r, A_theta, A_phi))
31

32 if np.logical_or(type_model == 'Julien_core', type_model == ...
'Julien_synth_dat_300km'):

33 if dipole == True:
34 Gauss_in = np.loadtxt('sh_models/Julien_Gauss_JFM_E-8_snap.dat')
35 else:
36 Gauss_in = np.loadtxt('sh_models/Julien_Gauss_JFM_E-8_snap_nodip.dat')
37 print('Loading Julien model')
38 elif type_model == 'Masterton_surface':
39 Gauss_in = np.loadtxt('sh_models/Masterton_13470_total_it1_0.glm')
40 print('Loading Masterton model')
41 else:
42 Gauss_in = np.loadtxt(custom_gauss, comments='%')
43 print('Loading %s' %custom_gauss)
44

45 i=0
46 i_line=0
47

48 g = np.zeros(len(A_r.T))
49

50 for n in range(1,n_deg+1):
51 for m in range(0,n+1):
52 if m == 0:
53 g[i]=Gauss_in[i_line,2]
54 i += 1
55 i_line += 1
56 else:
57 g[i]=Gauss_in[i_line,2]
58 g[i+1]=Gauss_in[i_line,3]
59 i+= 2
60 i_line += 1
61

62

63 data_dynamo = np.matrix(G)*np.matrix(g).T
64 data = np.array(data_dynamo[:len(A_r)]).ravel()
65
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66 data_complete = np.zeros((N,))
67 data_complete[1:-1] = data
68

69 if remmean == True:
70 data_complete, lat_return_mean = rem_mean_lat(data_complete, lat)
71 print('Finished loading synthetic model')
72 return data_complete, lat_return_mean
73

74

75 print('Finished loading synthetic model')
76 return data_complete
77

78 def SDSSIM_data(setup, grid, *args, **kwargs):
79 import numpy as np
80 lat_return_mean = None
81 data_lat = None
82 data_lon = None
83 N = grid["N"]
84 if np.logical_or(setup["type"] == 'core', setup["type"] == 'sat'):
85 remmean = kwargs["remmean"]
86 dipole = kwargs["dipole"]
87 if remmean == False:
88 data = synth_model(grid["N"], grid["grid latitude"], grid["grid ...

longitude"], r = grid["grid radius"], n_deg=setup["n_sh"], ...
type_model = setup["type_model"], remmean = remmean, dipole = dipole)

89 else:
90 data, lat_return_mean = synth_model(grid["N"], grid["grid latitude"], ...

grid["grid longitude"], r = grid["grid radius"], ...
n_deg=setup["n_sh"], type_model = setup["type_model"], remmean = ...
remmean, dipole = dipole)

91 data_lon = grid["grid longitude"]
92 data_lat = grid["grid latitude"]
93 data_radius = np.ones(grid["N"],)*setup['grid radius']
94

95 elif setup["type"] == 'surface':
96

97 data = synth_model(grid["N"], grid["grid latitude"], grid["grid ...
longitude"], r = grid["grid radius"], n_deg=setup["n_sh"], type_model ...
= setup["type_model"])

98 data_lon = grid["grid longitude"]
99 data_lat = grid["grid latitude"]
100 data_radius = np.ones(grid["N"],)*setup['grid radius']
101 else:
102 print("No correct data type chosen")
103 return
104

105 sdssim_data = {"data":data, "latitude mean":lat_return_mean, "data ...
radius":data_radius, "data latitude":data_lat, "data longitude":data_lon, ...
"N":N}

106

107 return sdssim_data
108

109 def handle_poles(grid_core, data_core, grid_sat, data_sat, setup_sat):
110 import numpy as np
111

112 data_core["data"][0] = ...
np.mean(data_core["data"][1:int(grid_core["n_regions"][0,1])])

113 data_core["data"][-1] = ...
np.mean(data_core["data"][-int(grid_core["n_regions"][0,1]):][:-1])

114

115 if np.logical_and(data_sat is not None, grid_sat is not None):
116 idx_end_sat = grid_sat["N"]-1
117 grid_sat["grid latitude"] = np.delete(grid_sat["grid ...

latitude"],[0,idx_end_sat],0)
118 grid_sat["grid longitude"] = np.delete(grid_sat["grid ...

longitude"],[0,idx_end_sat],0)
119 grid_sat["N"] = idx_end_sat-1
120

121 data_sat["data latitude"] = np.delete(data_sat["data ...
latitude"],[0,idx_end_sat],0)

122 data_sat["data longitude"] = np.delete(data_sat["data ...
longitude"],[0,idx_end_sat],0)

123 data_sat["data radius"] = np.delete(data_sat["data radius"],[0,idx_end_sat],0)
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124 data_sat["data"] = np.delete(data_sat["data"],[0,idx_end_sat],0)
125 data_sat["N"] = idx_end_sat-1
126 setup_sat["N"] = idx_end_sat-1
127

128 if grid_sat["grid spherical distances"] is not None:
129 grid_sat["grid spherical distances"] = np.delete(grid_sat["grid ...

spherical distances"],[0,idx_end_sat],0)
130 grid_sat["grid spherical distances"] = np.delete(grid_sat["grid ...

spherical distances"],[0,idx_end_sat],1)
131

132

133 return data_core, grid_sat, data_sat, setup_sat
134 else:
135 return data_core

E.4 SDSSIM_semivar

1 """
2 Semi-variogram functions
3 """
4

5 def find_sort_d(grid_core, max_dist = 2000):
6 import numpy as np
7 range_d = grid_core["grid spherical distances"].ravel() < max_dist
8 idx_range = np.array(np.where(range_d == True)).ravel()
9 val_range = grid_core["grid spherical distances"].ravel()[idx_range]

10 idx_sort_val_range = np.argsort(val_range)
11 sort_d = idx_range[idx_sort_val_range]
12 return sort_d
13

14 def semivariogram_model(h, a, C0, C1, C2 = None, C3 = None, mode = 'spherical'):
15 import numpy as np
16 if mode == 'spherical':
17 '''
18 Spherical model of the semivariogram
19 '''
20

21 hi = np.argsort(h)
22 hir = np.argsort(hi)
23

24 model = np.zeros(len(h))
25

26 hs = h[hi]
27 hla = hs[hs<a]
28 model[0:len(hla)] = C0 + C1*( 1.5*hla/a - 0.5*(hla/a)**3 )
29 model[len(hla):] = C0 + C1
30 model = model[hir]
31

32 elif mode == 'dub_spherical':
33 '''
34 Spherical model of the semivariogram
35 '''
36

37 hi = np.argsort(h)
38 hir = np.argsort(hi)
39

40 model = np.zeros(len(h))
41

42 hs = h[hi]
43 hla = hs[hs<a]
44

45 model[0:len(hla)] = C0 + C1*( 1.5*hla/a - 0.5*(hla/a)**3 ) + C2*( ...
1.5*hla/C3 - 0.5*(hla/C3)**3)

46 model[len(hla):] = C0 + C1 + C2*( 1.5*hs[len(hla):]/C3 - ...
0.5*(hs[len(hla):]/C3)**3)

47 model[C3:] = C0 + C1 + C2
48 model = model[hir]
49
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50 elif mode == 'gaussian':
51 '''
52 Gaussian model of the semivariogram
53 '''
54 model = C0 + C1*(1-np.exp(-(3*h)**2/a**2))
55 elif mode == 'exponential':
56 '''
57 Exponential model of the semivariogram
58 '''
59 import numpy as np
60

61 model = C0 + C1*(1-np.exp(-3*h/a))
62

63 elif mode == 'power':
64 '''
65 Power model of the semivariogram
66 '''
67

68 hi = np.argsort(h)
69 hir = np.argsort(hi)
70

71 model = np.zeros(len(h))
72

73 hs = h[hi]
74 hla = hs[hs<a]
75 model[0:len(hla)] = C0 + C1*hla**a
76 model[len(hla):] = C0 + C1*np.array(hs[len(hla):])**a
77 model = model[hir]
78

79 elif mode == 'hole':
80 '''
81 Hole model of the semivariogram
82 '''
83 model = C0 + C1*(1-np.cos(h/a*np.pi))
84

85 elif mode == 'hole_damp':
86 '''
87 Hole model of the semivariogram
88 '''
89 model = C0 + C1*(1-np.exp(-3*h/C2)*np.cos(h/a*np.pi))
90

91 elif mode == 'nested_hole_gau':
92 '''
93 Hole model of the semivariogram
94 '''
95

96 hi = np.argsort(h)
97 hir = np.argsort(hi)
98

99 model = np.zeros(len(h))
100

101 hs = h[hi]
102 hla = hs[hs<a]
103 model[0:len(hla)] = C0 + C1*(1-np.cos(hla/a*np.pi)) + ...

C2*(1-np.exp(-(3*hla)**2/a**2))
104 model[len(hla):] = C0 + C1*(1-np.cos(np.array(hs[len(hla):])/a*np.pi)) + ...

C2*(1-np.exp(-(3*np.array(hs[len(hla):]))**2/a**2))
105 model = model[hir]
106

107 elif mode == 'nested_sph_gau':
108 '''
109 Nested spherical and gaussian model of the semivariogram
110 '''
111

112 hi = np.argsort(h)
113 hir = np.argsort(hi)
114

115 model = np.zeros(len(h))
116

117 hs = h[hi]
118 hla = hs[hs<a]
119 model[0:len(hla)] = C0 + C1*( 1.5*hla/a - 0.5*(hla/a)**3 ) + ...

C2*(1-np.exp(-(3*hla)**2/a**2))
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120 model[len(hla):] = C0 + C1 + ...
C2*(1-np.exp(-(3*np.array(hs[len(hla):]))**2/a**2))

121 model = model[hir]
122

123 elif mode == 'nested_sph_exp':
124 '''
125 Nested spherical and exponential model of the semivariogram
126 '''
127

128 hi = np.argsort(h)
129 hir = np.argsort(hi)
130

131 model = np.zeros(len(h))
132

133 hs = h[hi]
134 hla = hs[hs<a]
135 model[0:len(hla)] = C0 + C1*( 1.5*hla/a - 0.5*(hla/a)**3 ) + ...

C2*(1-np.exp(-(3*hla)/a))
136 model[len(hla):] = C0 + C1 + C2*(1-np.exp(-(3*np.array(hs[len(hla):]))/a))
137 model = model[hir]
138

139 elif mode == 'nested_exp_gau':
140 '''
141 Nested exponential and gaussian model of the semivariogram
142 '''
143

144 hi = np.argsort(h)
145 hir = np.argsort(hi)
146

147 model = np.zeros(len(h))
148

149 hs = h[hi]
150 hla = hs[hs<a]
151 model[0:len(hla)] = C0 + C1*(1-np.exp(-(3*hla)/a)) + ...

C2*(1-np.exp(-(3*hla)**2/a**2))
152 model[len(hla):] = C0 + C1*(1-np.exp(-(3*np.array(hs[len(hla):]))/a)) + ...

C2*(1-np.exp(-(3*np.array(hs[len(hla):]))**2/a**2))
153 model = model[hir]
154

155 elif mode == 'nested_sph_exp_gau':
156 '''
157 Nested spherical and exponential model of the semivariogram
158 '''
159

160 hi = np.argsort(h)
161 hir = np.argsort(hi)
162

163 model = np.zeros(len(h))
164

165 hs = h[hi]
166 hla = hs[hs<a]
167 model[0:len(hla)] = C0 + C1*( 1.5*hla/a - 0.5*(hla/a)**3 ) + ...

C2*(1-np.exp(-(3*hla)/a)) + C3*(1-np.exp(-(3*hla)**2/a**2))
168 model[len(hla):] = C0 + C1 + C2*(1-np.exp(-(3*np.array(hs[len(hla):]))/a)) ...

+ C3*(1-np.exp(-(3*np.array(hs[len(hla):]))**2/a**2))
169 model = model[hir]
170

171 else:
172 print('Unknown model type')
173 return
174

175 return model
176

177 def varioLUT(distance, N, a, C0, C1, C2 = None, C3 = None, model = 'spherical'):
178 import numpy as np
179 from SDSSIM_utility import printProgressBar
180 '''
181 semi-variogram LUT generation
182 '''
183 vario_lut = np.zeros([N,N])
184

185 for i in range(0,N):
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186 vario_lut[:,i] = ...
semivariogram_model(distance[i,:],a,C0,C1,C2=C2,C3=C3,mode=model)

187 printProgressBar (i, N, subject = 'Semi-variogram LUT progress')
188 return vario_lut
189

190 def data_variogram(N, data, r, load = None, sort_d = None, sph_d_all = None):
191 """
192 Function for calculating or loading variogram from data
193 """
194 import numpy as np
195 from SDSSIM_utility import variable_load, printProgressBar
196

197 if load is None:
198 cloud_all = np.zeros([N,N])
199

200 print("")
201 print('Generating variogram cloud')
202 print("")
203

204 for i in range(0,N):
205 printProgressBar (i, N, subject = 'Variogram cloud progress')
206 cloud = (data[i]-data)**2
207 cloud_all[i,:] = cloud
208

209 cloud_sorted = cloud_all.ravel()[sort_d]
210

211 print("")
212 print("")
213 print('Variogram cloud generated and sorted')
214 print("")
215

216 if sort_d is None:
217 sort_d = variable_load('saved_variables/sort_d_short.npy')
218

219 if sph_d_all is None:
220 sph_d_sorted = variable_load('saved_variables/sph_d_ravel_short_sort.npy')
221 sph_d_sorted = np.multiply(r,sph_d_sorted)
222

223 else:
224 print('Sorting spherical distances')
225 print("")
226 sph_d_sorted = sph_d_all.ravel()[sort_d]
227 print('Spherical distances sorted')
228 print("")
229

230

231 else:
232 sph_d_sorted = variable_load('saved_variables/sph_d_ravel_short_sort.npy')
233 if load is 'Julien':
234 cloud_sorted = ...

variable_load('saved_variables/cloud_ravel_short_sort_Julien.npy')
235 sph_d_sorted = np.multiply(r,sph_d_sorted)
236 elif load is 'Masterton':
237 cloud_sorted = ...

variable_load('saved_variables/cloud_ravel_short_sort_Masterton_nT.npy')
238 sph_d_sorted = np.multiply(r,sph_d_sorted)
239 else:
240 print('Wrong load name, use Julien or Masterton')
241 return
242

243 return sph_d_sorted, cloud_sorted
244

245 def data_semivariogram(max_cloud, n_lags, sph_d_ravel_short, cloud_ravel_short, N):
246 """
247 Function for calculating semivariogram from data by taking the mean of
248 equidistant lags
249 """
250

251 import numpy as np
252 from SDSSIM_utility import printProgressBar
253

254 print('Generating semi-variogram cloud')
255 print("")
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256

257 lag = int(max_cloud/n_lags)
258

259 pics = np.zeros(n_lags-1)
260 lags = np.zeros(n_lags-1)
261

262 for n in range(1,n_lags):
263 printProgressBar (n, n_lags, subject = 'Semi-variogram cloud progress')
264

265 pic = 0.5*np.mean(cloud_ravel_short[(n-1)*lag:lag*n:1])
266

267 pics[n-1] = pic
268

269 lag_u = np.max(sph_d_ravel_short[(n-1)*lag:lag*n:1])
270

271 lag_l = np.min(sph_d_ravel_short[(n-1)*lag:lag*n:1])
272

273 lag_c = (lag_u-lag_l)/2+lag_l
274

275 lags[n-1] = lag_c
276

277 print("")
278 print("")
279 print('Semi-variogram cloud generated')
280 print("")
281 return pics, lags
282

283 def sv_sim_cloud(lag_coarse, cloud_coarse, rz, zs, N, sort_d, data_type = 0):
284 """
285 Function for calculating semivariogram from simulations by taking the mean of
286 equidistant lags
287 """
288 from SDSSIM_utility import variable_load
289 import numpy as np
290

291 cloud_zs = np.zeros([lag_coarse,rz])
292

293 if data_type == 'Julien':
294 sort_d = variable_load('saved_variables/sort_d_short.npy')
295

296 for j in range(0,rz):
297 cloud_all = np.zeros([N,N])
298 if rz>10:
299 #print('Computing sv for realization: ',j)
300 from SDSSIM_utility import printProgressBar
301 printProgressBar (j, rz, subject = 'Computing semi-variograms for ...

realizations')
302 for i in range(0,N):
303 cloud = (zs[i,j]-zs[:,j])**2
304 cloud_all[i,:] = cloud
305

306 #% """"""""""""""""""Point cloud""""""""""""""""""
307

308 cloud_ravel = cloud_all.ravel()
309 cloud_ravel = cloud_ravel[sort_d]
310

311 pics_c = np.zeros(lag_coarse)
312

313 for n in range(0,lag_coarse):
314 pic = 0.5*np.mean(cloud_ravel[n*cloud_coarse:cloud_coarse*(n+1)])
315 pics_c[n] = pic
316

317 cloud_zs[:,j] = pics_c
318 return cloud_zs
319

320 def SDSSIM_semivar(data, grid, setup, *args, model_lags = 'all', model = ...
'nested_sph_exp_gau', sort_d = None, sph_d_all = None, lag_length = 5, nolut = ...
False, bounds = True, zero_nugget = False, set_model = False, load = None):

321 from math import inf
322 import numpy as np
323 from scipy.optimize import curve_fit
324
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325 sph_d_sorted, cloud_sorted = data_variogram(data['N'], data['data'], ...
setup['grid radius'], load = load, sort_d = sort_d, sph_d_all = sph_d_all)

326

327 max_cloud = len(sort_d)
328 d_max = np.max(sph_d_sorted)
329

330 n_lags = int(d_max/lag_length) # lags from approx typical distance between ...
core grid points

331

332 print("____semi-variogram setup___")
333 print("")
334 print("Number of data used: %d" %max_cloud)
335 print("Max data distance: %.3f km" %d_max)
336 print("Lag length chosen: %.1f km" %lag_length)
337 print("Number of lags: %d" %n_lags)
338 print("Number of modelling lags:",model_lags)
339 print("")
340

341 pics, lags = data_semivariogram(max_cloud, n_lags, sph_d_sorted, cloud_sorted, ...
data["N"])

342

343 print('Generating semi-variogram model')
344 print("")
345

346 if model_lags == 'all':
347 lags_model = lags
348 pics_model = pics
349 else:
350 lags_model = lags[:model_lags]
351 pics_model = pics[:model_lags]
352

353 model_name = {'spherical':'spherical', 'dub_spherical':'double spherical', ...
'gaussian':'gaussian', 'exponential':'exponential', 'power':'power', ...
'hole':'hole', 'hole_damp':'dampened hole', ...
'nested_hole_gau':'hole+Gaussian', 'nested_sph_gau':'spherical+Gaussian', ...
'nested_sph_exp':'spherical+exponential', ...
'nested_exp_gau':'exponential+Gaussian', ...
'nested_sph_exp_gau':'spherical+exponential+Gaussian'}

354

355 """ZERO NUGGET OR NOT"""
356 if set_model == False:
357 if model == 'spherical':
358 if zero_nugget == False:
359 def semivar_return(lags_model, a, C0, C1):
360 return C0 + C1*(1.5*lags_model/a-0.5*(lags_model/a)**3)
361 else:
362 def semivar_return(lags_model, a, C1):
363 return C1*(1.5*lags_model/a-0.5*(lags_model/a)**3)
364 elif model == 'dub_spherical':
365 if zero_nugget == False:
366 def semivar_return(lags_model, a, C0, C1, C2, C3):
367 return C0 + C1*(1.5*lags_model/a-0.5*(lags_model/a)**3) + ...

C2*(1.5*lags_model/C3-0.5*(lags_model/C3)**3)
368 else:
369 def semivar_return(lags_model, a, C1, C2, C3):
370 return C1*(1.5*lags_model/a-0.5*(lags_model/a)**3) + ...

C2*(1.5*lags_model/C3-0.5*(lags_model/C3)**3)
371 elif model == 'gaussian':
372 if zero_nugget == False:
373 def semivar_return(lags_model, a, C0, C1):
374 return C0 + C1*(1-np.exp(-(3*lags_model)**2/a**2))
375 else:
376 def semivar_return(lags_model, a, C1):
377 return C1*(1-np.exp(-(3*lags_model)**2/a**2))
378 elif model == 'exponential':
379 if zero_nugget == False:
380 def semivar_return(lags_model, a, C0, C1):
381 return C0 + C1*(1-np.exp(-3*lags_model/a))
382 else:
383 def semivar_return(lags_model, a, C1):
384 return C1*(1-np.exp(-3*lags_model/a))
385 elif model == 'power':
386 if zero_nugget == False:
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387 def semivar_return(lags_model, a, C0, C1):
388 return C0 + C1*lags_model**a
389 else:
390 def semivar_return(lags_model, a, C1):
391 return C1*lags_model**a
392 elif model == 'hole':
393 def semivar_return(lags_model, a, C0, C1):
394 return C0 + C1*(1-np.cos(lags_model/a*np.pi))
395 elif model == 'hole_damp':
396 def semivar_return(lags_model, a, C0, C1, C2):
397 return C0 + C1*(1-np.exp(-3*lags_model/C2)*np.cos(lags_model/a*np.pi))
398 elif model == 'nested_hole_gau':
399 def semivar_return(lags_model, a, C0, C1, C2):
400 return C0 + C1*(1-np.cos(lags_model/a*np.pi)) + ...

C2*(1-np.exp(-(3*lags_model)**2/a**2))
401 elif model == 'nested_sph_gau':
402 def semivar_return(lags_model, a, C0, C1, C2):
403 return C0 + C1*(1.5*lags_model/a-0.5*(lags_model/a)**3) + ...

C2*(1-np.exp(-(3*lags_model)**2/a**2))
404 elif model == 'nested_sph_exp':
405 def semivar_return(lags_model, a, C0, C1, C2):
406 return C0 + C1*(1.5*lags_model/a-0.5*(lags_model/a)**3) + ...

C2*(1-np.exp(-(3*lags_model)/a))
407 elif model == 'nested_exp_gau':
408 if zero_nugget == False:
409 def semivar_return(lags_model, a, C0, C1, C2):
410 return C0 + C1*(1-np.exp(-(3*lags_model)/a)) + ...

C2*(1-np.exp(-(3*lags_model)**2/a**2))
411 else:
412 def semivar_return(lags_model, a, C1, C2):
413 return C1*(1-np.exp(-(3*lags_model)/a)) + ...

C2*(1-np.exp(-(3*lags_model)**2/a**2))
414 elif model == 'nested_sph_exp_gau':
415 if zero_nugget == False:
416 def semivar_return(lags_model, a, C0, C1, C2, C3):
417 return C0 + C1*(1.5*lags_model/a-0.5*(lags_model/a)**3) + ...

C2*(1-np.exp(-(3*lags_model)/a)) + ...
C3*(1-np.exp(-(3*lags_model)**2/a**2))

418 else:
419 def semivar_return(lags_model, a, C1, C2, C3): # FOR ZERO NUGGET
420 return C1*(1.5*lags_model/a-0.5*(lags_model/a)**3) + ...

C2*(1-np.exp(-(3*lags_model)/a)) + ...
C3*(1-np.exp(-(3*lags_model)**2/a**2)) # FOR ZERO NUGGET

421

422 else:
423 print('wrong model type chosen')
424

425 if bounds == True:
426 """Bounds and start values for curve fit"""
427 if model == 'power':
428

429 if zero_nugget == False:
430 p0 = [2.0,np.min(pics_model),np.max(pics_model)]
431 bounds = (0, [2.0, inf, inf])
432 else:
433 p0 = [2.0,np.max(pics_model)]
434 bounds = (0, [2.0, inf])
435 elif np.logical_or(model=='nested_sph_gau',model=='nested_sph_exp'):
436 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),np.max(pics_model)]
437 bounds = (0, [lags_model[-1], inf, np.max(pics_model), ...

np.max(pics_model)])
438 elif model=='nested_exp_gau':
439 if zero_nugget == False:
440 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),np.max(pics_model)]
441 bounds = (0, [lags_model[-1], inf, np.max(pics_model), ...

np.max(pics_model)])
442 else:
443 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.max(pics_model),np.max(pics_model)]
444 bounds = (0, [lags_model[-1], np.max(pics_model), ...

np.max(pics_model)])
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445 elif model=='nested_hole_gau':
446 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),np.max(pics_model)]
447 bounds = (0, [lags_model[-1], inf, np.max(pics_model), ...

np.max(pics_model)])
448 elif model=='hole_damp':
449 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),5*np.max(lags_model)]
450 bounds = (0, [lags_model[-1], inf, np.max(pics_model), ...

10*np.max(lags_model)])
451 elif model == 'nested_sph_exp_gau':
452 if zero_nugget == False:
453 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),np.max(pics_model),np.max(pics_model)]
454 bounds = (0, [lags_model[-1], inf, np.max(pics_model), ...

np.max(pics_model),np.max(pics_model)])
455 else:
456 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),np.max(pics_model)]
457 bounds = (0, [lags_model[-1], np.max(pics_model), ...

np.max(pics_model),np.max(pics_model)])
458 elif model == 'dub_spherical':
459 if zero_nugget == False:
460 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),np.max(pics_model),np.mean(lags_model[-int(len(lags_model)/2.0)])]
461 bounds = (0, [lags_model[-1], inf, np.max(pics_model), ...

np.max(pics_model),lags_model[-1]])
462 else:
463 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model),np.mean(lags_model[-int(len(lags_model)/2.0)])]
464 bounds = (0, [lags_model[-1], np.max(pics_model), ...

np.max(pics_model),lags_model[-1]])
465 else:
466 if zero_nugget == False:
467 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.min(pics_model),np.max(pics_model)]
468 bounds = (0, [lags_model[-1], inf, np.max(pics_model)])
469 else:
470 p0 = ...

[np.mean(lags_model[-int(len(lags_model)/4.0)]),np.max(pics_model)]
471 bounds = (0, [lags_model[-1], np.max(pics_model)])
472

473

474 popt, pcov = curve_fit(semivar_return, lags_model, pics_model, ...
bounds=bounds, p0 = p0)

475 else:
476 popt, pcov = curve_fit(semivar_return, lags_model, pics_model, ...

method='lm')
477

478 """Calculate or define nugget"""
479 if zero_nugget == False:
480 C0 = popt[1]
481 C1 = popt[2]
482 C2 = None
483 C3 = None
484 if model=='nested_sph_gau':
485 C2 = popt[3]
486 elif model=='nested_sph_exp':
487 C2 = popt[3]
488 elif model=='nested_exp_gau':
489 C2 = popt[3]
490 elif model=='nested_hole_gau':
491 C2 = popt[3]
492 elif model=='hole_damp':
493 C2 = popt[3]
494 elif model == 'nested_sph_exp_gau':
495 C2 = popt[3]
496 C3 = popt[4]
497 elif model == 'dub_spherical':
498 C2 = popt[3]
499 C3 = popt[4]
500 else:
501 C0 = 0.0 # FOR ZERO NUGGET
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502 C1 = popt[1] # FOR ZERO NUGGET
503 C2 = None
504 C3 = None
505 if np.logical_or(model=='nested_sph_gau',model=='nested_sph_exp'):
506 C2 = popt[2]
507 elif model=='nested_exp_gau':
508 C2 = popt[2]
509 elif model=='nested_hole_gau':
510 C2 = popt[2]
511 elif model=='hole_damp':
512 C2 = popt[2]
513 elif model == 'nested_sph_exp_gau':
514 C2 = popt[2] # FOR ZERO NUGGET
515 C3 = popt[3] # FOR ZERO NUGGET
516 elif model == 'dub_spherical':
517 C2 = popt[2] # FOR ZERO NUGGET
518 C3 = popt[3] # FOR ZERO NUGGET
519 """Calculate or define correlation length"""
520 a = popt[0]
521 else:
522 a = set_model["a"]
523 C0 = set_model["C0"]
524 C1 = set_model["C1"]
525 C2 = set_model["C2"]
526 C3 = set_model["C3"]
527

528 """Spherical model prediction"""
529 lags_sv_curve = np.arange(0,int(np.round(lags[-1])))
530

531 if model=='nested_sph_gau':
532 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, C2 = C2, mode = ...

model)
533 elif model=='nested_sph_exp':
534 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, C2 = C2, mode = ...

model)
535 elif model=='nested_exp_gau':
536 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, C2 = C2, mode = ...

model)
537 elif model=='nested_hole_gau':
538 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, C2 = C2, mode = ...

model)
539 elif model=='hole_damp':
540 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, C2 = C2, mode = ...

model)
541 elif model == 'nested_sph_exp_gau':
542 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, C2 = C2, C3 = C3, ...

mode = model)
543 elif model == 'dub_spherical':
544 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, C2 = C2, C3 = C3, ...

mode = model)
545 else:
546 sv_curve = semivariogram_model(lags_sv_curve, a, C0, C1, mode = model)
547

548 print('Semi-variogram model determined, starting LUT computation')
549 print("")
550 if nolut == False:
551 if sph_d_all is None:
552 """Semi-variogram LUT"""
553 if np.logical_or(model=='nested_sph_gau',model=='nested_sph_exp'):
554 sv_lut = varioLUT(grid['grid spherical distances'], setup['N'], a, ...

C0, C1, C2 = C2, model = model)
555 elif model=='nested_exp_gau':
556 sv_lut = varioLUT(grid['grid spherical distances'], setup['N'], a, ...

C0, C1, C2 = C2, model = model)
557 elif model=='nested_hole_gau':
558 sv_lut = varioLUT(grid['grid spherical distances'], setup['N'], a, ...

C0, C1, C2 = C2, model = model)
559 elif model=='hole_damp':
560 sv_lut = varioLUT(grid['grid spherical distances'], setup['N'], a, ...

C0, C1, C2 = C2, model = model)
561 elif model == 'nested_sph_exp_gau':
562 sv_lut = varioLUT(grid['grid spherical distances'], setup['N'], a, ...

C0, C1, C2 = C2, C3 = C3, model = model)
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563 elif model == 'dub_spherical':
564 sv_lut = varioLUT(grid['grid spherical distances'], setup['N'], a, ...

C0, C1, C2 = C2, C3 = C3, model = model)
565 else:
566 sv_lut = varioLUT(grid['grid spherical distances'], setup['N'], a, ...

C0, C1, model = model)
567 else:
568 if np.logical_or(model=='nested_sph_gau',model=='nested_sph_exp'):
569 sv_lut = varioLUT(sph_d_all, data['N'], a, C0, C1, C2 = C2, model ...

= model)
570 elif model=='nested_exp_gau':
571 sv_lut = varioLUT(sph_d_all, data['N'], a, C0, C1, C2 = C2, model ...

= model)
572 elif model=='nested_hole_gau':
573 sv_lut = varioLUT(sph_d_all, data['N'], a, C0, C1, C2 = C2, model ...

= model)
574 elif model=='hole_damp':
575 sv_lut = varioLUT(sph_d_all, data['N'], a, C0, C1, C2 = C2, model ...

= model)
576 elif model == 'nested_sph_exp_gau':
577 sv_lut = varioLUT(sph_d_all, data['N'], a, C0, C1, C2 = C2, C3 = ...

C3, model = model)
578 elif model == 'dub_spherical':
579 sv_lut = varioLUT(sph_d_all, data['N'], a, C0, C1, C2 = C2, C3 = ...

C3, model = model)
580 else:
581 sv_lut = varioLUT(sph_d_all, data['N'], a, C0, C1, model = model)
582

583 if nolut == False:
584 sdssim_semivar = {"semi-variogram LUT":sv_lut, "total data lags":lags, ...

"total data sv":pics, "model data lags":lags_model, "model data ...
sv":pics_model, "model names":model_name, "sv model y":sv_curve, "sv ...
model x":lags_sv_curve, "sv model":model, "a":a, "C0":C0, "C1":C1, ...
"C2":C2, "C3":C3, "n_lags":n_lags, "max_cloud":max_cloud, ...
"sph_d_sorted":sph_d_sorted, "sort_d":sort_d}

585 else:
586 sdssim_semivar = {"total data lags":lags, "total data sv":pics, "model ...

data lags":lags_model, "model data sv":pics_model, "model ...
names":model_name, "sv model y":sv_curve, "sv model x":lags_sv_curve, ...
"sv model":model, "a":a, "C0":C0, "C1":C1, "C2":C2, "C3":C3, ...
"n_lags":n_lags, "max_cloud":max_cloud}

587

588 return sdssim_semivar

E.5 SDSSIM_condtab

1 """
2 Conditional distribution table
3 """
4

5 def SDSSIM_condtab(data, setup, *args, normsize = 20, table = 'rough', load = False):
6 """
7 Setup for DSSIM
8 """
9 import numpy as np

10 from scipy.stats import norm
11 #import scipy.stats as st
12 from SDSSIM_utility import printProgressBar
13

14 """Target statistics"""
15 target_var_dat = np.var(data["data"])
16 ##target_var = args[0]
17 target_var = np.var(data["data"])
18 target_mean_dat = np.mean(data["data"])
19 target_mean = 0.0
20

21 """Linearly spaced value array with start/end very close to zero/one"""
22 if setup["condtab_compiler"] == 'Fortran':
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23 start = 1e-26
24 else:
25 start = 1e-16 #Python min
26 #start = 0.01 #Python min
27

28

29 linspace = np.linspace(start,1-start,normsize)
30

31 """target histogram cdf/ccdf"""
32 data_sorted = np.sort(data["data"])
33

34 if table == 'fine':
35 rangn = np.linspace(-3.5,3.5,505)
36 rangv = np.linspace(start,1.0,505)
37 else:
38 rangn = np.linspace(-3.5,3.5,101)
39 rangv = np.linspace(start,2.0,101)
40 #rangv = np.geomspace(1e-16,2.0,101)
41

42 """Normscored local conditional distributions"""
43 CQF_dist = np.zeros((len(rangn),len(rangv),len(linspace)))
44 CQF_mean = np.zeros((len(rangn),len(rangv)))
45 CQF_var = np.zeros((len(rangn),len(rangv)))
46

47

48 if setup["condtab_compiler"] == 'Python':
49 from sklearn.preprocessing import QuantileTransformer
50 quantiles = 1000000
51

52 """QuantileTransformer setup"""
53 qt = QuantileTransformer(n_quantiles=quantiles, random_state=None, ...

output_distribution='normal',subsample=1e8)
54 qt.fit(data_sorted.reshape(-1,1))
55

56 vrg = qt.transform(data_sorted.reshape(-1,1))
57

58 print("")
59 for i in range(0,len(rangn)):
60 for j in range(0,len(rangv)):
61 CQF_dist[i,j,:] = ...

np.sort(qt.inverse_transform((norm.ppf(linspace,loc=rangn[i],scale=np.sqrt(rangv[j]))).reshape(-1,1)).ravel(),axis=0)
62 CQF_mean[i,j] = np.mean(CQF_dist[i,j,:],axis=0,dtype=np.float64)
63 CQF_var[i,j] = np.var(CQF_dist[i,j,:],axis=0,ddof=1,dtype=np.float64)
64

65

66 #CQF_var[i,j] = np.var(CQF_dist[i,j,:],axis=0,dtype=np.float64)
67 printProgressBar (i, len(rangn), subject = 'Python conditional ...

probability table progress')
68

69 elif setup["condtab_compiler"] == 'Fortran':
70

71 if load == True:
72 from SDSSIM_utility import variable_load
73 CQF_dist = variable_load('CQF_dist_Julien.npy')
74 CQF_mean = variable_load('CQF_mean_Julien.npy')
75 CQF_var = variable_load('CQF_var_Julien.npy')
76 else:
77 import nscoresig
78 import backtrsig
79

80 tmin = target_mean - 10.0*np.sqrt(target_var)
81 tmax = target_mean + 10.0*np.sqrt(target_var)
82 iwt = 0
83 wt = np.ones(len(data_sorted))
84 tmp = np.zeros(len(data_sorted))
85 lout = 0
86 ierror = np.zeros(len(data_sorted))
87 disc = 0
88 vrg, ierror = nscoresig.nscore(data_sorted,tmin,tmax,iwt,wt,tmp,lout,disc)
89

90 zmin = target_mean - 10.0*np.sqrt(target_var)
91 zmax = target_mean + 10.0*np.sqrt(target_var)
92 ltail = 0
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93 utail = 0
94 utpar = 1.0
95 ltpar = 1.0
96 discrete = disc
97

98 print("")
99 for i in range(0,len(rangn)):
100 for j in range(0,len(rangv)):
101 rn_dist = norm.ppf(linspace,loc=rangn[i],scale=np.sqrt(rangv[j]))
102 CQF_dist[i,j,:] = ...

np.array([backtrsig.backtr(vrgs,data_sorted,vrg,zmin,zmax,ltail,ltpar,utail,utpar,discrete) ...
for vrgs in rn_dist])

103 CQF_mean[i,j] = np.mean(CQF_dist[i,j,:],axis=0,dtype=np.float64)
104 CQF_var[i,j] = ...

np.var(CQF_dist[i,j,:],axis=0,ddof=1,dtype=np.float64)
105 if CQF_var[i,j] < 0.0:
106 CQF_var[i,j] = 0.0
107

108 printProgressBar(i, len(rangn), subject = 'Fortran conditional ...
probability table progress')

109 else:
110 print('Error: compiler must be Python or Fortran')
111

112 sdssim_condtab = {"target variance":target_var, "target ...
variance_dat":target_var_dat, "target mean":target_mean, "target ...
mean_dat":target_mean_dat, "QF norm range":rangn, "QF var range":rangv, ...
"CQF dist":CQF_dist, "CQF mean":CQF_mean, "CQF var":CQF_var, "target ...
normscore":vrg, "compiler":setup["condtab_compiler"], "normsize":normsize, ...
"start":start}

113 return sdssim_condtab

E.6 SDSSIM_greens

1 """
2 Greens functions and data implementation
3 """
4

5 def Gr(r_s, r_d, lat_s, lat_d, lon_s, lon_d, angular_distance = False, angdist = 0):
6 import numpy as np
7

8 theta_s, theta_d, lon_s, lon_d, angdist = map(np.radians, [90.0-lat_s, ...
90.0-lat_d, lon_s, lon_d, angdist])

9

10 h = r_s/r_d
11

12 if angular_distance == True:
13 mu = np.cos(angdist)
14 else:
15 mu = ...

np.cos(theta_d)*np.cos(theta_s)+np.sin(theta_d)*np.sin(theta_s)*np.cos(lon_d-lon_s)
16

17 R = np.sqrt(r_d**2+r_s**2-2*r_d*r_s*mu)
18 f = R/r_d
19

20 G_r = 1/(4*np.pi)*h**2*(1-h**2)/f**3
21 G_r = np.matrix(G_r)
22 return G_r
23

24 def Gr_vec(r_s, r_d, lat_s, lat_d, lon_s, lon_d, angdist_out = False):
25 import numpy as np
26

27 theta_s, theta_d, lon_s, lon_d = map(np.radians, [np.matrix(90.0-lat_s), ...
np.matrix(90.0-lat_d), np.matrix(lon_s), np.matrix(lon_d)])

28

29 r_s = np.matrix(r_s)
30 r_d = np.matrix(r_d)
31

32 mu = np.cos(theta_d.T)*np.cos(theta_s)+np.multiply(np.sin(theta_d.T)
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33 *np.sin(theta_s),np.cos(lon_d.T-lon_s))
34

35 h = r_s.T/r_d
36

37 def rs(r_s,r_d, mu):
38 r_d_sq = np.power(r_d,2)
39 r_s_sq = np.power(r_s,2)
40 rr_ds = r_d.T*r_s
41 rr_ds_mu = 2*np.multiply(rr_ds,mu)
42 rr_ds_sq_sum = r_d_sq.T+r_s_sq
43 R = np.sqrt(rr_ds_sq_sum-rr_ds_mu)
44 f = R.T/r_d
45 return f
46

47 f = rs(r_s,r_d, mu)
48

49 h_sq = np.power(h,2)
50

51 f_cb = np.power(f,3)
52

53 G_r = (1/(4*np.pi)*np.multiply(h_sq,(1-h_sq))/f_cb).T
54 if angdist_out == True:
55 return G_r, mu
56 else:
57 return G_r
58

59 def Gr_vec2(r_s, r_d, lat_s, lat_d, lon_s, lon_d):
60 import numpy as np
61

62 lat_mesh_s, lat_mesh_d = np.meshgrid(lat_s, lat_d)
63 lon_mesh_s, lon_mesh_d = np.meshgrid(lon_s, lon_d)
64

65 theta_s, theta_d, lon_s, lon_d = map(np.radians, [np.matrix(90.0-lat_mesh_s), ...
np.matrix(90.0-lat_mesh_d), np.matrix(lon_mesh_s), np.matrix(lon_mesh_d)])

66

67

68 r_s = np.matrix(r_s)
69 r_d = np.matrix(r_d)
70

71 mu = ...
np.multiply(np.cos(theta_d),np.cos(theta_s))+np.multiply(np.multiply(np.sin(theta_d),np.sin(theta_s)),np.cos(lon_d-lon_s))

72

73 h = r_s.T/r_d
74

75 r_d_sq = np.power(r_d,2)
76 r_s_sq = np.power(r_s,2)
77 rr_ds = r_d.T*r_s
78 rr_ds_mu = 2*np.multiply(rr_ds,mu)
79 rr_ds_sq_sum = r_d_sq.T+r_s_sq
80

81 R = np.sqrt(rr_ds_sq_sum-rr_ds_mu)
82

83 f = R.T/r_d
84

85 h_sq = np.power(h,2)
86

87 f_cb = np.power(f,3)
88

89 G_r = (1/(4*np.pi)*np.multiply(h_sq,(1-h_sq))/f_cb).T
90 return G_r
91

92 def SDSSIM_greens(data, data_prior, setup_data, setup_prior, condtab, semivar, ...
semivar_prior, grid, errorvar = 1.0, G_d_only = False, all_weights = True, DN ...
= None, SN = 30, kriging_method = "ordinary", global_coverage = False, ...
coverage_type = "uniform"):

93 import numpy as np
94

95 """ DETERMINE DIFFERENTIAL APPROXIMATIONS """
96 Glut_gk = None
97 K_data_weights = None
98 K_data_weights_OK = None
99 lagrange = None
100 G_k = None
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101 GG_K = None
102 lsq_rank = None
103 idx_data_support = np.empty([0,],dtype=int)
104

105 def greens_differentials(grid):
106 s_cap = grid["s_cap"].T
107 s_cap_diff = np.diff(s_cap,axis=0)
108 s_cap_diff = np.vstack((s_cap[0],s_cap_diff))
109

110 n_regions = grid["n_regions"].T
111

112 d_theta_core = np.empty([0,1],dtype=float)
113 d_phi_core = np.empty([0,1],dtype=float)
114

115 for i in range(0,len(n_regions)):
116

117 d_theta_core = ...
np.vstack((d_theta_core,(s_cap_diff[i]*np.ones(int(n_regions[i]))).T))

118

119 d_phi_core = ...
np.vstack((d_phi_core,(2*np.pi/n_regions[i]*np.ones(int(n_regions[i]))).T))

120

121 theta_core = np.matrix(90.0-grid["grid latitude"])*np.pi/180.0
122

123 return np.multiply(np.multiply(d_theta_core,d_phi_core),np.sin(theta_core.T))
124

125 dd_theta_phi_core = greens_differentials(grid)
126

127 """ KRIGING SETUP """
128

129 G_d = np.multiply(dd_theta_phi_core.T,Gr_vec(data_prior["data ...
radius"]*np.ones(data_prior["N"]), data["data radius"], data_prior["data ...
latitude"], data["data latitude"], data_prior["data longitude"], ...
data["data longitude"]))

130

131 if G_d_only == False:
132 G_k = G_d*(condtab["target variance"]-semivar_prior["semi-variogram LUT"])
133

134 GG_K = G_k*G_d.T + np.diag(errorvar*np.ones(setup_data["N"],)) # BEST
135

136 if all_weights == True:
137 if kriging_method == "simple":
138 lsq_sol = np.linalg.lstsq(GG_K, G_k, rcond=None)
139 K_data_weights = lsq_sol[0]
140 lsq_rank = lsq_sol[2]
141

142 elif kriging_method == "ordinary":
143 G_k_OK = np.vstack((G_k,1.0*np.ones(data_prior["N"])))
144

145 lagrange_vert_dat = 1.0*np.ones((data["N"],1))
146 lagrange_horz_dat = np.vstack((lagrange_vert_dat,0.0)).T
147

148 GG_K_OK = np.append(GG_K, lagrange_vert_dat, axis=1)
149 GG_K_OK = np.append(GG_K_OK, lagrange_horz_dat, axis=0)
150

151 lsq_sol = np.linalg.lstsq(GG_K_OK, G_k_OK, rcond=None)
152 K_data_weights_OK = lsq_sol[0]
153 lsq_rank = lsq_sol[2]
154

155 lagrange = K_data_weights_OK[-1,:].T
156 K_data_weights_OK = K_data_weights_OK[:-1,:]
157

158 elif kriging_method == "ordinary_scaled":
159 scale_const = data["N"]/(data["N"]+SN)
160 G_k_OK = np.vstack((G_k,scale_const*np.ones(data_prior["N"])))
161

162 lagrange_vert_dat = 1.0*np.ones((data["N"],1))
163 lagrange_horz_dat = np.vstack((lagrange_vert_dat,0.0)).T
164

165 GG_K_OK = np.append(GG_K, lagrange_vert_dat, axis=1)
166 GG_K_OK = np.append(GG_K_OK, lagrange_horz_dat, axis=0)
167

168 lsq_sol = np.linalg.lstsq(GG_K_OK, G_k_OK, rcond=None)
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169 K_data_weights_OK = lsq_sol[0]
170 lsq_rank = lsq_sol[2]
171

172 lagrange = K_data_weights_OK[-1,:].T
173 K_data_weights_OK = K_data_weights_OK[:-1,:]
174

175 elif kriging_method == "ordinary_half":
176 scale_const = 0.5
177 G_k_OK = np.vstack((G_k,scale_const*np.ones(data_prior["N"])))
178

179 lagrange_vert_dat = 1.0*np.ones((data["N"],1))
180 lagrange_horz_dat = np.vstack((lagrange_vert_dat,0.0)).T
181

182 GG_K_OK = np.append(GG_K, lagrange_vert_dat, axis=1)
183 GG_K_OK = np.append(GG_K_OK, lagrange_horz_dat, axis=0)
184

185 lsq_sol = np.linalg.lstsq(GG_K_OK, G_k_OK, rcond=None)
186 K_data_weights_OK = lsq_sol[0]
187 lsq_rank = lsq_sol[2]
188

189 lagrange = K_data_weights_OK[-1,:].T
190 K_data_weights_OK = K_data_weights_OK[:-1,:]
191

192 if DN is not None:
193

194 def take_along_axis(arr, ind, axis):
195 """
196 ... here means a "pack" of dimensions, possibly empty
197

198 arr: array_like of shape (A..., M, B...)
199 source array
200 ind: array_like of shape (A..., K..., B...)
201 indices to take along each 1d slice of `arr`
202 axis: int
203 index of the axis with dimension M
204

205 out: array_like of shape (A..., K..., B...)
206 out[a..., k..., b...] = arr[a..., inds[a..., k..., b...], b...]
207 """
208 if axis < 0:
209 if axis ≥ -arr.ndim:
210 axis += arr.ndim
211 else:
212 raise IndexError('axis out of range')
213 ind_shape = (1,) * ind.ndim
214 ins_ndim = ind.ndim - (arr.ndim - 1) #inserted dimensions
215

216 dest_dims = list(range(axis)) + [None] + list(range(axis+ins_ndim, ...
ind.ndim))

217

218 # could also call np.ix_ here with some dummy arguments, then ...
throw those results away

219 inds = []
220 for dim, n in zip(dest_dims, arr.shape):
221 if dim is None:
222 inds.append(ind)
223 else:
224 ind_shape_dim = ind_shape[:dim] + (-1,) + ind_shape[dim+1:]
225 inds.append(np.arange(n).reshape(ind_shape_dim))
226

227 return arr[tuple(inds)]
228

229 if global_coverage == True:
230 if coverage_type == "uniform":
231 idx_data_support = np.random.randint(0, data["N"], size = ...

(DN,data_prior["N"]))
232

233 elif coverage_type == "geometric":
234 sort_support = np.flipud(np.argsort(G_d,axis=0))
235 N_close = int(DN/2)
236 idx_close_support = sort_support[:N_close,:]
237 geom_prob = np.geomspace(1,0.1,data["N"]-N_close)
238 geom_prob = geom_prob/np.sum(geom_prob)
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239 idx_far_support = ...
np.matrix([np.random.choice(np.ravel(sort_support[N_close:,x]),size=(int(DN/2),),replace=False,p=geom_prob) ...
for x in range(0,data_prior["N"])]).T

240 idx_data_support = np.vstack((idx_close_support,idx_far_support))
241 else:
242 sort_support = np.flipud(np.argsort(G_d,axis=0))
243 N_close = int(DN/2)
244 idx_close_support = sort_support[:N_close,:]
245 idx_far_support = ...

sort_support[N_close:,:][np.random.randint(0, ...
int(sort_support.shape[0]-N_close), size = int(DN/2)), :]

246 idx_data_support = np.vstack((idx_close_support,idx_far_support))
247

248 else:
249 idx_data_support = np.flipud(np.argsort(G_d,axis=0))[:DN,:]
250

251 Glut_gk = take_along_axis(G_k, idx_data_support, axis=0).T
252

253 if all_weights is not True:
254 G_k = None
255

256 greens = {"G_k":G_k, "G_d": G_d, "GG_K":GG_K, "K_data_weights":K_data_weights, ...
"K_data_weights_OK":K_data_weights_OK, "weights_rank_OK":lsq_rank, ...
"lagrange":lagrange, "dd_theta_phi_core":dd_theta_phi_core, ...
"errorvar":errorvar, "G_k_DN":Glut_gk, "G_idx_DN":idx_data_support.T, ...
"kriging_method":kriging_method}

257

258 return greens

E.7 SDSSIM_sdssim

1 """
2 SDSSIM
3 """
4

5 def cond_lookup(data_min, data_max, target_var, CQF_mean, CQF_var, kriging_mean, ...
kriging_var, shape):

6 import numpy as np
7

8 dm = data_max - data_min
9 dv = target_var

10

11 #dist = ((CQF_mean-kriging_mean)/dm)**2.0 + ((CQF_var-kriging_var)/dv)**2.0
12 #dist = (CQF_mean-kriging_mean) + (CQF_var-kriging_var)
13

14

15 dist = np.power((CQF_mean-kriging_mean)/dm,2) + ...
np.power((CQF_var-kriging_var)/dv,2)

16 #dist = ((CQF_mean-kriging_mean)/dm)**2.0 + abs(CQF_var-kriging_var)/np.sqrt(dv)
17

18 #dist = ((CQF_mean-kriging_mean)/dm)**2.0 + abs(CQF_var-kriging_var)/dv
19 #dist = ((abs(CQF_mean-kriging_mean))/dm) + (abs(CQF_var-kriging_var)/dv)
20 inv = np.unravel_index(np.argmin(dist),shape)
21

22 im_sel = inv[0]
23 iv_sel = inv[-1]
24

25 return im_sel, iv_sel
26

27 def oz_correction(idx_n, idx_v, Zf, Zk, kriging_var, CQF_mean, CQF_var, ...
CQF_var_max, on_off = 'on'):

28 import numpy as np
29

30 if on_off == 'on':
31 Zf_mean = CQF_mean[idx_n,idx_v]
32 Zf_std = np.sqrt(CQF_var[idx_n,idx_v],dtype=np.float64)
33

34 if 0.0 ≥ Zf_std:
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35 Zf_std = np.sqrt(CQF_var_max)
36

37 Z = (Zf - Zf_mean)*np.sqrt(kriging_var)/Zf_std+Zk
38 else:
39 Z = Zf
40 return Z
41

42 def sdssim(N, SN, DN, vario_lut, idx_rnd, condtab, prior, grid, data_support, ...
greens, shape, run, ozcorr = 'off', sort_method = "cut-off", neighborhood = ...
"data_limited", kriging_method = "simple", threshold_factor = 1.0, mean_CQF = ...
False, mean_burn_in = False, N_burn_in = 10):

43 import numpy as np
44 #import cupy as cp
45 import scipy as sp
46

47 from SDSSIM_utility import printProgressBar
48 # create array for the output and initializations
49 M = np.zeros((N))
50 walked_in_reach = 0
51 var_lz = 0
52 idx_v = np.empty([0,],dtype=int)
53 idx_n = np.empty([0,],dtype=int)
54 data_min = np.min(prior["data"])
55 data_max = np.max(prior["data"])
56

57 locations_walked = np.empty([0,],dtype=int)
58

59 CQF_var_max = np.max(condtab["CQF var"][condtab["CQF var"]>0.0])
60 CQF_dist_len = len(condtab["CQF dist"][0,0,:])
61

62 vario_max = vario_lut[0,-1]
63

64 len_walked = 0
65 N_no_sim = 0
66 save_weights = list()
67 save_weights_rel_dat = list()
68 save_lagrange = list()
69 save_kriging_mv = list()
70 save_idx_nv = list()
71 save_invshape = list()
72 save_lstsq = list()
73 save_Zi = list()
74

75 # Start random walk
76 for step in idx_rnd:
77 idx = step
78

79 K_ss = np.empty([0,],dtype=float)
80 K_dd = np.empty([0,],dtype=float)
81 K_ds = np.empty([0,],dtype=float)
82 K_sys = np.empty([0,],dtype=float)
83

84 k_ss = np.empty([0,],dtype=float)
85 k_dd = np.empty([0,],dtype=float)
86 k_sys = np.empty([0,],dtype=float)
87

88 Zk = np.empty([0,],dtype=float)
89 kriging_var = np.empty([0,],dtype=float)
90 idx_n = np.empty([0,],dtype=int)
91 idx_v = np.empty([0,],dtype=int)
92 Zf = np.empty([0,],dtype=float)
93

94 idx_data_support_SN = np.empty([0,],dtype=int)
95

96 vario_near = np.empty([0,],dtype=float)
97 idx_vario_sort = np.empty([0,],dtype=int)
98 idx_SN = np.empty([0,],dtype=int)
99 vario_SN = np.empty([0,],dtype=float)
100 kriging_weights = np.empty([0,],dtype=float)
101 Zi = np.empty([0,],dtype=float)
102

103 lagrange = 0.0
104 lagrange_vert_sim = np.empty([0,],dtype=float)
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105 lagrange_horz_sim = np.empty([0,],dtype=float)
106

107 lstsq_sol = np.empty([0,],dtype=float)
108

109 walked_in_reach += 1
110

111

112 if sort_method == "cut-off":
113 vario_near = vario_lut[idx,locations_walked]
114 idx_vario_sort = vario_near.argsort()
115 idx_SN = locations_walked[idx_vario_sort][:SN]
116 vario_SN = vario_near[idx_vario_sort][:SN]
117

118 elif sort_method == "threshold":
119

120 vario_near = vario_lut[idx,locations_walked]
121 idx_vario_sort = vario_near.argsort()
122 idx_SN = locations_walked[idx_vario_sort][:SN]
123 vario_SN = vario_near[idx_vario_sort][:SN]
124

125 idx_vario_thresh = np.array(np.where(vario_SN < ...
threshold_factor*vario_max)).ravel()

126 idx_SN = idx_SN[idx_vario_thresh]
127 vario_SN = vario_SN[idx_vario_thresh]
128

129 else:
130 print("no correct sort method chosen")
131 return
132

133 """""""""NEIGHBORHOOD SETUP"""""""""
134 if neighborhood == "stochastic":
135 """STOCHASTIC SIMULATION (NO DATA)"""
136 # Generate samples when no other value is in reach
137 if np.size(idx_SN)==0:
138 Zk = prior["data"][np.random.randint(0,N)] # Random draw
139

140 kriging_var = condtab["target variance"] # Set kriging variance
141 #kriging_var = vario_max
142

143 # Generate sample when only one value is in reach
144 elif np.size(idx_SN)==1:
145 # Pull the other simulated value
146 Zi = M[idx_SN]
147

148 # Find kriging weight
149 kriging_weights = (condtab["target variance"] - ...

vario_SN)/condtab["target variance"]
150

151 # Compute kriging mean
152 Zk = np.float(np.array(kriging_weights*(Zi - condtab["target ...

mean"]) + condtab["target mean"]))
153

154 # Compute kriging variance
155 kriging_var = np.float(np.array(vario_SN)) # target_var - ...

(target_var - vario_near)
156

157 # Simple kriging when more than one value are in reach
158 else:
159

160 # Find nearest location simulation values
161 Zi = np.matrix(M[idx_SN]).T
162

163 # Set up k
164 k_sys = condtab["target variance"] - np.matrix(vario_SN).T
165

166 # Lookup all closest location semi-variances to each other ...
(efficiently)

167 K_sys = condtab["target variance"] - (vario_lut.ravel()[(idx_SN + ...
(idx_SN * ...
vario_lut.shape[1]).reshape((-1,1))).ravel()]).reshape(idx_SN.size, ...
idx_SN.size)

168

169 elif neighborhood == "no_cross":
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170 """SN SIM + ALL DATA"""
171

172 if len(idx_SN) < 1:
173 if kriging_method == "simple":
174 kriging_weights = greens["K_data_weights"][:,idx]
175 k_sys = greens["G_k"][:,idx]
176 Zi = np.matrix(data_support["data"]).T
177 elif kriging_method == "ordinary":
178 kriging_weights = greens["K_data_weights_OK"][:,idx]
179 lagrange = greens["lagrange"][idx]
180 k_sys = greens["G_k"][:,idx]
181 Zi = np.matrix(data_support["data"]).T
182 else:
183 print("no correct kriging method + neighborhood combination ...

chosen")
184 return
185 else:
186 # Set up all data and find nearest simulation values
187 Zi = np.matrix(data_support["data"]).T
188 Zi = np.vstack((Zi,np.matrix(M[idx_SN]).T))
189 # Set up k
190 k_ss = condtab["target variance"] - np.matrix(vario_SN).T
191

192 # Lookup all closest location semi-variances to each other ...
(efficiently)

193 K_ss = condtab["target variance"] - (vario_lut.ravel()[(idx_SN + ...
(idx_SN * ...
vario_lut.shape[1]).reshape((-1,1))).ravel()]).reshape(idx_SN.size, ...
idx_SN.size)

194

195 if kriging_method == "simple":
196

197 kriging_weights_SSK = np.linalg.lstsq(K_ss, k_ss, rcond=None)[0]
198 k_dd = greens["G_k"][:, idx]
199 k_sys = np.vstack((k_dd,k_ss))
200 kriging_weights = greens["K_data_weights"][:,idx]
201 kriging_weights = np.vstack((kriging_weights,kriging_weights_SSK))
202

203 kriging_var = condtab["target variance"] - ...
np.float(kriging_weights.T*k_sys)

204 kriging_var = np.float(kriging_var)
205 Zk = np.float(np.array(kriging_weights.T*(Zi - condtab["target ...

mean"]) + condtab["target mean"]))
206

207 elif kriging_method == "ordinary":
208

209 lagrange_vert_sim = np.ones((len(K_ss),1))
210 lagrange_horz_sim = np.vstack((lagrange_vert_sim,0.0)).T
211 K_ss = np.append(K_ss, lagrange_vert_sim, axis=1)
212 K_ss = np.append(K_ss, lagrange_horz_sim, axis=0)
213

214

215 if greens["kriging_method"] == "ordinary":
216 k_ss = np.vstack((k_ss,1.0))
217 elif greens["kriging_method"] == "ordinary_scaled":
218 scale_const = SN/(data_support["N"]+SN)
219 k_ss = np.vstack((k_ss,scale_const))
220 elif greens["kriging_method"] == "ordinary_half":
221 k_ss = np.vstack((k_ss,0.5))
222

223 kriging_weights_SOK = np.linalg.lstsq(K_ss, k_ss, rcond=None)[0]
224

225 #lagrange = greens["lagrange"][idx] + kriging_weights_SOK[-1]
226 lagrange = greens["lagrange"][idx]
227

228 kriging_weights_SOK = kriging_weights_SOK[:-1]
229 k_ss = k_ss[:-1]
230

231 k_dd = greens["G_k"][:, idx]
232 k_sys = np.vstack((k_dd,k_ss))
233 kriging_weights = greens["K_data_weights_OK"][:,idx]
234 kriging_weights = np.vstack((kriging_weights,kriging_weights_SOK))
235
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236 kriging_var = condtab["target variance"] - ...
np.float(kriging_weights.T*k_sys) - lagrange

237 kriging_var = np.float(kriging_var)
238 Zk = np.float(np.array(kriging_weights.T*Zi))
239

240 else:
241 print("only simple kriging available for no_cross neighborhood")
242 return
243

244 elif neighborhood == "mean_sim":
245 """SN SIM + ALL DATA"""
246

247 if len(idx_SN) < 1:
248 if kriging_method == "simple":
249 kriging_weights = greens["K_data_weights"][:,idx]
250 k_sys = greens["G_k"][:,idx]
251 Zi = np.matrix(data_support["data"]).T
252 elif kriging_method == "ordinary":
253 kriging_weights = greens["K_data_weights_OK"][:,idx]
254 lagrange = greens["lagrange"][idx]
255 k_sys = greens["G_k"][:,idx]
256 Zi = np.matrix(data_support["data"]).T
257 else:
258 print("no correct kriging method + neighborhood combination ...

chosen")
259 return
260 else:
261 # Set up all data and find nearest simulation values
262 Zi = np.matrix(data_support["data"]).T
263 Zi_S = np.matrix(M[idx_SN]).T
264 # Set up k
265 k_ss = condtab["target variance"] - np.matrix(vario_SN).T
266

267 # Lookup all closest location semi-variances to each other ...
(efficiently)

268 K_ss = condtab["target variance"] - (vario_lut.ravel()[(idx_SN + ...
(idx_SN * ...
vario_lut.shape[1]).reshape((-1,1))).ravel()]).reshape(idx_SN.size, ...
idx_SN.size)

269

270 if kriging_method == "simple":
271

272 kriging_weights_SSK = np.linalg.lstsq(K_ss, k_ss, rcond=None)[0]
273 k_dd = greens["G_k"][:, idx]
274 k_sys = np.vstack((k_dd,k_ss))
275 kriging_weights = greens["K_data_weights"][:,idx]
276 kriging_weights = np.vstack((kriging_weights,kriging_weights_SSK))
277

278 kriging_var = condtab["target variance"] - ...
np.float(kriging_weights.T*k_sys)

279 kriging_var = np.float(kriging_var)
280 Zk = np.float(np.array(kriging_weights.T*(Zi - condtab["target ...

mean"]) + condtab["target mean"]))
281

282 elif kriging_method == "ordinary":
283

284 lagrange_vert_sim = np.ones((len(K_ss),1))
285 lagrange_horz_sim = np.vstack((lagrange_vert_sim,0.0)).T
286 K_ss = np.append(K_ss, lagrange_vert_sim, axis=1)
287 K_ss = np.append(K_ss, lagrange_horz_sim, axis=0)
288

289

290 if greens["kriging_method"] == "ordinary":
291 k_ss = np.vstack((k_ss,1.0))
292 elif greens["kriging_method"] == "ordinary_scaled":
293 scale_const = SN/(data_support["N"]+SN)
294 k_ss = np.vstack((k_ss,scale_const))
295 elif greens["kriging_method"] == "ordinary_half":
296 k_ss = np.vstack((k_ss,0.5))
297

298 kriging_weights_SOK = np.linalg.lstsq(K_ss, k_ss, rcond=None)[0]
299

300 lagrange_SOK = kriging_weights_SOK[-1]
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301 lagrange = greens["lagrange"][idx]
302

303 kriging_weights_SOK = kriging_weights_SOK[:-1]
304 k_ss = k_ss[:-1]
305

306 kriging_weights = greens["K_data_weights_OK"][:,idx]
307 k_dd = greens["G_k"][:, idx]
308

309 kriging_var = np.float(condtab["target variance"] - ...
np.float(kriging_weights.T*k_dd) - lagrange)

310 kriging_var_SOK = np.float(condtab["target variance"] - ...
np.float(kriging_weights_SOK.T*k_ss) - lagrange_SOK)

311

312 kriging_var = (kriging_var + kriging_var_SOK)/2.0
313

314 Zk = np.float(np.array(kriging_weights.T*Zi))
315 Zk_SOK = np.float(np.array(kriging_weights_SOK.T*Zi_S))
316 Zk = (Zk + Zk_SOK)/2.0
317 else:
318 print("only simple kriging available for no_cross neighborhood")
319 return
320

321 elif neighborhood == "data_limited":
322 """SN SIM + DATA IN SIM SPACE + DATA/SIM"""
323

324 if np.logical_and.reduce((len(idx_SN) < 1, ...
np.logical_or(greens["K_data_weights_OK"] is not None, ...
greens["K_data_weights"] is not None))):

325 if kriging_method == "simple":
326 kriging_weights = greens["K_data_weights"][:,idx]
327 k_sys = greens["G_k"][:,idx]
328 Zi = np.matrix(data_support["data"]).T
329 elif kriging_method == "ordinary":
330 kriging_weights = greens["K_data_weights_OK"][:,idx]
331 lagrange = greens["lagrange"][idx]
332 k_sys = greens["G_k"][:,idx]
333 Zi = np.matrix(data_support["data"]).T
334 else:
335 print("no correct kriging method + neighborhood combination ...

chosen")
336 return
337 N_no_sim += 1
338

339 elif np.logical_and.reduce((mean_burn_in is True, ...
np.logical_or(greens["K_data_weights_OK"] is not None, ...
greens["K_data_weights"] is not None), len_walked ≤ N_burn_in)):

340 if kriging_method == "simple":
341 kriging_weights = greens["K_data_weights"][:,idx]
342 k_sys = greens["G_k"][:,idx]
343 Zi = np.matrix(data_support["data"]).T
344 elif kriging_method == "ordinary":
345 kriging_weights = greens["K_data_weights_OK"][:,idx]
346 lagrange = greens["lagrange"][idx]
347 k_sys = greens["G_k"][:,idx]
348 Zi = np.matrix(data_support["data"]).T
349 else:
350 print("no correct kriging method + neighborhood combination ...

chosen")
351 return
352 N_no_sim += 1
353

354 else:
355

356 # Find nearest data
357 idx_data_support_SN = greens["G_idx_DN"][idx,:]
358

359 # Set up k
360 k_ss = condtab["target variance"] - np.matrix(vario_SN).T
361

362 k_dd = np.matrix(greens["G_k_DN"][idx,:]).T
363

364

365
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366

367 # Lookup all closest location semi-variances to each other ...
(efficiently)

368 K_ss = condtab["target variance"] - (vario_lut.ravel()[(idx_SN + ...
(idx_SN * ...
vario_lut.shape[1]).reshape((-1,1))).ravel()]).reshape(idx_SN.size, ...
idx_SN.size)

369 #K_ss = K_ss + np.diag(1**2*np.ones(K_ss.shape[0],))
370

371 # Efficient lookup of Greens
372 K_dd = (np.ravel(greens["GG_K"])[(idx_data_support_SN + ...

(idx_data_support_SN * ...
greens["GG_K"].shape[1]).reshape((-1,1))).ravel()]).reshape(idx_data_support_SN.size, ...
idx_data_support_SN.size)

373

374 K_ds = greens["G_k_DN"][idx_SN,:]
375

376 k_sys = np.vstack((k_dd,k_ss))
377

378 K_sys = np.zeros((len(K_dd)+len(K_ss),len(K_dd)+len(K_ss)))
379

380 K_sys[:len(K_dd),:len(K_dd)] = K_dd
381 if len(idx_SN) ≥ 1:
382 K_sys[-len(K_ss):,-len(K_ss):] = K_ss
383 K_sys[:len(K_dd),-len(K_ss):] = K_ds.T
384 K_sys[-len(K_ss):,:len(K_dd)] = K_ds
385

386 #print('\n Current kriging size:', np.shape(K_sys), end = '\n')
387

388 Zi = np.matrix(data_support["data"][idx_data_support_SN]).T
389 Zi = np.vstack((Zi,np.matrix(M[idx_SN]).T))
390

391 elif neighborhood == "data_all":
392 """SN SIM + DATA IN SIM SPACE + DATA/SIM"""
393

394 if len(idx_SN) < 1:
395 if kriging_method == "simple":
396 kriging_weights = greens["K_data_weights"][:,idx]
397 k_sys = greens["G_k"][:,idx]
398 Zi = np.matrix(data_support["data"]).T
399 elif kriging_method == "ordinary":
400 kriging_weights = greens["K_data_weights_OK"][:,idx]
401 lagrange = greens["lagrange"][idx]
402 k_sys = greens["G_k"][:,idx]
403 Zi = np.matrix(data_support["data"]).T
404 else:
405 print("no correct kriging method + neighborhood combination ...

chosen")
406 return
407 else:
408

409 k_dd = greens["G_k"][:,idx]
410 K_dd = greens["GG_K"]
411 K_ds = greens["G_k"][:,idx_SN]
412 Zi = np.matrix(data_support["data"]).T
413

414 # Set up k
415 k_ss = condtab["target variance"] - np.matrix(vario_SN).T
416 k_sys = np.vstack((k_dd,k_ss))
417

418 # Lookup all closest location semi-variances to each other ...
(efficiently)

419 K_ss = condtab["target variance"] - (vario_lut.ravel()[(idx_SN + ...
(idx_SN * ...
vario_lut.shape[1]).reshape((-1,1))).ravel()]).reshape(idx_SN.size, ...
idx_SN.size)

420

421 K_sys = np.zeros((len(K_dd)+len(K_ss),len(K_dd)+len(K_ss)))
422 K_sys[:len(K_dd),:len(K_dd)] = K_dd
423 if len(idx_SN) ≥ 1:
424 K_sys[-len(K_ss):,-len(K_ss):] = K_ss
425 K_sys[:len(K_dd),-len(K_ss):] = K_ds
426 K_sys[-len(K_ss):,:len(K_dd)] = K_ds.T
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427

428 #print('\n Current kriging size:', np.shape(K_sys), end = '\n')
429

430

431 Zi = np.vstack((Zi,np.matrix(M[idx_SN]).T))
432

433 else:
434 print("no correct neigborhood chosen")
435 return
436

437 # if the kriging variables haven't already been found (eg. stochastic with ...
zero or one idx_near)

438 # find them with chosen method
439 if np.size(Zk) == 0:
440 if kriging_method == "simple":
441 """SIMPLE KRIGING (SK)"""
442 if np.size(kriging_weights) == 0:
443 lstsq_sol = np.linalg.lstsq(K_sys, k_sys, rcond=None)
444 kriging_weights = lstsq_sol[0]
445 save_lstsq.append([lstsq_sol[2]])
446

447 #print(np.all(np.linalg.eigvals(K_sys) ≥ 0))
448

449 #L = np.linalg.cholesky(K_sys)
450 #y = sp.linalg.solve_triangular(L,k_sys, check_finite=False)
451 #kriging_weights = sp.linalg.solve_triangular(L.T,y, ...

check_finite=False)
452

453 kriging_var = condtab["target variance"] - ...
np.float(kriging_weights.T*k_sys)

454 kriging_var = np.float(kriging_var)
455 Zk = np.float(np.array(kriging_weights.T*(Zi - condtab["target ...

mean"]) + condtab["target mean"]))
456

457 #print(np.all(np.linalg.eigvals(K_sys) ≥ 0))
458

459 elif kriging_method == "ordinary":
460 """ORDINARY KRIGING (OK)"""
461 # ORDINARY KRIGING CONDITIONS FOR K MATRIX
462 if np.size(kriging_weights) == 0:
463 #print(np.all(np.linalg.eigvals(K_sys) > 0))
464 lagrange_vert_sim = np.ones((len(K_sys),1))
465 lagrange_horz_sim = np.vstack((lagrange_vert_sim,0.0)).T
466 K_sys = np.append(K_sys, lagrange_vert_sim, axis=1)
467 K_sys = np.append(K_sys, lagrange_horz_sim, axis=0)
468 #K_sys = K_sys + np.diag(np.ones(K_sys.shape,))
469 #K_sys[-1,-1] = 0.0
470

471 k_sys = np.vstack((k_sys,1.0))
472

473 #print(np.all(np.linalg.eigvals(K_sys) > 0))
474

475 # linear system solvers
476 cupy_test = False
477 solve_test = False
478 use_cholesky = False
479

480 if cupy_test == False:
481 if solve_test == False:
482

483 lstsq_sol = np.linalg.lstsq(K_sys, k_sys, rcond=None)
484 kriging_weights = lstsq_sol[0]
485 save_lstsq.append([lstsq_sol[2]])
486 else:
487 if np.logical_and(use_cholesky == True,len_walked>100):
488

489 L = np.linalg.cholesky(K_sys)
490 y = sp.linalg.solve_triangular(L,k_sys, ...

check_finite=False)
491 kriging_weights = ...

sp.linalg.solve_triangular(L.T,y, ...
check_finite=False)

492 else:
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493 kriging_weights = np.linalg.solve(K_sys, k_sys)
494 #else:
495 # CUPY
496 #K_sys_cp = cp.asarray(K_sys)
497 #k_sys_cp = cp.asarray(k_sys)
498 #kriging_weights = cp.linalg.solve(K_sys_cp, k_sys_cp)
499 #kriging_weights = cp.asnumpy(kriging_weights)
500

501 lagrange = kriging_weights[-1]
502 kriging_weights = kriging_weights[:-1]
503 k_sys = k_sys[:-1]
504

505 kriging_var = condtab["target variance"] - ...
np.float(kriging_weights.T*k_sys) - lagrange

506 kriging_var = np.float(kriging_var)
507 Zk = np.float(np.array(kriging_weights.T*Zi))
508

509 else:
510 print("no correct kriging method + neighborhood combination chosen")
511 return
512

513

514

515 # Ensure positive kriging_var, add error for run print
516 if kriging_var < 0.0:
517 print(kriging_var)
518 kriging_var = condtab["target variance"]
519 var_lz += 1
520

521 # Smallest differences from kriging to transformed Gaussian distribution ...
ranges

522 ## TMH/OZ STYLE ##
523 idx_n, idx_v = cond_lookup(data_min, data_max, condtab["target variance"], ...

condtab["CQF mean"], condtab["CQF var"], Zk, kriging_var, shape)
524

525

526 # Get the closest local distribution and draw
527 if mean_CQF is True:
528 Zf = condtab["CQF mean"][idx_n,idx_v]
529 else:
530 if mean_burn_in is True:
531 if len_walked < N_burn_in:
532 Zf = condtab["CQF mean"][idx_n,idx_v]
533 else:
534 Zf = condtab["CQF ...

dist"][idx_n,idx_v,np.random.randint(0,CQF_dist_len,size=1)]
535 else:
536 Zf = condtab["CQF ...

dist"][idx_n,idx_v,np.random.randint(0,CQF_dist_len,size=1)]
537

538 # Pull simulated value and distribution mean/variance
539 M[idx] = oz_correction(idx_n, idx_v, Zf, Zk, kriging_var, condtab["CQF ...

mean"], condtab["CQF var"], CQF_var_max, on_off = ozcorr)
540

541

542 # Sample neighborhoods
543 if len_walked == int(10):
544 idx_show_data_support_tenth = idx_data_support_SN
545 idx_show_sim_support_tenth = idx_SN
546 idx_step_tenth = idx
547 save_weights.append([kriging_weights])
548 save_weights_rel_dat.append([np.multiply(kriging_weights,Zi)])
549 save_Zi.append([np.ravel(Zi)])
550 if len_walked == int(N/4):
551 idx_show_data_support_quarter = idx_data_support_SN
552 idx_show_sim_support_quarter = idx_SN
553 idx_step_quarter = idx
554 save_weights.append([kriging_weights])
555 save_weights_rel_dat.append([np.multiply(kriging_weights,Zi)])
556 save_Zi.append([np.ravel(Zi)])
557 elif len_walked == int(N/2):
558 idx_show_data_support_half = idx_data_support_SN
559 idx_show_sim_support_half = idx_SN

109



APPENDIX E. SDSSIM_1.2: GEOSTATISTICS PYTHON TOOL

560 idx_step_half = idx
561 save_weights.append([kriging_weights])
562 save_weights_rel_dat.append([np.multiply(kriging_weights,Zi)])
563 save_Zi.append([np.ravel(Zi)])
564 elif len_walked == int(3*N/4):
565 idx_show_data_support_tq = idx_data_support_SN
566 idx_show_sim_support_tq = idx_SN
567 idx_step_tq = idx
568 save_weights.append([kriging_weights])
569 save_weights_rel_dat.append([np.multiply(kriging_weights,Zi)])
570 save_Zi.append([np.ravel(Zi)])
571 elif len_walked == N-1:
572 idx_show_data_support_final = idx_data_support_SN
573 idx_show_sim_support_final = idx_SN
574 idx_step_final = idx
575 save_weights.append([kriging_weights])
576 save_weights_rel_dat.append([np.multiply(kriging_weights,Zi)])
577 save_Zi.append([np.ravel(Zi)])
578 show_neighborhoods = {"tenth":(idx_show_data_support_tenth, ...

idx_show_sim_support_tenth, idx_step_tenth),
579 "quarter":(idx_show_data_support_quarter, ...

idx_show_sim_support_quarter, idx_step_quarter),
580 "half":(idx_show_data_support_half, ...

idx_show_sim_support_half, idx_step_half),
581 "three quarter":(idx_show_data_support_tq, ...

idx_show_sim_support_tq, idx_step_tq),
582 "final":(idx_show_data_support_final, ...

idx_show_sim_support_final, idx_step_final)}
583

584 # Count locations walked for search neighborhood
585 locations_walked = np.append(locations_walked, idx)
586 len_walked += 1
587

588 # Save running variables
589 save_invshape.append([np.shape(K_sys)])
590 save_lagrange.append(float(np.array(lagrange).ravel()))
591 save_kriging_mv.append([Zk, kriging_var])
592 save_idx_nv.append([idx_n, idx_v])
593 printProgressBar (len(locations_walked), N, subject = ' realization nr. ...

%d' % run)
594

595

596 print('Kriging variance less than zero:', var_lz)
597 print("No. of no sim data used:", N_no_sim)
598 return M, np.array(save_lagrange), np.array(save_kriging_mv), save_weights, ...

save_invshape, save_weights_rel_dat, save_Zi, show_neighborhoods, ...
np.array(save_idx_nv), save_lstsq, N_no_sim

599

600 def SDSSIM_sdssim(prior, semivar, condtab, setup, grid, data, greens, N_sim = 1, ...
SN = 25, DN = 100, sort_method = "cut-off", neighborhood = "data_limited", ...
kriging_method = "ordinary", oz = 'off', errorstd = 1, threshold_factor = 1.0, ...
mean_CQF = False, mean_return = 'off', mean_burn_in = False, N_burn_in = 10):

601 import numpy as np
602 import time
603 import random
604 import gc
605

606 """
607 Neighborhood methods:
608 - stochastic
609 - data_limited
610 - data_all
611 Possible kriging_method(s):
612 - simple
613 - ordinary
614

615 All combinations can be computed with either "threshold" or "cut-off" as sort ...
method.

616 """
617

618 """efficiency ravels"""
619 shape = condtab["CQF mean"].shape
620
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621 """Number of simulations"""
622 zs = np.zeros((setup["N"],N_sim))
623 zs_mean = np.zeros((setup["N"],N_sim))
624 time_average = np.zeros((N_sim))
625

626 """save variables"""
627 idx_nv = list()
628 lagrange = list()
629 kriging_mv = list()
630 rand_paths = list()
631 invshapes = list()
632 kriging_weights = list()
633 kriging_weights_rel_dat = list()
634 Zis = list()
635 lstsq_param = list()
636

637 """Start conditions"""
638 print("")
639 print("___________Starting SDSSIM with the following settings___________")
640 print("")
641 print("SN: %d" %SN)
642 print("DN:", DN)
643 print("N_sim: %d" %N_sim)
644 print("neighborhood: %s" %neighborhood)
645 print("kriging_method: %s" %kriging_method)
646 print("sort_method: %s" %sort_method)
647 if sort_method == "threshold":
648 print("threshold_factor: %g" %threshold_factor)
649 print("oz: %s" %oz)
650 print("")
651

652 """ Run sequential simulations"""
653 for run in range(0,N_sim):
654

655 gc.collect() # Garbage memory collect
656 M = np.empty([setup["N"],],dtype=float)
657 # Start timing
658 t0 = time.time()
659 random.seed(a=None)
660 np.random.seed()
661

662 # Initialize sequential simulation with random start
663 idx_rnd = np.arange( setup["N"] )
664

665 # Randomize index array to create random path
666 random.shuffle(idx_rnd)
667

668 """Run spherical direct sequential simulation"""
669 M, save_lagrange, save_kriging_mv, save_weights, save_invshape, ...

save_weights_rel_dat, save_Zi, show_neighborhoods, save_idx_nv, ...
lstsq_sol, N_no_sim = sdssim(setup["N"], SN, DN, ...
semivar["semi-variogram LUT"], idx_rnd, condtab, prior, grid, data, ...
greens, shape, run+1, ozcorr = oz, sort_method = sort_method, ...
neighborhood = neighborhood, kriging_method = kriging_method, ...
threshold_factor = threshold_factor, mean_CQF = mean_CQF, mean_burn_in ...
= mean_burn_in, N_burn_in = N_burn_in)

670

671 # End timing
672 t1 = time.time()
673

674 # Keep all realizations
675 zs[:,run] = M
676

677 if np.logical_and(mean_return == 'on', setup["type"] == 'core'):
678 zs_mean[:,run] = zs[:,run]
679 zs_mean[prior["latitude mean"][:,0].astype(int),run] += ...

prior["latitude mean"][:,1]
680

681 # Plot statistics of run
682 time_average[run] = (t1-t0)
683 if time_average[run] < 60:
684 print('Run time: %.3f' %(time_average[run]), 'seconds', '')
685 elif time_average[run] < 3600:
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686 print('Run time: %.3f' %(time_average[run]*60**(-1)), 'minutes', '')
687 else:
688 print('Run time: %.3f' %(time_average[run]*60**(-2)), 'hours', '')
689 if np.sum(time_average[:(run+1)])*60**(-1) > 60:
690 print('Total elapsed time: %.3f' ...

%(np.sum(time_average[:(run+1)])*60**(-2)), 'hours', '')
691 else:
692 print('Total elapsed time: %.3f' ...

%(np.sum(time_average[:(run+1)])*60**(-1)), 'minutes', '')
693

694 print('Variance: %.3f' %np.var(M))
695 print('Mean: %.3f' %np.mean(M))
696 print('Max: %.3f' %np.max(M))
697 print('Min: %.3f' %np.min(M))
698 print('Run nr.:', run+1)
699 print('')
700

701 idx_nv.append(save_idx_nv)
702 lagrange.append(save_lagrange)
703 kriging_mv.append(save_kriging_mv)
704 rand_paths.append(idx_rnd)
705 invshapes.append(save_invshape)
706 kriging_weights.append(save_weights)
707 kriging_weights_rel_dat.append(save_weights_rel_dat)
708 Zis.append(save_Zi)
709 lstsq_param.append(lstsq_sol)
710

711 print('Mean avg. all: %.3f' %np.mean(zs.ravel()))
712 print('Std.dev. all: %.3f' %np.std(zs.ravel()))
713 print('Variance avg. all: %.3f' %np.var(zs.ravel()))
714 print('Run time avg. all: %.3f' %np.mean(time_average), 'seconds', '')
715 print('Total elapsed time: %.3f' %(np.sum(time_average[:(run+1)])*60**(-1)), ...

'minutes', '')
716

717 #% FORWARD PROBLEM REALIZATIONS
718 B_pred = greens["G_d"]*zs
719 rz_mean = np.matrix(np.mean(zs,axis=1)).T
720 B_pred_mean = greens["G_d"]*rz_mean
721

722 # MISFIT
723 misfit_forward = ...

np.sum(np.power((np.matrix(data["data"]).T-B_pred)/errorstd,2),0)/data["N"]
724 misfit_prior = ...

np.sum(np.power((np.matrix(prior["data"]).T-zs)/errorstd,2),0)/prior["N"]
725

726 residual_forward = np.matrix(data["data"]).T-B_pred
727 residual_forward_mean = np.matrix(data["data"]).T-B_pred_mean
728

729 residual_prior = np.matrix(prior["data"]).T-zs
730 residual_prior_mean = np.matrix(prior["data"]).T-rz_mean
731

732

733 # SEMI-VARIOGRAM
734 print("")
735 print('Computing semi-variogram for each realization...')
736 from SDSSIM_semivar import sv_sim_cloud
737 import numpy as np
738 l_var = 1
739 lag_coarse = int(semivar["n_lags"]/l_var)
740 cloud_coarse = int(semivar["max_cloud"]/lag_coarse)
741

742 sph_d_sorted = semivar["sph_d_sorted"]
743

744 sv_zs = sv_sim_cloud(lag_coarse, cloud_coarse, N_sim, zs, prior["N"], sort_d = ...
semivar["sort_d"], data_type = setup["type"])

745 sv_zs_mean = np.mean(sv_zs, axis=1)
746 lags_posterior = ...

np.array([np.mean(sph_d_sorted[n*cloud_coarse:cloud_coarse*(n+1)]) for n ...
in range(0,lag_coarse)])

747

748 #SAMPLE NEIGHBORHOODS
749

750
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APPENDIX E. SDSSIM_1.2: GEOSTATISTICS PYTHON TOOL

751 realizations = {"realizations":zs, "realizations with mean":zs_mean, ...
"mean":np.mean(zs.ravel()),

752 "variance":np.var(zs.ravel()), "Oz correction":oz, "return ...
Julien mean":mean_return,

753 "realization amount":N_sim, "SN":SN, "DN":DN, "run ...
time":time_average, "run time mean":np.mean(time_average), ...
"run time total":np.sum(time_average),

754 "idx_nv":idx_nv, "lagrange":lagrange, "kriging_mv":kriging_mv, ...
"random path":rand_paths, "threshold_factor":threshold_factor,

755 "sort_method":sort_method, "neighborhood":neighborhood, ...
"kriging_method":kriging_method, "data prediction":B_pred, ...
"realizations mean":rz_mean,

756 "data prediction mean":B_pred_mean, "realizations sv":sv_zs, ...
"realizations mean sv":sv_zs_mean,

757 "realizations sv lags":lags_posterior, ...
"misfit_forward":misfit_forward,

758 "misfit_prior":misfit_prior, "error variance":greens["errorvar"],
759 "kriging_weights":save_weights, ...

"residual_forward":residual_forward,
760 "residual_forward_mean":residual_forward_mean,
761 "residual_prior":residual_prior, ...

"residual_prior_mean":residual_prior_mean, "inv ...
shape":save_invshape, ...
"kriging_weights_rel":save_weights_rel_dat, ...
"lstsq_param":lstsq_sol, "Zi":save_Zi, ...
"neighborhoods":show_neighborhoods}

762 print('Finished!')
763 return realizations
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