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Abstract
Observed gradual changes in the geomagnetic field, known as secular variation, are be-
lieved to be governed by the flow of liquid metal in the outer region of the Earth’s core, near
the core-mantle boundary. These core flows and the secular variation observed above the
Earth’s surface are related through the magnetic induction equation. Satellite and ground
observatory measurements of secular variation and the induction equation thus present
an inverse problem for determining core flows at the core-mantle boundary. Kloss and
Finlay 2019 previously presented a method for solving this inverse problem for the period
2000 to 2018, by parametrizing core flow as a series of normal modes of rapidly rotating
flow in a spherical container. In this study, we extend their method by further allowing for
smaller-scale, equatorially anti-symmetric flows and accounting for likely contributions of
magnetic diffusion to the observed secular variation. We implement this modified method
with a new regularization scheme for the inverse problem, and by augmenting the model
vector to include secular variation due to diffusion. We apply it to SWARM satellite data
covering the period 2014-2019. We find that allowing for more small-scale equatorial
anti-symmetry (localized equator crossings) and diffusion allows us to estimate flows that
well explain the observed secular variation with flows that are similar to, but simpler than,
those described by Kloss and Finlay 2019. In particular, we find a predominantly steady,
planetary-scale, eccentric gyre of westward flow along with inter-annual reversals of low-
latitude azimuthal flow. We conclude that flows with significant local equator crossings
and contributions from diffusion provide consistent explanations of the secular variation
observed from 2014 to 2019, demonstrating the non-uniqueness of the inverse problem
while adding to the evidence for the robustness of the aforementioned flow features.
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1 Introduction
The Earth’s magnetic field is produced by three main sources: Dynamo action in the
Earth’s core, induced and remanent magnetization of the Lithosphere, and current sys-
tems in the Ionosphere and Magnetosphere driven by solar wind (see figure 1.1).

Figure 1.1: Sources of the geomagnetic field. Figure taken from Olsen et al. 2010.

The core field is also known as the main field, because it is the source of about 95% of the
magnetic field observed on the Earth’s surface. This main field is believed to be generated
by dynamo action because core temperatures are too hot for permanent magnetization.
Permanent magnetization can also be excluded because the field undergoes slow but
noticable changes on yearly to decadal timescales (Finlay et al. 2010). These temporal
changes are also referred to as secular variation (SV) and are driven by the dynamic flow
of molten, conductive metals in the outer core. This flow is mainly driven by cooling of
the core from its hot, initial state and freezing of the liquid outer core to the solid inner
core, which releases buoyant material carrying latent heat. These energy sources, the
flows they drive, and the Earth’s rotation are all necessary components of a self-sustaining
dynamo.

SV observed from satellites and ground observatories contains information about the core
flow. Specifically, SV can be related to the velocity of conducting material through the in-
duction equation, which we introduce in chapter 2. The SWARM satellites represent the
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latest generation of satellites intended to study the geomagnetic field and its temporal evo-
lution (Olsen et al. 2013). The SWARM trio was launched by ESA in 2013 and consists
of the identical satellites Alpha, Bravo, and Charlie, each carrying both an absolute scalar
magnetometer and a vector magnetometer, as seen in figure 1.2. They orbit the Earth
about 15 times daily, resulting in excellent spatial coverage. This study uses data derived
from measurements by the vector magnetometers which were developed by DTU Space.
Apart from SWARM data, vector magnetometer data from INTERMAGNET1 ground ob-
servatories are also used.

Figure 1.2: A SWARM satellite and its components.

The following study aims to further the research of Kloss and Finlay 2019 by replicating
their method of estimating flow in the core from observations of SV and further developing
it with a new and improved regularization scheme for the inversion of the induction equa-
tion. We aim to modify the regularization to produce models that allow more flow that is
anti-symmetric with respect to the geographical equator on short length scales, such that
local equator crossings are permitted. Numerical simulations of core dynamics show that
such flows are possible, even in the presence of rapid rotation (Schaeffer and Pais 2011).
We also aim to produce models that can account for possible contributions from magnetic
diffusion, where part of the observed SV can result from large field gradients within the
core, and the finite electrical conductivity (see chapter 2). Core flow will be modelled at the
top of the core, i.e. the Core-Mantle Boundary (CMB) for the period spanning September
2014 to September 2019 at low latitudes. This study thus makes use of all available SV
data from the SWARM satellite mission, as well as the most up-to-date data from ground
observatories at the time of writing. Kloss and Finlay 2019 modelled flow for the period
2000 to 2018 and also made use of data from the CHAMP satellite which went out of
commision in 2010. Since this study only aims to model flow for the period currently cov-
ered by SWARM data, we enjoy the benefits of a more consistent data set and avoiding
the period of no satellite coverage from 2010 to 2013. Similar to Kloss and Finlay 2019,
we solve this highly non-unique inverse problem by parametrizing the flow as a series of
normal modes of rapidly rotating core flow, as described by K. Zhang and Liao 2017.

The scientific aim of this study is to investigate whether the inter-annual alternations of
azimuthal flow at equatorial latitudes indicated e.g. under the Pacific by previous stud-
ies (e.g. Kloss and Finlay 2019; Gillet et al. 2015) survive the introduction of short-scale
anti-symmetric flows and diffusion. This would demonstrate that such flows are plausi-
ble explanations of the observed SV and further demonstrate the robustness of the phe-
nomenon of inter-annual, azimuthal flow alternations.

1www.intermagnet.org
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In chapter 2, we present the theoretical background of this study, including (but not limited
to) the induction equation and mathematical formulations of the above mentioned modes.
Towards the end of the chapter, we present formulations of the forward and inverse prob-
lems linking observed SV with the flow of liquid metal at the top of the core. In chapter
3, we introduce and briefly investigate the SV data used in this study. In chapter 4, we
present the results of the preferred models. In chapter 5 the results are discussed and we
investigate possible error sources and compare to other research before final conclusion
are drawn in chapter 6.
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2 Theory
This chapter presents the theory of geomagnetic SV due to core processes, core flow
parameterization, and the regularization scheme used for inversion to produce the models
presented in chapter 4.

2.1 The Induction Equation
This study aims to estimate the flow in the Earth’s core through inversion of geomagnetic
SV data, using the magnetic induction equation. This section will therefore present a
derivation and examination of this crucial equation.

The molten metal in the Earth’s core flows with some velocity, u, and is moving through
the geomagnetic field, B. This gives rise to an effective electric field

E′ = E + u×B (2.1)

Inserting the effective electric field into Ohm’s law, we have

J = σE′ => E′ =
1

σ
J (2.2)

where J is the current density and σ is the conductivity of the molten metal. Substituting
this expression into equation 2.1 gives

E + u×B =
1

σ
J => E =

1

σ
J − u×B (2.3)

Under the quasi-static approximation, Ampere’s law relates the curl of the magnetic field
and the current density as

∇×B = µ0J => J =
1

µ0
(∇×B) (2.4)

where µ0 is the magnetic permeability constant. Inserting this expression into equation
2.3 gives

E = η (∇×B)− u×B (2.5)

where η = 1/µ0σ is the magnetic diffusivity. Faraday’s law relates the curl of the electric
field to time changes of the magnetic field

∇×E = −∂B

∂t
(2.6)
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Inserting equation 2.5 into equation 2.6 and making use of the identity

∇×∇×B = ∇ (∇ ·B)−∇2B = −∇2B then gives

∂B

∂t
= ∇× (u×B) + η∇2B (2.7)

which is the magnetic induction equation. The first term expresses the induction (gener-
ation) of the magnetic field, while the second term expresses its diffusion (dissipation).
Note that both the electric field and the current density have been eliminated, so that the
evolution of the magnetic field is only a function of the magnetic field itself and the velocity
of the conductor.

If there is no movement of conducting material, u = 0, the induction term becomes zero,
and we are left with only diffusion.

∂B

∂t
= η∇2B (2.8)

We then have a solution B ∝ e−t/τd . Using L = 1000km as a typical length scale in the
Earth’s core and a conductivity of σ = 5 · 105S/m results in a typical decay-time of

τd =
L2

η
= σµ0L

2 = 6.3 · 1011s ≈ 20.000yr. (2.9)

Conversely, allowing for movement of conducting material with a conductivity σ → ∞, i.e.
η → 0, the diffusion term becomes zero and we are left with only induction

∂B

∂t
= ∇× (u×B) (2.10)

This is called the frozen flux approximation, because the magnetic field lines follow the
flow and are thus ”frozen” in the core. Using a typical flow velocity of |U | = 10km/yr, the
frozen flux equation can then be expressed with typical quantities as

|B|
τν

=
|U | · |B|

L
=> τν =

L

|U |
=

1000km

10km/yr
= 100yr (2.11)

where τν is a typical timescale of induction. Justification for use of the frozen flux approx-
imation is typically given with use of the magnetic Reynolds number, which is the ratio
between the two terms of the induction equation. For the timescales estimated above the
magnetic Reynold’s number is

Rm =
|∇ × (u×B)|

|η∇2B|
=

τd
τν

= 200 (2.12)
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The frozen flux approximation is generally considered valid when Rm >> 1. This holds
for large length scales of the Earth’s core, such as 1000km. It is however conceivable
that contributions from diffusion on smaller length scales (particularly with regard to the
unknown radial length scales) could be significant and ultimately have some impact on
SV observed above the Earth’s surface. The end of this Theory chapter will present the
attempt in this study to take diffusion into account when estimating the core flow. It should
be noted that although the contribution from diffusion will be considered non-zero, the
frozen flux approximation is still used as the primary part of the inversion scheme.

2.2 Core Flow at the CMB Including Small-Scale Error
Assuming that the CMB is a closed spherical container enclosing the fluid in the Earth’s
core, it is possible to simplify the frozen flux version of the induction equation (equation
2.10) for flow at the CMB to (e.g. Bloxham and Jackson 1991)

∂Br

∂t
= −∇H · (uHBr) (2.13)

where ∇H = [∂/∂θ ; ∂/∂ϕ] is the horizontal part of the nabla operator. This is possible
because radial flows are prevented by the CMB. If the radial field and the SV of the radial
field are known, it is thus possible to estimate the core flow at the CMB. Unfortunately,
the small-scale part of the main field is obscured by the lithospheric field, when measured
above the Earth’s surface. As in Kloss and Finlay 2019 we handle this by decomposing
the radial field in equation 2.13 into a large-scale part, Br, and a small-scale part, B̃r

which can not be resolved from observations, so

∂Br

∂t
= −∇H ·

(
uHBr

)
+ e (2.14)

where

e = −∇H ·
(
uHB̃r

)
(2.15)

is the SV produced by the unresolved small-scale radial field interacting with the flow. We
refer to e as the small-scale error.

2.3 Expressing Core Field and SV Using Spherical
Harmonics

Under the so-called quasi-stationary assumption, significant SV is assumed to happen
slowly enough, so that the pre-Maxwell equations are reasonable approximations. The
pre-Maxwell equations are

∇×B = µ0J (2.16)

and
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∇ · J = 0 (2.17)

In current-free regions, J = 0, the magnetic field has no curl, according to equation 2.16.
This implies that the magnetic field is a Laplacian potential field

B = −∇V (2.18)

where V is the scalar potential. Inserting this expression into Gauss’ law,∇·B = 0, gives

∇ ·B = −∇2V = 0 (2.19)

The potential is thus a solution to Laplace’s equation

∇2V = 0 (2.20)

Solutions to Laplace’s equation in spherical geometry include so-called Spherical Har-
monics (SH). Since we wish to model core flow at the CMB using measurements above
the Earth’s surface, we are only interested in the SH solution to Laplace’s equation for
internal sources. That solution is

V (r, θ, ϕ) = rsurf

N∑
n=1

n∑
m=0

(rsurf
r

)n+1
(gmn cos (mϕ) + hmn sin (mϕ))Pm

n (cos (θ)) (2.21)

where r is the distance from Earth’s center, θ is co-latitude, and ϕ is longitude, rsurf =
6371.2km is the reference radius of the Earth, and Pm

n is the associated Legendre function.
n andm respectively denote the degree and order of the solution. N is then the truncation
of n. A higher degree solution will be more complex in that it resolves smaller length scales
of the field. Finally, gmn and hmn are the so-called gauss coefficients. Given equation 2.21
it is possible to define a model of the geomagnetic field with the gauss coefficients alone.
The geomagnetic field can then be evaluated at any depth or altitude by adjusting the
parameter r. Downward continuation of the field from surfacemeasurements necessitates
the assumption that the mantle is insulating (e.g. Barrois et al. 2019). The field can also
be evaluated at any point on the sphere with radius r, by adjusting the parameters θ and
ϕ.

In spherical geometry, the gradient of a scalar, f , is given by

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r · sinθ
∂f

∂ϕ
ϕ̂ (2.22)

An expression for the large-scale radial main field is thus found by inserting the potential
from equation 2.21 into equation 2.18, such that
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Br (r, θ, ϕ) = −∂V

∂r
=

Nmf∑
n=1

n∑
m=0

(n+ 1)
(rsurf

r

)n+2
(gmn cos (mϕ) + hmn sin (mϕ))Pm

n (cos (θ))

(2.23)

with Nmf denoting the truncation degree of the large-scale main field. The small-scale
main field, subject to the small-scale error, can then be expressed as

B̃r (r, θ, ϕ) =

Ne∑
n=(Nmf+1)

n∑
m=0

(n+ 1)
(rsurf

r

)n+2 (
g̃mn cos (mϕ) + h̃mn sin (mϕ)

)
Pm
n (cos (θ))

(2.24)

where Ne denotes the upper truncation degree of the small-scale field. The radial SV can
also be found with an identical expression, but using SV gauss coefficients, ġmn and ḣmn ,
such that

∂Br

∂t
(r, θ, ϕ) =

Nsv∑
n=1

n∑
m=0

(n+ 1)
(rsurf

r

)n+2 (
ġmn cos (mϕ) + ḣmn sin (mϕ)

)
Pm
n (cos (θ))

(2.25)

where Nsv denotes a separate truncation degree for the SV.

As was implied by equation 2.13, this study requires model predictions of the core field
and SV at the CMB to estimate the flow. It is assumed that the large-scale part of the
core field itself is known, and given by a field model. Here, the CHAOS-7.2 geomagnetic
field model is used. A detailed presentation of the model’s construction can be found in
Finlay et al. 2020. The model spans the period 1999-2020 and is derived from revised
monthly means of ground observatory measurements as well as data from the Ørsted,
CHAMP, Cryosat-2, and SWARM satellites. CHAOS-7.2 is a time-dependent spherical
harmonic model of both the internal and external fields. Since this study aims to model
core flow, only the internal part of the model was used, i.e. the previously mentioned
gauss coefficients of the geomagnetic field, gmn and hmn . The SV as defined by ġmn and
ḣmn , is also used in some tests. These can be inserted into equations 2.23 and 2.25 with
r = 3485km as the estimated radius of the core to obtain the desired predictions.

For all models in this study, we use truncation degrees Nmf = 14, Nsv = 16, andNe = 30.

2.4 The Navier-Stokes Momentum Equation
We now turn to theory for flow on the Earth’s core. Consider a closed, rotating, liquid-filled
container. In a rotating reference frame with axes fixed in the container, the Navier-Stokes
momentum equation would be expressed as

ρ

[
∂u

∂t
+ u · ∇u+ 2Ω× u+Ω× (Ω× r)

]
= −∇p+ρg+µ

[
∇2u+

1

3
∇ (∇ · u)

]
+ρr×

(
∂Ω

∂t

)
+ρf

(2.26)
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where ρ is the density of the fluid,Ω is the angular velocity, r is the position vector of a fluid
element, p is the pressure imposed on that fluid element, µ is the coefficient of dynamic
viscosity (assumed constant over space and time), and f is any external forcing. In this
scenario the flow, u, is the velocity relative to the rotating frame.

If the range of variation in temperature and pressure is small, they can be considered
independent of one another. The pressure can then be treated as linearly dependent on
the difference between the temperature, T , and some reference temperature, T0, such
that

ρ = ρ0 [1− α (T − T0)] (2.27)

where ρ0 is the density at T0 and α is the thermal expansion coefficient of the liquid.
Applying this expression, as well as the Boussinesq approximation

∇ · u = 0 (2.28)

which assumes that the variations in density throughout the liquid are sufficiently small to
be ignored, the momentum equation then becomes

[
∂u

∂t
+ u · ∇u+ 2Ω× u

]
= − 1

ρ0
∇P − gα (T − T0) + ν∇2u+ r ×

(
∂Ω

∂t

)
+ f (2.29)

where ν = µ/ρ0 is the coefficient of kinematic viscosity and

P = p− p0 −
p0
2
(Ω× r) · (Ω× r) (2.30)

is the departure from the reference pressure, including the contribution from the centrifugal
force.

Further assumptions can be made to simplify the momentum equation. This study applies
a simplified momentum equation to the Earth’s core by making the following assumptions:

1. The core is rapidly rotating, such that the Coriolis force dominates and controls the
fluid dynamics.

2. The core is filled with a homogeneous fluid.

3. The fluid is an ideal fluid.

4. The reference frame, i.e. the mantle, rotates at a constant angular velocity.

5. There are no external forcings.

6. The core flow deviates only slightly from solid body rotation.

7. The CMB is considered a closed spherical container.

Assumptions 2 to 5 respectively set the last four terms on the right-hand side of equation
2.29 equal to zero. Furthermore, assumption 6 allows for setting u · ∇u = 0. Equation
2.29 thus becomes
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∂u

∂t
+ 2Ω× u = − 1

p0
∇P (2.31)

A spherical coordinate system (r, θ, ϕ) is now introduced with r = 0 at the center of the
core, r = 1 at the CMB and θ = 0 at the axis of rotation, z. For the angular velocity
Ω = Ωẑ, using the inverse angular velocity, Ω−1 as the time unit and the radius of the
core, r0, as length unit, equation 2.31 is reduced to the non-dimensional form

∂u

∂t
+ 2ẑ × u = − 1

p0
∇P (2.32)

where ẑ is the unit vector in the z-direction.

Assumption 7 provides the following boundary condition

r̂ · u = 0 at r = 1 (2.33)

Equations 2.32 and 2.33 then define a boundary value problem for the flow, u.

Under the previously listed assumptions, oscillatory motions can occur in the flow. K.
Zhang and Liao 2017 show that solutions to this specific problem can be expressed as
a linear combination of a single axisymmetric, geostrophic, steady mode and an infinite
number of time-dependent, inertial modes. More on this in the following section.

2.5 Modes
2.5.1 Geostrophic Modes
The geostrophic mode is a steady flow solution to the boundary value problem defined by
equations 2.32 and 2.33. For a steady flow, time-dependence is ignored, so the momen-
tum equation (2.32) becomes

2ẑ × u = − 1

p0
∇P (2.34)

Taking the curl of both sides of this expression results in the Taylor-Proudman theorem

∂u (r)

∂z
= 0 (2.35)

which states that the flow of the rapidly rotating fluid is uniform along the rotation axis,
z. For the flow to obey both equation 2.35 and 2.33 requires that the flow is purely az-
imuthal at the CMB. The geostrophic mode can thus be described as an infinite series of
geostrophic polynomials, following the expression (K. Zhang and Liao 2017)

uG (r, θ) =
∑
k=1

aGk G2k−1 (r, θ) ϕ̂ (2.36)
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where uG is the geostrophic flow, aGk are unknown geostrophic coefficients, G2k−1 are
the geostrophic polynomials, and k determines the degree of those polynomials. The
geostrophic polynomials are expressed as

G2k−1 (r, θ) =

k∑
j=1

(−1)k−j [2 (k + j)− 1]!!

2k−1 (k − j)! (j − 1)! (2j)!!
(r sin θ)2j−1 (2.37)

2.5.2 Inertial Modes
For inertial, time-varying flows, oscillatory solutions to equation 2.32 presented by K.
Zhang and Liao 2017 are of the form

u (r, t) = u (r) ei2σt (2.38)

where t is time, i is the imaginary number
√
−1, σ is the half-frequency of oscillatory

motions, bounded by 0 < |σ| < 1, and r is a position vector. For our polar spherical
coordinate system r = (r, θ, ϕ), so the solution form becomes

u ((r, θ, ϕ) , t) = u (r, θ, ϕ) ei2σt = [ur (r, θ, ϕ) , uθ (r, θ, ϕ) , uϕ (r, θ, ϕ)] e
i2σt (2.39)

where ur, uθ, and uϕ are the vector components of the total flow, u. The modes that make
up the inertial flow solutions can be classified according to their symmetry with respect to
the equatorial plane. The two classes are the equatorially symmetric and the equatorially
anti-symmetric modes. Both of these can further be classified according to their sym-
metry with respect to the rotation axis, as either axisymmetric or non-axisymmetric. The
solutions, which will be presented shortly, are all series, which run over the natural inte-
ger indices m, n, and k. As these indices increase, the solutions become more complex.
The index m is a measure of the number of oscillations in the azimuthal, ϕ-direction. The
modes with m = 0 are thus axisymmetric and those with m ≥ 1 are non-axisymmetric.
The index n ≥ 1 is a measure of complexity in the z-direction, and the index k ≥ 0 is a
measure of the complexity as you move away from the z-axis towards the core surface,
parallel to the equatorial plane.
2.5.2.1 Equatorially Symmetric Modes
The equatorially symmetric solutions follow the symmetry

(ur, uθ, uϕ) (r, θ, ϕ) = (ur,−uθ, uϕ) (r, π − θ, ϕ) (2.40)

and the vector components of the solutions are written as

r̂ · uS
mnk = − i

2

k∑
i=0

k−i∑
j=0

CS
mk;ij

r

[
σ2 (m+ 2j) +mσ − 2i

(
1− σ2

)]
·
[
rm+2(i+j)σ2i−1

(
1− σ2

)j−1
sinm+2jθcos2iθ

]
eimϕ

(2.41a)
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θ̂ · uS
mnk = − i

2

k∑
i=0

k−i∑
j=0

CS
mk;ij

r

{[
σ2 (m+ 2j) +mσ

]
cos2θ + 2i

(
1− σ2

)
sin2θ

}
·
[
rm+2(i+j)σ2i−1

(
1− σ2

)j−1
sinm+2j−1θcos2i−1θ

]
eimϕ

(2.41b)

ϕ̂ · uS
mnk = −1

2

k∑
i=0

k−i∑
j=0

CS
mk;ij

r
[(m+ 2j) +mσ]

·
[
rm+2(i+j)σ2i

(
1− σ2

)j−1
sinm+2j−1θcos2iθ

]
eimϕ

(2.41c)

where the coefficients CS
mk;ij are given by

CS
mk;ij =

(−1)i+j [2 (m+ k + i+ j)− 1]!!

2j+1 (2i− 1)!! (k − i− j)!i!j! (m+ j)!
(2.42)

and the half-frequencies, σ, are the roots of one of two polynomials, depending on whether
or not themode is axisymmetric. For the axisymmetricmodes (m = 0), the half-frequencies
of equation 2.41 are given as the roots of

0 =

k−1∑
j=0

{
(−1)j [2 (2k − j)]!

j! [2 (k − j)− 1]! (2k − j)!

}
σ2(k−j) (2.43)

where k varies over all positive integers ≥ 2. The above polynomial has k − 1 positive
solutions. For a given k, we thus have k − 1 axisymmetric modes. Note that each mode,
umnk, then contains a unique half-frequency. The subscript denoting the indices, σmnk has
been dropped for easier readability, however. Each root of the polynomial corresponds to
a separate n in this subscript, such that

0 < |σ01k| < |σ02k| < |σ03k| < ... < |σ0nk| < ... < |σ0(k−1)k| < 1

For non-axisymmetric modes (m ≥ 1), the half-frequencies are given as the roots of

0 =

k−1∑
j=0

{
(−1)j+k [2 (2k +m− j)]!

j! [2 (k − j)]! (2k +m− j)!
[(2k +m− 2j)σ − 2 (k − j)]

}
σ2(k−j)−1

+
m [2 (k +m)]!

k! (k +m)!

(2.44)

where k varies over all positive integers ≥ 1. The above polynomial has 2k real solutions,
meaning we have 2k non-axisymmetric modes for a given k, where

0 < |σm1k| < |σm2k| < |σm3k| < ... < |σmnk| < ... < |σm(2k)k| < 1

The special subset of symmetric modes with σm1k (n = 1) have the slowest periods and
are referred to as quasi-geostrophic (QG) because they are almost invariant along the
rotation axis. This subset includes the axisymmetric mode with σ01k.
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2.5.2.2 Equatorially Anti-Symmetric Modes
The equatorially anti-symmetric solutions follow the symmetry

(ur, uθ, uϕ) (r, θ, ϕ) = (−ur, uθ,−uϕ) (r, π − θ, ϕ) (2.45)

and the vector components of the solutions are written as

r̂ · uA
mnk = − i

2

k∑
i=0

k−i∑
j=0

CA
mk;ij

[
σ2 (m+ 2j) +mσ − (2i+ 1)

(
1− σ2

)]
·
[
σ2i−1

(
1− σ2

)j−1
sinm+2jθcos2i+1θ

]
rm+2(i+j)eimϕ

(2.46a)

θ̂ · uA
mnk = − i

2

k∑
i=0

k−i∑
j=0

CA
mk;ij

{[
σ2 (m+ 2j) +mσ

]
cos2θ + (2i+ 1)

(
1− σ2

)
sin2θ

}
·
[
σ2i−1

(
1− σ2

)j−1
sinm+2j−1θcos2iθ

]
rm+2(i+j)eimϕ

(2.46b)

ϕ̂ · uA
mnk = −1

2

k∑
i=0

k−i∑
j=0

CA
mk;ij [(m+ 2j) +mσ]

·
[
σ2i

(
1− σ2

)j−1
sinm+2j−1θcos2i+1θ

]
rm+2(i+j)eimϕ

(2.46c)

where the coefficients CA
mk;ij are given by

CA
mk;ij =

(−1)i+j [2 (m+ k + i+ j) + 1]!!

2j+1 (2i+ 1)!! (k − i− j)!i!j! (m+ j)!
(2.47)

As was the case for the symmetric modes, the half-frequencies of equation 2.46 are also
given by one of two polynomials depending on whether or not the mode is axisymmetric.

For the axisymmetric modes (m = 0), the half-frequencies are the roots of the polynomial

0 =

k∑
j=0

{
(−1)j [2 (2k − j + 1)]!

j! [2 (k − j)]! (2k − j + 1)!

}
σ2(k−j) (2.48)

where k varies over all positive integers. The above polynomial has 2k real solutions,
meaning we have 2k axisymmetric modes, where

0 < |σ01k| < |σ02k| < |σ03k| < ... < |σ0nk| < ... < |σ0(2k)k| < 1

For non-axisymmetric modes (m ≥ 1), the half-frequencies are the roots of
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0 =
k∑

j=0

(−1)j [2 (2k +m− j + 1)]!

j! [2 (k − j) + 1]! (2k +m− j + 1)!

· [(2k − 2j +m+ 1)σ − (2k − 2j + 1)]σ2(k−j)

(2.49)

where k varies over all integers ≥ 0. The above polynomial has 2k+1 solutions, meaning
we have 2k + 1 non-axisymmetric modes, where

0 < |σm1k| < |σm2k| < |σm3k| < ... < |σmnk| < ... < |σm(2k+1)k| < 1

2.5.2.3 Summary of Inertial Mode Computation
The half-frequencies, σmnk, of the corresponding inertial modes, umnk, are found by cal-
culating the roots of the polynomials in equations 2.43-2.44 and 2.48-2.49 (K. Zhang and
Liao 2017). The half-frequencies are then respectively inserted into equations 2.41 and
2.46 to calculate the corresponding mode.

2.5.3 Visualization
Figure 2.1 shows examples of each type of mode, i.e. a geostrophic mode, uG

4 (a), an
equatorially symmetric mode, uS

312 (b), and an equatorially anti-symmetric mode, uA
312 (c).

The figure shows the general structure of each type. Geostrophic modes are entirely
azimuthal and thus invariant along the axis of rotation. The equatorially symmetric mode
has a non-zero flow in the azimuthal, radial, and longitudinal directions. Note that the
particular one shown here is a QG mode (n = 1) and is thus nearly invariant along the
rotation axis. The equatorially anti-symmetric mode also has a non-zero flow in all three
directions but is inverted across the equator. Equatorially anti-symmetric modes therefore
tend to produce gyres centered on the equator, which necessitates equator crossings of
the flow. With a linear combination of the different types of modes it is possible to describe
unique flows with distinct features on a spherical surface.

Figure 2.1: Examples of a geostrophic mode (a), an equatorially symmetric mode (b), and
an equatorially anti-symmetric mode (c), as seen in the meridional plane (left panel) and
the surface (right panel) of a sphere. The line defining the meridional plane is shown as
a cyan line on the surface. Figure taken from Kloss and Finlay 2019.

Core Flows Inferred From SWARM Satellite Magnetic Data 15



2.5.4 Normalization on the CMB
For use in the inversion scheme, toroidal-poloidal expansions of themodes are necessary.
The estimation of these involves evaluating and normalizing the horizontal components
of the modes on a grid of points on the CMB with locations r = (1, θ, ϕ), where r = 1 is
the radius of the CMB.

According to K. Zhang and Liao 2017, the mean over the full sphere of the squared ab-
solute values of the geostrophic polynomials is given by

3

4π

∫
ν
|G2k−1|2 dν =

3 (2k + 1)!! (2k − 1)!!

(4k + 1) (2k)!! (2k − 2)!!
(2.50)

which can be used for normalization. Here,

∫
ν
dν ≡

∫ 2π

0
dϕ

∫ π

0
sinθdθ

∫ 1

0
r2dr (2.51)

The symmetric inertial modes can likewise be normalized with

3

4π

∫
ν

∣∣uS
mnk

∣∣2 dν =
k∑

i=0

k−i∑
j=0

k∑
q=0

k−q∑
l=0

CS
mk;ijC

S
mk;ql

3 · 2m+j+l−3

[2 (m+ i+ j + q + l) + 1]!!
σ2(i+q)

(
1− σ2

)j+l

·
(
[(m+mσ + 2j) (m+mσ + 2l) + (m+mσ + 2jσ) (m+mσ + 2lσ)]

· (m+ j + l − 1)!
[2 (i+ q)− 1]!!

(1− σ2)2
+ 8iq (m+ j + l)!

[2 (i+ q)− 3]!!

σ2

)
(2.52)

and the anti-symmetric inertial modes can be normalized with

3

4π

∫
ν

∣∣uA
mnk

∣∣2 dν =
k∑

i=0

k−i∑
j=0

k∑
q=0

k−q∑
l=0

CA
mk;ijC

A
mk;ql

3 · 2m+j+l−3

[2 (m+ i+ j + q + l) + 3]!!
σ2(i+q)

(
1− σ2

)j+l

·
(
[(m+mσ + 2j) (m+mσ + 2l) + (m+mσ + 2jσ) (m+mσ + 2lσ)]

· (m+ j + l − 1)!
[2 (i+ q) + 1]!!

(1− σ2)2
+ 2 (2i+ 1) (2q + 1) (m+ j + l)!

· [2 (i+ q)− 1]!!

σ2

)
(2.53)

2.5.5 Mode Enstrophies
The inversion scheme developed by Kloss and Finlay 2019 also requires explicit expres-
sions of the enstrophy of the inertial modes and the geostrophic polynomials. The general
expression for the enstrophy is
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Q2 (u) =
3

4π

∫
ν
|∇ × u|2 dν (2.54)

As in Kloss and Finlay 2019, the enstrophy is here defined asQ2 because we will later use
the square root of this quantity, Q, in the inversion scheme. More on this in section 2.11.
According to K. Zhang and Liao 2017, the enstrophy of the unnormalized geostrophic
polynomials from equation 2.37 can be expressed as

Q2
(
G2k−1ϕ̂

)
= 3

k∑
jl

CG
k;jC

G
k;j2

j+ljl
[j + l − 2]!

[2 (j + l)− 1]!!
(2.55)

The enstrophy of the symmetric inertial modes is found by taking the inner product of the
vorticity of two unnormalized symmetric inertial modes, uS

α and uS
β from equation 2.41

3

4π

∫
ν

(
∇× uS

α

)
·
(
∇× uS

β

)∗
dν =

kα∑
i=0

kα−i∑
j=0

kβ∑
q=0

kβ−q∑
l=0

CS
mkα;ijC

S
mkβ ;ql

3 · 2j+l+m−1iq

[2 (i+ j + q + l +m)− 1]!!

· σ2i−2
α σ2q−2

β

(
1− σ2

α

)j−1 (
1− σ2

β

)l−1 {σασβ [l + j +m− 1]! [2 (i+ q)− 3]!

· [(2jσα +m+mσα) (2lσβ +m+mσβ) + (2j +m+mσα) (2l +m+mσβ)]

+2 (2i− 1) (2q − 1)
(
1− σ2

α

) (
1− σ2

β

)
[l + j +m]! [2 (i+ q)− 5]!!

}
(2.56)

where ∗ denotes the complex conjugate. Similarly for unnormalized anti-symmetric inertial
modes from equation 2.46

3

4π

∫
ν

(
∇× uA

α

)
·
(
∇× uA

β

)∗
dν =

kα∑
i=0

kα−i∑
j=0

kβ∑
q=0

kβ−q∑
l=0

CA
mkα;ijC

A
mkβ ;ql

3 · 2j+l+m−3 (2i+ 1) (2q + 1)

[2 (i+ j + q + l +m) + 1]!!

· σ2i−2
α σ2q−2

β

(
1− σ2

α

)j−1 (
1− σ2

β

)l−1

· {σασβ [l + j +m− 1]! [2 (i+ q)− 1]!

· [(2jσα +m+mσα) (2lσβ +m+mσβ) + (2j +m+mσα) (2l +m+mσβ)]

+8iq
(
1− σ2

α

) (
1− σ2

β

)
[l + j +m]! [2 (i+ q)− 3]!!

}

(2.57)

Both equations 2.56 and 2.57 only apply when mα = mβ = m. Otherwise, the right-hand
sides are zero. As in Kloss and Finlay 2019, for the computation of the regularization
norms, for simplicity, we only use terms with α = β.
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2.6 Steady and Time-Dependent Flow Decomposition
In theory, modes can be calculated for infinite variations of the indices m and k. A
computable solution to the total inertial flow is constructed as a linear combination of
geostrophic and inertial modes with all combinations of the indices m and k up to some
level of truncation, M and K. Recall that the index n is already bounded by the finite
number of solutions to the polynomials in equations 2.43-2.44 and 2.48-2.49.

This study continues to follow Kloss and Finlay 2019 by decomposing the flow into a
steady and a time-dependent part, such that

u (r, t) = u0 (r) + ut (r, t) (2.58)

where the time-dependent flow, ut, is made up of all the geostrophic modes and all inertial
modes with n = 1, i.e. the QGmodes and the anti-symmetric modes with the smallest half-
frequencies, as seen in equation 2.59. This choice is made because in the core, driving
by convection is expected to occur on slow timescales, much longer than the rotation
timescale.

ut (r, t) =
K∑
k=1

aGk (t)G2k−1 (r) ϕ̂+
K∑
k=1

M∑
m=1

aSm1k (t)Re
[
uS
m1k (r)

]
+

K∑
k=0

M∑
m=1

aAm1k (t)Re
[
uA
m1k (r)

]
+ imaginary parts

(2.59)

The steady flow, u0, is then made up of all the remaining inertial modes

u0 (r) =
K∑
k=1

M∑
m=0

∑
n ̸=1

aSmnkRe
[
uS
mnk (r)

]
+

K∑
k=0

M∑
m=0

∑
n̸=1

aAmnkRe
[
uA
mnk (r)

]
+ imaginary parts

(2.60)

where Re[ · ] takes the real part. The mode coefficients, amnk, determine the amplitude
of the mode umnk. It is these coefficients we will eventually solve for in the inverse prob-
lem. The imaginary parts in equations 2.59 and 2.60 are necessary because the inertial
modes are sinusoidal in azimuth. Each inertial mode is thus expressed with two mode
coefficients, in contrast to the geostrophic modes which are expressed with only one.

Although the inertial modes are time-dependent, their time-dependency is not explicitly
used to parametrize the time-dependency of the core flow. As in Kloss and Finlay 2019,
the time-dependence of the flow is instead parametrized by solving the inverse problem
for individual epochs of data (see chapter 3). The combination of the geostrophic and
inertial modes at each epoch is used to provide a basis for efficiently representing flow
in a rapidly rotating sphere. For all models produced in this study, we use the truncation
degrees K = 10 and M = 20.

18 Core Flows Inferred From SWARM Satellite Magnetic Data



2.7 Toroidal-Poloidal Expansion
Recall that equation 2.13 implied that we can use knowledge of the radial core field and
the radial SV to estimate core flow at the CMB. This can be efficiently expressed using a
toroidal-poloidal expansion of the core flow and SH expansion of the poloidal and toroidal
scalars as well as the magnetic field and SV. The CMB flow is then expressed as

uH = ∇× (Tr) +∇H (rS) (2.61)

where r is a position vector. T and S are then the so-called toroidal and poloidal potentials,
respectively, which are expressed with the SH expansions

T =

Ntp∑
n=1

n∑
m=0

(tmc
n cos (mϕ) + tms

n sin (mϕ))Pm
n (cosθ) (2.62)

S =

Ntp∑
n=1

n∑
m=0

(smc
n cos (mϕ) + sms

n sin (mϕ))Pm
n (cosθ) (2.63)

where tmc
n , tms

n , smc
n , and sms

n are SH coefficients for the flow. In this study we use the
truncation degree Ntp = 60 for all models. Applying the steady and time-dependent
flow decomposition in equation 2.58, the toroidal-poloidal flow can more accurately be
expressed as

uH = [∇× (T0r) +∇H (rS0)] + [∇× (Ttr) +∇H (rSt)] (2.64)

In the following we describe the link between this toroidal-poloidal representation and the
geostrophic and the inertial modes described previously.

2.8 Forward Problem
The first objective of this study was to produce a model using an inversion scheme that
is identical to the one previously used in Kloss and Finlay 2019, but with the newer data
set, which we will present in chapter 3. Although this study makes use of newer magnetic
SV data from the SWARM mission, the formulation is identical to that of Kloss and Finlay
2019. We will therefore follow their notation closely, and preserve symbolic representa-
tions, when possible, for the sake of easy comparison. Later sections will present the
modifications that were made in this study to allow for stronger anti-symmetric flows on
short length scales and contributions from magnetic diffusion, which were assumed to be
zero by Kloss and Finlay 2019.

Assuming the amplitudes of all modes are known for a given epoch, a toroidal-poloidal
expansion of the flow on the CMB can be determined for that epoch via a linear set of
equations. This is done by arranging the mode amplitudes into two vectors. As described
in section 2.6, the time-dependent flow is made up of the geostrophic modes, the QG
modes (n = 1), and the anti-symmetric modes with the smallest half-frequencies (also
n = 1). These are represented by the amplitudes aGk , aSm1k, and aAm1k, as seen in equation
2.59. These amplitudes are thus arranged in the column vector
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ap =
[
aG
k,p; a

S
m1k,p; a

A
m1k,p

]
(2.65)

with the subscript p denoting the given epoch. The remaining inertial modes make up the
steady flow and are arranged in the column vector

a0 =
[
aS
mnk; a

A
mnk

]
(2.66)

The number of mode amplitudes stored in these vectors depends on the chosen truncation
degrees,K andM , in equations 2.59 and 2.60. The SH coefficients of the toroidal-poloidal
expansion at the CMB, listed in xp, can be determined with the linear equation system

xp = M0a0 +M tap (2.67)

in accordance with equation 2.58. The matricesM0 andM t calculated by Kloss and Fin-
lay 2019 were again used in this study. They relate the mode amplitudes to the toroidal-
poloidal SH coefficients by computing the modes on a Gauss-Legendre grid of evaluation
points on the CMB. An SH expansion can then be computed for the radial vorticity and hor-
izontal divergence of the modes, corresponding to the first and second terms of equation
2.61.

Once the toroidal-poloidal expansion of the core flow is known, the SV coefficients can
then be computed through

ḃp = Hb (bp)xp + ep = Hb (bp) [M0a0 +M tap] + ep (2.68)

corresponding to equation 2.14. Here the matrixHb is computed with a MATLAB function
’SV_synthesis’ provided by C. Kloss, based on a FORTRAN code written by D. Lloyd in
1987 (Lloyd and Gubbins 1990; Jackson 1997). It contains the frozen flux induction equa-
tion (equation 2.10) and takes as input the truncation degrees of the SH expansions of the
main field, the SV, and the toroidal-poloidal potentials. These are denoted in equations
2.23, 2.25, and 2.62-2.63 as Nmf , Nsv, and Ntp, respectively. The induction equation
also requires knowledge of the main field, bp. ’SV_synthesis’ therefore also takes as in-
put the main field gauss coefficients from CHAOS-7.2 corresponding to the time of the
given epoch. The vector ep contains the unknown small-scale error coefficients which are
co-estimated in the inversion, along with the mode amplitudes.

SV data predictions can be made at the locations corresponding to the ground observa-
tories and virtual observatories used in this study through

dp = Y pḃp = Y pHb (bp) [M0a0 +M tap] + Y pep (2.69)

where dp contains SV predictions for all three vector components at each observatory
location. The matrix Y p is computed with another MATLAB function, ’design_SHA’, which
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is written by N. Olsen in 2003. The function takes as input the (r,θ,ϕ) coordinates of each
observatory and the truncation degree of the SV. It contains the details of the potential field
representation of the internal field (equations 2.21-2.25). The output matrix then contains
the appropriate spatial derivatives. At the CMB, SV is generally most prominent at lower
latitudes (e.g. Aubert et al. 2013). Furthermore, the data is more contaminated by noise
due to ionospheric sources at high latitudes (e.g. Kloss and Finlay 2019). We therefore
exclusively use data from observatories outside the Tangent Cylinder (TC) of the core, i.e.
observatories with co-latitudes 30◦ < θ < 150◦ and focus our attention on low latitudes.

In the inversion scheme we solve for the mode amplitudes and small-scale error at all
epochs simultaneously. SV predictions for the entire data period are thus found with

d = Gm (2.70)

where the model vector (column) initially consists of the mode amplitudes and the small-
scale error

m = [a0; a1; a2; · · · ; aP ; e1; e2; · · · ; eP ] (2.71)

with the subscript P denoting the final epoch. The associated designmatrix for the forward
problem is constructed as

G =

F 1M0 F 1M t Y 1
... . . . . . .

F PM0 F PM t Y P

 (2.72)

where F p = Y pHb (bp). The matrices Y p are adjusted for each epoch, such that predic-
tions are only made at observatories that provided data for that epoch.

2.9 Inversion
As in Kloss and Finlay 2019, the first model is produced by minimizing the cost function

Φ (m) =
(
Gm− dobs

)T
W d

(
Gm− dobs

)
+ λ0||Q0a0||1 + λS

t ||QS
t at||1

+ λA
t ||QA

t at||1 + λa||Dat||22 + eTt C
−1
e et

(2.73)

where || · ||p takes the lp norm. The at and et column vectors respectively contain all
the ap and ep vectors in chronological order. The diagonal matrices Q hold the square
roots of the mode enstrophies, described in section 2.5.5, corresponding to the order of
the mode amplitudes in the vectors a. The spatial structure of the first flow model is thus
regularized with an l1 norm of all the mode enstrophies. The degree to which the steady,
equatorially symmetric, and equatorially anti-symmetric mode enstrophies are penalized
can then be adjusted with the regularization parameters λ0, λS

t , and λA
t , respectively.

The inversion also includes an l2 norm temporal regularization on the first difference of
the flow using the matrix
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D =
1

∆t

−I I
. . . . . .

−I I

 (2.74)

with the time step ∆t = tp+1 − tp taking the first difference, i.e. the difference between
a given epoch and the previous one. The matrices I are then identity matrices, with
dimensions compatible with ap. The degree to which changes to the flow are penalized
in equation 2.73 is then adjusted with the regularization parameter λa.

The first term on the right-hand side of equation 2.73 regularizes the misfit between the
model predictions and actual observations of SV. This is done with the diagonal matrix
W d containing the data error variances which are modified with a Tukey biweight scheme.
The last term in equation 2.73 regularizes the small-scale error, by computing the small-
scale error covariance matrix, Ce, which depends on the model vector m. Neither the
regularization of data residuals nor the regularization of the small-scale error are subject
to change in this study. The reader is thus referred to Kloss and Finlay 2019 for full details
on the construction of W d and Ce.

The non-linear inverse problem is solved for m, iteratively, with

mk+1 =
(
GTW dG+R (mk)

)−1
GTW dd

obs (2.75)

The regularization matrix, which depends on the model from the previous iteration, is
constructed as

R =

λ0W 0

λS
t W

S
t + λA

t W
A
t + λaW a

C−1
e

 (2.76)

where the matrices W0, W S
t , and WA

t implement the l1 norms in equation 2.73 and are
constructed as

W 0 = QT
0

 δij√
(Q0a0)

2
i + ϵ2

Q0 (2.77)

and similarly for W S
t and WA

t . Here δij is the Kronecker delta, with i and j being row
and column indices. ϵ = 10−8 is a constant preventing computational issues, should the
denominator approach zero.

Finally, the temporal l2 norm is implemented with

W a = DTD (2.78)

Convergence of the inversion is considered complete when the relative change of each
norm listed in equation 2.73 is below 0.01 for subsequent iterations.
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2.10 Relaxing Penalization of Equatorially Anti-Symmetric
Flow

The method of Kloss and Finlay 2019 is next extended to produce a model that allows for
more power at short length-scales for the anti-symmetric flow. One purpose of this is to
investigate whether a higher tolerance for localized equator crossings of the flow can still
explain the data well. In order to do this, we replace the matrix penalizing the enstrophy
of the anti-symmetric modes, QA

t , with a matrix that instead penalizes the mode energy

E =
3

4π

∫
ν
|u|2 dν (2.79)

Comparing to equation 2.53, this quantity is equal to the squares of the amplitudes of the
normalized equatorially anti-symmetric modes themselves. We thus simply replace the
previously defined matrix QA

t with

QA
t ≡ I (2.80)

where I is the identity matrix with dimensions corresponding to the length of at. Thematrix
implementing the new regularization norm for anti-symmetric modes then becomes

WA
t = IT

 δij√
(Iat)

2
i + ϵ2

 I (2.81)

which is then used in the regularization matrix (equation 2.76). This way it is possible to
penalize the anti-symmetric modes with the regularization parameter λA

t and not penalize
the vorticity of those modes. This further allows for more power at smaller wavelengths
and localized equatorial crossings of the flow when required by observations.

2.11 Accounting for Magnetic Field Diffusion at the CMB
Another objective of this study was to develop amethod of accounting for any diffusion that
may have influenced the SV observed by SWARM and ground observatories. To this end,
SH coefficients describing the SV due to diffusion from the Coupled-Earth (CE) numerical
dynamomodel (Aubert et al. 2013) are used. These coefficients, henceforth referred to as
the dynamo realizations, were obtained from ”snapshots” of dynamo simulations of core
flow.

Magnetic field measurements in a dynamo simulation can be used to obtain SH coeffi-
cients of the magnetic field at the boundary (corresponding to the CMB), rcmb, and just
below the boundary at rlow. There is thus a depth difference ∂r = rcmb − rlow. For an SH
degree n of the magnetic field, the recurrence relations (Schaeffer 2015)

∂rBcmb =
− (n+ 1)Bcmb

r
and ∇2

⊥B =
−n (n+ 1)B

r2
(2.82)
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can then be used in a second order Taylor expansion to compute ∇2Br. Multiplying
with a known magnetic diffusivity, the diffusion part of the induction equation is obtained
(equation 2.8) for the radial part of the field. It is thus possible to compute the dynamo
realizations explaining the radial field SV from magnetic diffusion.

In this study, a self-covariance matrix of 1505 dynamo realizations from the CE Model
was computed for use in our inversion scheme. In figure 2.2 predictions of SV at the
CMB are shown for three of these realizations. The realizations, listed in vectors z, were
first truncated to match the truncation degree used for induction SV in previous inversion
schemes,Nsv. A vector representing the ”background state”, ẑ, was then computed as the
mean of all the 1505 truncated realizations. The self-covariance matrix of the realizations,
Cz, was then computed as

Cz = (z − ẑ) (z − ẑ)T (2.83)

A bulk diagonal matrix,C−1
Z , was then built containing one inverse of these self-covariance

matrices for every epoch

C−1
Z =

C
−1
z

. . .
C−1

z

 (2.84)

This matrix was then used to augment the regularization matrix (equation 2.76) such that

R =


λ0W 0

λS
t W

S
t + λA

t +WA
t + λaW a

C−1
e

C−1
Z + λzW a

 (2.85)

Here we also apply a temporal regularization to the diffusion, similar to that of the time-
dependent modes (i.e. l2 norm of the first difference), by adding another W a matrix with
dimensions equal to those ofC−1

Z . It is thenmultiplied with a new regularization parameter,
λz, to allow for penalization of secular acceleration (i.e. changes to the SV) caused by
diffusion. The model vector produced with equation 2.75 then becomes

m = [a0; a1; a2; · · · ; aP ; e1; e2; · · · ; eP ; z1; z2; · · · ; zP ] (2.86)

with the vectors zp containing SH coefficients for SV due to diffusion in the p’th epoch.
The design matrix G of equation 2.75 then requires an augmentation, to produce data
predictions for the SV at ground and satellite observatories. This is done with an aug-
mentation similar to that employed for the small-scale error (since the model parameters
for both the small-scale error and the diffusion take the form of SH coefficients), such that

G =

F 1M0 F 1M t Y 1 Y 1
... . . . . . . . . .

F PM0 F PM t Y P Y P

 (2.87)
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Figure 2.2: SV predictions at the CMB from three example realizations of the Coupled
Earth Model.
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3 Observations
This chapter presents the initial input data and details on how it was ingested for use in
this study, as well as sections on data inspection prior to inversion. All input SV data is
taken from the period September 2014 to September 2019, covering all available SWARM
data at the time of this writing. The SV data is given in epochs covering an average period
of 4 months. The SWARM period thus contains 16 epochs of data. The SV is defined by
taking the yearly differences of the measured main field, i.e. the difference in main field
strength for a given epoch plus/minus 6 months.

3.1 Data Types
3.1.1 Ground Observatories
Geomagnetic SV data from 205 INTERMAGNET ground observatories (GOs) were used
as input. A detailed explanation on how the GO data set was produced and treated, prior
to use in this study, is presented in Olsen et al. 2014. It is based on hourly means after
corrections for external and ionospheric field and robust means. The data set contains SV
data for three vector components for each observatory. The input file initially contained
data covering Jan 1900 to May 2020 but data outside the SWARM period were removed
for this study. Data from observatories inside the TC (colatitudes below 30 degrees and
above 150 degrees) were also removed, resulting in a data set with data from 117 GOs.
Not all of these observatories have provided data for every epoch in the SWARM pe-
riod, since reporting from some of the observatories is delayed. This characteristic delay
(Matzka et al. 2010) results in a general decline in the total number of GOs with available
data from 2014 to 2019. The data set also includes sigmas (error estimates) for each
ground observatory on each vector component. The sigmas are based on the variance
of each series (each component at each observatory) with respect to the CHAOS field
model.

Figure 3.1 shows an example of a 3-axis fluxgate magnetometer used for measurements
at GOs (left) and the locations of GOs used in this study (right).

Figure 3.1: 3-axis fluxgate magnetometer (FGE model) developed by DTU Space (left)
and locations of GOs used in this study (right).
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The fluxgate magnetometers are calibrated with weekly absolute measurements of dec-
lination, inclination, and intensity of the geomagnetic field. In figure 3.2 we show SV
measured throughout the data period at three example GOs in Hawaii (HON), French
Guinea (KOU), and Japan (KAK) with associated error estimates as well as predictions
by the CHAOS-7.2 field model. Timeseries are shown for each vector component, i.e. r
(radial), theta (meridional), and phi (azimuthal).

Figure 3.2: Example timeseries of SV data from three GOs (HON, KOU, and KAK) for all
three vector components with associated error estimates. CHAOS-7.2 model predictions
are also shown (red).

3.1.2 SWARM Satellite Data and Derived Virtual Observatory Series
Satellite altitude geomagnetic SV data were taken from the Geomagnetic Virtual Obser-
vatory (GVO) series, presented in Hammer et al. 2021. The GVO series is constructed
using magnetic field measurements from the SWARM satellite trio (Alpha, Bravo, Char-
lie). In contrast to raw measurements from the constantly moving satellites, these series
provide a convenient way of monitoring SV by constructing spatially fixed virtual observa-
tories (VOs). The series thus contains data from 300 equal area distributed VOs, all with
490 km altitude. The series used in this study is obtained by robust fits of local Carte-
sian potential field models to along-track and east-west sums and differences of SWARM
satellite data collected within a radius of 700 km of the VO locations and based on four
monthly time windows. The basic concept is illustrated in figure 3.3.
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Figure 3.3: Illustration of the Geomagnetic Virtual Observatory concept. Satellite mag-
netic measurements from within a target cylinder are used to infer field time series at the
VO location given by the red dot. Note the cylinder radius is not to scale. Figure taken
from Hammer et al. 2021.

As with GO data, all VO data inside the core’s TCwere also removed in this study, resulting
in a data set with 258 VOs. The data set includes sigmas for each VO on each vector
component. These are again based on the variance of each series with respect to the
CHAOS field model.

The 3-axis vector magnetometer carried by the SWARM satellites is shown in figure 3.4
(left) along with the star trackers used to determine orientation. In the figure, we also
show the locations of VOs used in this study (right).

Figure 3.4: SWARM3-axis vector magnetometer with star trackers, mounted on an optical
bench (left) and locations of VOs used in this study (right).

The SWARM satellites’ vector mangetometers are calibrated by making high frequency
measurements of magnetic field intensity in many different orientations to calculate cal-
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ibration parameters. In figure 3.5 we show SV measured throughout the data period at
three example VOs with associated error estimates as well as predictions by the CHAOS-
7.2 field model.

Figure 3.5: Example timeseries of SV data from three VOs for all three vector components
with associated error estimates. CHAOS-7.2 model predictions are also shown (red).

3.2 Temporal Data Distribution

The figures presented in this section were produced to ensure that SV data were properly
ingested before use in the inversion and show their temporal distribution throughout the
data period. Figure 3.6 shows the total number of data vs. time, after removal of NaNs
and data inside the TC. As expected, the number of VO data points remains constant,
while the number of GO data points generally drops with time, due to delays in reporting.
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Figure 3.6: Total number of data points vs. time. Each column represents an epoch.

Figure 3.7 correspondingly shows the number of data points in each vector component
vs. time. As expected, the number of data points for each vector component is equal
for most epochs, although six subsequent epochs (September 2015 to June 2016) of
GO data (right) contain one less data point for the phi component. Investigation of the
data revealed that the missing data point is linked to a single GO in Western Samoa,
codenamed API.
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Figure 3.7: Number of data points for each vector component vs. time. Plots are shown
for VOs (left) and GOs (right). Each trio of columns (blue, red, yellow) represents an
epoch.

3.3 Data Error Estimates
The data error estimates used in the inversion were also plotted to document their distri-
bution. Figure 3.8 shows the sigmas in histograms, while figure 3.9 plots the sigma values
on a world map. Both figures reveal that GO data errors are on average larger than VO
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errors. This can partly be attributed to some of the ground observatories having been in
operation since 1900 and thus having made use of less modern instruments. Figure 3.8
also shows that, among VO data (left), the average error on the phi component (bottom)
is significantly larger than the other vector components.
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Figure 3.8: Histograms of sigma values for VOs (left) and GOs (right) shown for each
vector component, r (top), theta (middle), phi (bottom).

Figure 3.9 shows that these relatively large errors in the VO phi data (bottom left) are
somewhat evenly distributed across the VOs, but are largest at the highest northern lati-
tude and above the North- and South American continents. The figure further shows, that
the r and theta components of the VO data generally have higher error estimates at the
southern-most latitude. The high error estimates on GO data can generally be attributed
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to individual GOs, such as VSS in Brazil.
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Figure 3.9: Sigma values on world map for VOs (left) and GOs (right) shown for each
vector component, r (top), theta (middle), and phi (bottom).

Also note that figure 3.5 shows a CHAOS-7.2 misfit that is consistently greater than the
error bars of the phi component for the epochs centered on January 2015 and January
2016. Further inspection revealed (see chapter 5) that most of the difference between
VO data error in the phi component and the other vector components can be attributed
to these two epochs. This feature is also found in the original SWARM data, which the
CHAOS-7.2 model does not fit well for the magnetic field’s phi component in summer
2015. This may indicate significant inter-hemispheric field aligned currents during these
months which are currently under investigation (C. Finlay, pers. comm.).
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4 Results
This chapter presents results, including diagnostic and visualization plots for the core flow
models produced in this thesis, using the methods described in chapter 2. For presen-
tation purposes, we collect the models into three ”generations”, with generation 1 being
a model produced using the same regularization scheme as Kloss and Finlay 2019 (as
described in section 4.1), generation 2 being the models incorporating the relaxed pe-
nalization of equatorially anti-symmetric modes (section 2.10), and generation 3 being
the models that, along with the modification of generation 2, also take diffusion into ac-
count (section 2.11). All model generations presented are derived from the new GO and
SWARM VO data sets, presented in chapter 3. Results for the preferred model in each
generation (Model 1, Model 2a, and Model 3c) are presented in the following sections.
The reasoning behind the choice of preferred models is discussed in chapter 5.

Table 4.1 lists all the models along with values of the regularization parameters used in
the inversion. The table also presents the values of some norms used for diagnostics.
The first norm, Φsv, is the normalized misfit between observed SV data and the SV data
predicted by the models

Φsv =
1

Nd

(
d− dobs

)T
W d

(
d− dobs

)
(4.1)

whereW d is the matrix from equation 2.73 containing the estimated data variances, mod-
ified with a Tukey biweight scheme. The geomagnetic field model CHAOS-7.2 used for
predictions of themagnetic field and SV at the CMBproduces a normalizedmisfit of 0.6742
(this suggests that the adopted error estimates may have been too conservative). This
misfit was used as a benchmark aimed for in the other models produced in this study,
i.e. we derived flow models that predict the SV to the same level as the well established
CHAOS field model. Regularization parameters were thus adjusted until a similar misfit
was achieved (see Table 4.1). Another norm used for diagnostics, fS , is a measure of
the relative power of the geostrophic and equatorially symmetric modes (the equatorially
symmetric part of the flow) versus the equatorially anti-symmetric modes (the equatorially
anti-symmetric part of the flow), integrated over the core surface. Both the steady and the
time-dependent parts of the flow are included.

Model λ0 λS
t λA

t λa λz Φsv fS ft
CHAOS-7.2 - - - - - 0.6742 - -
1 6.3 0.76 3.8 1.5·103 - 0.6956 0.6963 0.0569
2a 6.3 0.95 47 1.5·103 - 0.6828 0.6738 0.0697
2b 6.3 1.5 30 1.5·103 - 0.6806 0.5550 0.0635
2c 6.3 3.8 9.1 1.5·103 - 0.6817 0.4861 0.1059
2d 6.3 7.6 6.8 1.5·103 - 0.6818 0.4509 0.1540
3a 44 6.7 3.3·102 1.1·104 0 0.6822 0.5349 2.545·10−5

3b 6.3 0.95 47 1.5·103 7.5·104 0.6792 0.6873 0.1016
3c 9.5 1.4 60 2.3·103 1.1·104 0.6823 0.6394 0.1072

Table 4.1
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fS =

〈∫
Ω

∣∣uS
∣∣2 dΩ〉〈∫

Ω |u|2 dΩ
〉 (4.2)

where ⟨·⟩ takes the time average, uS denotes the equatorially symmetric flow and u de-
notes all flow. This is a useful tool for measuring the influence of varying the regularization
parameters, in particular those penalizing symmetric and anti-symmetric flow (λS

t and λA
t ).

A similar norm is used to measure the relative power of the time-dependent flow versus
the steady flow.

ft =

〈∫
Ω |ut|2 dΩ

〉
〈∫

Ω |u|2 dΩ
〉 (4.3)

which is particularly useful for measuring the influence of varying the penalization of tem-
poral flow changes (λa).

4.1 Model 1: Previous Regularization Scheme
This section presents results for Model 1, which is produced by using the previous inver-
sion scheme of Kloss and Finlay 2019, but with the new data presented in chapter 3. The
purpose of producing this model was, in part, to test the scheme’s ability to produce rea-
sonable models with newer data, before modifications were applied to the regularization.
Another purpose was to find reasonable values for the regularization parameters, which
were then used as a starting point for determining the regularization parameters of later
generation models. Lastly, this previous regularization scheme model was useful as a
control model for evaluating the effects of the modifications that were later applied.

Model 1 has a time-dependent part consisting of a single geostrophicmode of 10 geostrophic
polynomials, 200 QG modes, and 220 equatorially anti-symmetric modes with n = 1,
as well as 288 SH coefficients describing the SV due to the small-scale error. These
numbers arise from the truncation degrees K = 10 and M = 20 in equation 2.59 and
Nsv = 16 in equation 2.25. Recall that the inertial modes are represented by two mode
amplitudes. For the 16 epochs of data, the total number of parameters estimated for the
time-dependent part of the model is therefore 16 · (10 + 2 · 200 + 2 · 220 + 288) = 18208.

The steady part of the model is represented by 2045 equatorially symmetric modes and
2255 equatorially anti-symmetric modes. These numbers arise from the truncation de-
grees K = 10 and M = 20 in equation 2.60, along with the finite number of solutions to
the polynomials in equations 2.43-2.44 and 2.48-2.49. The total number of parameters
estimated for the steady part of the model is therefore 2 · 2045 + 2 · 2255 = 8600. The full
model vector (equation 2.71) then contains 18208 + 8600 = 26808 parameters. By com-
parison, the full data vector contains 16698 SV data points, meaning we are dealing with
an under-determined inverse problem. The regularization scheme is therefore crucial to
the obtained results.

4.1.1 Estimated Flow
Figure 4.1 shows the total flow (steady + time-dependent) at the CMB, averaged over all
16 epochs. This time-averaged flow is very similar to that produced by Kloss and Finlay
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2019, although their model covered the period from September 2000 to January 2018.
One characteristic of the flow is a large anti-cyclonic gyre in the northern hemisphere.
The gyre flows south at around 100◦E before turning into a strong equatorial westward
flow under Africa and the Atlantic Ocean and finally turning back north under the north-
western Atlantic. The gyre is somewhat mirrored in the southern hemisphere, where the
flow is northward at around 100◦E before turning west at the equator and finally turning
south under South America. Overall, the flow is fastest south of the equator, under the
Atlantic. Our time-averaged flow deviates somewhat from that produced by Kloss and
Finlay 2019, as it has a clear eastward flow under the Pacific Ocean. The time-averaged
flow is mostly symmetrical with about 70% of the flow power being produced by symmetric
flow. It is also mostly steady with only about 6% of the power being produced by the time-
dependent part of the flow (see fS and ft in table 4.1).

Figure 4.1: Model 1: Time-average of the total flow on the CMB.

The time-dependent part of the flow is shown for every September of the data period
in figure 4.2. It is characterized by relatively strong flows in the beginning and towards
the end of the data period, with a relatively quiet period in between. Overall, the time-
dependent flow is strongest at lower latitudes with alternating directions along the equator,
seperated by regions of diverging or converging flow, indicating up- and downwelling of
the core fluid. This low-latitude flow is mainly azimuthal, although a slight equator crossing
is seen under the Pacific Ocean from the first epoch (September 2014) until 2018. The
direction of the time-dependent flow also seems to alternate with time. For example we
see a reversal of flow from westward to eastward under the Eastern Pacific and Indian
Ocean and vice versa under the Atlantic. Under the western Pacific, flow is initially quite
slow, but has, in 2019, evolved into a strong eastward flow.

Figure 4.3 shows power spectra of the time-averaged total flow, as well as snapshots
of the time-dependent flow. These power spectra are very consistent with the model
produced by Kloss and Finlay 2019 with the flow gradually losing power with increasing
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SH degree up to degree 15, which is a consequence of the imposed enstrophy-based
regularization. This indicates that large-scale flows are dominant, while small-scale flows
are increasingly insignificant. Especially after SH degree 15, where the flow starts to
rapidly lose all of its power. The time-dependent flow alone is 92% symmetric.

Figure 4.2: Model 1: Time-dependent flow at the CMB for September of every year in
the data period. Arrows represent flow and contours represent divergence/convergence,
corresponding to upwelling/downwelling of the core fluid.
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Figure 4.3: Model 1: Power spectra of time-averaged flow (thick lines) and snapshots of
time-dependent flow (thin lines) taken every 2 years of the data period, starting September
2014.

The alternating nature of the azimuthal part of the time-dependent flow seen at low lat-
itudes in figure 4.2 is also visualized in figure 4.4. White regions represent areas and
times of zero azimuthal flow. Along the horizontal axis, these white regions thus repre-
sent the areas of diverging and converging flow. Along the vertical axis, the white regions
correspond to times where the flow changes direction from westward to eastward or vice
versa. We thus see that the azimuthal flow at low latitudes is subject to a change in sign
at almost all longitudes within the data period, although the specific time of this inversion
varies at different longitudes. For example, we see a reversal of the time-dependent flow
starting to occur under the Eastern Pacific (ϕ ≈ 210◦) in early 2017. This inversion then
continues westward until the flow under the rest of the Pacific has been inverted in 2018.
Interestingly, the time span of this flow inversion somewhat corresponds to the period in
which the last La Niña was active in the Pacific Ocean (e.g. C. Zhang et al. 2019). This
observation led to the question of whether SV caused by ocean currents could perhaps
be significant enough to be picked up by SWARM observations. This is investigated in
chapter 5.
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Figure 4.4: Model 1: Azimuthal, time-dependent flow, averaged over latitudes between
15◦N and S in bins of 1◦ longitude, throughout the data period. The figure is centered in
the Pacific.

Similar to figure 4.4, the azimuthal flow acceleration is shown in figure 4.5. For longi-
tudes 0◦ − 120◦E (i.e. roughly from western Europe to China’s east coast) we mostly see
eastward (positive) acceleration of core flows throughout the data period. From roughly
120◦−200◦E (western Pacific), however, we see a change in sign from an initial westward
acceleration to an eastward acceleration in early 2017. At 300◦ − 360◦E (Atlantic Ocean)
flow acceleration is mostly westward throughout the data period. The acceleration pat-
terns correspond well with the flow reversals seen under the Pacific, Atlantic, and Indian
Ocean in figure 4.2.

Figure 4.5: Model 1: Azimuthal flow acceleration, averaged over latitudes between 15◦N
and S in bins of 1◦ longitude, throughout the data period. The acceleration is estimated
for a given epoch as the average acceleration explaining the difference in flow velocities
between the prior and subsequent epoch. The figure is centered in the Pacific.
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4.1.2 Predicted Secular Variation

Figure 4.6 shows the power spectra of SV predictions at the CMB by Model 1 as well
as CHAOS-7.2. These power spectra are well in agreement with the model produced by
Kloss and Finlay 2019. The total SV predicted by Model 1 (green) is very similar to the
SV predicted by CHAOS-7.2 (red) up to SH degree 11, where they start to deviate. The
power of the SV generated by the small-scale error (interaction of the flow with unresolved
lengthscales of the magnetic field) grows as the SH degree increases and is greater than
the power of the large-scale field SV at degree 14 and higher. Up to that point, the total
SV is explained well by the large-scale field alone.

CHAOS-7.2 SV
SV prediction
SV residual
Large-scale SV prediction
Small-scale error

Figure 4.6: Model 1: Power spectra of SV predictions at the CMB generated by CHAOS-
7.2 (red), the model (green), the SH coefficient residuals between the model and CHAOS-
7.2 (grey), the large-scale part of the model only (blue), and the small-scale error part of
the model only (black).

Figure 4.7 shows residuals between observed SV and SV predicted by the model. The
distribution is close to Laplacian. Note that the long tails of the phi residuals for VO data
(top left) have successfully been accounted for by the associated error estimates in the
normalization by the expected data errors (top right). Figure 4.8 shows timeseries of SV
predicted by the model and CHAOS-7.2 at example observatories. The model predic-
tions are very similar to those of CHAOS-7.2, which was our aim. Notice in particular the
reversal in trend of observed SV at the HON observatory in Hawaii (top) for the radial
and meridional vector components. According to our model, this SV trend reversal in the
Pacific seems to be explained by the reversal of core flow underneath.
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Figure 4.7: Model 1: Histograms of residuals between SV observations and model SV
predictions. Histograms are shown for both VOs (top) and GOs (bottom), both non-
normalized (left) and normalized with associated error estimates (right).
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Figure 4.8: Model 1: Example timeseries of SV data from 3 GOs (HON, KOU, and KAK)
and 3 VOs for all three vector components with associated error estimates. Model pre-
dictions (green) are shown along with CHAOS-7.2 predictions (red).
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4.2 Model 2a: Relaxed Penalization of Equatorially
Anti-Symmetric Flow

This section presents results for Model 2a, which was the preferredmodel from generation
2. Here, we applied the modifications to the regularization scheme presented in section
2.10, i.e. weaker penalization of small-scale, equatorially anti-symmetric flow. Model 2a
and all other generation 2 models contain the same number of mode amplitudes and
small-scale error coefficients as Model 1, i.e. a total of 26808 estimated parameters.

4.2.1 Estimated Flow
The time-average of Model 2a’s total flow, seen in figure 4.9, remains very similar to that
of Model 1. We see that the flow is dominated by gyres in both the northern and southern
hemisphere, contributing to a strong westward flow under Africa and the Atlantic Ocean.
We also see that the equatorial flow under the Pacific remains mostly eastward.

Figure 4.9: Model 2a: Time-average of the total flow on the CMB.

Effects of the new regularization scheme are more apparent in the time-dependent flow
alone, seen in figure 4.10. One significant feature is a strong, longitudinally widespread
equator crossing of the flow under the Pacific. The equator crossing is southward in the
early data period, i.e. 2014 to 2015. From then on, it gradually transitions into a westward,
azimuthal flow. In the middle of the data period (2016 to 2017), this clockwise rotation of
the flow direction has continued to the point where we instead see a northward equator
crossing under the Pacific. Towards the end of the data period (2018 to 2019), the sub-
Pacific flow is mostly eastward, although it still retains some velocity in the northward
direction, particularly under the western Pacific near Indonesia. The clockwise rotation
of the flow direction is in fact seen to some extent all along the equator. Weaker equator
crossings are also seen under the mid Atlantic and the Indian Ocean. An equator crossing
under the Indian Ocean forms the end of a staircase-like pattern, starting under the Sahara
Desert, with two ”steps” of alternating azimuthal and meridional flow going across Africa.
This pattern is particularly visible in the September epochs of 2018 and 2019, but seems
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to be a somewhat persistent feature, varying in strength and flow direction. Similar to
Model 1, we see a general reversal of azimuthal flow at most longitudes throughout the
data period. Another feature from Model 1 that is preserved is that of relatively weak flows
in the mid data period and stronger flows in the early and late epochs. For Model 2a, the
power of the symmetric flow explains about 67% of the total flow power (down from %70
for Model 1), while the time-dependent flow accounts for about 7% of the total power (up
from 6% for Model 1).

Figure 4.10: Model 2a: Time-dependent flow at the CMB for September of every year in
the data period. Arrows represent flow and contours represent divergence/convergence,
corresponding to upwelling/downwelling of the core fluid.

The intended effects of the new regularization scheme are clearly visible in the power
spectra of the flow, seen in figure 4.11. Significant power is retained at much higher SH
degrees. This is due to the relaxed penalization of anti-symmetric flow on small length
scales. Above SH degree 18, the power of the time-dependent flow (purple and cyan
lines) is entirely explained by anti-symmetric flow (dashed lines).
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Figure 4.11: Model 2a: Power spectra of time-averaged flow (red, blue) and snapshots
of time-dependent flow (purple, cyan) taken every 2 years of the data period, starting
September 2014. Power spectra for the equatorially symmetric (solid green, solid yel-
low) and anti-symmetric (dashed green, dashed yellow) parts of the time-dependent flow
snapshots are also shown. Two of the snapshots (corresponding to September 2014 and
September 2018) hold noticeably more power.

The azimuthal, time-dependent flow at the equator is shown in figure 4.12. Note that the
flow reversals (e.g. under the Pacific in the period 2017-18), previously seen in Model 1,
are still present.

Figure 4.12: Model 2a: Azimuthal, time-dependent flow, averaged over latitudes between
15◦N and S in bins of 1◦ longitude, throughout the data period. The figure is centered in
the Pacific.

The main features of the flow acceleration pattern seen in figure 4.13 are also very similar
to Model 1. Flow acceleration is mostly eastward under the Indian Ocean and mostly
westward under the Atlantic, throughout the data period. Under the Pacific, we again see
a change in acceleration from westward to eastward.
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Figure 4.13: Model 2a: Azimuthal flow acceleration, averaged over latitudes between
15◦N and S in bins of 1◦ longitude, throughout the data period. The acceleration is es-
timated for a given epoch as the average acceleration explaining the difference in flow
velocities between the prior and subsequent epoch. The figure is centered in the Pacific.

4.2.2 Predicted Secular Variation
Figures 4.14-4.16 show that the new regularization scheme has not had any significant ef-
fect on the model’s predictions of SV. The power spectrum of the SV is practically identical
to that of Model 1, the residual distribution is still Laplacian, and timeseries of SV at obser-
vatories are still generally predicted equally well by the model and CHAOS-7.2. Note that
this is mainly because regularization parameters are adjusted to achieve roughly the same
misfit as CHAOS-7.2 (see Φsv in table 4.1). This clearly illustrates the non-uniqueness in
the core flow inversion problem, as several solutions can fit the data to the same level.

CHAOS-7.2 SV
SV prediction
SV residual
Large-scale SV prediction
Small-scale error

Figure 4.14: Model 2a: Power spectra of SV predictions at the CMB generated by
CHAOS-7.2 (red), the model (green), the SH coefficient residuals between the model
and CHAOS-7.2 (grey), the large-scale part of the model only (blue), and the small-scale
error part of the model only (black).
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Figure 4.15: Model 2a: Histograms of residuals between SV observations and model
SV predictions. Histograms are shown for both VOs (top) and GOs (bottom), both non-
normalized (left) and normalized with associated error estimates (right).
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Figure 4.16: Model 2a: Example timeseries of SV data from 3 GOs (HON, KOU, and
KAK) and 3 VOs for all three vector components with associated error estimates. Model
predictions (green) are shown along with CHAOS-7.2 predictions (red).
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4.3 Model 3c: Diffusion
This section presents the results for Model 3c, which was the preferred model for genera-
tion 3. Here, we applied the modifications to the regularization scheme presented in both
section 2.10 and 2.11, i.e. relaxed penalization of small-scale, equatorially anti-symmetric
flow and accounting for diffusion. On top of the 26808 parameters estimated in previous
generation models, generation 3 models also estimate 288 SH coefficients explaining the
diffusion generated SV for every epoch. The total number of estimated parameters for
generation 3 models is therefore 26808 + 16 · 288 = 31416.

4.3.1 Estimated Flow
Figure 4.17 shows that the general structure of the time-averaged total flow is still pre-
served with diffusion taken into account, i.e. gyres in the northern and southern hemi-
spheres with a strong westward flow under Africa and the Atlantic. The flow does differ
from previous generation models in some important aspects, however, namely the flow
speeds in certain areas. For example, we see significantly slower flows under the Pacific
as well as under Australia and Indonesia. This decrease in flow speeds is also seen to
a lesser extent all over the CMB. Furthermore, the flow under the Pacific is no longer
noticably dominated by eastward motion, except for the western part, close to Indonesia.
Instead, the averaged flow includes a southward equator crossing in the mid Pacific.

Figure 4.17: Model 3c: Time-average of the total flow on the CMB.

Figure 4.18 shows that the time-dependent flow is still strongest in the early and late
epochs with a quieter period in between. Other features of Model 2a are also still present.
For example the wide equator crossing under the western Pacific, and the staircase pat-
tern between the Sahara Desert and the Indian Ocean. The speeds of the time-dependent
flow are not as significantly reduced as the steady flow, suggesting that the diffusion gen-
erated SV is mostly taking power from the steady flow. The ft norm in table 4.1, also
indicates this, as the flow power is explained by time-dependent flow to a greater extent,
i.e. about 11%. The flow is also a bit less symmetric, with about 64% of the flow power
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being explained by symmetric flow.

Figure 4.18: Model 3c: Time-dependent flow at the CMB for September of every year in
the data period. Arrows represent flow and contours represent divergence/convergence,
corresponding to upwelling/downwelling of the core fluid.

As seen in figure 4.19, the total time-averaged flow (red and blue lines) loses power at
a faster rate up to SH degree 15, than it did in Model 2a. This is especially true for
the poloidal part (blue). At SH degrees above 18, the time-dependent flow power is still
entirely explained by anti-symmetric flow. In figure 4.20, we again see that the equatorial
azimuthal flow undergoes a reversal at all latitudes, due to the acceleration pattern in
figure 4.21, which is also very similar to Model 2a.
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Figure 4.19: Model 3c: Power spectra of time-averaged flow (red, blue) and snapshots
of time-dependent flow (purple, cyan) taken every 2 years of the data period, starting
September 2014. Power spectra for the equatorially symmetric (solid green, solid yel-
low) and anti-symmetric (dashed green, dashed yellow) parts of the time-dependent flow
snapshots are also shown.

Figure 4.20: Model 3c: Azimuthal, time-dependent flow, averaged over latitudes between
15◦N and S in bins of 1◦ longitude, throughout the data period. The figure is centered in
the Pacific.
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Figure 4.21: Model 3c: Azimuthal flow acceleration, averaged over latitudes between
15◦N and S in bins of 1◦ longitude, throughout the data period. The acceleration is es-
timated for a given epoch as the average acceleration explaining the difference in flow
velocities between the prior and subsequent epoch. The figure is centered in the Pacific.

4.3.2 Predicted Secular Variation

A new aspect of the generation 3 models is that it is possible to examine the estimated
signature in the SV due to magnetic diffusion. The diffusion generated SV at the CMB is
shown throughout the data period in figure 4.22. Here we see a roughly equal amount
of negative and positive patches of SV. Pairs of a negative and a positive patch may
correspond to magnetic field line loops being pushed out through the surface, similar to
those seen on the Sun’s surface prior to a coronal mass ejection. One such pair is seen
under Indonesia for all epochs. This is the strongest SV feature predicted by the diffusion
part of the model. We also see that the diffusion generated SV is relatively static in both
intensity and geographical location. There is some variation, however. For example we
see that the negative patch under Indonesia is initially more elongated, covering areas
beneath China as well. This northern part of the patch fades and is practically gone in
2016. In 2014 we also see two, small, positive patches under northern Africa, that seem
to merge into a horseshoe shape as time progresses. A similar merger is also seen of the
two patches under northern South America. Apart from Indonesia, Africa, and northern
South America, significant patches are also seen at the Pacific, India, and east of the
Caspian Sea and Madagascar.
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Figure 4.22: Model 3c: Prediction of diffusion generated SV at the CMB for September of
every year within the data period.
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In thismodel, some of the SV power that was explained by the small-scale error in previous
generation models, seems to be explained by the diffusion instead. This is seen in figure
4.23 where the power of the small-scale error SV (black) is significantly smaller at large
length scales than it was for previous generation models. The diffusion SV (yellow) is
significant at these large length scales. Its power rises steadily until SH degree 4, and
then remains roughly constant. The diffusion SV also seems to explain practically all the
difference (grey) between the flow model and CHAOS-7.2 for SH degrees 7 and below.

CHAOS-7.2 SV
SV prediction
SV residual
Large-scale SV prediction
Small-scale error
Diffusion SV prediction

Figure 4.23: Model 3c: Power spectra of SV predictions at the CMB generated by
CHAOS-7.2 (red), the model (green), the SH coefficient residuals between the model and
CHAOS-7.2 (grey), the large-scale part of the model only (blue), the small-scale error part
of the model only (black), and diffusion (yellow).

In figure 4.24 we again see a Laplacian distribution of residuals, similar to previous mod-
els, while figure 4.25 demonstrates the ability of the flow model to predict SV timeseries
at observatories with roughly the same accuracy as CHAOS-7.2. In some locations, the
timeseries fits are slightly different, however. For example, the flow model (green) seems
to fit the theta component (middle) at KOU (second from the top) a bit better than CHAOS
(red).
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Figure 4.24: Model 3c: Histograms of residuals between SV observations and model
SV predictions. Histograms are shown for both VOs (top) and GOs (bottom), both non-
normalized (left) and normalized with associated error estimates (right).

56 Core Flows Inferred From SWARM Satellite Magnetic Data



Figure 4.25: Model 3c: Example timeseries of SV data from 3 ground ground observato-
ries (HON, KOU, and KAK) and 3 virtual observatories for all three vector components with
associated error estimates. Model predictions (green) are shown along with CHAOS-7.2
predictions (red).
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5 Discussion
5.1 Non-Uniqueness of the Presented Models
The preferred models presented in the previous chapter were chosen after producing a
large number of test models including, but not limited to, the ones shown in table 4.1. Even
with the various assumptions about core flow, presented in chapter 2, the inverse problem
is still highly non-unique. Achieving a model that is able to explain the SV observations
well is therefore not sufficient to determine with certainty that the flows of that model are
accurate representations of the actual flow in the Earth’s core. This is demonstrated in
table 4.1 where we see that models produced with different regularization schemes and
parameters all manage to roughly achieve the same benchmark misfit as the CHAOS-
7.2 model (Φsv = 0.6742). As we saw for the preferred models of the previous chapter,
each of these models have flows that are unique in some aspects. We will now further
demonstrate the non-uniqueness of the inverse problem by illustrating the differences
between models of the same generation, i.e. with the same regularization scheme, but
varying regularization parameters and explain the choice of the preferred models.

5.1.1 Generation 2
In generation 2 models, the regularization scheme modification described in section 2.10
was applied. The models of generation 2 differ from one another by varying the regu-
larization parameters penalizing equatorially symmetric and anti-symmetric flow, i.e. λS

t

and λA
t . The four generation 2 test models listed in table 4.1 thus have increasingly anti-

symmetric flows with Model 2d being most anti-symmetric. This is demonstrated in figure
5.1, which shows the power spectrum of the toroidal-poloidal flow for Model 2b, 2c, and
2d (see figure 4.11 for corresponding figure for Model 2a). We see that allowing for a
more equatorially anti-symmetric flow results in more overall power (red and blue lines) at
smaller length scales. The reduced penalization of anti-symmetric flows are compensated
for by increasing the penalization of symmetric flow to maintain the CHAOS-7.2 SV data
misfit benchmark. The power spectra of symmetric flow (solid yellow and green lines)
thus drop more rapidly with increasing SH degree for the more anti-symmetric models.

In figure 5.2 we see the effects of this on the flow. In choosing the preferred generation 2
model, Model 2c and 2d were deemed too extreme. In both models, the anti-symmetric
flow explains the majority of the flow power and they exhibit very large-scale equator
crossings of strong northward flows under South America and Indonesia. These dramatic
features are not required to fit the observations, as shown by Model 2a (figure 4.9) and
Model 2b. Although the aim of generation 2 models was to allow for equator crossings, we
aim for more local crossings to maintain a mostly symmetric flow at the equator. Several
core flow studies (e.g. Schaeffer and Pais 2011) indicate that breakdowns of symmetric
flow at the equator are small-scale in nature, while the large-scale structure of the flow
remains mostly symmetric. Schaeffer and Pais 2011 thus found that increasing the trun-
cation degree of their flow decreased the relative power of the symmetric flow. For their
highest truncation degree, the power of their flow, integrated over the CMB, was 66%
symmetric in the period investigated, i.e. 1997-2010. In this study, Model 2a achieved a
similar symmetric power ratio of 67% (see fS in table 4.1). It should be noted, however,
that the ratio of symmetric flow power is likely not constant in time. For example, Gillet
et al. 2011 found that flow symmetry at the CMB equator generally increased in the pe-
riod 1840-2010. Even so, Model 2b was also deemed too anti-symmetric, at only 56%
symmetric power, leaving Model 2a as the preferred model of generation 2.
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(a) Model 2b
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(b) Model 2c
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(c) Model 2d

Figure 5.1: Power spectra of time-averaged flow (red, blue) and snapshots of time-
dependent flow (purple, cyan) taken every 2 years of the data period, starting September
2014. Power spectra for the equatorially symmetric (solid green, solid yellow) and anti-
symmetric (dashed green, dashed yellow) parts of the time-dependent flow snapshots are
also shown.
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(a) Model 2b

(b) Model 2c

(c) Model 2d

Figure 5.2: Time-average of the total flow on the CMB fromSeptember 2014 to September
2019.
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5.1.2 Generation 3
In generation 3 models, the regularization scheme modifications of both section 2.10 and
2.11 were applied. The generation 3 models differ from one another by varying the reg-
ularization parameter penalizing diffusion generated secular acceleration, λz. Model 3a
features zero time regularization with λz = 0. In this model, the ratios of regularization
parameters in Model 2a were adopted, but had to be increased by a factor of 7 to achieve
the CHAOS-7.2 misfit benchmark. The result of this was almost zero core flow, because
of the harsh flow penalization, with the magnetic diffusion explaining most of the observed
SV, but changing dramatically, and unphysically, between subsequent epochs, which are
only seperated by four months. This is unrealistic, since flow in the core is required for
dynamo action to be maintained. Apart from having almost zero flow, we also reason that
this flow model is unrealistic, because diffusion is estimated for each epoch completely
independently. There should be some temporal correlation between subsequent epochs,
which can only be achieved with a non-zero λz. Diffusion generated SV predictions at
the CMB for Model 3a are shown for every September of the data period in figure 5.3.
Note that the magnitude of the SV patches is significantly higher than for Model 3c (figure
4.22). Variations of the SV patches are also more obvious.

Conversely, Model 3b features a very strong time regularization of the magnetic diffu-
sion, which makes it almost steady throughout the studied period. It was constructed by
maintaining all the flow regularization parameters of Model 2a and instead increasing λz

until the CHAOS-7.2 misfit benchmark was achieved. This model was deemed unrealis-
tic because it almost nullified the steady part of the flow, resulting in an almost entirely
time-dependent flow. The strong time regularization also means that changes to the dif-
fusion generated SV will be strongly linked to changes of the flow. It should ideally be
independent (the diffusion term of the induction equation does not depend on a moving
conductor). The predicted diffusion generated SV at the CMB is shown for Model 3b in
figure 5.4.

The preferred Model 3c is a compromise between the two extremes of Model 3a and 3b,
and features a moderate time regularization. It was produced by reducing λz in Model
3b and increasing the other regularization parameters by a factor of 1.5. This resulted in
a moderate reduction of the flow, as intended. Also, the magnitudes of SV patches (see
figure 4.22) correspond well with those of the dynamo realizations (figure 2.2).
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Figure 5.3: Model 3a: Prediction of diffusion generated SV at the CMB for September of
every year within the data period.
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Figure 5.4: Model 3b: Prediction of diffusion generated SV at the CMB for September of
every year within the data period.

5.2 Error Sources
5.2.1 Epochs of Displaced Phi Data
Figure 3.8 demonstrated that estimated errors of the phi (azimuthal) component of SV
observations at the VOs were significantly larger than the r and theta component errors.
This is also apparent in figures 4.7, 4.15, and 4.24, where the distributions of phi resid-
uals are characterized by relatively long tails. Investigation of SV residuals for individual
epochs revealed that the larger phi residuals were not caused by an error source that
persists throughout the data period. It is rather caused by individual epochs of displaced
phi residuals (not peaking at 0 nT/yr). One example of this is shown for the January 2015
epoch in figure 5.5. Notice that normalization is not sufficient to completely bring the peak
to zero. A similar peak displacement was seen for January 2016

The displacements were also reproducible with CHAOS predictions, indicating that the
issue was not caused by a bug in the inversion. As mentioned in chapter 3, the dis-

64 Core Flows Inferred From SWARM Satellite Magnetic Data



placements are in fact present in the original SWARM data. The fact that they appear
exclusively in January epochs links them to times of Summer in the northern hemisphere
(recall that the SV is defined by measuring the difference in main field strength for a given
epoch plus/minus 6 months) and the exact cause is still being investigated, but might be
linked to enhanced field aligned current signatures following large magnetic storm events,
e.g. April-August, 2015 (C. Finlay, pers. comm.).

Since the inversion includes a time regularization of the flow, subsequent epochs will
be correlated. All epochs could therefore be somewhat affected by this error source.
Normalization of residuals based on estimated SV error levels for the entire data period
reasonably accounts for the displacements however (e.g. figure 4.24) and we find that
our flows, like the reference CHAOS model, are unable to fit the SV data during these
disturbed times. The effects on the final models are expected to be small. Even so, it is
an error source that should ideally be accounted for in future studies when we know more
about its origin.
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Figure 5.5: Histograms of residuals between SV observations and model SV predictions
for the January 2015 epoch. Histograms are shown for both non-normalized residuals
(left) and residuals normalized with associated error estimates (right).

5.2.2 Ocean Currents
In the following we investigate the possible contribution from ocean currents (e.g. La Niña,
El Niño) to observed SV, and the possible influence of this signal on the estimated core
flows. The ocean flow model used for the tests described here was derived at daily time
resolution by J. Velimsky (Schnepf et al. 2020, pers. comm.) based on the ECCO ocean
flow model version 4 (Marshall et al. 1997; Forget et al. 2015) and solving the magnetic
induction equation including seasonal ocean conductivity variations (Tyler et al. 2017), the
conductivity of oceanic, coastal, and continental sediments and an electrically conducting
mantle (Grayver et al. 2017). The resulting poloidal magnetic field was then averaged
using 1 year time-windows, and spherical harmonics up to degree 20 were fit using a
6th order B-spline model with 0.1yr knot spacing. The ocean model covers the period
September 1997 to January 2000. We compute SV predictions from this oceanic model
at the locations of the GOs and VOs and subsequently use these predictions as input
data in the inversion scheme of Model 2a with all regularization parameters reduced to
compensate for the shorter data period. This allows us to attempt computing a hypothet-
ical core flow that produces the ocean generated SV to assess the size of possible error
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related to this source. The magnitude of this core flow then corresponds to the possible
flow error imposed by ocean currents.

Figure 5.6 illustrates the amplitudes of the ocean generated SV at example GOs and VOs
in the Pacific. The amplitudes are only a tiny fraction of actual observed SV (e.g. figure
4.16). The corresponding average core flow is shown in figure 5.7. These are on the
order of a few m/yr, which again is an insignificant fraction of the flows estimated by our
models (e.g. figure 4.9). Flow acceleration is also insignificant compared to our models,
as seen in figure 5.8. These results suggest that the influence of ocean generated SV on
core flow models is negligible, at least when considering annual SV data and the temporal
regularization scheme we imposed here.

Figure 5.6: Examples of ocean model SV predictions at GOs and VOs in the Pacific (black
dots). The fit by the inversion is also shown (green line).
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Figure 5.7: Hypothetical CMB flow explaining ocean generated SV.
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Figure 5.8: Acceleration of the azimuthal CMB flow at the equator explaining ocean gen-
erated SV.

5.3 Robust Features and Comparisons to Other Research
Considering the non-uniqueness of the inverse problem, making definitive conclusions
about the core flow to a high degree of detail is a challenge. Judgements can however be
made as to how likely various flow features are, based on their robustness, i.e. the degree
to which they appear across different inversion methods. The various models produced
in this and similar studies are investigated for this purpose.

In this study, three different regularization schemes were used to produce models with
varying regularization parameters. Model 3a manifested almost zero flow, due to the high
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power of the non-regularized diffusion. Among the remaining models, recurring flow fea-
tures include anti-cyclonic gyres in the northern and southern hemispheres that merge at
low latitudes to create a strong westward flow under Africa and the Atlantic Ocean. Robust
features for our models also include inter-annual reversals of equatorial, time-dependent,
azimuthal flow at almost all longitudes, resulting in a period of relatively weak flows in
the mid data period, i.e. 2016 to 2017. Time-dependent flows are generally strongest
under the Pacific Ocean. Here, time-dependent azimuthal flow appears to reverse from
initial westward flow to mostly eastward flow from 2017 onwards. The data seems to favor
equator crossings under the Indian Ocean and regions between the mid Pacific and In-
donesia, when equatorially anti-symmetric flow is allowed to retain power on small length
scales (i.e. generation 2 and generation 3 models). All the preferred models (Model 1,
2a, 3c), manifest flows that are mostly symmetric and steady (fS and ft, table 4.1) and
mostly toroidal for most length scales (e.g. figure 4.19). Among generation 3 models
with varying temporal regularization, we consistently see that diffusion generated SV is
strongest under Indonesia throughout the data period.

Overall, the robust features found in this study are in good agreement with the features
previously identified by Kloss and Finlay 2019, but the new regularization schemes do
produce some noticable differences. The relaxed penalization of the equatorially anti-
symmetric modes on short length scales did have the intended effect of producing a more
anti-symmetric flow with significant equator crossings. Kloss and Finlay 2019 also found
a southward equator crossing under the Pacific in 2014, similar to e.g. figure 4.18, but did
not find that it reversed to become a northward crossing in 2016, as suggested by Model
2a and 3c. Allowing diffusion to explain some of the observed SV (Model 3c) resulted in
generally weaker flows, especially at the locations of strong diffusion patches (e.g. In-
donesia), but the flow structure was generally preserved, apart from the elimination of the
mostly eastward motion observed for the time-averaged flow under the Pacific in Model
1 and 2a. Amit and Christensen 2008 also compared inverted flow models with and with-
out diffusion and found that diffusion did not dramatically affect CMB flow globally, but did
cause some local changes. They also concluded that magnetic diffusion likely contributes
to observed SV. Contrary to this study, however, they concluded that accounting for dif-
fusion generally increased flow velocities. This further demonstrates the non-uniqueness
of the inverse problem posed by the induction equation. Instead of using spherical har-
monics, Amit and Christensen 2008 handled the non-uniqueness by making a helical flow
assumption (Amit and Olson 2004), which relates the horizontal flow divergence to the
radial vorticity, and they estimated magnetic diffusion using a simple correlation with the
observed horizontal gradients of the flow, rather than using correlations obtained using
statistics from numerical dynamo simulations, as we have done.

The global structure of hemispheric anticyclonic gyres and westward flows under Africa
and the Atlantic Ocean is a classical structure observed in many studies, (e.g. Barrois
et al. 2018; Pais and Jault 2008; Gillet et al. 2015). This CMB flow structure is thought to
be the surface expression of a planetary eccentric gyre, i.e. a column of anti-cyclonic flow
surrounding the solid inner core. Barrois et al. 2018 also found a patch of intense diffusion
generated SV under Indonesia and a mostly equatorially symmetric flow outside the TC.
The planetary eccentric gyre and mostly symmetric CMB flows are also found by Gillet
et al. 2019 who studied the period 1880 to 2015, also using statistics from geodynamo
simulations to mitigate the non-uniqueness.
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6 Conclusions
We have succesfully developed and implemented modifications to the inversion scheme
of Kloss and Finlay 2019 for core flow estimation, based on normal modes of core flow,
described by K. Zhang and Liao 2017. These modifications were two-fold: First, we intro-
duced a relaxed penalization of equatorially anti-symmetric flow on small length scales,
to further allow for flows crossing the equator. Second, we introduced a means of ac-
counting for magnetic diffusion, by using covariances in the SV due to magnetic diffusion,
obtained from dynamo realizations from the Coupled Earth Model (Aubert et al. 2013).
We conclude that the first modification results in significant changes to time-dependent
flow structures on local scales, while global time-averaged flows are only slightly affected.
We also conclude that the second modification sees a significant reduction in flow veloc-
ities, due to a significant fraction of SV power being accounted for by diffusion. At the
same time, we recognize that the estimation of core flow from SV observations is a highly
non-unique inverse problem and that stronger prior information or a more complete prob-
abilistic inversion is needed to meaningfully constrain the regularization parameters. We
have, however, demonstrated that core flows including diffusion and small-scale, equato-
rial anti-symmetry are plausible explanations of the inter-annual, azimuthal flow reversals
at low latitudes also observed by e.g. Kloss and Finlay 2019 and Gillet et al. 2015.

Based on the preferred models presented in chapter 4, we argue that CMB flow in the
period 2014 to 2019 is dominated by a largely steady, planetary-scale, eccentric gyre,
consisting of anticyclonic gyres in the northern and southern hemispheres, that merge to
form a strong westward flow under Africa and the Atlantic Ocean. We further suggest
the existence of temporary equator crossings under the Indian and Pacific Ocean. The
crossing under the Pacific is initially southward, but reverses into a northward flow in 2016.
Similarly, we find inter-annual reversals of the time-dependent azimuthal flow all around
the CMB equator, resulting in a period of relatively weak time-dependent flows in 2016
to 2017. Throughout the data period, time-dependent flows are most dominant under
the Pacific. The total flow is estimated to be mostly toroidal and equatorially symmetric.
Regarding diffusion, we suggest that it may explain some fraction of observed SV, and
that constraining this fraction is important to accurately estimate the magnitude of flow
velocities.

We also conclude that ocean generated SV picked up by satellites and ground observa-
tories is small enough to be neglected when considering core flow on inter-annual and
longer timescales, and that the SWARM data is subject to an unknown error source on
the azimuthal SV measurements during some northern summers (most notably northern
summer 2015). The error source is estimated to not have had any significant impact on
the results of this study, however, as the derived flows are unable to fit this feature.

For future research, it may be interesting to investigate the impact of varying truncation
degrees, especially those governing the number of modes used. It would also be useful to
use our models to predict changes to the length of day; a classic method used to indicate
the validity of core flow models. Lastly, it would be interesting to repeat this study, as
longer time series of SWARM data become available. For example, we only observe one
reversal of time-dependent azimuthal flow at most longitudes and have not yet observed
a full ”cycle” of this phenomenon in the period covered by SWARM data.
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A Main Script
The following is the main MATLAB script used for the forward and inverse problem in this
study. Based on code by C. Kloss.

1 set(0,'defaulttextinterpreter ','latex ')
2 set(0,'defaultaxesfontsize ',8); %10.8 corresponds roughly to small in Latex 12

pt
3 set(0,'defaulttextfontsize ',8);
4
5 %predefine global variables
6 global PATH_fig PATH_mov r_surf r_cmb n_sv n_mf n_b kmax Nmax_sym Mmax_sym

Nmax_asym ...
7 Mmax_asym idx_bg M_bg M_fg bg_modes fg_modes sym_modes asym_modes ...
8 n_v tab_modes pp theta_tc Tor_coeff Pol_coeff vor
9

10 addpath('/r9/cfinl/m/CPT/')
11 addpath(genpath('/home/galjo/Documents/Thesis/tools'))
12 addpath(genpath('/home/galjo/Documents/Thesis/modes'))
13 addpath(genpath('/home/galjo/Documents/Thesis/data'))
14 PATH_fig = '/home/galjo/Documents/figs_gustav ';
15 PATH_mov = './';
16
17 %define radii of Earth's surface and CMB
18 r_surf = 6371.2;
19 r_cmb = 3485;
20 theta_tc = 30; % degree co-latitude of tangent cylinder
21 n_sv = 16; % maximum degree of SV
22 n_mf = 14; % maximum degree of large scale resolved MF
23 n_b = 30; % maximum degree of main field including unresolved small scales
24 rad = pi/180;
25
26 %load modes
27 tab_modes = [];
28 load('zon10_symN10M0M20_asymN10M0M20.mat');
29 % load('modes/zon30_symN10M0M20_asymN10M0M20.mat');
30 % load('modes/zon20_symN5M0M20_asymN5M0M20.mat');
31 M = [Tor_coeff;Pol_coeff];
32
33 %load vorticity
34 vor = [];
35 load('vorticity_diag_zon10_symN10M0M20_asymN10M0M20.mat');
36
37 %define set of inertial modes and load them in (incl. axisymmetric)
38 kmax = 10;
39 Nmax_sym = 10;
40 Mmax_sym = 20;
41 Nmax_asym = 10;
42 Mmax_asym = 20;
43 sym_modes = 2*Nmax_sym*Mmax_sym*(Nmax_sym+1)+(Nmax_sym -1)*(Nmax_sym);
44 asym_modes = 2*Mmax_asym*(Nmax_asym*(Nmax_asym+2)+1)+Nmax_asym*(Nmax_asym+1);
45 %mode_type = zeros(kmax+sym_modes+asym_modes ,1);
46 %mode_type(1:kmax) = 'z'; mode_type(kmax+1:kmax+sym_modes) = 's'; mode_type(

kmax+sym_modes+1:kmax+sym_modes+asym_modes) = 'a';
47
48 reply_bg = input('Choose time-dependent modes G+NG/[G+NG+EA]: ','s');
49 if isempty(reply_bg); reply_bg = 'G+NG+EA'; end;
50
51
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52 switch reply_bg
53 case 'G+NG'
54 %extract background modes
55 col_qg = repmat(4*(1:Nmax_sym),Mmax_sym ,1);
56 col_qg(end,:) = col_qg(end,:)+2*(1:Nmax_sym);
57 col_qg = cumsum(col_qg(:));
58 col_qg = [0;col_qg(1:end-1)]+kmax+1;
59 idx_bg = true(size(M,2),1);
60 idx_bg(1:kmax) = false(kmax,1); idx_bg(col_qg) = false(size(col_qg));

idx_bg(col_qg+1) = false(size(col_qg));
61
62 case 'G+NG+EA'
63 col_qg = repmat(4*(1:Nmax_sym),Mmax_sym ,1);
64 col_qg(end,:) = col_qg(end,:)+2*(1:Nmax_sym);
65 col_qg = cumsum(col_qg(:));
66 col_qg = [0;col_qg(1:end-1)]+kmax+1;
67 sym_tdep_modes = length(col_qg);
68
69 col_asym = repmat(2*(2*(0:Nmax_asym)+1),Mmax_asym ,1);
70 col_asym(end,:) = col_asym(end,:)+2*(1:Nmax_asym+1);
71 col_asym = cumsum(col_asym(:));
72 col_asym = [0;col_asym(1:end-1)]+kmax+sym_modes+1;
73 asym_tdep_modes = length(col_asym);
74
75 idx_bg = true(size(M,2),1);
76 idx_bg(1:kmax) = false(kmax,1);
77 idx_bg(col_qg) = false(size(col_qg)); idx_bg(col_qg+1) = false(size(

col_qg));
78 idx_bg(col_asym) = false(size(col_asym)); idx_bg(col_asym+1) = false(

size(col_asym));
79
80 end
81 clear reply_bg col_qg col_asym
82
83 M_bg = M(:,idx_bg); % background (time static) modes
84 M_fg = M(:,~idx_bg); % rest are time-dep modes
85 bg_modes = size(M_bg,2);
86 fg_modes = size(M_fg,2);
87
88 %load MF and SV from CHAOS6
89 pp = [];
90 CHAOS_filepath = '/home/galjo/Documents/coreflow-source/data/Gustav/Downloads/

CHAOS -7.2.mat';
91 load(CHAOS_filepath);
92
93
94 %% load observation data
95
96 global theta_GrObs phi_GrObs r_GrObs ...
97 num_of_VO_sw r_VO_sw theta_VO_sw phi_VO_sw ...
98 codes_GrObs time_GrObs dBr_GrObs dBt_GrObs dBp_GrObs time_VO_sw...
99 dBr_VO_sw dBt_VO_sw dBp_VO_sw num_of_GrObs var_VO_sw var_GrObs

100
101 %load VO data
102 %data_VO_ch = load('/home/magdh/phd/2019/01_VO_timeseries/VO_ver0117/

VO_CHAMP_SV.0117');
103 data_cdf = cdfread('/home/galjo/Documents/coreflow -source/data/Gustav/

Downloads/SW_OPER_VOBS_4M_2__20140301T000000_20200301T000000_0101.cdf','
CombineRecords ', 1, 'variable ', {'Timestamp ','Latitude ','Longitude ','
Radius','B_OB','sigma_OB ','B_CF','sigma_CF','Timestamp_SV ', 'B_SV','
sigma_SV '});

104
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105 Timestamp = [(todatenum(data_cdf{1}) -730486)./365.25 + 2000];
106 Latitude = squeeze(double(data_cdf{2}));
107 Longitude = squeeze(double(data_cdf{3}));
108 Radius = squeeze(double(data_cdf{4}))./1000;
109 B_OB = squeeze(double(data_cdf{5}));
110 sigma_OB = squeeze(double(data_cdf{6}));
111 B_CF = squeeze(double(data_cdf{7}));
112 sigma_CF = squeeze(double(data_cdf{8}));
113 Timestamp_SV = [(todatenum(data_cdf{9}) -730486)./365.25 + 2000];
114 B_SV = squeeze(double(data_cdf{10}));
115 sigma_SV = squeeze(double(data_cdf{11}));
116 index_nan = find(Timestamp_SV==Timestamp_SV(1));
117 Timestamp_SV(index_nan)=nan;
118 Colatitude = 90-Latitude;
119
120 data_VO_sw = [Colatitude Longitude Timestamp_SV Radius B_SV(:,1) B_SV(:,2)

B_SV(:,3)];
121 %num_of_VO_ch = 300; % number of CHAMP VOs
122 num_of_VO_sw = 300; % number of Swarm VOs
123 %data_VO_ch(data_VO_ch==99999) = NaN; % replace tags of invalid data
124 data_VO_sw(data_VO_sw==99999) = NaN;
125
126 %champ
127 %theta_VO_ch = data_VO_ch(:,1); % 0:180 degree
128 %phi_VO_ch = data_VO_ch(:,2); % -180:180 degree
129 %time_VO_ch = data_VO_ch(:,3); % years
130 %r_VO_ch = data_VO_ch(:,4); % km
131 %dBr_VO_ch = data_VO_ch(:,5); % radial SV nT/yr
132 %dBt_VO_ch = data_VO_ch(:,6); % theta SV nT/yr
133 %dBp_VO_ch = data_VO_ch(:,7); % phi SV nT/yr
134 %cov_VO_ch = load('/home/magdh/phd/2019/01_VO_timeseries/VO_ver0117/

VO_SV_CHAMP_COV_diag.0117');
135 %var_VO_ch = reshape(diag(cov_VO_ch),num_of_VO_ch ,3); % error of dBr (col 1),

dBt (col 2), dBp (col 3)
136
137 %swarm
138 theta_VO_sw = data_VO_sw(:,1); % 0:180 degree
139 phi_VO_sw = data_VO_sw(:,2); % -180:180 degree
140 time_VO_sw = data_VO_sw(:,3); % years
141 r_VO_sw = data_VO_sw(:,4); % km
142 dBr_VO_sw = data_VO_sw(:,5); % radial SV nT/yr
143 dBt_VO_sw = data_VO_sw(:,6); % theta SV nT/yr
144 dBp_VO_sw = data_VO_sw(:,7); % phi SV nT/yr
145 %cov_VO_sw = load('/home/magdh/phd/2019/01_VO_timeseries/VO_ver0117/

VO_SV_SWARM_COV_diag.0117');
146 var_VO_sw = sigma_SV(301:600,:).^2; % error of dBr (col 1), dBt (col 2), dBp

(col 3)
147
148 clear data_VO_sw cov_VO_sw
149
150 %load Ground Obs data
151 GrObs_data_cdf = cdfread('/home/galjo/Documents/coreflow-source/data/Gustav/

Downloads/GO_CDF/GObs_4M_19970301T000000_20201101T000000_0101.cdf', '
CombineRecords ', 1, 'variable ', {'Timestamp ','Latitude ', 'Longitude ','
Radius', 'B_OB','sigma_OB ','B_CF','sigma_CF','Timestamp_SV ', 'B_SV','
sigma_SV','bias_crust ','Obs'});

152 Timestamp = [todatenum(GrObs_data_cdf{1}) - 730486];
153 Timestamp2 = [(todatenum(GrObs_data_cdf{1}) - 730486)]./365.25 +2000; % in

years
154 Latitude = squeeze(double(GrObs_data_cdf{2}));
155 Longitude = squeeze(double(GrObs_data_cdf{3}));
156 Radius = squeeze(double(GrObs_data_cdf{4}))./1000;
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157 B_OB = squeeze(double(GrObs_data_cdf{5}));
158 sigma_OB = squeeze(double(GrObs_data_cdf{6}));
159 B_CF = squeeze(double(GrObs_data_cdf{7}));
160 sigma_CF = squeeze(double(GrObs_data_cdf{8}));
161 Timestamp_SV = [todatenum(GrObs_data_cdf{9}) - 730486];
162 Timestamp_SV2 = [todatenum(GrObs_data_cdf{9}) - 730486]./365.25 +2000; % in

years
163 B_SV = squeeze(double(GrObs_data_cdf{10}));
164 sigma_SV = squeeze(double(GrObs_data_cdf{11}));
165 bias_crust = squeeze(double(GrObs_data_cdf{12}));
166 Obs = GrObs_data_cdf{13};
167
168 Colatitude = 90-Latitude;
169
170 data_GrObs = [Colatitude Longitude Timestamp_SV2 Radius B_SV(:,1) B_SV(:,2)

B_SV(:,3)];
171 data_GrObs(data_GrObs==99999)=NaN;
172
173 codes_GrObs = Obs; % alphanumeric 4 digits
174 theta_GrObs = data_GrObs(:,1); % 0:180 degree
175 phi_GrObs = data_GrObs(:,2); % 0:360 degree
176 phi_GrObs(phi_GrObs > 180) = phi_GrObs(phi_GrObs > 180) -360; % -180:180

degree
177 time_GrObs = data_GrObs(:,3); % years
178 r_GrObs = data_GrObs(:,4); % km
179 dBr_GrObs = data_GrObs(:,5);
180 dBt_GrObs = data_GrObs(:,6);
181 dBp_GrObs = data_GrObs(:,7);
182
183 num_of_GrObs = find(codes_GrObs(:,1) == codes_GrObs(1,1) & codes_GrObs(:,2) ==

codes_GrObs(1,2) & codes_GrObs(:,3) == codes_GrObs(1,3) & codes_GrObs
(:,4) == codes_GrObs(1,4));

184 num_of_GrObs = num_of_GrObs(2)-1; % number of ground observatories
185
186 %cov_GrObs = load('home/galjo/Documents/coreflow -source/data/Gustav/Downloads/

GO_V33_4monthly/GR_OBS_RMM_SV_COV_V33_4month.10');
187 var_GrObs = sigma_SV(11071:11071+205,:).^2; %error of dBr (col 1), dBt (col 2)

, dBp (col 3)
188
189 clear fid temp_in cov_GrObs
190
191 %% Combine data sets
192
193
194
195
196 %set global variables
197 global time_step time theta_data phi_data r_data pred_chaos time_data ...
198 d var_d comp_list obs_type timeLOD pred_chaos_sa ...
199 G_LOD d_LOD obsLOD num_data_total num_data_VO num_data_GrObs ...
200 num_data_r num_data_theta num_data_phi num_data_VO_r num_data_VO_theta ...
201 num_data_VO_phi num_data_GrObs_r num_data_GrObs_theta num_data_GrObs_phi

W_d ...
202 codes_GrObs_final G_gauss2spacetime
203
204 time_step = 4/12; %4 month steps
205
206 time = [2014.7 2015 2015.4 2015.7 2016 2016.4 2016.7 2017 2017.4 2017.7 2018

2018.4 2018.7 2019 2019.4 2019.7]';
207 %time = ((2000+8/12):time_step:(2018+4/12))';
208
209 theta_data = [];
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210 phi_data = [];
211 r_data = [];
212 pred_chaos = [];
213 pred_chaos_sa = [];
214 time_data = [];
215 d = [];
216 var_d = [];
217 comp_list = [];
218 obs_type = [];
219 codes_GrObs_final = [];
220 G_gauss2spacetime = [];
221
222 %rework_timestamps; %TEMPORARY: Rework GrObs timestamps to match sw timestamps
223
224 for k=1:length(time)
225
226 fprintf('Data: working on time %s\n', my_datestr(time(k)));
227
228 %idx_data_ch = round(time_VO_ch ,3) == round(time(k),3);
229 idx_data_sw = round(time_VO_sw ,1) == round(time(k),1);
230 idx_data_GrObs = round(time_GrObs ,1) == round(time(k),1);
231
232 theta_new = [theta_VO_sw(idx_data_sw);theta_GrObs(idx_data_GrObs)];
233 phi_new = [phi_VO_sw(idx_data_sw);phi_GrObs(idx_data_GrObs)];
234 r_new = [r_VO_sw(idx_data_sw);r_GrObs(idx_data_GrObs)];
235 time_new = [time_VO_sw(idx_data_sw);time_GrObs(idx_data_GrObs)];
236 obs_type_new = [repmat('v',sum(idx_data_sw),1);repmat('g',sum(

idx_data_GrObs),1)];
237 codes_GrObs_new = codes_GrObs(idx_data_GrObs ,:);
238 codes_GrObs_theta_new = theta_GrObs(idx_data_GrObs);
239
240 d_new_r = [dBr_VO_sw(idx_data_sw);dBr_GrObs(idx_data_GrObs)];
241 d_new_theta = [dBt_VO_sw(idx_data_sw);dBt_GrObs(idx_data_GrObs)];
242 d_new_phi = [dBp_VO_sw(idx_data_sw);dBp_GrObs(idx_data_GrObs)];
243 codes_GrObs_d_new_r = dBr_GrObs(idx_data_GrObs);
244 codes_GrObs_d_new_theta = dBt_GrObs(idx_data_GrObs);
245 codes_GrObs_d_new_phi = dBp_GrObs(idx_data_GrObs);
246
247
248 %find line numbers that correspond to observatories with numbers
249 %between first and last one (1:num_of_VO) or (1:num_of_GrObs)
250 %line_ch = mod(find(idx_data_ch),num_of_VO_ch);
251 %line_ch(line_ch==0) = num_of_VO_ch; %last one is num_of_VO instead 0
252 line_sw = mod(find(idx_data_sw),num_of_VO_sw);
253 line_sw(line_sw==0) = num_of_VO_sw;
254 line_GrObs = mod(find(idx_data_GrObs),num_of_GrObs);
255 line_GrObs(line_GrObs==0) = num_of_GrObs;
256
257 %small repair to make script function with new variance data
258 %var_VO_sw_temp = var_VO_sw(k*num_of_VO_sw -num_of_VO_sw+1:k*num_of_VO_sw

,:);
259
260 var_d_new_r = [var_VO_sw(line_sw ,1);var_GrObs(line_GrObs ,1)];
261 var_d_new_theta = [var_VO_sw(line_sw ,2);var_GrObs(line_GrObs ,2)];
262 var_d_new_phi = [var_VO_sw(line_sw ,3);var_GrObs(line_GrObs ,3)];
263
264 if isequal(size(theta_new ,1),size(phi_new ,1),size(r_new ,1),size(d_new_r ,1)

,size(d_new_theta ,1),size(d_new_phi ,1),size(var_d_new_r ,1),size(
var_d_new_theta ,1),size(var_d_new_phi ,1),size(time_new ,1),size(
obs_type_new ,1))==0

265 error(['Sizes don''t match in ',num2str(time(k)),', check input data
format!'])
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266 end
267
268 %exclude polar region, so only equatorial region
269 idx_eq = (theta_new >= theta_tc & theta_new <= (180-theta_tc));
270 phi_new = phi_new(idx_eq);
271 theta_new = theta_new(idx_eq);
272 r_new = r_new(idx_eq);
273 time_new = time_new(idx_eq);
274 d_new_r = d_new_r(idx_eq);
275 var_d_new_r = var_d_new_r(idx_eq);
276 d_new_theta = d_new_theta(idx_eq);
277 var_d_new_theta = var_d_new_theta(idx_eq);
278 d_new_phi = d_new_phi(idx_eq);
279 var_d_new_phi = var_d_new_phi(idx_eq);
280 obs_type_new = obs_type_new(idx_eq);
281 codes_GrObs_idx_eq = (codes_GrObs_theta_new >= theta_tc &

codes_GrObs_theta_new <= (180-theta_tc));
282 codes_GrObs_new = codes_GrObs(codes_GrObs_idx_eq ,:);
283 codes_GrObs_d_new_r = codes_GrObs_d_new_r(codes_GrObs_idx_eq);
284 codes_GrObs_d_new_theta = codes_GrObs_d_new_theta(codes_GrObs_idx_eq);
285 codes_GrObs_d_new_phi = codes_GrObs_d_new_phi(codes_GrObs_idx_eq);
286
287 %find not NaNs: useful data
288 idx_nonan_r = ~isnan(d_new_r);
289 idx_nonan_theta = ~isnan(d_new_theta);
290 idx_nonan_phi = ~isnan(d_new_phi);
291 codes_GrObs_idx_nonan_r = ~isnan(codes_GrObs_d_new_r);
292 codes_GrObs_idx_nonan_theta = ~isnan(codes_GrObs_d_new_theta);
293 codes_GrObs_idx_nonan_phi = ~isnan(codes_GrObs_d_new_phi);
294
295 %codes_GrObs_idx_nonan_r = codes_GrObs_d_new_r==codes_GrObs_d_new_r;
296 %codes_GrObs_idx_nonan_theta = codes_GrObs_d_new_theta==

codes_GrObs_d_new_theta;
297 %codes_GrObs_idx_nonan_phi = codes_GrObs_d_new_phi==codes_GrObs_d_new_phi;
298
299 if sum([idx_nonan_r;idx_nonan_theta;idx_nonan_phi])==0
300 time(k) = NaN;
301 continue
302 else
303 %produce matrix to go from spherical harmonics to grid on CMB
304 [G_gauss2grid_r ,G_gauss2grid_theta ,G_gauss2grid_phi] = design_SHA(

r_new/r_surf,theta_new*rad,phi_new*rad,n_sv);
305 G_gauss2spacetime_new = [G_gauss2grid_r(idx_nonan_r ,:);

G_gauss2grid_theta(idx_nonan_theta ,:);G_gauss2grid_phi(
idx_nonan_phi ,:)];

306 G_gauss2spacetime = blkdiag(G_gauss2spacetime ,G_gauss2spacetime_new);
307 end
308
309 g_sv_chaos = fnval(jd2000(time(k), 1, 1), fnder(pp, 1))*365.25; %SV
310 g_sv_chaos = g_sv_chaos(1:n_sv*(n_sv+2),:);
311 g_sa_chaos = fnval(jd2000(time(k), 1, 1), fnder(pp, 2))*365.25^2; %SV
312 g_sa_chaos = g_sa_chaos(1:n_sv*(n_sv+2),:);
313 g_sa_chaos(100:end) = 0; % set coefficient of n>=10 to zero
314
315 %extend vectors
316 comp_list = [comp_list;repmat('r',sum(idx_nonan_r),1);repmat('t',sum(

idx_nonan_theta),1);repmat('p',sum(idx_nonan_phi),1)];
317 theta_data = [theta_data;theta_new(idx_nonan_r);theta_new(idx_nonan_theta)

;theta_new(idx_nonan_phi)];
318 phi_data = [phi_data;phi_new(idx_nonan_r);phi_new(idx_nonan_theta);phi_new

(idx_nonan_phi)];
319 r_data = [r_data;r_new(idx_nonan_r);r_new(idx_nonan_theta);r_new(
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idx_nonan_phi)];
320 time_data = [time_data;time_new(idx_nonan_r);time_new(idx_nonan_theta);

time_new(idx_nonan_phi)];
321 d = [d;d_new_r(idx_nonan_r);d_new_theta(idx_nonan_theta);d_new_phi(

idx_nonan_phi)];
322 pred_chaos = [pred_chaos;G_gauss2spacetime_new*g_sv_chaos];
323 pred_chaos_sa = [pred_chaos_sa;G_gauss2spacetime_new*g_sa_chaos];
324 var_d = [var_d;var_d_new_r(idx_nonan_r);var_d_new_theta(idx_nonan_theta);

var_d_new_phi(idx_nonan_phi)];
325 obs_type = [obs_type;obs_type_new(idx_nonan_r);obs_type_new(

idx_nonan_theta);obs_type_new(idx_nonan_phi)];
326 codes_GrObs_final = [codes_GrObs_final;codes_GrObs_new(

codes_GrObs_idx_nonan_r ,:);codes_GrObs_new(codes_GrObs_idx_nonan_theta
,:);codes_GrObs_new(codes_GrObs_idx_nonan_phi ,:)];

327
328 %save number of sw and GrObs data as well as r, theta, and phi for data
329 %inspection
330 comp_list_temp = [repmat('r',sum(idx_nonan_r),1);repmat('t',sum(

idx_nonan_theta),1);repmat('p',sum(idx_nonan_phi),1)];
331 obs_type_temp = [obs_type_new(idx_nonan_r);obs_type_new(idx_nonan_theta);

obs_type_new(idx_nonan_phi)];
332
333 codes_GrObs_unique1 = codes_GrObs_new(codes_GrObs_idx_nonan_phi ,:);
334 codes_GrObs_unique2 = codes_GrObs_new(codes_GrObs_idx_nonan_r ,:);
335 num_data_total(k) = length(comp_list_temp);
336 num_data_r(k) = sum(comp_list_temp == 'r');
337 num_data_theta(k) = sum(comp_list_temp == 't');
338 num_data_phi(k) = sum(comp_list_temp == 'p');
339 num_data_VO(k) = sum(obs_type_temp == 'v');
340 num_data_VO_temp = obs_type_temp == 'v';
341 num_data_VO_r(k) = sum(num_data_VO_temp(comp_list_temp == 'r'));
342 num_data_VO_theta(k) = sum(num_data_VO_temp(comp_list_temp == 't'));
343 num_data_VO_phi(k) = sum(num_data_VO_temp(comp_list_temp == 'p'));
344 num_data_GrObs(k) = sum(obs_type_temp == 'g');
345 num_data_GrObs_temp = obs_type_temp == 'g';
346 num_data_GrObs_r(k) = sum(num_data_GrObs_temp(comp_list_temp == 'r'));
347 num_data_GrObs_theta(k) = sum(num_data_GrObs_temp(comp_list_temp == 't'));
348 num_data_GrObs_phi(k) = sum(num_data_GrObs_temp(comp_list_temp == 'p'));
349
350
351 end
352 clear G_gauss2grid_r G_gauss2grid_theta G_gauss2grid_phi time_new r_new ...
353 phi_new theta_new d_new_r d_new_theta d_new_phi var_d_new_r ...
354 var_d_new_theta var_d_new_phi idx_nonan_r idx_nonan_theta ...
355 idx_nonan_phi idx_eq line_ch line_sw line_GrObs idx_data_ch ...
356 idx_data_sw idx_data_GrObs G_gauss2spacetime_new g_sv_chaos obs_type_new;
357
358 fprintf('Done.\n')
359
360 time(isnan(time)) = [];
361
362 idx_time_nlap = nan(size(d));
363 idx_time_plap = nan(size(d));
364 i = 1;
365 while i<=length(d)
366 idx = find(comp_list==comp_list(i) & theta_data==theta_data(i) & r_data==

r_data(i) & phi_data==phi_data(i) & obs_type(:,1)==obs_type(i,1) & (
round(time_data ,1)==round(time_data(i)-time_step ,1) | round(time_data
,1)==round(time_data(i)+time_step ,1)));

367 if numel(idx)==2
368 idx = sort(idx,'ascend ');
369 idx_time_nlap(i) = idx(1);
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370 idx_time_plap(i) = idx(2);
371 elseif numel(idx)==4 % two stations at one location
372 idx = sort(idx,'ascend ');
373 idx_time_nlap(i) = idx(1);
374 idx_time_plap(i) = idx(3);
375 i = i+1;
376 idx_time_nlap(i) = idx(2);
377 idx_time_plap(i) = idx(4);
378 elseif numel(idx)>4
379 error('Too many values found')
380 end
381 i = i+1;
382 end
383 clear idx
384
385 weight_choice = input('Weight? huber/[tukey]: ','s');
386 if isempty(weight_choice); weight_choice = 'tukey'; end;
387
388 switch weight_choice
389 case 'huber'
390 %data weight matrix, fixed with Huber weights from CHAOS-6
391 res = abs(pred_chaos -d)./sqrt(var_d);
392 huber_factor = input('Huber weights factor? [1.5]: ');
393 if isempty(huber_factor); huber_factor = 1.5; end;
394 W_d = diag(min(ones(size(res)),huber_factor./res)./var_d); %incl.

Huber weights
395 clear res
396 case 'tukey'
397 %data weight matrix using fixed Tukey's biweight
398 res = abs(pred_chaos -d)./sqrt(var_d);
399 W_d = 1./var_d;
400 W_d(res<=4.685) = (1-res(res<=4.685).^2/4.685^2).^2.*W_d(res<=4.685);
401 W_d(res>4.685) = 0;
402 W_d = diag(W_d);
403
404 d2 = zeros(size(d));
405 for i=1:length(d2)
406 if isnan(idx_time_plap(i))
407 d2(i) = 999999;
408 else
409 d2(i) = (d(idx_time_plap(i))-d(idx_time_nlap(i)))/(2*time_step

);
410 end
411 end
412
413 var_sa = 2*var_d/(2*time_step)^2;
414 res = abs(pred_chaos_sa -d2)./sqrt(var_sa);
415 W_d2 = 1./var_sa;
416 W_d2(res<=4.685) = (1-res(res<=4.685).^2/4.685^2).^2.*W_d2(res<=4.685)

;
417 W_d2(res>4.685) = 0;
418 W_d2 = diag(W_d2); % needed for statistics and plots
419
420 clear res
421 end
422
423 %read in LOD data and interpolate
424 data = dlmread('LOD_noAAM_notides_1yr_1962.5-2016.5.dat');
425 timeLOD = data(:,1);
426 obsLOD = data(:,2); %subtract trend (very small)?: -1.4e-2*(1:length(timeLOD))

';
427 d_LOD = spline(timeLOD,obsLOD,time);
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428 d_LOD(time>timeLOD(end) | time<timeLOD(1)) = NaN;
429 d_LOD = d_LOD-mean(d_LOD,'omitnan ');
430 sigma2_LOD = 0.24^2; % used 1e-2 before
431 G_LOD = [sparse(length(time),bg_modes),1.138*M_fg(1,1)*kron(eye(length(time))

-1/length(time)*ones(length(time),length(time)),[1 sparse(1,fg_modes -1)]),
sparse(length(time),length(time)*n_sv*(n_sv+2))];

432 clear data
433
434 %% Define covariance of the small-scale magnetic field
435
436 para = fit_spectrum(CHAOS_filepath);
437
438 %correlation function
439 tau0 = @(n) para(3)*exp(para(4)*n); %characteristic time in yrs
440 rho = @(t1,t2,n) (1+sqrt(3)*abs(t1-t2)./tau0(n)).*exp(-sqrt(3)*abs(t1-t2)./

tau0(n));
441
442 %mf variance fit to spectrum
443 sigma2 = @(n) para(1)*exp(para(2)*n)./((2*n+1).*(n+1));
444
445 %degrees to be used for extending spectrum
446 num_of_extspec = n_b*(n_b+2)-n_mf*(n_mf+2);
447 n_extspec = zeros(num_of_extspec ,1);
448 mm = 0;
449 for n=(n_mf+1):n_b
450 n_extspec(mm+(1:2*n+1)) = n*ones(2*n+1,1);
451 mm = mm+2*n+1;
452 end
453 clear mm
454
455 %auto-covariance of unresolved magnetic field at single epoch (t1-t2 = 0)
456 Cov_ss = kron(eye(length(time)),diag(sigma2(n_extspec)));
457
458 %off-diagonal elements
459 for i=2:length(time)
460 for j=1:(i-1)
461 D = diag(sigma2(n_extspec).*rho(time(i),time(j),n_extspec));
462 Cov_ss((i-1)*num_of_extspec+(1:num_of_extspec),(j-1)*num_of_extspec

+(1:num_of_extspec)) = D;
463 Cov_ss((j-1)*num_of_extspec+(1:num_of_extspec),(i-1)*num_of_extspec

+(1:num_of_extspec)) = D;
464 end
465 end
466 clear D n_extspec num_of_extspec para
467
468 %% Create forward problem with CHAOS6 (May take 30 minutes)
469
470 %set global variables
471 global H_grid H_a diffusion_reg
472
473 %diffusion_reg = 'No diffusion ';
474 diffusion_reg = 'Include diffusion ';
475
476 H_a = zeros(length(time)*n_sv*(n_sv+2),bg_modes+length(time)*fg_modes);
477 for k = 1:length(time)
478
479 fprintf('Design: working on %s\n', my_datestr(time(k)))
480 % fprintf('Design: working on %s\n', time(k))
481
482 %compute MF and SV at specific time
483 g_mf_chaos = fnval(jd2000(time(k), 1, 1), pp, 0); %MF
484 g_mf_chaos = g_mf_chaos(1:n_mf*(n_mf+2));
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485
486 %compute matrix for induction equation
487 A = SV_synthesis(n_mf,n_v,n_sv,g_mf_chaos);
488
489 H_a((k-1)*n_sv*(n_sv+2)+(1:n_sv*(n_sv+2)),1:bg_modes) = A*M_bg;
490 H_a((k-1)*n_sv*(n_sv+2)+(1:n_sv*(n_sv+2)),bg_modes+(k-1)*fg_modes+(1:

fg_modes)) = A*M_fg;
491 end
492 fprintf('Done.\n')
493
494 switch diffusion_reg
495 case 'No diffusion '
496 H_grid = [G_gauss2spacetime*H_a G_gauss2spacetime]; %include small-

scale error: augmented state approach
497 case 'Include diffusion '
498 H_grid = [G_gauss2spacetime*H_a G_gauss2spacetime G_gauss2spacetime];
499
500 end
501
502 %save weighted square of system matrix
503 H2 = sparse(H_grid '*W_d*H_grid);
504 d2 = H_grid '*W_d*d;
505
506 H_grid = sparse(H_grid);
507 H_a = sparse(H_a);
508
509 %clear G_gauss2spacetime A g_mf_chaos
510
511 %% INVERSION SETTING
512
513 %set global variables
514 global all_m m space_reg time_reg LOD_input reg_measure misfit_measure ...
515 lambda_exp lambda2 lambda_t lambda_sym a_fg a_bg e idx_m lambda_g

lambda_asym ...
516 misfit_VO_r misfit_VO_theta misfit_VO_phi misfit_GrObs_r

misfit_GrObs_theta ...
517 misfit_GrObs_phi
518
519 %predefine arrays for L-curve output
520 % lambda_exp = [-3 -0.378 -0.084 0.1 0.276 0.4 0.58 0.80 1.348 2];
521 lambda_exp = 0.8;
522 reg_measure = zeros(size(lambda_exp));
523 misfit_measure = reg_measure;
524 all_m = NaN(size(H_grid ,2),length(lambda_exp));
525 idx_m = [];
526 e = [];
527
528 factor = 1.5 %increase all reg params (except lambda_Z_t) with same factor
529 lambda2 = 0.12;
530 lambda_t = factor*1.5e3
531 lambda_g = 1;
532 lambda_asym = 0.85*62.5
533 lambda_sym = 1.25;
534 switch diffusion_reg
535 case 'Include diffusion '
536 lambda_Z_t = 1.1e4
537 end
538
539 %initial values for non-linear solver
540 eps = 1e-8; %for small values, norm tends to Lp-norm, no need to change
541 Niter_max = 25; %maximum number of iterations
542 Niter_min = 2; %mimimum number of iterations
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543 delta_min = 1e-3; %error of model
544 ratio_misfit_min = 1e-2; %mimimum rel. change of misfit
545 ratio_reg_a_min = 1e-2; %minimum rel. change of regularization on modes
546 ratio_reg_e_min = 1e-2; %minimum rel. change of regularization on small-scale

error
547
548 % space_reg = 'L1_allvorticity ';
549 % space_reg = 'L2_all '; % model_2
550 % space_reg = 'L1_allenergy ';
551 % space_reg = 'L1_nonGvorticity_Genergy ';
552 % space_reg = 'L1_nonGvorticity_L2_Genergy ';
553 % space_reg = 'L1_GNGvorticity_L2_background ';
554 % space_reg = 'L1_nonGvorticity_L1_Gvorticity '; % model_1, model_3
555 % space_reg = 'L1_nonGvorticity_L1_Gvorticity_heavyasym '; % model_4
556 space_reg = 'L1_noAsymVorticity '; %NEW SCHEME model1
557
558 % time_reg = 'L2_correlation ';
559 time_reg = 'L2_firstdiff ';
560 % time_reg = 'L1_seconddiff ';
561
562 LOD_input = 'off';
563 %LOD_input = 'on';
564
565 %% DO INVERSION
566
567 global W_e
568
569 fileID = fopen('solver_info.dat','a');
570 fprintf(fileID,'--------------- %s ---------------\n',datestr(now,'dd-mmm-yyyy

HH:MM'));
571
572 fileID2 = fopen('solver_results.dat','a');
573 fprintf(fileID,'Flow inversion of real data from VOs and GOs (ca. %i points

per epoch).\n',num_of_GrObs+num_of_VO_sw);
574
575 switch space_reg
576 case 'L1_allvorticity '
577 fprintf(fileID,'Spatial regularization: L1 on vorticity of all modes.\

n');
578 case 'L2_all'
579 vor_bg = vor(idx_bg);
580 vor_fg = vor(~idx_bg);
581 n_extspec = zeros(n_v*(n_v+2),1);
582 mm = 0;
583 for n = 1:n_v
584 n_extspec(mm+(1:2*n+1)) = n^3*ones(2*n+1,1);
585 mm = mm+2*n+1;
586 end
587 n_extspec = repmat(n_extspec ,2,1);
588
589 % D = diag(n_extspec);
590 % W_a = blkdiag(length(time)*M_bg'*D*M_bg,kron(speye(length(time)),

M_fg'*D*M_fg));
591 % W_a(1:bg_modes ,(bg_modes+1):end) = repmat(M_bg'*D*M_fg,1,length(time

));
592 % W_a((bg_modes+1):end,1:bg_modes) = W_a(1:bg_modes ,(bg_modes+1):end)

';
593
594 W_a_fg = kron(speye(length(time)),M_fg'*diag(n_extspec)*M_fg);
595 W_a_bg = M_bg'*diag(n_extspec)*M_bg;
596 clear mm n_extspec
597 fprintf(fileID,'Spatial regularization: Gillet-type L2 on toroidal -
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poloidal spectrum of flow, scales with (degree)^3\n');
598 case 'L1_allenergy '
599 fprintf(fileID,'Spatial regularization: L1 on energy of all modes.\n')

;
600 case 'L1_nonGvorticity_Genergy '
601 fprintf(fileID,'Spatial regularization: L1 on vorticity of all non-

geostrophic modes and L1 on energy of geostrophic polynomials.\n')
;

602 vor_bg = vor(idx_bg);
603 vor_fg = vor(~idx_bg);
604 vor_fg = repmat(vor_fg(kmax+1:end),1,length(time));
605 case 'L1_nonGvorticity_L2_Genergy '
606 fprintf(fileID,'Spatial regularization: L1 on vorticity of all non-

geostrophic modes and L2 on energy of geostrophic polynomials.\n')
;

607 vor_bg = vor(idx_bg);
608 vor_fg = vor(~idx_bg);
609 vor_fg = repmat(vor_fg(kmax+1:end),1,length(time));
610 W_a_fg_g = ones(kmax,length(time));
611 case 'L1_GNGvorticity_L2_background '
612 fprintf(fileID,'Spatial regularization: L1 on vorticity of all NG

modes and geostrophic modes, and L2 on amplitude of background
modes.\n');

613 vor_fg = vor(~idx_bg);
614 vor_fg = repmat(vor_fg,1,length(time));
615 case 'L1_nonGvorticity_L1_Gvorticity '
616 vor_bg = vor(idx_bg);
617 vor_fg = vor(~idx_bg);
618 vor_fg_g = repmat(vor_fg(1:kmax),1,length(time));
619 vor_fg_ng = repmat(vor_fg(kmax+1:end),1,length(time));
620 fprintf(fileID,'Spatial regularization: L1 on vorticity of all modes

but two parameters for non-geostrophic modes and geostrophic mode
.\n');

621 case 'L1_nonGvorticity_L1_Gvorticity_heavyasym '
622 vor_bg = vor(idx_bg);
623 vor_fg = vor(~idx_bg);
624 vor_fg_g = repmat(vor_fg(1:kmax),1,length(time));
625 vor_fg_sym = repmat(vor_fg(kmax+(1:2*sym_tdep_modes)),1,length(time));
626 vor_fg_asym = repmat(vor_fg(kmax+2*sym_tdep_modes+(1:2*asym_tdep_modes

)),1,length(time));
627 fprintf(fileID,'Spatial regularization: L1 on vorticity of all modes

but two parameters for non-geostrophic modes and geostrophic mode
while heavier damping time-dependent asymmetric modes.\n');

628 case 'L1_noAsymVorticity '
629 vor_bg = vor(idx_bg);
630 vor_fg = vor(~idx_bg);
631 vor_fg_g = repmat(vor_fg(1:kmax),1,length(time));
632 vor_fg_sym = repmat(vor_fg(kmax+(1:2*sym_tdep_modes)),1,length(time));
633 vor_fg_asym = repmat(vor_fg(kmax+2*sym_tdep_modes+(1:2*asym_tdep_modes

)),1,length(time));
634 fprintf(fileID,'Spatial regularization: L1 on vorticity of all modes

except time-dependent asymmetric.\n');
635 end
636
637 switch time_reg
638 case 'L2_correlation '
639 %correlation function for correlation in time
640 tau_u = 100; %correlation time in yrs
641 rho_u = @(t1,t2) exp(-abs(t1-t2)/tau_u);
642 [t1,t2] = meshgrid(time,time);
643 Cor_t = rho_u(t1,t2);
644 W_t = blkdiag(sparse(bg_modes ,bg_modes),kron(inv(Cor_t),speye(fg_modes
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)),sparse(length(time)*n_sv*(n_sv+2),length(time)*n_sv*(n_sv+2)));
645 fprintf(fileID,'Temporal regularization: L2 using correlation function

.\n');
646 case 'L2_firstdiff '
647 %L2 on first time-difference of flow
648
649 switch diffusion_reg
650 case 'No diffusion '
651 D1 = kron(spdiags([-ones(length(time),1) ones(length(time),1)

],[0 1],length(time)-1,length(time)),speye(fg_modes));
652 W_t = D1'*D1; clear D1;
653 W_t = blkdiag(sparse(bg_modes ,bg_modes),W_t,sparse(length(time

)*n_sv*(n_sv+2),length(time)*n_sv*(n_sv+2)));
654 fprintf(fileID,'Temporal regularization: L2 on first

difference.\n');
655 case 'Include diffusion '
656 D1 = kron(spdiags([-ones(length(time),1) ones(length(time),1)

],[0 1],length(time)-1,length(time)),speye(fg_modes));
657 W_t = D1'*D1; clear D1;
658 D1 = kron(spdiags([-ones(length(time),1) ones(length(time),1)

],[0 1],length(time)-1,length(time)),speye(n_sv*(n_sv+2)))
;

659 W_Z_t = D1'*D1; clear D1;
660 W_t = blkdiag(sparse(bg_modes ,bg_modes),lambda_t*W_t,sparse(

length(time)*n_sv*(n_sv+2),length(time)*n_sv*(n_sv+2)),
lambda_Z_t*W_Z_t);

661 fprintf(fileID,'Temporal regularization: L2 on first
difference.\n');

662 end
663 case 'L1_seconddiff '
664 %second difference for correlation in time
665 D2 = spdiags([ones(length(time),1) -2*ones(length(time),1) ones(length

(time),1)],[0 1 2],length(time)-2,length(time));
666 D2 = kron(D2,speye(fg_modes));
667 fprintf(fileID,'Temporal regularization: L1 on second difference.\n');
668 end
669
670 switch LOD_input
671 case 'off'
672 fprintf(fileID,'LOD is not included as data.\n');
673 d3 = zeros(size(d2));
674 G2_LOD = sparse(size(H2,2),size(H2,2));
675 case 'on'
676 fprintf(fileID,'LOD is included as data (sigma2 = %.4e).\n',sigma2_LOD

);
677 d3 = 1/sigma2_LOD*G_LOD'*d_LOD;
678 G2_LOD = 1/sigma2_LOD*(G_LOD'*G_LOD);
679 end
680
681 fprintf(fileID,'Epochs from %9.3f to %9.3f in %3.2f-year steps.\n',time(1),

time(end),time(2)-time(1));
682 fprintf(fileID,'Modes are: kmax = %i (zonal), Nmax = %i Mmax = %i (symmetric),

Nmax = %i Mmax = %i (anti-symmetric), incl. axi-symmetric waves.\n',kmax,
Nmax_sym,Mmax_sym,Nmax_asym ,Mmax_asym);

683 fprintf(fileID,'Choice of data weight: %s\n',weight_choice);
684
685 for i=1:length(lambda_exp)
686
687 %L1-Regularization nonlinear solver
688 lambda = factor*10^lambda_exp(i);
689 % lambda2 = 10^lambda_exp(i);
690 % lambda_t = 10^lambda_exp(i);
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691 % lambda_g = 10^lambda_exp(i);
692
693 [~,num_sol] = system('grep -c "Starting non-linear solver" solver_info.dat

');
694 disp([num2str(str2double(num_sol)+1),' Starting non-linear solver with

lambda = ',num2str(lambda),' and lambda_t = ',num2str(lambda_t)]);
695 fprintf(fileID ,'\n%i Starting non-linear solver with lambda = %.4e,

lambda2 = %.4e and lambda_t = %.4e\n',str2double(num_sol)+1,lambda,
lambda2,lambda_t);

696
697 switch space_reg
698 case 'L1_allvorticity '
699 W_a_bg = speye(bg_modes); %L1 initialization
700 W_a_fg = speye(length(time)*fg_modes); %L1 initialization
701 case 'L1_allenergy '
702 W_a_bg = speye(bg_modes); %L1 initialization
703 W_a_fg = speye(length(time)*fg_modes); %L1 initialization
704 case 'L1_nonGvorticity_Genergy '
705 W_a_bg = speye(bg_modes); %L1 initialization
706 W_a_fg_g = ones(kmax,length(time));
707 W_a_fg_ng = ones(fg_modes -kmax,length(time));
708 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
709 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(time)*

fg_modes); %L1 initialization
710 fprintf(fileID,'and lambda_g = %.4e\n',lambda_g);
711 case 'L1_nonGvorticity_L2_Genergy '
712 W_a_bg = speye(bg_modes); %L1 initialization
713 W_a_fg_ng = ones(fg_modes -kmax,length(time));
714 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
715 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(time)*

fg_modes); %L1 initialization
716 fprintf(fileID,'and lambda_g = %.4e\n',lambda_g);
717 case 'L1_GNGvorticity_L2_background '
718 W_a_bg = speye(bg_modes);
719 W_a_fg_g = ones(kmax,length(time));
720 W_a_fg_ng = ones(fg_modes -kmax,length(time));
721 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
722 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(time)*

fg_modes); %L1 initialization
723 fprintf(fileID,'and lambda_g = %.4e\n',lambda_g);
724 case 'L1_nonGvorticity_L1_Gvorticity '
725 W_a_bg = speye(bg_modes); %L1 initialization
726 W_a_fg_g = ones(kmax,length(time));
727 W_a_fg_ng = ones(fg_modes -kmax,length(time));
728 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
729 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(time)*

fg_modes); %L1 initialization
730 fprintf(fileID,'and lambda_g = %.4e\n',lambda_g);
731 case 'L1_nonGvorticity_L1_Gvorticity_heavyasym '
732 W_a_bg = speye(bg_modes); %L1 initialization
733 W_a_fg_g = ones(kmax,length(time));
734 W_a_fg_sym = ones(2*sym_tdep_modes , length(time));
735 W_a_fg_asym = ones(2*asym_tdep_modes , length(time));
736 W_a_fg = [lambda_g * W_a_fg_g; W_a_fg_sym; lambda_asym *

W_a_fg_asym];
737 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(time)*

fg_modes); %L1 initialization
738 fprintf(fileID,'and lambda_g = %.4e together with lambda_asym =

%.4e\n',lambda_g , lambda_asym);
739 case 'L1_noAsymVorticity '
740 W_a_bg = speye(bg_modes); %L1 initialization
741 W_a_fg_g = ones(kmax,length(time));
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742 W_a_fg_sym = ones(2*sym_tdep_modes , length(time));
743 W_a_fg_asym = ones(2*asym_tdep_modes , length(time));
744 W_a_fg = [lambda_g * W_a_fg_g; lambda_sym*W_a_fg_sym; lambda_asym

* W_a_fg_asym];
745 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(time)*

fg_modes); %L1 initialization
746 fprintf(fileID,'and lambda_g = %.4e together with lambda_asym =

%.4e\n',lambda_g , lambda_asym);
747 end
748
749 fprintf(fileID ,[repmat('-',1,188),'\n%5s',repmat(' %12s',1,14),'\n',repmat

('-',1,188),'\n'],'Niter','delta','sv_misfit ','ratio','reg_a0','
ratio_a0','reg_at','ratio_at','reg_e','ratio_e','LOD_misfit ','len_LOD
','ratio_sym ','ratio_tdep ','sa_misfit ');

750
751 W_e = speye(length(time)*n_sv*(n_sv+2));
752 W_a = blkdiag(W_a_bg,lambda2*W_a_fg); %initial matrix for Ekblom measure
753
754 switch time_reg
755 case 'L1_seconddiff '
756 W_t = blkdiag(sparse(bg_modes ,bg_modes),D2'*D2,sparse(length(time)

*n_sv*(n_sv+2),length(time)*n_sv*(n_sv+2)));
757 end
758
759 switch diffusion_reg
760 case 'No diffusion '
761 R = blkdiag(lambda*W_a,W_e) + lambda_t*W_t; %augmented

regularization
762 case 'Include diffusion '
763
764 Z_r = importdata('Cor_dnm_r_o.dat'); %load dynamo realizations
765 Z_r = Z_r';
766
767 trunc = n_sv*(n_sv+2);
768 Z_trunc = Z_r(1:trunc ,:); %truncate
769
770 %compute self covariance matrix
771 Z1 = zeros(size(Z_trunc));
772 Zm = mean(Z_trunc ,2);
773 for j = 1:size(Z_trunc ,2)
774 Z1(:,j) = Z_trunc(:,j) - Zm;
775 end
776 Cov_Z = 1 / (size(Z_trunc ,2)-1)*(Z1*transpose(Z1));
777 Cov_Z = inv(Cov_Z);
778 Cov_Z_cell = repmat({Cov_Z},1,length(time));
779 W_z = blkdiag(Cov_Z_cell{:});
780 R = blkdiag(lambda*W_a,W_e,W_z) + W_t;
781 end
782
783 m = full(H2 + G2_LOD + R)\(d2+d3); % use full because sparse is not

multithreaded
784
785 %update matrices
786 a_bg = m(1:bg_modes);
787 a_fg = reshape(m((bg_modes+1):(bg_modes+length(time)*fg_modes)),fg_modes ,

length(time));
788
789
790 %statistics
791 delta = 1;
792 res = H_grid*m-d;
793 sv_misfit = res'*W_d*res/length(d);
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794 reg_a0 = norm(vor_bg.*a_bg,1) / bg_modes;
795 reg_at = norm(repmat(vor_fg,length(time),1).*a_fg(:),1) / (length(time)*

fg_modes);
796 switch diffusion_reg
797 case 'No diffusion '
798 reg_e = (m(size(H_a,2)+1:end)'*W_e*m(size(H_a,2)+1:end)) / (length

(m)-size(H_a,2));
799 LOD_misfit = 1/sigma2_LOD*mean((d_LOD-G_LOD*m).^2,'omitnan ');
800 len_LOD = mean((G_LOD*m).^2)/mean((d_LOD).^2,'omitnan ');
801 case 'Include diffusion '
802 reg_e = (m(size(H_a,2)+1:size(H_a,2)+size(W_e,2))'*W_e*m(size(H_a

,2)+1:size(H_a,2)+size(W_e,2))) / (length(m)-size(H_a,2)-size(
W_z,2));

803 LOD_misfit = 1/sigma2_LOD*mean((d_LOD-G_LOD*m(1:end-size(W_z,2)))
.^2,'omitnan ');

804 len_LOD = mean((G_LOD*m(1:end-size(W_z,2))).^2)/mean((d_LOD).^2,'
omitnan ');

805 end
806 ratio_misfit = 1;
807 ratio_reg_a0 = 1;
808 ratio_reg_at = 1;
809 ratio_reg_e = 1;
810 ratio_sym = 1;
811 ratio_tdep = 1;
812 sa_misfit = rms( (res(idx_time_plap(~isnan(idx_time_plap)))-res(

idx_time_nlap(~isnan(idx_time_plap))))./sqrt(2*var_d(idx_time_plap(~
isnan(idx_time_plap)))) )^2;

813
814 fprintf(fileID ,'%5i %12.4e %12.4f %12.4e %12.4e %12.4e %12.4e %12.4e %12.4

e %12.4e %12.4e %12.4e %12.4f %12.4f %12.4f\n',0,delta,sv_misfit ,
ratio_misfit ,reg_a0,ratio_reg_a0 ,reg_at,ratio_reg_at ,reg_e,ratio_reg_e
,LOD_misfit ,len_LOD,ratio_sym ,ratio_tdep ,sa_misfit);

815
816 Niter = 1;
817 while Niter<=Niter_max
818
819 %save old statistics and output
820 misfit_old = sv_misfit;
821 reg_a0_old = reg_a0;
822 reg_at_old = reg_at;
823 reg_e_old = reg_e;
824 m_old = m;
825
826 x = repmat(M_bg*a_bg+M_fg*mean(a_fg,2),1,length(time));
827 Cov_e = smallscale_cov(Cov_ss,x,time,n_b,n_mf,n_v,n_sv);
828 W_e = inv(Cov_e);
829
830
831 switch space_reg
832 case 'L1_allvorticity '
833 W_a_bg = spdiags(vor_bg.^2./sqrt((vor_bg.*a_bg).^2+eps^2)

,0,bg_modes,bg_modes);
834 W_a_fg = spdiags(vor_fg.^2./sqrt((vor_fg.*a_fg(:)).^2+eps

^2),0,length(time)*fg_modes,length(time)*fg_modes);
835 case 'L1_allenergy '
836 W_a_bg = spdiags(1./sqrt(a_bg.^2+eps^2),0,bg_modes,

bg_modes);
837 W_a_fg = spdiags(1./sqrt(a_fg(:).^2+eps^2),0,length(time)*

fg_modes,length(time)*fg_modes);
838 case 'L1_nonGvorticity_Genergy '
839 W_a_bg = spdiags(vor_bg.^2./sqrt((vor_bg.*a_bg).^2+eps^2)

,0,bg_modes,bg_modes);
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840 W_a_fg_g = 1./sqrt(a_fg(1:kmax,:).^2+eps^2);
841 W_a_fg_ng = vor_fg.^2./sqrt((vor_fg.*a_fg(kmax+1:end,:))

.^2+eps^2);
842 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
843 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(

time)*fg_modes); %L1 initialization
844 case 'L1_nonGvorticity_L2_Genergy '
845 W_a_bg = spdiags(vor_bg.^2./sqrt((vor_bg.*a_bg).^2+eps^2)

,0,bg_modes,bg_modes);
846 W_a_fg_ng = vor_fg.^2./sqrt((vor_fg.*a_fg(kmax+1:end,:))

.^2+eps^2);
847 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
848 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(

time)*fg_modes); %L1 initialization
849 case 'L1_GNGvorticity_L2_background '
850 W_a_fg_ng = vor_fg_ng.^2./sqrt((vor_fg_ng.*a_fg(kmax+1:end

,:)).^2+eps^2);
851 W_a_fg_g = vor_fg_g.^2./sqrt((vor_fg_g.*a_fg(1:kmax,:))

.^2+eps^2);
852 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
853 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(

time)*fg_modes); %L1 initialization
854 case 'L1_nonGvorticity_L1_Gvorticity '
855 W_a_bg = spdiags(vor_bg.^2./sqrt((vor_bg.*a_bg).^2+eps^2)

,0,bg_modes,bg_modes);
856 W_a_fg_g = vor_fg_g.^2./sqrt((vor_fg_g.*a_fg(1:kmax,:))

.^2+eps^2);
857 W_a_fg_ng = vor_fg_ng.^2./sqrt((vor_fg_ng.*a_fg(kmax+1:end

,:)).^2+eps^2);
858 W_a_fg = [lambda_g*W_a_fg_g;W_a_fg_ng];
859 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(

time)*fg_modes); %L1 initialization
860 case 'L1_nonGvorticity_L1_Gvorticity_heavyasym '
861 W_a_bg = spdiags(vor_bg.^2./sqrt((vor_bg.*a_bg).^2+eps^2)

,0,bg_modes,bg_modes);
862 W_a_fg_g = vor_fg_g.^2./sqrt((vor_fg_g.*a_fg(1:kmax,:))

.^2+eps^2);
863 W_a_fg_sym = vor_fg_sym.^2./sqrt((vor_fg_sym.*a_fg(kmax

+(1:2*sym_tdep_modes),:)).^2+eps^2);
864 W_a_fg_asym = vor_fg_asym.^2./sqrt((vor_fg_asym.*a_fg(kmax

+2*sym_tdep_modes+(1:2*asym_tdep_modes),:)).^2+eps^2);
865 W_a_fg = [lambda_g*W_a_fg_g; W_a_fg_sym; lambda_asym*

W_a_fg_asym];
866 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(

time)*fg_modes); %L1 initialization
867 case 'L1_noAsymVorticity '
868 W_a_bg = spdiags(vor_bg.^2./sqrt((vor_bg.*a_bg).^2+eps^2)

,0,bg_modes,bg_modes);
869 W_a_fg_g = vor_fg_g.^2./sqrt((vor_fg_g.*a_fg(1:kmax,:))

.^2+eps^2);
870 W_a_fg_sym = vor_fg_sym.^2./sqrt((vor_fg_sym.*a_fg(kmax

+(1:2*sym_tdep_modes),:)).^2+eps^2);
871 W_a_fg_asym = 1./sqrt((a_fg(kmax+2*sym_tdep_modes+(1:2*

asym_tdep_modes),:)).^2+eps^2);
872 W_a_fg = [lambda_g*W_a_fg_g; lambda_sym*W_a_fg_sym;

lambda_asym*W_a_fg_asym];
873 W_a_fg = spdiags(W_a_fg(:),0,length(time)*fg_modes,length(

time)*fg_modes); %L1 initialization
874 end
875
876 W_a = blkdiag(W_a_bg,lambda2*W_a_fg);
877
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878 switch time_reg
879 case 'L1_seconddiff '
880 W_t = blkdiag(sparse(bg_modes ,bg_modes),D2'*spdiags(1./

sqrt((D2*a_fg(:)).^2+eps^2),0,(length(time)-2)*
fg_modes ,(length(time)-2)*fg_modes)*D2,sparse(length(
time)*n_sv*(n_sv+2),length(time)*n_sv*(n_sv+2)));

881 end
882
883 switch diffusion_reg
884 case 'Include diffusion '
885 R = blkdiag(lambda*W_a,W_e,W_z) + W_t;
886 case 'No diffusion '
887 R = blkdiag(lambda*W_a,W_e) + lambda_t*W_t;
888 end
889
890 %update model vector
891 m = full(H2 + G2_LOD + R)\(d2+d3);
892
893 %update matrices
894 a_bg = m(1:bg_modes);
895 a_fg = reshape(m((bg_modes+1):(bg_modes+length(time)*fg_modes)),

fg_modes,length(time));
896
897 %save model vector in case loop is terminated
898 all_m(:,i) = m;
899
900 %model change
901 delta = norm(m(1:size(H_a,2))-m_old(1:size(H_a,2),1))/norm(m_old

(1:size(H_a,2)),1);
902
903 %misfit norm
904 res = H_grid*m-d;
905 sv_misfit = (res'*W_d*res) / length(d);
906 ratio_misfit = abs(sv_misfit -misfit_old)/sv_misfit;
907
908 %flow regularization norm
909 reg_a0 = norm(vor_bg.*a_bg,1) / bg_modes;
910 reg_at = norm(repmat(vor_fg,length(time),1).*a_fg(:),1) / (length(

time)*fg_modes);
911 ratio_reg_a0 = abs(reg_a0-reg_a0_old)/reg_a0_old;
912 ratio_reg_at = abs(reg_at-reg_at_old)/reg_at_old;
913
914 %small-scale error regularization norm
915 switch diffusion_reg
916 case 'No diffusion '
917 reg_e = (m(size(H_a,2)+1:end)'*(Cov_e\m(size(H_a,2)+1:end)

)) / (length(m)-size(H_a,2));
918 case 'Include diffusion '
919 reg_e = (m(size(H_a,2)+1:size(H_a,2)+size(W_z,2))'*(Cov_e\

m(size(H_a,2)+1:size(H_a,2)+size(W_z,2)))) / (length(m
)-size(H_a,2)-size(W_z,2));

920 end
921 ratio_reg_e = abs(reg_e-reg_e_old)/reg_e_old;
922
923 %LOD prediction and measure of fit
924 switch diffusion_reg
925 case 'No diffusion '
926 LOD_misfit = 1/sigma2_LOD*mean((d_LOD-G_LOD*m).^2,'omitnan

');
927 len_LOD = mean((G_LOD*m).^2)/mean((d_LOD).^2,'omitnan ');
928 case 'Include diffusion '
929 LOD_misfit = 1/sigma2_LOD*mean((d_LOD-G_LOD*m(1:end-size(
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W_z,2))).^2,'omitnan ');
930 len_LOD = mean((G_LOD*m(1:end-size(W_z))).^2)/mean((d_LOD)

.^2,'omitnan ');
931 end
932
933 %power ratio of symmetric to total flow at surface
934 a = zeros(bg_modes+fg_modes ,1);
935 a(idx_bg) = a_bg;
936 a(~idx_bg) = mean(a_fg,2);
937 ratio_sym = (powerspec_flow(Tor_coeff(:,1:kmax+sym_modes)*a(1:kmax

+sym_modes),n_v)...
938 + powerspec_flow(Pol_coeff(:,1:kmax+sym_modes)*a(1:

kmax+sym_modes),n_v))...
939 / (powerspec_flow(Tor_coeff*a,n_v) + powerspec_flow(

Pol_coeff*a,n_v));
940 ratio_tdep = (powerspec_flow(Tor_coeff(:,~idx_bg)*mean(a_fg,2),n_v

)...
941 + powerspec_flow(Pol_coeff(:,~idx_bg)*mean(a_fg,2),

n_v))...
942 / (powerspec_flow(Tor_coeff*a,n_v) + powerspec_flow(

Pol_coeff*a,n_v));
943 clear a
944
945 %sa normalized misft assuming gaussian error estimates
946 res_sa = zeros(size(d));
947 for j=1:length(d)
948 if isnan(idx_time_plap(j))
949 res_sa(j) = 0;
950 else
951 res_sa(j) = (res(idx_time_plap(j))-res(idx_time_nlap(j)))

/(2*time_step);
952 end
953 end
954 sa_misfit = (res_sa '*W_d2*res_sa)/sum(res_sa~=0);
955 % sa_misfit = rms( (res(idx_time_plap(~isnan(idx_time_plap)))-res(

idx_time_nlap(~isnan(idx_time_plap))))./sqrt(2*var_d(
idx_time_plap(~isnan(idx_time_plap)))) )^2;

956
957 disp(['After iteration ',num2str(Niter),', delta is ',num2str(

delta)]);
958 fprintf(fileID ,'%5i %12.4e %12.4f %12.4e %12.4e %12.4e %12.4e

%12.4e %12.4e %12.4e %12.4e %12.4e %12.4f %12.4f %12.4f\n',
Niter,delta,sv_misfit ,ratio_misfit ,reg_a0,ratio_reg_a0 ,reg_at,
ratio_reg_at ,reg_e,ratio_reg_e ,LOD_misfit ,len_LOD,ratio_sym ,
ratio_tdep ,sa_misfit);

959
960 if delta <= delta_min && ratio_misfit <= ratio_misfit_min &&

ratio_reg_a0 <= ratio_reg_a_min && ratio_reg_at <=
ratio_reg_a_min && ratio_reg_e <= ratio_reg_e_min && Niter >=
Niter_min

961 break
962 end
963 Niter = Niter+1;
964
965 end
966
967 plot_hist_residuals_2020;
968 %write L-curve output
969 fprintf(fileID2 ,'%.9e ',m);
970 fprintf(fileID2 ,'\n');
971 fprintf(fileID,'> solver_results.dat # Model was saved to file\n');
972 misfit_measure(i) = sv_misfit;
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973 disp(['misfit = ',num2str(misfit_measure(i))]);
974 disp(['misfit for VO r = ',num2str(misfit_VO_r)]);
975 disp(['misfit for VO theta = ',num2str(misfit_VO_theta)]);
976 disp(['misfit for VO phi = ',num2str(misfit_VO_phi)]);
977 disp(['misfit for GrObs r = ',num2str(misfit_GrObs_r)]);
978 disp(['misfit for GrObs theta = ',num2str(misfit_GrObs_theta)]);
979 disp(['misfit for GrObs phi = ',num2str(misfit_GrObs_phi)]);
980 reg_measure(i) = reg_a0;
981
982 end
983
984 fprintf(fileID,'lambda_exp = [');
985 fprintf(fileID ,'%.9e ',lambda_exp);
986 fprintf(fileID ,']\n');
987 fprintf(fileID,'misfit_measure = [');
988 fprintf(fileID ,'%.9e ',misfit_measure);
989 fprintf(fileID ,']\n');
990 fprintf(fileID,'reg_measure = [');
991 fprintf(fileID ,'%.9e ',reg_measure);
992 fprintf(fileID ,']\n\n');
993 fclose(fileID);
994 fclose(fileID2);
995
996 if size(all_m ,2)==1
997 %%
998 disp('load solution for plotting ')
999

1000 ini_solution % make sure "all_m" exists: either created through model run
or loaded from solver_results.dat

1001
1002 f = figure();
1003 f.Units = 'normalized ';
1004 f.OuterPosition = [0.3 0.1 0.6 0.5];
1005 ax1 = axes('Parent',f,'position ',[0.55 0.39 0.4 0.54]);
1006 ax2 = axes('Parent',f,'position ',[0.08 0.39 0.4 0.54]);
1007 lim = 1.5*max(max(abs(a_fg)));
1008
1009 make_sliderplot([],[],a_fg(:,1),ax2,lim)
1010 b = uicontrol('Parent',f,'Style','slider','Position ',[81,54,419,23],...
1011 'value',1, 'min',1, 'max',length(time),'SliderStep ', [1/(length(time)

-1) 0.1]);
1012 bgcolor = f.Color;
1013 bl1 = uicontrol('Parent',f,'Style','text','Position ',[50,54,23,23],...
1014 'String','1','BackgroundColor ',bgcolor);
1015 bl2 = uicontrol('Parent',f,'Style','text','Position ',[500,54,23,23],...
1016 'String',num2str(length(time)),'BackgroundColor ',bgcolor);
1017 bl3 = uicontrol('Parent',f,'Style','text','Position ',[240,25,100,23],...
1018 'String','Time','BackgroundColor ',bgcolor);
1019 set(b,'Callback ',@(hObject,eventdata) make_sliderplot(hObject,eventdata ,

a_fg(:,round(get(hObject,'Value'))),ax2,lim) )
1020
1021 plot(ax1,a_bg);
1022 axis(ax1,[-99 length(a_bg)+99 -1.1*max(abs(a_bg)) 1.1*max(abs(a_bg))])
1023 title(ax1,'background modes')
1024
1025 clear bgcolor lim
1026 else
1027 %%
1028 plt_width = 15;
1029
1030 %interpolate curve and find point of maximum curvature
1031 pp_reg = pchip(log10(misfit_measure),log10(reg_measure));
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1032 pp_lambda = pchip(log10(misfit_measure),lambda_exp);
1033 xq_misfit_measure = linspace(min(misfit_measure),max(misfit_measure),100);
1034
1035 % Plot L-curve (Regularization norm over normalized misfit^2)
1036 fig=figure();
1037 fig.Units = 'centimeters ';
1038 fig.Position=[0 5 plt_width 6*plt_width/8];
1039
1040 dcm_obj = datacursormode(fig);
1041 set(dcm_obj,'DisplayStyle ','Window','Enable','on')
1042 plot3(xq_misfit_measure ,10.^fnval(pp_reg,log10(xq_misfit_measure)),fnval(

pp_lambda ,log10(xq_misfit_measure)))
1043 hold on
1044 scatter3(misfit_measure ,reg_measure ,lambda_exp ,36,lambda_exp ,'filled','

DisplayName ','L-curve')
1045 hold off
1046 view(2)
1047 grid off
1048 set(gca,'xscale','log','yscale','log','TicklabelInterpreter ','latex')
1049 xlabel('normalized misfit ')
1050 ylabel('regularization norm of flow')
1051 clb = colorbar;
1052 set(clb,'TicklabelInterpreter ','latex')
1053 ylabel(clb,'$\log_{10}(\lambda)$','Interpreter ','latex ')
1054
1055 % save_plot('./figures/Lcurve ');
1056
1057 end
1058
1059 %% EXTRA: Find separate tdep amplitude vectors for g, sym, asym (needed for

some plots)
1060
1061 global a_fg_g a_fg_sym a_fg_asym fg_g_modes fg_sym_modes fg_asym_modes ...
1062 idx_fg_g idx_fg_sym idx_fg_asym mode_type
1063
1064 %g_tdep_modes = size(a_fg,1) - sym_tdep_modes - asym_tdep_modes;
1065
1066 %mode_type = tab_modes(:,5);
1067 %mode_type = char(mode_type);
1068 %mode_type = mode_type(:,1); %vector with code for mode type indices
1069 %idx_fg_asym = mode_type == 'a';
1070 %idx_fg_asym = idx_fg_asym(~idx_bg);
1071 %idx_fg_sym = mode_type == 's';
1072 %idx_fg_sym = idx_fg_sym(~idx_bg);
1073 %idx_fg_g = mode_type == 'z';
1074 %idx_fg_g = idx_fg_g(~idx_bg);
1075
1076 a_fg_g = a_fg(1:size(W_a_fg_g ,1),:);
1077 a_fg_sym = a_fg(size(W_a_fg_g ,1)+1:size(W_a_fg_g ,1)+size(W_a_fg_sym ,1),:);
1078 a_fg_asym = a_fg(size(W_a_fg_g ,1)+size(W_a_fg_sym ,1)+1:size(W_a_fg_g ,1)+size(

W_a_fg_sym ,1)+size(W_a_fg_asym ,1),:);
1079
1080 mode_type = zeros(sum(~idx_bg),1);
1081 mode_type = num2str(mode_type);
1082 mode_type(1:size(W_a_fg_g ,1)) = 'z';
1083 mode_type(size(W_a_fg_g ,1)+1:size(W_a_fg_g ,1)+size(W_a_fg_sym ,1)) = 's';
1084 mode_type(size(W_a_fg_g ,1)+size(W_a_fg_sym ,1)+1:end) = 'a';
1085
1086 %a_fg_g = reshape(m((bg_modes+1):(bg_modes+length(time)*size(W_a_fg_g ,1))),

size(W_a_fg_g ,1),length(time));
1087 %a_fg_sym = reshape(m((bg_modes+numel(a_fg_g)+1):(bg_modes+numel(a_fg_g)+

length(time)*size(W_a_fg_sym ,1))),size(W_a_fg_sym ,1),length(time));
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1088 %a_fg_asym = reshape(m((bg_modes+numel(a_fg_g)+numel(a_fg_sym)+1):(bg_modes+
numel(a_fg_g)+numel(a_fg_sym)+length(time)*size(W_a_fg_asym ,1))),size(
W_a_fg_asym ,1),length(time));

1089
1090 fg_g_modes = size(a_fg_g ,1);
1091 fg_sym_modes = size(a_fg_sym ,1);
1092 fg_asym_modes = size(a_fg_asym ,1);
1093
1094 %idx_fg_g = logical([zeros(bg_modes ,1); ones(size(a_fg_g ,1),1); zeros(size(

a_fg_sym ,1)+size(a_fg_asym ,1),1)]);
1095 %idx_fg_g = idx_fg_g(~idx_bg);
1096 %idx_fg_sym = logical([zeros(bg_modes + size(a_fg_g ,1),1); ones(size(a_fg_sym

,1),1); zeros(size(a_fg_asym ,1),1)]);
1097 %idx_fg_sym = idx_fg_sym(~idx_bg);
1098 %idx_fg_asym = logical([zeros(bg_modes + size(a_fg_g ,1) + size(a_fg_sym ,1),1);

ones(size(a_fg_asym ,1),1)]);
1099 %idx_fg_asym = idx_fg_asym(~idx_bg);
1100 %% EXTRA: Tukey weighted rms for acceleration
1101
1102
1103 res = H_grid*m - d; % compared to CoreFlo-LL.1
1104 chaos_res = pred_chaos - d; % compared to CHAOS
1105 res_sa = zeros(size(d));
1106 for j=1:length(d)
1107 if isnan(idx_time_plap(j))
1108 res_sa(j) = 0;
1109 else
1110 res_sa(j) = (res(idx_time_plap(j))-res(idx_time_nlap(j)))/(2*time_step

);
1111 end
1112 end
1113
1114 var_sa = 2*var_d/(2*time_step)^2;
1115 tukey_rms(res_sa(res_sa~=0 & comp_list=='r'), var_sa(res_sa~=0 & comp_list=='r

'))
1116
1117
1118 %% EXTRA: flow energy in Q+QG time-dependence
1119
1120 a_t = a_fg - repmat(mean(a_fg, 2), 1, length(time));
1121 Tor_coeff_t = Tor_coeff(:, ~idx_bg);
1122 Pol_coeff_t = Pol_coeff(:, ~idx_bg);
1123 sym_modes_t = 1:(kmax+400);
1124
1125 for i = 1:length(time)
1126 frac_sym_t(i) = powerspec_flow(Tor_coeff_t(:, sym_modes_t)*a_t(sym_modes_t

, i), n_v) + powerspec_flow(Pol_coeff_t(:, sym_modes_t)*a_t(
sym_modes_t , i), n_v);

1127 frac_sym_t_all(i) = (powerspec_flow(Tor_coeff_t*a_t(:, i), n_v) +
powerspec_flow(Pol_coeff_t*a_t(:, i), n_v));

1128 end
1129
1130 mean(frac_sym_t)/mean(frac_sym_t_all)
1131
1132 %% EXTRA: Diagnostics
1133
1134 mode_type = tab_modes(:,5);
1135 mode_type = char(mode_type);
1136 mode_type = mode_type(:,1); %vector with code for mode type indices
1137 idx_sym_modes = mode_type == 's' | mode_type == 'z';
1138 idx_sym_t_modes = idx_sym_modes(~idx_bg);
1139 idx_sym_bg_modes = idx_sym_modes(idx_bg);
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1140
1141 a_t = a_fg - repmat(mean(a_fg, 2), 1, length(time));
1142 Tor_coeff_t = Tor_coeff(:, ~idx_bg);
1143 Pol_coeff_t = Pol_coeff(:, ~idx_bg);
1144 sym_modes_t = 1:(kmax+400);
1145
1146 Tor_coeff_bg = Tor_coeff(:, idx_bg);
1147 Pol_coeff_bg = Pol_coeff(:, idx_bg);
1148 %modes_bg = (kmax+401):size(Tor_coeff ,2);
1149
1150 for i = 1:length(time)
1151 frac_sym_t(i) = powerspec_flow(Tor_coeff_t(:, sym_modes_t)*a_t(sym_modes_t

, i), n_v) + powerspec_flow(Pol_coeff_t(:, sym_modes_t)*a_t(
sym_modes_t , i), n_v);

1152 frac_sym_t_all(i) = (powerspec_flow(Tor_coeff_t*a_t(:, i), n_v) +
powerspec_flow(Pol_coeff_t*a_t(:, i), n_v));

1153 end
1154 frac_all_t = mean(frac_sym_t_all);
1155 frac_sym_bg = powerspec_flow(Tor_coeff_bg(:,idx_sym_bg_modes)*a_bg(

idx_sym_bg_modes), n_v) + powerspec_flow(Pol_coeff_bg(:, idx_sym_bg_modes)
*a_bg(idx_sym_bg_modes), n_v);

1156 frac_all_sym = mean(frac_sym_t) + frac_sym_bg;
1157 frac_all_bg = powerspec_flow(Tor_coeff(:,idx_bg)*a_bg, n_v) + powerspec_flow(

Pol_coeff(:,idx_bg)*a_bg, n_v);
1158 frac_all = mean(frac_sym_t_all) + frac_all_bg;
1159
1160 f_S = frac_all_sym/frac_all;
1161 f_S_t = mean(frac_sym_t)/frac_all_t;
1162 f_t = frac_all_t/frac_all;
1163
1164 %f_t = mean(frac_sym_t_all)/frac_total;

Pictures/mainscript.m
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B Project Plan for ”Core flows inferred
from Swarm satellite magnetic data”

Purpose: The purpose of this project is to derive models of flow in the Earth’s core using
the latest magnetic data from the SWARM satellites and ground observatories. These
models will then be analyzed in an effort to better understand the recent geomagnetic
changes in e.g. the Pacific.

Applied techniques: The aforementioned models will be created by inversion of the
magnetic data, using the induction equation and assuming that the physics of the flow
in the Earth’s core corresponds to that of a rapidly rotating fluid. The flow will thus be
described as a series of modes as described in [Zhang Liao, 2017]. The overall method
of the project is similar to that of [Kloss Finlay, 2019], but with a new and improved regu-
larization scheme and using newer SWARM and ground observatory data as input. The
project will use the same MATLAB script that was used to obtain the results presented in
[Kloss Finlay, 2019]. This script will, however, require some modification to accommo-
date the new regularization scheme and data. Apart from these changes, this project also
aims to produce an inversion scheme that accounts for contribution from magnetic diffu-
sion, which was assumed to be zero in [Kloss Finlay, 2019]. Work on the project will be
done in close collaboration with the authors of this paper, Clemens Kloss and Christopher
C. Finlay (project supervisor).

Materials: Apart from relevant literature, materials used will include the aforementioned
script, the MATLAB software, new magnetic data from the SWARM satellites and ground
observatories, and access to DTU Space’s HPC-cluster. The latter will be used for the
demanding computations that are required. Data and project results will be stored in the
HPC-cluster. All materials are already available and will require no further investment.

Project risks: The project is fairly low risk. Using already available data and a method
similar to one that has already been used successfully in [Kloss Finlay, 2019], the chances
of completing the project and achieving useful results are high. One aspect of the project
that may present some difficulties is the inclusion of magnetic diffusion in the inversion
scheme. Should this fail, or not produce satisfying results, it is not detrimental to the
project, however.

Time plan:

24th Aug - 24th Sept: Review the new geomagnetic data and relevant literature (Olsen et
al. 2014, Hammer et al. 2020, Kloss and Finlay, 2019, Zhang and Liao, 2017). Get familiar
with the Core flow modelling script and modify it to ingest the latest ground observatory
and Swarm satellite magnetic data.

24th Sept - 24th Oct: Perform first full inversion using new ground and satellite mag-
netic datasets with previous flow parameterization and regularization scheme. Implement
new, improved flow regularization scheme. Minimize core flow mode amplitudes for time-
dependent equatorial antisymmetric modes (Zhang and Liao, 2017; Kloss and Finlay,
2019). Adjust regularization parameters. Compare new results with those that used in
the previous regularization scheme.

24th Oct- 24th Nov: Implement accounting for magnetic diffusion in inversion. Imple-
ment the following (i) Simple approach of correction: Amit Christensen (2008) and (ii)
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co-estimation of diffusion: Barrois et al. (2017;2019).

24th Nov-24th Dec : Finalize model results and interpret recent field changes in the Pacific

24th Dec -24th Jan: Complete writing of thesis.
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Abstract

Observed gradual changes in the geomagnetic field, known as secular variation, are believed to be
governed by the flow of liquid metal in the outer region of the Earth’s core, near the core-mantle
boundary. These core flows and the secular variation observed above the Earth’s surface are re-
lated through the magnetic induction equation. Satellite and ground observatory measurements of
secular variation and the induction equation thus present an inverse problem for determining core
flows at the core-mantle boundary. Kloss and Finlay 2019 previously presented a method for solving
this inverse problem for the period 2000 to 2018, by parametrizing core flow as a series of normal
modes of rapidly rotating flow in a spherical container. In this study, we extend their method by
further allowing for smaller-scale, equatorially anti-symmetric flows and accounting for likely contri-
butions of magnetic diffusion to the observed secular variation. We implement this modified method
with a new regularization scheme for the inverse problem, and by augmenting the model vector to
include secular variation due to diffusion. We apply it to SWARM satellite data covering the period
2014-2019. We find that allowing for more small-scale equatorial anti-symmetry (localized equator
crossings) and diffusion allows us to estimate flows that well explain the observed secular variation
with flows that are similar to, but simpler than, those described by Kloss and Finlay 2019. In par-
ticular, we find a predominantly steady, planetary-scale, eccentric gyre of westward flow along with
inter-annual reversals of low-latitude azimuthal flow. We conclude that flows with significant local
equator crossings and contributions from diffusion provide consistent explanations of the secular
variation observed from 2014 to 2019, demonstrating the non-uniqueness of the inverse problem
while adding to the evidence for the robustness of the aforementioned flow features.
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