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Abstract

We present COV-SAT, a magnetic field model covering the era of continuous satellite monitoring from space, constrained
by ground-based and virtual observatory data. It incorporates as a priori information temporal cross-covariances associ-
ated with auto-regressive processes of order 3. These are derived analytically, and rely on a small number of free param-
eters (variances and time-scales) deduced from spectral properties extracted from long magnetic records and geodynamo
simulations. The new a priori information proposed here encompasses power spectra stemming from paleomagnetic,
observatory and satellite records, statistically replicating magnetic variations over a broad range of time-scales. It, further-
more, allows the cutoff in the spectral density expected for periods shorter than a2 2 years, the Alfvén time in Earth's core,
to be mimicked. Field model coefficients are projected in time based on the a priori cross-correlation functions, avoiding
the use of arbitrary temporal basis functions. This formalism is exploited to forecast the field evolution, and to provide
uncertainties for the estimated main field and its secular variation over the upcoming 5 years.
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1 Introduction

A series of satellite missions has enabled the continuous
monitoring of the geomagnetic field from space since
about 2000. Combined with ground-based stations, these
provide high quality, global observational constraints
on the Earth’s magnetic field evolution (e.g. Lesur et al
2022). Meanwhile, two main difficulties limit the mod-
eling of the dynamo field originating in Earth’s core (or
main field, MF). First, the era covered by space records
is short in comparison with the typical time-scale of the
core dynamics. Indeed, the eccentric gyre first imaged
from satellite data (Pais and Jault 2008), which is respon-
sible for the observed westward drift of the magnetic
field (Bullard et al 1950), is present since at least the late
19th century (Aubert 2014; Gillet et al 2019). Knowledge
about possible core state evolutions must then take inspi-
ration from magnetic records spanning epochs prior to
the modern satellite era (observatory series, historical
logs and paleomagnetic samples, e.g. Suttie et al 2025), as
well as from the increasingly realistic numerical simula-
tions of the geodynamo (Aubert et al 2022). Second, the
core signal is hindered by external sources toward short
periods. An accurate description of the rapid core vari-
ations thus relies on improved reconstructions of iono-
spheric sources (in particular toward auroral regions, see
Kloss et al 2023) as well as magnetospheric fields patterns
(e.g. Ou et al 2024).

Inverting for core field models requires incorporating
additional information, to reduce the non-uniqueness
inherent to the geomagnetic inverse problem. Under the
assumption of Gaussian stochastic processes, this infor-
mation is stored into a priori cross-covariance matrices.
It may take the form of a smoothing (regularization, or
damping) if one wishes to infer only an estimated model
as free as possible from unresolved small length and
time-scale patterns. Conversely, considering a realistic
prior, allowing for the physically expected spatio-tempo-
ral variations, is necessary when one also targets realis-
tic estimates of model uncertainties from the posterior
covariance matrix (for a general formalism in the con-
text of geomagnetism, see Gubbins and Bloxham 1985;
Backus 1988).

It is with this spirit in mind that the COV-OBS suite
of models has been derived (Gillet et al 2013; Huder et al
2020). These consider a priori information in time based
on stochastic processes, namely, second-order auto-
regressive or AR-2 processes. The rationale behind this
choice is their link, in terms of differentiability proper-
ties, with geomagnetic series presenting jerks—defined
as abrupt changes in the slope of the secular variation
or SV, the rate of change of MF series. Such series could
indeed be described as the realization of continuous and
once differentiable processes, as are AR-2 processes. This
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temporal prior information is incorporated in the COV—
OBS inversion scheme via associated temporal cross-
correlation functions. An alternative approach is taken in
the KALMAG model by Baerenzung et al (2022), which
is based on a sequential scheme, where AR-2 stochastic
equations are embedded within a Kalman filter. Although
AR-2 processes seem coherent with the temporal power
spectral density (PSD) of the observed field on periods
longer than a few years (Lesur et al 2018), they possibly
allow too large variability on shorter time-scales, which
is problematic in the presence of noise from imperfectly
modelled external and related induced fields (Finlay et al
2017). Analysis of advanced geodynamo simulations
shows the temporal PSD of the simulated field severely
drops on periods shorter than the Alfvén time, associated
with magnetic diffusion (Aubert and Gillet 2021). Scaled
to the Earth’s core conditions, this cutoff would indeed
correspond to = 2 yr (Gillet et al 2010).

In this context, we propose with the present study an
alternative family of a priori temporal cross-covariances,
based on third-order auto-regressive (or AR-3) processes.
The PSDs from AR-3 processes have been considered
previously by Sadhasivan and Constable (2022) to rep-
resent the behavior of the axial dipole field over a broad
range of time-scales. This framework allows us to mimic
the rapid decay in the PSD observed on short time-scales
in dynamo simulations, mitigating possible spurious vari-
ability related to external field leakage when imposing a
too loose constraint on rapid fluctuations. This is poten-
tially important in the period band around 1-10 years
that presents ambiguities between internal and external
sources (e.g. Fig. 5 in Constable and Constable 2023). We
use these new a priori cross-covariances to construct a
geomagnetic field model over the period 1999.5-2024.5,
together with its associated uncertainties. Constrained by
satellite and ground-based magnetic records, this model
named COV-SAT has been the basis for the calculation
of ISTerre’s candidates to the 14th edition of the Inter-
national Geomagnetic Reference Field (for the previ-
ous 13th edition, see Alken et al 2021). Satellite data are
incorporated by means of geomagnetic virtual observato-
ries (Hammer et al 2021a). In comparison with the COV-
OBS models, we not only incorporate a higher order
temporal prior, but also follow Hellio and Gillet (2018)
and project the model parameters on the auto-covariance
functions when interpolating and extrapolating Gauss
coefficients. By doing so, our temporal representation
is based on geophysically motivated functions, avoiding
a projection onto B-spline functions that may alter the
high frequency behavior.

We begin by describing in §2 the geomagnetic obser-
vations used to build the field model and its associ-
ated uncertainties. Next in §3 we describe the model
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parametrization, the derivation of the AR-3 a priori
information, the inversion procedure and the interpola-
tion/extrapolation method based on AR-3 correlation
functions. In §4 we illustrate the fit to magnetic data, and
present the time evolution of the field model, before we
discuss in §5 some implications of our developments.

2 Data

We focus here on the satellite era (1999.5-2024.5), and
consider ground observatories (GO) and geomagnetic
virtual observatories (GVO). Three-components GO
observations are incorporated in the form of annual dif-
ferences of 4-monthly robust means, to avoid dealing
with the crustal biases. The GO 4-monthly SV time series
are derived from version 0140 (up to January 2024) of the
ground observatory hourly means between January 1997
and April 2024 from the database AUX_OBS prepared
by the British Geological Survey (Macmillan and Olsen
2013). Robust 4-monthly means of MF series are com-
puted from hourly means, after subtracting predictions
from the CM4 ionospheric and associated induced field
(Sabaka et al 2004) and the CHAOS-7 magnetospheric
and associated induced field (Finlay et al 2020). This latter
uses as input the RC index (Olsen et al 2014). 4-monthly
GO SV series are then computed as annual differences of
GO MF time series.

Our model also incorporates three-components GVO
field estimates from the CHAMP, @Orsted, GRACE, Cryo-
Sat-2 and Swarm missions each provided on a grid of 300
locations on an equal area grid at the mean height of the
satellite. We refer to Hammer et al (2021a) for details
about the GVO data processing algorithm. For all mis-
sions but Swarm, we consider 12-monthly means GVO,
to avoid possible aliasing effects related to the slow drift
in local time of polar orbiting satellites and the existence
of remaining ionospheric fields that depend on local
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time. Because the Swarm constellation covers local times
at a higher cadence, with the Swarm Bravo satellite usu-
ally sampling a different local time to the Swarm Alpha
and Charlie satellites, Swarm GVO MF data are incorpo-
rated as 4-monthly means. They are derived from Swarm
L1B Mag-L OPER data versions 0602—0605, as available
in June 2024. For each GVO data set we consider both
the 4-monthly observed field estimates (built from night-
side data with quiet time selection criteria applied but
without any further corrections or cleaning, see Hammer
et al 2021a) and the core field estimates (for which esti-
mates of crustal, magnetospheric and ionospheric fields
have been removed). For core field GVO data, estimates
of the CIY4 ionospheric and induced fields have been
removed (Sabaka et al 2018), as well as estimates of
CHAOS-7 magnetospheric and induced fields. These
data are also cleaned from the lithospheric field contribu-
tions for harmonic degrees 14—120, as estimated with the
LCS-1 model (Olsen et al 2017). Furthermore, a denois-
ing has been applied to remove remaining external and
toroidal terms, via a spherical harmonic analysis. To miti-
gate the impact of field-aligned currents we consider,
instead of three-components observations, intensity data

F=,/B2+B2+ Bé for GVO located at dipole latitudes

|Ap| > 55°. We note throughout (7, 9, ¢) the radial, ortho-
radial and azimuthal spherical coordinates.

The observation operator for the cleaned GO SV and
GVO MEF (“core”) data is only related to our internal field
model coefficients. The observation operator for the dif-
ference between observed and core fields GVO data is
associated with the external field model coefficients. For
each site separately, uncertainty estimates (o, 09, o) for
the GO series are obtained from the misfit to the
CHAOS-7 field model. Uncertainties associated with the
GVO series have been estimated as described in Hammer
et al (2021a). Uncertainties on F data are obtained by

Table 1 Top lines: median values of the observation uncertainties a6 ¢ considered in this study for “core” GO SV data (in nT/yr) and for

core field GVO MF data (in nT)

Data set GOSsv Drsted CHAMP CryoSat-2 GRACE Swarm
Units nT/yr nT nT nT nT nT

or 2.36 2.99 2.30 2.71 3.13 2.39
o8 1.94 255 1.90 2.09 228 201

oy 211 1.58 1.28 1.29 1.95 1.16
NP 9040 1078 2368 2026 2284 7333
Ny 8982 1076 2366 2024 2279 7316
/\/;7j 9014 1077 2368 2026 2283 7331
NP 0 222 436 440 490 1501

Bottom lines: number of data Nf’g’ F used to solve the inverse problem. The slight deviation in the number of data for (X, Y, 2) data is the result of our mild rejection
criterion at 100 (see §3.4). There are less F data, because these are used only in polar regions, while away from the poles, we only consider (X, Y, Z) data
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propagating  the  three-components errors as
B B B
oF = |Fr|ar %O’@ + |F—¢|a¢. Since we get rid of the

projection onto splines with 2 yr knots spacing, we do
not add on top of these observation errors the modeling
errors considered by Huder et al (2020) for the construc-
tion of COV-OBS.x2. We show in Table 1, for all compo-
nents, the number of data used and the median
uncertainties for core field GVO MF data from all mis-
sions, as well as for GO SV data. Uncertainties are gener-
ally lower on the east—west (¢) component, which is less
affected by external signals. These are as low as &~ 1.3 nT
for CHAMP or CryoSat-2, and 1.15 nT for Swarm. This is
to be compared with an uncertainty level closer to 2 nT in
the north—south () component, and larger than 2.3 nT
for B,. Uncertainties for GVO based on platform mag-
netometers (Olsen et al 2020; Olsen 2021; Hammer et al
2021b) are significantly larger for GRACE, while for Cry-
oSat-2, they are closer to error levels from dedicated
magnetic missions.

3 Methods

3.1 Spatial parameterization of the magnetic model

The parameterization and methodology for COV-
SAT only partly rely on the procedures described for ear-
lier COV-OBS models (Gillet et al 2013, 2015; Huder et al
2020). We recall here the overall underlying framework
and then discuss in more detail the key additions to this
new model. We assume the mantle to be insulating. The
magnetic field B = —VV then derives from a potential
for r > rc = 3485 km, the Earth’s core radius. The poten-
tial V = V; + V, is separated between internal and exter-
nal sources. The internal (core) field is expanded onto
spherical harmonics as

L rE I+1 !
Vi(r,0,¢) =r Z (7> Z (g/" cos(me)
=1

m=0 ( )
+h]" sin(me) ) P} (cos 6),

with a truncation at spherical harmonic degree L = 14.
Here rg = 6371.2 km is the Earth’s reference radius,
(g/", h}") are the Schmidt semi-normalized internal Gauss
coefficients, and P} the associated Legendre polynomi-
als. The external field potential

l

L, l
Ve(r,0,9) =re Y <,;> > (qf" cos(mg)
=1

m=0 ( )
+s;" sin(rnd)))le (cos )

is restricted to a dipole aligned to the internal dipole
(so L, = 1), with (g;",s]"") the Schmidt semi-normalized
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external Gauss coefficients. It is then described by a sin-
gle coefficient g4, such that

0 0
) - ~44 i
3 A prvswresmcd §18 NI
s ) e+ @h?ab2 \ il

We consider the induced response of the core to exter-
nal field variations as performed for COV-OBS-x2 (see
Egs. 5 and 15 in Huder et al 2020), by assuming that on
long periods the fluid core behaves as a perfect conductor
(see Olsen et al 2005). This assumption is supported by
numerical modeling of the hydro-magnetic response of a
rapidly rotating fluid core to an external excitation (Thea
Lepage, pers. comm.)

One important modification w.r.t. COV-OBS mod-
els concerns the temporal projection of the model coef-
ficients. Here we move away from the spline functions
commonly used since Bloxham and Jackson (1992) to
parameterize the time-dependence. We instead perform
an interpolation at any observation epoch by projecting
onto physically motivated correlation functions, follow-
ing Hellio and Gillet (2018). These functions are described
in §3.2, and the temporal projection in §3.3. The model
inverted here is based on Gauss coefficient values speci-
fied every year over [¢;,t.] = [1999.5,2024.5], so here a
total of N = 26 epochs. The spherical harmonic model
coefficients for all epochs and all degrees are stored into a
vector m, of size P = N(L(L +2) + 1) = 5850.

3.2 Stochastic priors for the Gauss coefficients

3.2.1 Aprioriinformation for the core field

We represent internal field coefficients as a perturba-
tion w.rt. a background, or g/ (t) =g]" +g/"(t). We
consider a background g;” = 0 for all coefficients except
the axial dipole. For this latter we choose from paleo-
magnetic reconstructions §(1) = —24000 nT, the same
value as used for building COV-OBS.x2 (see Huder et al
2020). In the construction of COV-OBS models, AR-2
processes have been considered to build the a priori tem-
poral auto-covariance functions of Gauss coefficients,
Cl'(r) = E[g;”(t)g;" (t + T)]. This was justified based on
the spectral index p = 4 found for the PSD S(f) o< f 77
of the magnetic field in the range 2 < 1/f < 70 yr, with
f the frequency (Lesur et al 2018). However, advanced
numerical simulations of the geodynamo (Aubert and
Gillet 2021) indicate that S(f) should steepen for peri-
ods shorter than a cutoff time-scale which, one scaled to
Earth-like conditions, is found to be commensurate with
the Alfvén time 7, (= 2 yr in Earth’s core, see Gillet et al
2010). The cutoft for the 71p dynamo of Aubert and Gillet
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Fig. 1 Temporal PSDs for the Gauss coefficients from the 77p
dynamo of Aubert and Gillet (2021). For the various degrees |
shown, the PSDs have been averaged over all orders m € [0, /],
and normalized to the value at the period T = 4. Periods
on the x-axis are in unit of Alfvén time, which correspond to 5.8 yr
in the 71p dynamo. Each series is 10 kyr long. The PSDs have been
obtained with a multitaper method, applying a Hanning window
on each of the 10 considered tapers

(2021) is illustrated in Fig. 1, where we show the normal-
ized PSD for the magnetic Gauss coefficients series. It
clearly shows a more severe decay of the power toward
short periods, evolving approximately as S(f) o f~° and
independent of the spherical harmonic degree /. One may
wonder if this could be the consequence of the enhanced
dissipation of the velocity and codensity fields on short
length-scales in the 7Ip dynamo. Although this may
affect the subgrid induction, we recall that the magnetic
field itself is not subject to hyperdiffusion, motivated by
a magnetic field diffusing faster than momentum in liq-
uid metals (i.e. low magnetic Prandtl number). The cutoff
witnessed for periods less than 7, is, therefore, unlikely
the consequence of the enhanced dissipations.

The core field evolution on time-scales shorter than 7,
is difficult to constrain, due to ambiguities between inter-
nal and external sources (e.g. Lesur et al 2022), and the
projection onto spline functions with 2 yr knot spacing
in practice constrained rapid changes in previous COV-
OBS models. Shortening the knot spacing with an AR-2
prior led to unsatisfying leakage from unmodelled exter-
nal contributions on short periods, in part because the
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AR-2 PSD allows considerable freedom on short time-
scales (Finlay et al 2017). Here we build a correlation
function that accounts for the steep decay of the mag-
netic field PSD at high frequencies by relying on higher
order (AR-3) stochastic processes (recalling that the PSD
for AR-n processes behave as S(f) oc f~2" toward short
time-scales). A linear AR-3 process X(¢) is governed by a
stochastic equation of the form

X" + a0 X" + a1 X' + apX = a,Z, (4)

where Z represents here a centered white noise of unit
variance. The determination of the 4 parameters dg 12,
comes down to finding one variance and 3 time-scales, as
detailed below. Our approach is based on the shape of the
magnetic field PSD.

To mimic the spectrum of the core magnetic field, we
wish to build a correlation function, as simple as pos-
sible, such that S(f) describes 4 spectral ranges, with
indices p = 0,2,4 and 6 indicating low to high frequen-
cies. The cutoff between p = 0 and 2 is seen only for the
axial dipole from paleomagnetic records, for a period
7y =21 /wy ~ 50 — 100 kyr (Constable and Johnson
2005). Parameter estimations using stochastic models
indicate a)gl ~ 10 kyr, linked to magnetic diffusion (Buf-
fett and Puranam 2017; Morzfeld and Buffett 2019). The
cutoff between p = 4 and 6 (in practice a gradual transi-
tion toward even steeper slopes) is deduced from its scal-
ing from advanced geodynamo simulations, at a period
about the Alfvén time 7, = 27 /w, &~ 2 yr and independ-
ent of the spherical harmonic degree / and order m (see
Fig. 1). The cutoff between p =0 and 4 is seen for all
Gauss coefficients except for the axial dipole, at a period
commensurate with the SV time-scale

/
2 2
2 ogn + oy
m=0

! 4 (5)
2 2
> o+ Oy
m=0

which can be related to the vortex turn-over time in the
core (Gillet et al 2013; Bouligand et al 2016). We use here

2 2
0%, =E[(¢" — Eig/")’]
nglm = ]E{(atg,m - E[atg;”])z}, where EJ...] denotes the
mathematical expectation, with a similar notation for the
1. Lhuillier et al (2011) shows that 75y () (in yr) evolves
approximately as &~ 400// for [ > 2.

The above situation can be represented by a PSD of the
form

sy () =

the notation and
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Fig. 2 PSD associated with the a priori cross-correlation function
considered for the axial dipole for the construction of COV-SAT,
compared to previous editions
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Fig. 3 PSD associated with the COV-SAT model a priori
cross-correlation function considered for all coefficients but the axial
dipole. The color indicates the coefficient degree, where dark blue
is associated with the lowest degrees (starting at/ = 1) and yellow
the highest ones (up to/ = 14)

K

S = ,
(@) (a)j + 0?) (02 + 0?) (@2 + »?)

(6)

with K a constant and w = 2nf the angular frequency,
and where the parameters w,, , have to be adjusted for
all Gauss coefficients. We show in Appendix A how to
derive the correlation functions associated with such
a PSD. They take the simple analytical form (A5). We
search for functions depending on as few parameters as
possible. For all non-dipole coefficients, the parameters
entering (6) are assumed to be independent of the order
m, and vary only with the degree /. The axial dipole is
treated separately because of its particular behavior pre-
senting an intermediate spectral range with index p = 2.
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Table 2 Parameters for the correlation function (7) used as a
prior on g4 in the construction of COV-SAT

622 (nT?) 1/a; (years) 27 /w; (years) 012 (nT?) 1/aq(years)
25 25 115 65 25
—— RC (filtered)
80 —— fit ARL+AR2
3 60
f=
°
g 40
3
2
5 20
S
0
-20
-30 -20 -10 0 10 20 30

lag [yr]
Fig. 4 Auto-covariance function for the external dipole coefficient
G4 (1), as inferred from the RC index lowpass filtered for periods longer
than 2 yr (see text for details)

We present in Appendix B details of how we determine
in practice the frequencies w, ; , and the variances enter-
ing our correlation functions. There we also compare the
parameters considered in the present study with those
proposed by Sadhasivan and Constable (2022), that have
been determined by adjusting the AR-3 PSD to a com-
posite spectrum from models of the main field and of the
dipole moment.

The associated PSD are illustrated in Fig. 2 for the
axial dipole, and in Fig. 3 for the other coefficients. The
a priori PSD for the axial dipole is close to that consid-
ered for COV-OBS-x2 on periods longer than ~ 7,. In
comparison with Huder et al (2020), the update of the
cutoff frequencies that define the transitions between
period ranges with a spectral index p = 0 and p = 2, and
then p =4, slightly reduces the intermediate range of
frequencies, where S(f) o f~2, with a slight decrease in
the power. We clearly see in Fig. 3 the decrease with the
degree [ of the variance, as well as for the cutoff period
between frequency ranges presenting a 0 and 4 spectral
index. At all degrees, the cutoff on short periods toward a
spectral index p = 6 is characteristic of AR-3 processes.

3.2.2 Apriori correlation function for the external dipole field
We represent the external field coefficient as a pertur-
bation w.r.t. a background, or q;(¢) =g, + g4(¢). We
consider g; = 20 nT, which approximates the sum of
the Geocentric Solar Magnetospheric (GSM) and Solar
Magnetic (SM) parts at zero frequency. The former is
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almost constant on the time-scales considered here (see
Fig. 1 of Lithr and Maus 2010), at a level of & 8 nT. The
latter can be represented via the RC index for the mag-
netospheric activity (Olsen et al 2014), and averages out
to about 11 nT over the period 1997-2024. To estimate
the auto-covariance function for g,(¢) we consider, as
suggested by Huder et al (2020), the combination of an
AR-1 (i.e. Laplacian) and AR-2 (or damped oscillator)
correlation functions:

Cp,(v) =0f exp (—ai1|t]) + 05 exp (—aa|T))

7)

oy .
cos(wrT) + — sin(waT) |.
)

To determine the 5 parameters (2 variances and 3 times)
entering Eq. (7), we rely on the RC index. Because we
use satellite and observatory data built from annual or
4-monthly means, our estimate of g, cannot be consid-
ered as instantaneous, but instead as a weighted time-
average. We build our prior based on this weighted
average of the series RC(f) over the period 1997-2024,
after applying a low-pass filter with cutoff period 2 yr
(the Nyquist period for the 1 yr sampling of our inverted
model coefficients). In practice we use a Butterworth fil-
ter of order 2. The fit of Eq. (7) to the correlation for the
filtered RC (using the curve_fit python function based on
Vugrin et al 2007) gives 07 = 64.9 nT?, 03 =231 nT?,
1/a1 = 2.6 yr, 1/ap = 23.6 yr, and 2w /wy = 11.7 yr, that
we approximate to the values given in Table 2. The period
27 /wy of the damped oscillator is reminiscent of the solar
cycle. The amplitude of the AR-1 process is larger by a
factor ~ 1.6 than that of the AR-2 process. The fit to the
RC correlation function is shown in Fig. 4.

3.3 Temporal representation of the Gauss coefficients

The model vector m contains Gauss coefficients (kglm,
kh;”, Kg4) at the discrete set of N epochs #; considered
to build the field model. The f; are stored in a vector
t,,. We need a continuous representation for the model
coefficients, e.g. g/ (t) with ¢ any epoch of interest, to
estimate the model prediction at an observation epoch,
or for interpolating and forecasting the field model. To
this purpose we perform a Gaussian process regression
(Rasmussen and Williams 2006), based on the auto-
covariance functions defined in §3.2. We follow the
approach of Hellio and Gillet (2018), considering each
Gauss coefficient individually. We store in a vector gy
its values to be interpolated and/or extrapolated at a
set of epochs t, and in a vector g, its inverted values
at the set of epochs t,,. Based on the auto-covariance
functions defined above, we build for each coefficient
the covariance matrices

Page 7 of 19

P =B (n ), Prc = B(&] )

(8)

and Py = E (&8, ).
which contain the a priori cross-covariances for all pairs
of epochs within the vectors t, and t,. We use the nota-
tion g to represent the anomaly w.rt. the background
model g. Within our setup, this latter is non-zero only for
the internal axial dipole and the external dipole. Under
Gaussian assumptions for the model distribution and
uncertainties, the most likely estimate at epochs t, is then

gx=g+ P [Prmm + R]il(gm - E), 9)

where R is the error covariance matrix for the model
parameters g,,. Equation (9) is used to calculate the
model predictions H;(m) to any datum y; at epoch ¢; (see
§3.4). In this case we consider within the iterative inver-
sion procedure R = 0. We use this approach as an alter-
native to the spline expansion introduced by Bloxham
and Jackson (1992).

Once the final model parameters have been derived,
the same Eq. (9) is used to provide our model estimates
and their associated uncertainties at any epochs, both
for interpolating and for forecasting. In this latter case
R is obtained from diagonal elements of the posterior
model covariance matrix (the inverse of the Hessian, as
performed by Gillet et al 2013). The above regression
is applied separately for each coefficient, so that we
avoid manipulating too large covariance matrices, thus
reducing the risk of numerical instabilities associated
with too wide ranges of eigenvalues.

On top of this estimate for the model coefficient
series g, at epochs t,, we also provide the associated
uncertainties based on the posterior model error covar-
iance matrix

P2 = Pax — Pou[Poum + RITIPL . (10)

To derive numerical values of the uncertainties on g,
we first perform the Cholesky factorization PE,?St =LLT.
From the the lower triangle matrix L we then generate an
ensemble of N¢ = 500 realizations

g+ = Lw; fori e [1,N°], (11)

where w; is a centered and unit variance normal random
vector. The dispersion within this ensemble of series
provides a useful measure of the model uncertainties
through time.
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3.4 Inversion procedure

As for previous editions of the COV-OBS models, COV-
SAT Gauss coefficients have been obtained iteratively via
a Newton-type method minimizing a cost function J
that consists of a sum of a misfit term M and a term N/
measuring the model complexity:

J(m) = M(m) + N (m). (12)

One evolution w.r.t. earlier releases is the consideration
of Huber weights for the measure of the residuals (data
misfit) instead of a L2 norm previously. This avoids the
use of a strict rejection criterion (previously 30, now at
100), and we now rely on an iterative weighted least-
square method (Farquharson and Oldenburg 1998). The
use of the Huber norm is a common way for dealing with
outliers. The misfit to the data is then given by

NG
M(m) =" Ls(e), withe; = |y; — Hi(m)| /oy,
i=1
(13)
where H; is the forward operator associated with the ith
datum y;, with estimated uncertainties o;. N is the total
number of observations. L is the Huber loss function
defined as (e.g. Olsen 2002)

€%/2 for le] < &

Sle| — 82/2 otherwise ’ (14)

Ls(e) = {

with § = 1.5 the parameter controlling the normalized
residual value above which £5 morphs from a L2 measure
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(for low |€]) to a L1 measure. Observation errors are sup-
posed independent.
The model complexity is measured as

N@m)=m-m) P Y(m—m). (15)

The matrix P contains, for all coefficients, the tempo-
ral cross-covariance between all epochs, as described in
§3.2.1 and 3.2.2. We assume a priori that the coefficients
of different orders or degrees are independent. m is the
background model (see above). The iterative process
is stopped after 10 iterations, after which the relative
change in the radial SV norm, averaged over the CMB of
surface X and over the full era [¢;, ],

1 b 9
S(m) = 2:(te_tl)/tl ﬁ |atBr(C,9,¢, t)| dEdt,

(16)
is less than 1072 from one iteration to the next.

Note that the projection onto wide correlation func-
tions (instead local functions such as of B-splines) comes
with a numerical cost, as the filling of the matrices enter-
ing the iterative algorithm does not rely anymore on a
banded storage. With global functions, the update of the
Frechet derivatives for each datum requires one to fill all
entries of the Hessian; this is the most time consuming
part of the algorithm. Conversely, when using local func-
tions a banded storage can be employed. Then Frechet
derivatives have to be calculated only w.r.t. model param-
eters at knots entering a limited bandwidth N* around
the observation epoch. In practice one has N?* = j + 1 for

Table 3 Dimensional and dimensionless misfit and bias statistics for GO SV data and GVO (“core”) MF data used when fitting theCOV-

SAT model. Stars indicate dimensionless values (see equ. 17)

Data set Kind o* n*

X Y z F X Y V4 F
GO SV 0.89 0.59 049 - 0.02 —0.02 —0.04 -
Drsted MF 0.98 0.69 0.69 048 0.18 0.02 0.07 0.11
CHAMP MF 035 041 048 0.28 —0.01 0.01 0.01 —0.05
Cryosat-2 MF 0.54 0.52 0.77 0.51 0.09 0.00 0.12 0.29
GRACE MF 0.61 0.72 0.71 032 0.19 0.02 0.03 0.04
Swarm MF 043 0.36 0.53 030 —0.05 —0.02 —0.01 —0.09
Data set Kind o n

X Y z F X Y z F
GO SV 137 1.27 1.58 - 0.04 —0.04 -0.12 -
QDrsted MF 1.92 1.63 1.68 147 0.37 0.08 0.14 033
CHAMP MF 0.69 083 1.01 0.81 —0.16 0.02 0.02 —0.13
Cryosat-2 MF 1.18 1.12 1.58 1.41 0.24 0.03 033 092
GRACE MF 1.51 1.81 1.88 1.20 0.50 0.07 003 0.19
Swarm MF 0.81 0.77 1.00 0.80 —0.11 —0.04 —0.01 —0.24

See text for details. All dimensional values for o and w are given in nT (resp. nT/yr) for the MF (resp. SV) data
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B-splines of order j, reducing the number of operations by
a factor ~ (N?"/N)2 when filling in the matrices (neglect-
ing the extra knots at endpoints, so in practice a bit less).
In our configuration with N = 26, projecting onto order
6 B-splines (for the SA to be continuous, as for AR-3 pro-
cesses) would reduce the computational cost by a factor
about 10. Note that this reduction is valid when using the
same knot spacing for both local and global functions, and
that the projection of field changes with time-scales close
to the knot spacing is sensitive to the choice of basis func-
tions. This issue could be mitigated by reducing the knot
spacing when using B-splines (6 months is used for the
CHAOS-7 model by Finlay et al 2020), reducing the rela-
tive advantage of local basis functions in terms of computer
cost, as one then needs to invert a Hessian of larger dimen-
sion (another potentially costly part of the algorithm). With
our global correlation functions, the computational cost
may become significant if using a much higher sampling
rate of the model, or when covering a much longer time-
span. On the other hand, when considering periods with
lower observational coverage, the choice of geophysically
motivated global functions may be beneficial, since model
parameters at sparsely sampled eras are then influenced by
data at other epochs (Hellio and Gillet 2018).

4 Results

4.1 Misfits and predictions to GO and GVO series

We provide in Table 3 some statistics regarding the COV-
SAT predictions for the GO SV and GVO MF data. These
are produced separately for all components and for all
satellite missions. The diagnostics are provided for the X
(northward), Y (eastward) and Z (downward) components
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of the field, as well as for its intensity F. We introduce for
each subset of data both dimensional and normalized
measures of the misfits and biases. For this purpose we fit a
Huber distribution (see Eq. 14)

1 _ *
kso* o*

to the normalized histograms of the dimensionless resid-
uals €, with the dimensionless bias u* and misfit c* being
the two adjustable parameters. The normalisation con-

ks = ~/2merf(8/v/2) + %exp(—82/2) ~ 0.3839

ps(€) = (17)

stant

+o00
ensures the condition / ps(e)de = 1for a probability

density function (PDF). "ﬁle dimensional diagnostics are
obtained similarly from histograms of the dimensional
residuals, by adjusting a dimensional bias u and misfit o.
The adjusted misfit values are given in Table 3 for “core”
field data and in Table 4 for “observed” minus “core” field
data.

For “core” data, apart from Qrsted (X and F), GRACE
(X) and Cryosat-2 (Z and F) data, dimensionless biases
are less than 0.1 in absolute value. For all components,
GO as well as CHAMP and Swarm data, that bring the
most important observational constraint, show almost
centered distributions for normalized residuals. Dimen-
sionless residuals are generally less than unity, denoting
a possible over-estimation of the a priori data uncertain-
ties, in particular for CHAMP and Swarm (recall that
these uncertainties do not refer directly to the satellite
measurements, but to a local potential field model fit to
these for a given time window). The lower dimensional

Table 4 Same as Table 3 for GVO “observed” minus “‘core” MF data, associated with our external field model and its induced

counterpart
Data set Kind a* n*

X Y V4 F X Y z F
Drsted MF 067 0.38 042 0.52 0.18 —0.06 0.04 0.15
CHAMP MF 0.90 0.51 0.75 0.60 0.17 0.00 0.04 0.30
Cryosat-2 MF 047 040 0.35 037 —0.05 —0.10 —0.02 0.29
GRACE MF 0.30 0.41 0.30 0.19 —0.06 0.04 0.01 0.13
Swarm MF 1.28 0.59 0.77 0.84 0.23 0.03 0.00 0.23
Data set Kind o n

X Y 4 F X Y z F
Drsted MF 3.12 223 275 313 084 —044 0.00 1.01
CHAMP MF 3.20 212 3.07 2.70 0.62 0.02 —0.12 1.60
Cryosat-2 MF 265 251 223 242 —0.32 —0.66 —0.20 232
GRACE MF 2.54 4.25 3.04 2.10 —0.57 0.46 0.06 154
Swarm MF 382 2.03 248 3.10 0.71 0.12 —0.11 0.94
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Fig.5 Histogram of the normalized misfits e for the various GO and GVO data sets, split into spatial components. The cyan curve represents
the Huber distribution fitted to each histogram, with parameters u*and o*
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Fig. 6 Comparison between the SV observed at Honolulu (HON, Eastern Pacific) and Hermanus (HER, South Africa), and the predictions
from COV-SAT and CHAOS-7, for the three components. Shaded areas represents the spread within £1o

misfits are found for CHAMP and Swarm, where it is
less than 1 nT for X, Y'and F, and only slightly above 1 nT
for Z data. All components from Cryosat-2 data are fit-
ted within 1.6 nT. The larger misfits values are found for
Orsted and GRACE GVO vector data. Ground SV data
misfits are less than 1.6 nT/yr, the weakest for ¥ and the
largest for Z data.

Dimensional misfits for “observed” minus “core”
field data, used to estimate our external field model,
show relatively larger values, ranging from 2 to 4.4 nT
depending on the mission and component. The distinc-
tion between the missions is less obvious than for “core”

field data, due to the crude external model considered
in this study. Normalized misfits are nevertheless less
than unity (except,for Swarm X data), in particular for
the less accurate QOrsted, CryoSat-2 and GRACE data,
suggesting that a priori error uncertainties considered
in our inverse problem are possibly over-estimated. We
note also for all satellite missions significant biases for
F data used in the polar region (and to a lesser extent
on the north-south X component used at nonpolar
latitudes).

In addition, we represent in Fig. 5 for all missions and
components the distribution of normalized residuals ¢,
superimposed with the best fitting Huber distribution.
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Fig. 7 Comparisons between the MF observed at two Swarm GVO and the predictions from COV-SAT and CHAOS-7, for the three components.

Shaded areas represents the spread within £1¢

Most histograms behave according to our assumptions
on the residuals distribution. In some cases the PDF
behaves closer to a Laplacian (e.g. for the X component
for CHAMP and Swarm), with a sharper peak around
0. Likewise, some asymmetries are seen for some PDFs
for F data.

We further illustrate the ability of our model to fit
the observations in Fig. 6, where we present SV series
at the Honolulu (158°W, 21°N, Eastern Pacific) and
Hermanus (19°E, 34°S, South Africa) ground stations,
and in Fig. 7, where we present MF series at nearby
GVO positions. Our model closely fits the observed
series, with predictions comparable to those from the
CHAOS-7 field model.

4.2 Time evolution of internal field model coefficients
We next illustrate in Fig. 8 the evolution of some SV
coefficients obtained from COV-SAT, in comparison

with alternative models CHAOS-7, KALMAG and
COV-0OBS.x2. The estimation is made using t, sampling
2000-2030 every 0.2 yr, using the method described
in §3.3. We note some significant changes in the rapid
evolution of the axial dipole between COV-SAT and
COV-OBS.x2. Our new model is closer to CHAOS-
7, and generally to KALMAG (with the exception of
the period from 2010 to 2014, where CHAOS-7 and
KALMAG differ the most, a consequence of
CHAOS-7 using Cryosat-2 data and KALMAG lack-
ing satellite data). We believe this change is due to our
revised setup now being based on “core” MF GVO and
SV GO data that have been cleaned as much as pos-
sible from external sources (contrary to COV-OBS.
x2 for which magnetospheric corrections had not been
applied). For other coefficients at low to moderate
degrees [, the series of the several considered models
largely overlap. Larger discrepancies are seen toward
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Fig. 8 SV time series for several Gauss coefficients showing COV-SAT, compared with COV-OBSx2, CHAOS-7 and KALMAG. For models provided

with uncertainties, shaded areas represent the spread within £1¢

small length-scales (see for instance g7,, although the
trend for CHAOS-7, KALMAG and COV-SAT are
overall similar, with differences most often within the
estimated errorbars.

Models based on stochastic priors can be used for
forecasting possible evolutions after the date of the

latest observation. We observe for COV-SAT that the
spread of the SV forecast behaves smoothly once the
observational constraint is relaxed after ¢, = 2024.5.
This is characteristic of AR-3 processes that are the
basis of the temporal variations considered in this
study, for which the SV is continuous and differentiable,
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Fig. 9 Top: MF and SV spectra for models COV-SAT, COV-OBSx2, CHAOS-7 and KALMAG in 2018. Dashed lines correspond to the spectra
for the model uncertainties (spread within +1a). Bottom: MF and SV spectra for the difference between field models, with spectra for the model

uncertainties again shown as dashed lines

with a spread evolving o (¢ — t.)3/2. It contrasts with
AR-2 processes for which the SV is continuous but
not differentiable, which translates into a spread that
increases sharply (o< 4/f — £), as observed for instance
for the KALMAG model in Fig. 8.

We further compare the proposed uncertainties and
the model differences in Fig. 9 (top), with MF and SV
spectra at the Earth’s surface for the several models in
2018 (qualitatively similar behaviors would be witnessed
at other epochs). Spectra for the mean models almost
superimpose. Our estimate of the MF errors is lower than
those provided for KALMAG, in particular toward high
degrees. SV uncertainties are on the contrary very simi-
lar between the two models (only slightly less for COV-
SAT at low degrees). Toward low (resp. high) degrees

our estimates of the SV uncertainties are revised upward
(resp. downward) compared with COV-OBS.x2. This is
partly the consequence of removing the projection onto
splines with 2 yr knot spacing. Indeed, high degree coef-
ficients are hardly accessible on short time-scales, while
there is potentially some observational constraint on low
degrees (e.g. Ropp et al 2020). Because the projection
onto splines in COV-OBS models filters period shorter
than 3—4 years, the estimated uncertainty level was char-
acteristic of a low-pass version of the model coefficients,
which is by essence less than for instantaneous Gauss
coefficients.

Spectra for the proposed SV model uncertainties and
for the differences within field models are comparable
(see Fig. 9, bottom), which suggests our SV error estimate
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may be plausible. This is encouraging as this information
is key for geomagnetic data assimilation and the recovery
of the core dynamics (e.g. Sanchez et al 2020; Gillet et al
2024). COV-SAT MF errors seem under-estimated in
comparison with MF spectra for models differences. This
suggests a possible constant bias in our solution. It could
be related to the lithospheric field that is not co-estimated
(but corrected a priori) in this study, contrary to what is
done for KALMAG and CHAOS-7. This hypothesis is
plausible, since MF differences between KALMAG and
CHAOS-7 are less than between COV-SAT and the two
other models for medium to low degrees. Our formal
error estimates, derived from the Hessian matrix about
the estimated model, is indeed not capable of captur-
ing possible biases. Other possible sources of bias may
involve the different treatments in the various models of
ionospheric fields (these are internal to the satellite, espe-
cially in the polar regions) and the fields induced in the
solid Earth by the time varying external fields. MF spec-
tra for uncertainties are nevertheless orders of magnitude
less than for the mean models for all models. The pos-
sible under-estimation of the MF error level from COV-
SAT is likely not a major issue for an application to the
reconstruction of the core dynamics, which is more influ-
enced by the estimate of SV uncertainties (e.g. Gillet et al
2019; Baerenzung et al 2018).

4.3 Time evolution of the external dipole field

Finally we present in Fig. 10 the evolution of the exter-
nal field coefficient g,;(¢). In our approach, its estimation
is only related to the core field coefficients through the
orientation of the internal dipole field, since we neglect
induction in the core (see §3.1), and because we constrain
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the external field from differences between “core” and
“observed” MF GVO series (instead of a co-estimation
from GVO uncleaned for magnetospheric sources as it
was the case in COV-OBS.x2), while internal coefficients
are constrained from “core” GVO data. g;(¢) overall
exhibits variations similar to those from COV-OBS.x2,
although showing slightly more rapid variations. These
are most likely related to the temporal representation
based on correlation functions that are more permissive
than cubic B-splines with 2 yr knot spacing. The evolu-
tion of g,4(¢) is relatively close to the RC index once low-
pass filtered for periods longer than 2 years (using a
Butterworth filter of order 2), meaning that our estimate
seems to be a reasonable approximation for the slow evo-
lution of the magnetospheric ring current over the satel-
lite era. The increase in the uncertainty level between two
successive epochs (f, tx11), where the model is inverted
results from the AR-1 part of the a priori auto-covariance
function for g;(¢). This latter indeed allows on short
lags the spread of interpolated solutions to evolves as

VE = bl

5 Discussion

We have presented COV-SAT, a field model covering the
satellite era. It incorporates a priori information from
order 3 autoregressive processes, with ranges, where the
spectral density behaves as S(f) o« f7 with p =0,2,4
and 6 from low to high frequencies. This a priori descrip-
tion of the field’s temporal behaviour is parsimonious,
in the sense that it involves only a few free parameters.
The auto-covariance functions that we propose indeed
rely on a variance (function of the harmonic degree /), a
time-scales related to tgy (/) that characterizes the tran-
sition from p = 0 toward p = 4 for all coefficients apart
from g (decreasing from centennial to decadal periods
from low to high degrees, see Lhuillier et al 2011), and a
cutoff independent of / associated with the Alfvén time t,
(~ 2 yr in the core), as observed in advanced geodynamo
simulations (Aubert and Gillet 2021). An extra time 7,; is
considered for the axial dipole that determines the cutoff
between p = 0 and p = 2 seen in paleomagnetic records,
associated with magnetic dissipation (e.g. Buffett and
Puranam 2017).

The high frequency cutoff toward p = 6 reduces the
leakage of external fields into our internal field model
coefficients. We, furthermore, project in time the model
parameters on the correlation functions that constitute
the prior information (as previously performed by Hellio
and Gillet 2018), which removes the need to use arbitrary
support functions. The several developments presented
here thus represent a methodological shift in comparison
with the COV-OBS models, that were based on temporal
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correlation functions characteristic of order 2 autore-
gressive processes and projected onto B-spline functions
(Gillet et al 2013; Huder et al 2020).

The stochastic framework considered here allows us to
propose errorbars on the model parameters. The mag-
nitude of the proposed SV errors is comparable to that
of the difference between various models proposed by
the community, which is encouraging for the purpose
of geomagnetic data assimilation. Our measure of the
SV model uncertainties is comparable to that provided
with the KALMAG model (a bit less at the largest length-
scales) despite the use of different input data and mod-
elling strategies. The KALMAG model is developed by
time-stepping AR-2 stochastic equations in a sequen-
tial algorithm, whereas in our inversion, the prior infor-
mation enters via the correlation function. There is no
barrier to the incorporation of the AR-3 prior that we
propose into a sequential scheme such as employed by
Ropp et al (2020) or Baerenzung et al (2022). We indeed
propose in Appendix A the corresponding stochastic
equation. It will be worthwhile in the future to consider
the AR-3 prior that we propose here for building a field
model from observatory and satellite observations sam-
pled at a higher cadence, to see if the transition from —4
to —6 spectral at a period about 2 yr is also found in the
posterior PSD for the Gauss coefficients.

In the meantime the mean model we derived, esti-
mated from ground-based and virtual observatory
data cleaned as much as possible for external sources,
is close to alternative models such as the well-accepted
CHAOS-7 (Finlay et al 2020) or KALMAG (Baerenzung
et al 2022) models, where data along satellite tracks are
considered, and that involve the co-estimation of a com-
plex external field model. This indicates that GVO data
produced following Hammer et al (2021a) provide use-
ful observational constraints that allows one to infer
the evolution of the core magnetic field from a reduced
number of higher level post-processed magnetic data.
The sampling at which we can consider GVO data is lim-
ited by the drift rate of the satellite orbits in local time.
The Swarm constellation configuration with two well-
separated polar tracks reduces it to &~ 4 months, which
is less than that needed with a single satellite such as
CHAMP. The inclined orbit mission MSS-1 reduces it
further down to 2 months, covering latitudes less than
41° (Jiang et al 2024). We can thus hope to get insight on
more rapid core field changes with the current configura-
tion (MSS-1 plus Swarm), and the up-coming NanoMag-
Sat mission from ESA with 3 spacecrafts (one polar orbit
and two inclined at 60°, see Deconinck et al 2025). The
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production of GVO data from these new combinations of
satellites will then be helpful to isolate core processes on
periods shorter than a few years (Brown et al 2023).

This concerns first the presence of Magneto-Coriolis
waves with short periods, as well as long period inertial
waves. Such transient dynamics is expected from stud-
ies of eigenvalue and initial value problems in a rapidly
rotating sphere in the presence of a non-axisymmetric
imposed magnetic field (Gerick and Livermore 2024;
Barrois and Aubert 2024). It also concerns identifying
the actual high frequency cutoff for the magnetic signal,
currently hindered by the dominant external sources
on short time-scales, and only witnessed in geodynamo
simulations. Extending to millenial timescales dynamo
simulation series at Earth-like parameters, such as that
by Aubert (2023), will be helpful to more accurately con-
strain the shape of the temporal spectrum at periods
close to the Alfvén time. Detecting a decay in the PSD
of the core signal is challenging but may help constrain
physical properties of the Earth’s deep interior. We think
here of bounds on the magnetic diffusivity n of the core
material, to which the cutoff is related (Aubert and Gillet
2021). We recall that 1 (and the associated thermal con-
ductivity) is a subject of debate within the community of
mineral physics (e.g. Davies et al 2015; Zhou et al 2022).
We also have in mind bounds on the electrical conductiv-
ity o,, of the deep mantle, a quantity inaccessible using
electro-magnetic sounding with external field variations
as the source (Grayver 2024). Indeed, while o, # 0 over
a thick layer will act as a non-causal low-pass filter on the
magnetic signal originating from the core (Jault 2015),
om 7 0 at the base of the mantle will alter the transient
dynamics within the core through the electromagnetic
boundary condition (Schaeffer and Jault 2016; Firsov et al
2023).

Appendices

From the PSD to the correlation function

We derive here an AR-3 correlation function that satisfies
the observational and numerical constraints from §3.2.
Below we rely on the properties of AR-1 processes with
variance o and decay frequency wo, which are character-
ized by a auto-covariance function

C(r) = 05 exp (—wolt) (A1)
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and a PSD (e.g. Yaglom 2004)

(A2)

First we perform a decomposition in simple fractions of
a PSD of the form (6). Consider three constants (a, b, c),
and three frequencies (¢, 8, y). Lets choose a PSD such

that
1 ao bB cy
S(w) =—
(@) =— <a2+a)2 + 82 1 o? + y2+w2>

. ko + kza)2 + /(46()4
T @+ o) (B + D) (y? + 0?)

(A3)

where

wky = ax + bB + cy
nky = aa(B* + y?) + bB(e® + y?) + ey (a® + B?) .
wko = aaf?y? + bBa’y? + cya?p?
(A4)
Using Egs. (Al and A2), the correlation function associ-
ated with the PSD (A3) takes the simple form

C(r) = aexp (—alt|) + bexp (—=B|t|) + cexp (—y|z]).

(A5)
For S(w) to evolve as w~® toward high frequencies, we
deduce the two conditions ky = k4 = 0. Imposing the
variance 02 = C(0) of the signal leads to a third condi-
tion 02 = a + b+ c. Knowing the values for the three
frequencies (o, 8, y) and o2, we then have to solve the lin-
ear problem Mx = y where

1 1 1
M=|«a B 14 ,
a(Br+vy?) Bla*+y?) y(a® + B>
ol ) e ) vt e ||
a o
x=|b| and y= |0
K 0
We have
det(M) =y (ﬁ2 - )’2) - ay<a2 - VZ)
(A7)
+ af (a2 — ,32),
and the solution is
2 _ Vﬁ (132 - y2)
ajo” = de(t(I;/[) 2)
2 —av(e?—y?)
blo” = — et (A8)
o _ aBe®—p?)

/o= et
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From these values we deduce the auto-covariance func-
tions (A5), that we use to build the prior covariance
matrix when building our field model.

For all coefficients but the axial dipole, we could resort
to only 3 spectral ranges of indices p = 0, —4 and —6.
However, we cannot use 8 = «, since in this case ¢ =0
and then the PSD will behave as @™ on short time-
scales. However, this pathological case can be avoided by
having « close to B, a bit larger.

The PSD and auto-covariance functions obtained this
way are characteristic of the AR-3 process represented as

X"+ @+ B+ X"+ @B+ By +ya)X' +apyX =2Z, (A9)

where Z is a centered white noise of variance
Ol,3)/0‘2
0=

"~ wdet(M) (ﬂ2y2(ﬂ2 B y2> —a’y? (aZ B VZ)
+a2,32 (a2 - ﬂz)).
(A10)

For the parameters chosen here, the roots of the denomi-
nator of (A3) being complex conjugates, a process such
as (A9) is stationary. Note that we may simplify Eq. (A8)
in the limit y > B > « (as for the axial dipole), in which
case det(M) ~ —By3, leading to

ajo? ~ 1

bj/o? ~ ¢
ﬂ2 . (A11)

c/o? ~ p”

)/3

Then one has ky ~ o2ap%y? /.

Choice of the input parameters

The AR-3 correlation functions designed above rely
on the choice of some parameters. We consider here
P = wy; = 107* yr~! for the axial dipole. We also fix
Y =w, =27/, =7 yr~ ! for all coefficients. We now
wish to choose the frequency B(n) = w,. We define
wy(n) as performed for previous COV-OBS models,
i.e. based on the SV time-scale (5). The reason is that
Tsv (1) is a quantity accessible from geophysical obser-
vations via magnetic field models. To this purpose we
use the relationship (e.g. Hulot and Le Mouél 1994)

B(i) = -0

(B1)

for a process X(t) with auto-covariance function C(t). For
a function such as that defined by Eq. (A5), we then have
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crgzzn = —<aoz2 +bB* + cy2). (B2)
Using (A8) in the limit where y >> o, 8 we get
af(n) = 1/t (n). (B3)

For all coefficients but the axial dipole, if we assume as
above the condition ca = B with ¢ a bit larger than one
(to reduce the frequency range presenting a —2 spectral
index), this gives
By = calm) = 0,00 =
sy (1)
This condition is close to that introduced previously by
Gillet et al (2013) for the cutoff frequency of Matern
AR-2 processes. For the axial dipole (noted with a sub-
script ‘AD’) we obtain instead

(B4)

AD AD?2
Cl)d/g = ]‘/TSV ,

where tSAVD = /agz? /cr;?. A numerical application with
1/wgz = 10 kyr, 040 = 10 nT/yr and 00 = 7700 nT (or
TSAVD =7700 yr, see Huder et al 2020) leads to
1/BAP ~ 60 yr > 1,, We check a posteriori that
wg < AP < wg.

A similar AR-3 formalism was considered by Sad-
hasivan and Constable (2022) for the dipole moment.
By fitting the analytical AR-3 spectrum to a compos-
ite spectrum of historical and paleomagnetic models
derived from magnetic observations, they obtained
1/wg ~ 15 kyr, 1/8AP ~ 30 yr and 1/w, ~ 2 yr. Their
estimate of w, (resp. P) is comparable to ours, only
1.5 (resp. 2) times smaller. The main difference con-
cerns their value for w, that is smaller by a factor about
6. This is because the high frequency cutoff is con-
strained in their approach by the PSD from a historical
field model that does not capture variations on periods
as short as the Alfvén time t,.

(B5)
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