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Abstract 

We present COV-SAT, a magnetic field model covering the era of continuous satellite monitoring from space, constrained 
by ground-based and virtual observatory data. It incorporates as a priori information temporal cross-covariances associ‑
ated with auto-regressive processes of order 3. These are derived analytically, and rely on a small number of free param‑
eters (variances and time-scales) deduced from spectral properties extracted from long magnetic records and geodynamo 
simulations. The new a priori information proposed here encompasses power spectra stemming from paleomagnetic, 
observatory and satellite records, statistically replicating magnetic variations over a broad range of time-scales. It, further‑
more, allows the cutoff in the spectral density expected for periods shorter than ≈ 2 years, the Alfvén time in Earth’s core, 
to be mimicked. Field model coefficients are projected in time based on the a priori cross-correlation functions, avoiding 
the use of arbitrary temporal basis functions. This formalism is exploited to forecast the field evolution, and to provide 
uncertainties for the estimated main field and its secular variation over the upcoming 5 years.
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1  Introduction
A series of satellite missions has enabled the continuous 
monitoring of the geomagnetic field from space since 
about 2000. Combined with ground-based stations, these 
provide high quality, global observational constraints 
on the Earth’s magnetic field evolution (e.g. Lesur et  al 
2022). Meanwhile, two main difficulties limit the mod-
eling of the dynamo field originating in Earth’s core (or 
main field, MF). First, the era covered by space records 
is short in comparison with the typical time-scale of the 
core dynamics. Indeed, the eccentric gyre first imaged 
from satellite data (Pais and Jault 2008), which is respon-
sible for the observed westward drift of the magnetic 
field (Bullard et al 1950), is present since at least the late 
19th century (Aubert 2014; Gillet et al 2019). Knowledge 
about possible core state evolutions must then take inspi-
ration from magnetic records spanning epochs prior to 
the modern satellite era (observatory series, historical 
logs and paleomagnetic samples, e.g. Suttie et al 2025), as 
well as from the increasingly realistic numerical simula-
tions of the geodynamo (Aubert et al 2022). Second, the 
core signal is hindered by external sources toward short 
periods. An accurate description of the rapid core vari-
ations thus relies on improved reconstructions of iono-
spheric sources (in particular toward auroral regions, see 
Kloss et al 2023) as well as magnetospheric fields patterns 
(e.g. Ou et al 2024).

Inverting for core field models requires incorporating 
additional information, to reduce the non-uniqueness 
inherent to the geomagnetic inverse problem. Under the 
assumption of Gaussian stochastic processes, this infor-
mation is stored into a priori cross-covariance matrices. 
It may take the form of a smoothing (regularization, or 
damping) if one wishes to infer only an estimated model 
as free as possible from unresolved small length and 
time-scale patterns. Conversely, considering a realistic 
prior, allowing for the physically expected spatio-tempo-
ral variations, is necessary when one also targets realis-
tic estimates of model uncertainties from the posterior 
covariance matrix (for a general formalism in the con-
text of geomagnetism, see Gubbins and Bloxham 1985; 
Backus 1988).

It is with this spirit in mind that the COV–OBS suite 
of models has been derived (Gillet et al 2013; Huder et al 
2020). These consider a priori information in time based 
on stochastic processes, namely, second-order auto-
regressive or AR-2 processes. The rationale behind this 
choice is their link, in terms of differentiability proper-
ties, with geomagnetic series presenting jerks—defined 
as abrupt changes in the slope of the secular variation 
or SV, the rate of change of MF series. Such series could 
indeed be described as the realization of continuous and 
once differentiable processes, as are AR-2 processes. This 

temporal prior information is incorporated in the COV—
OBS inversion scheme via associated temporal cross-
correlation functions. An alternative approach is taken in 
the KALMAG model by Baerenzung et al (2022), which 
is based on a sequential scheme, where AR-2 stochastic 
equations are embedded within a Kalman filter. Although 
AR-2 processes seem coherent with the temporal power 
spectral density (PSD) of the observed field on periods 
longer than a few years (Lesur et al 2018), they possibly 
allow too large variability on shorter time-scales, which 
is problematic in the presence of noise from imperfectly 
modelled external and related induced fields (Finlay et al 
2017). Analysis of advanced geodynamo simulations 
shows the temporal PSD of the simulated field severely 
drops on periods shorter than the Alfvén time, associated 
with magnetic diffusion (Aubert and Gillet 2021). Scaled 
to the Earth’s core conditions, this cutoff would indeed 
correspond to ≈ 2 yr (Gillet et al 2010).

In this context, we propose with the present study an 
alternative family of a priori temporal cross-covariances, 
based on third-order auto-regressive (or AR-3) processes. 
The PSDs from AR-3 processes have been considered 
previously by Sadhasivan and Constable (2022) to rep-
resent the behavior of the axial dipole field over a broad 
range of time-scales. This framework allows us to mimic 
the rapid decay in the PSD observed on short time-scales 
in dynamo simulations, mitigating possible spurious vari-
ability related to external field leakage when imposing a 
too loose constraint on rapid fluctuations. This is poten-
tially important in the period band around 1–10 years 
that presents ambiguities between internal and external 
sources (e.g. Fig. 5 in Constable and Constable 2023). We 
use these new a priori cross-covariances to construct a 
geomagnetic field model over the period 1999.5–2024.5, 
together with its associated uncertainties. Constrained by 
satellite and ground-based magnetic records, this model 
named COV-SAT has been the basis for the calculation 
of ISTerre’s candidates to the 14th edition of the Inter-
national Geomagnetic Reference Field (for the previ-
ous 13th edition, see Alken et al 2021). Satellite data are 
incorporated by means of geomagnetic virtual observato-
ries (Hammer et al 2021a). In comparison with the COV–
OBS models, we not only incorporate a higher order 
temporal prior, but also follow Hellio and Gillet (2018) 
and project the model parameters on the auto-covariance 
functions when interpolating and extrapolating Gauss 
coefficients. By doing so, our temporal representation 
is based on geophysically motivated functions, avoiding 
a projection onto B-spline functions that may alter the 
high frequency behavior.

We begin by describing in §2 the geomagnetic obser-
vations used to build the field model and its associ-
ated uncertainties. Next in §3 we describe the model 
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parametrization, the derivation of the AR-3 a priori 
information, the inversion procedure and the interpola-
tion/extrapolation method based on AR-3 correlation 
functions. In §4 we illustrate the fit to magnetic data, and 
present the time evolution of the field model, before we 
discuss in §5 some implications of our developments.

2 � Data
We focus here on the satellite era (1999.5–2024.5), and 
consider ground observatories (GO) and geomagnetic 
virtual observatories (GVO). Three-components GO 
observations are incorporated in the form of annual dif-
ferences of 4-monthly robust means, to avoid dealing 
with the crustal biases. The GO 4-monthly SV time series 
are derived from version 0140 (up to January 2024) of the 
ground observatory hourly means between January 1997 
and April 2024 from the database AUX_OBS prepared 
by the British Geological Survey (Macmillan and Olsen 
2013). Robust 4-monthly means of MF series are com-
puted from hourly means, after subtracting predictions 
from the CM4 ionospheric and associated induced field 
(Sabaka et  al 2004) and the CHAOS-7  magnetospheric 
and associated induced field (Finlay et al 2020). This latter 
uses as input the RC index (Olsen et al 2014). 4-monthly 
GO SV series are then computed as annual differences of 
GO MF time series.

Our model also incorporates three-components GVO 
field estimates from the CHAMP, Ørsted, GRACE, Cryo-
Sat-2 and Swarm missions each provided on a grid of 300 
locations on an equal area grid at the mean height of the 
satellite. We refer to Hammer et  al (2021a) for details 
about the GVO data processing algorithm. For all mis-
sions but Swarm, we consider 12-monthly means GVO, 
to avoid possible aliasing effects related to the slow drift 
in local time of polar orbiting satellites and the existence 
of remaining ionospheric fields that depend on local 

time. Because the Swarm constellation covers local times 
at a higher cadence, with the Swarm Bravo satellite usu-
ally sampling a different local time to the Swarm Alpha 
and Charlie satellites, Swarm GVO MF data are incorpo-
rated as 4-monthly means. They are derived from Swarm 
L1B Mag-L OPER data versions 0602–0605, as available 
in June 2024. For each GVO data set we consider both 
the 4-monthly observed field estimates (built from night-
side data with quiet time selection criteria applied but 
without any further corrections or cleaning, see Hammer 
et al 2021a) and the core field estimates (for which esti-
mates of crustal, magnetospheric and ionospheric fields 
have been removed). For core field GVO data, estimates 
of the CIY4 ionospheric and induced fields have been 
removed (Sabaka et  al 2018), as well as estimates of 
CHAOS-7  magnetospheric and induced fields. These 
data are also cleaned from the lithospheric field contribu-
tions for harmonic degrees 14–120, as estimated with the 
LCS-1 model (Olsen et al 2017). Furthermore, a denois-
ing has been applied to remove remaining external and 
toroidal terms, via a spherical harmonic analysis. To miti-
gate the impact of field-aligned currents we consider, 
instead of three-components observations, intensity data 
F =

√

B2
r + B2

θ + B2
φ  for GVO located at dipole latitudes 

|�D| > 55◦ . We note throughout (r, θ ,φ) the radial, ortho-
radial and azimuthal spherical coordinates.

The observation operator for the cleaned GO SV and 
GVO MF (“core”) data is only related to our internal field 
model coefficients. The observation operator for the dif-
ference between observed and core fields GVO data is 
associated with the external field model coefficients. For 
each site separately, uncertainty estimates ( σr , σθ , σφ ) for 
the GO series are obtained from the misfit to the 
CHAOS-7 field model. Uncertainties associated with the 
GVO series have been estimated as described in Hammer 
et  al (2021a). Uncertainties on F data are obtained by 

Table 1  Top lines: median values of the observation uncertainties σr ,θ ,φ considered in this study for “core” GO SV data (in nT/yr) and for 
core field GVO MF data (in nT)

Bottom lines: number of data No
r,θ ,φ,F used to solve the inverse problem. The slight deviation in the number of data for (X, Y, Z) data is the result of our mild rejection 

criterion at 10σ (see §3.4). There are less F data, because these are used only in polar regions, while away from the poles, we only consider (X, Y, Z) data

Data set GO SV Ørsted CHAMP CryoSat-2 GRACE Swarm
Units nT/yr nT nT nT nT nT

σr 2.36 2.99 2.30 2.71 3.13 2.39

σθ 1.94 2.55 1.90 2.09 2.28 2.01

σφ 2.11 1.58 1.28 1.29 1.95 1.16

N
o
r 9040 1078 2368 2026 2284 7333

N
o
θ 8982 1076 2366 2024 2279 7316

N
o
φ 9014 1077 2368 2026 2283 7331

N
o
F

0 222 436 440 490 1501
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propagating the three-components errors as 

σF =

|Br |

F
σr +

|Bθ |

F
σθ +

|Bφ |

F
σφ . Since we get rid of the 

projection onto splines with 2  yr knots spacing, we do 
not add on top of these observation errors the modeling 
errors considered by Huder et al (2020) for the construc-
tion of COV-OBS.x2. We show in Table 1, for all compo-
nents, the number of data used and the median 
uncertainties for core field GVO MF data from all mis-
sions, as well as for GO SV data. Uncertainties are gener-
ally lower on the east–west ( φ ) component, which is less 
affected by external signals. These are as low as ≈ 1.3 nT 
for CHAMP or CryoSat-2, and 1.15 nT for Swarm. This is 
to be compared with an uncertainty level closer to 2 nT in 
the north–south ( θ ) component, and larger than 2.3 nT 
for Br . Uncertainties for GVO based on platform mag-
netometers (Olsen et al 2020; Olsen 2021; Hammer et al 
2021b) are significantly larger for GRACE, while for Cry-
oSat-2, they are closer to error levels from dedicated 
magnetic missions.

3 � Methods
3.1 � Spatial parameterization of the magnetic model
The parameterization and methodology for COV-
SAT only partly rely on the procedures described for ear-
lier COV-OBS models (Gillet et al 2013, 2015; Huder et al 
2020). We recall here the overall underlying framework 
and then discuss in more detail the key additions to this 
new model. We assume the mantle to be insulating. The 
magnetic field B = −∇V  then derives from a potential 
for r ≥ rC = 3485 km, the Earth’s core radius. The poten-
tial V = Vi + Ve is separated between internal and exter-
nal sources. The internal (core) field is expanded onto 
spherical harmonics as

with a truncation at spherical harmonic degree L = 14 . 
Here rE = 6371.2  km is the Earth’s reference radius, 
(gml , hml ) are the Schmidt semi-normalized internal Gauss 
coefficients, and Pm

l  the associated Legendre polynomi-
als. The external field potential

is restricted to a dipole aligned to the internal dipole 
(so Le = 1 ), with (qml , s

m
l ) the Schmidt semi-normalized 

(1)
Vi(r, θ ,φ) =rE

L
∑

l=1

( rE

r

)l+1
l

∑

m=0

(

gml cos(mφ)

+hml sin(mφ)
)

Pm
l (cos θ),

(2)
Ve(r, θ ,φ) =rE

Le
∑

l=1

(

r

rE

)l l
∑

m=0

(

qml cos(mφ)

+sml sin(mφ)
)

Pm
l (cos θ)

external Gauss coefficients. It is then described by a sin-
gle coefficient qd , such that

We consider the induced response of the core to exter-
nal field variations as performed for COV-OBS-x2   (see 
Eqs. 5 and 15 in Huder et al 2020), by assuming that on 
long periods the fluid core behaves as a perfect conductor 
(see Olsen et  al 2005). This assumption is supported by 
numerical modeling of the hydro-magnetic response of a 
rapidly rotating fluid core to an external excitation (Thea 
Lepage, pers. comm.)

One important modification w.r.t. COV–OBS mod-
els concerns the temporal projection of the model coef-
ficients. Here we move away from the spline functions 
commonly used since Bloxham and Jackson (1992) to 
parameterize the time-dependence. We instead perform 
an interpolation at any observation epoch by projecting 
onto physically motivated correlation functions, follow-
ing Hellio and Gillet (2018). These functions are described 
in §3.2, and the temporal projection in §3.3. The model 
inverted here is based on Gauss coefficient values speci-
fied every year over [ti, te] = [1999.5, 2024.5] , so here a 
total of N = 26 epochs. The spherical harmonic model 
coefficients for all epochs and all degrees are stored into a 
vector m , of size P = N (L(L+ 2)+ 1) = 5850.

3.2 � Stochastic priors for the Gauss coefficients
3.2.1 � A priori information for the core field
We represent internal field coefficients as a perturba-
tion w.r.t. a background, or gml (t) = gml + g̃ml (t) . We 
consider a background gml = 0 for all coefficients except 
the axial dipole. For this latter we choose from paleo-
magnetic reconstructions g01 = −24000  nT, the same 
value as used for building COV–OBS.x2 (see Huder et al 
2020). In the construction of COV–OBS models, AR-2 
processes have been considered to build the a priori tem-
poral auto-covariance functions of Gauss coefficients, 
Cm
l (τ ) = E

[

g̃ml (t)g̃ml (t + τ )
]

 . This was justified based on 
the spectral index p = 4 found for the PSD S(f ) ∝ f −p 
of the magnetic field in the range 2 � 1/f � 70  yr, with 
f the frequency (Lesur et  al 2018). However, advanced 
numerical simulations of the geodynamo (Aubert and 
Gillet 2021) indicate that S(f) should steepen for peri-
ods shorter than a cutoff time-scale which, one scaled to 
Earth-like conditions, is found to be commensurate with 
the Alfvén time τa ( ≈ 2 yr in Earth’s core, see Gillet et al 
2010). The cutoff for the 71p dynamo of Aubert and Gillet 

(3)





q01
q11
s11



 =

−qd
�

(g01 )
2
+ (g11 )

2
+ (h11)

2





g01
g11
h11



.
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(2021) is illustrated in Fig. 1, where we show the normal-
ized PSD for the magnetic Gauss coefficients series. It 
clearly shows a more severe decay of the power toward 
short periods, evolving approximately as S(f ) ∝ f −6 and 
independent of the spherical harmonic degree l. One may 
wonder if this could be the consequence of the enhanced 
dissipation of the velocity and codensity fields on short 
length-scales in the 71p dynamo. Although this may 
affect the subgrid induction, we recall that the magnetic 
field itself is not subject to hyperdiffusion, motivated by 
a magnetic field diffusing faster than momentum in liq-
uid metals (i.e. low magnetic Prandtl number). The cutoff 
witnessed for periods less than τa is, therefore, unlikely 
the consequence of the enhanced dissipations.

The core field evolution on time-scales shorter than τa 
is difficult to constrain, due to ambiguities between inter-
nal and external sources (e.g. Lesur et  al 2022), and the 
projection onto spline functions with 2  yr knot spacing 
in practice constrained rapid changes in previous COV–
OBS models. Shortening the knot spacing with an AR-2 
prior led to unsatisfying leakage from unmodelled exter-
nal contributions on short periods, in part because the 

AR-2 PSD allows considerable freedom on short time-
scales (Finlay et  al 2017). Here we build a correlation 
function that accounts for the steep decay of the mag-
netic field PSD at high frequencies by relying on higher 
order (AR-3) stochastic processes (recalling that the PSD 
for AR-n processes behave as S(f ) ∝ f −2n toward short 
time-scales). A linear AR-3 process X(t) is governed by a 
stochastic equation of the form

where Z represents here a centered white noise of unit 
variance. The determination of the 4 parameters a0,1,2,z 
comes down to finding one variance and 3 time-scales, as 
detailed below. Our approach is based on the shape of the 
magnetic field PSD.

To mimic the spectrum of the core magnetic field, we 
wish to build a correlation function, as simple as pos-
sible, such that S(f) describes 4 spectral ranges, with 
indices p = 0, 2, 4 and 6 indicating low to high frequen-
cies. The cutoff between p = 0 and 2 is seen only for the 
axial dipole from paleomagnetic records, for a period 
τd = 2π/ωd ≈ 50− 100  kyr (Constable and Johnson 
2005). Parameter estimations using stochastic models 
indicate ω−1

d ≈ 10 kyr, linked to magnetic diffusion (Buf-
fett and Puranam 2017; Morzfeld and Buffett 2019). The 
cutoff between p = 4 and 6 (in practice a gradual transi-
tion toward even steeper slopes) is deduced from its scal-
ing from advanced geodynamo simulations, at a period 
about the Alfvén time τa = 2π/ωa ≈ 2 yr and independ-
ent of the spherical harmonic degree l and order m (see 
Fig.  1). The cutoff between p = 0 and 4 is seen for all 
Gauss coefficients except for the axial dipole, at a period 
commensurate with the SV time-scale

which can be related to the vortex turn-over time in the 
core (Gillet et al 2013; Bouligand et al 2016). We use here 
the notation σ 2

gml
= E

[

(

gml − E[gml ]

)2
]

 and 

σ 2
ġml

= E

[

(

∂t g
m
l − E[∂t g

m
l ]

)2
]

 , where E[. . . ] denotes the 
mathematical expectation, with a similar notation for the 
hml  . Lhuillier et al (2011) shows that τSV (l) (in yr) evolves 
approximately as ≈ 400/l for l ≥ 2.

The above situation can be represented by a PSD of the 
form

(4)X ′′′
+ a2X

′′
+ a1X

′
+ a0X = azZ,

(5)τSV (l) =

l
∑

m=0

σ 2
gml

+ σ 2
hml

l
∑

m=0

σ 2
ġml

+ σ 2
ḣml

,

Fig. 1  Temporal PSDs for the Gauss coefficients from the 71p 
dynamo of Aubert and Gillet (2021). For the various degrees l 
shown, the PSDs have been averaged over all orders m ∈ [0, l] , 
and normalized to the value at the period T = τA . Periods 
on the x-axis are in unit of Alfvén time, which correspond to 5.8 yr 
in the 71p dynamo. Each series is 10 kyr long. The PSDs have been 
obtained with a multitaper method, applying a Hanning window 
on each of the 10 considered tapers
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with K a constant and ω = 2π f  the angular frequency, 
and where the parameters ωd,u,a have to be adjusted for 
all Gauss coefficients. We show in Appendix  A how to 
derive the correlation functions associated with such 
a PSD. They take the simple analytical form (A5). We 
search for functions depending on as few parameters as 
possible. For all non-dipole coefficients, the parameters 
entering (6) are assumed to be independent of the order 
m, and vary only with the degree l. The axial dipole is 
treated separately because of its particular behavior pre-
senting an intermediate spectral range with index p = 2 . 

(6)S(ω) =
K

(ω2
d + ω2)(ω2

u + ω2)(ω2
a + ω2)

,

We present in Appendix B details of how we determine 
in practice the frequencies ωd,u,a and the variances enter-
ing our correlation functions. There we also compare the 
parameters considered in the present study with those 
proposed by Sadhasivan and Constable (2022), that have 
been determined by adjusting the AR-3 PSD to a com-
posite spectrum from models of the main field and of the 
dipole moment.

The associated PSD are illustrated in Fig.  2 for the 
axial dipole, and in Fig. 3 for the other coefficients. The 
a priori PSD for the axial dipole is close to that consid-
ered for COV–OBS-x2 on periods longer than ≈ τa . In 
comparison with Huder et  al (2020), the update of the 
cutoff frequencies that define the transitions between 
period ranges with a spectral index p = 0 and p = 2 , and 
then p = 4 , slightly reduces the intermediate range of 
frequencies, where S(f ) ∝ f −2 , with a slight decrease in 
the power. We clearly see in Fig. 3 the decrease with the 
degree l of the variance, as well as for the cutoff period 
between frequency ranges presenting a 0 and 4 spectral 
index. At all degrees, the cutoff on short periods toward a 
spectral index p = 6 is characteristic of AR-3 processes.

3.2.2 � A priori correlation function for the external dipole field
We represent the external field coefficient as a pertur-
bation w.r.t. a background, or qd(t) = qd + q̃d(t) . We 
consider qd = 20  nT, which approximates the sum of 
the Geocentric Solar Magnetospheric (GSM) and Solar 
Magnetic (SM) parts at zero frequency. The former is 

Fig. 2  PSD associated with the a priori cross-correlation function 
considered for the axial dipole for the construction of COV-SAT, 
compared to previous editions

Fig. 3  PSD associated with the COV-SAT model a priori 
cross-correlation function considered for all coefficients but the axial 
dipole. The color indicates the coefficient degree, where dark blue 
is associated with the lowest degrees (starting at l = 1 ) and yellow 
the highest ones (up to l = 14)

Table 2  Parameters for the correlation function (7) used as a 
prior on qd in the construction of COV-SAT

σ 2

2
 ( nT2) 1/α2 (years) 2π/ω2 (years) σ 2

1
 ( nT2) 1/α1 (years)

25 25 11.5 65 2.5

Fig. 4  Auto-covariance function for the external dipole coefficient 
q̃d(t) , as inferred from the RC index lowpass filtered for periods longer 
than 2 yr (see text for details)
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almost constant on the time-scales considered here (see 
Fig. 1 of Lühr and Maus 2010), at a level of ≈ 8 nT. The 
latter can be represented via the RC index for the mag-
netospheric activity (Olsen et al 2014), and averages out 
to about 11 nT over the period 1997–2024. To estimate 
the auto-covariance function for q̃d(t) we consider, as 
suggested by Huder et al (2020), the combination of an 
AR-1 (i.e. Laplacian) and AR-2 (or damped oscillator) 
correlation functions:

To determine the 5 parameters (2 variances and 3 times) 
entering Eq.  (7), we rely on the RC index. Because we 
use satellite and observatory data built from annual or 
4-monthly means, our estimate of qd cannot be consid-
ered as instantaneous, but instead as a weighted time-
average. We build our prior based on this weighted 
average of the series RC(t) over the period 1997–2024, 
after applying a low-pass filter with cutoff period 2  yr 
(the Nyquist period for the 1 yr sampling of our inverted 
model coefficients). In practice we use a Butterworth fil-
ter of order 2. The fit of Eq. (7) to the correlation for the 
filtered RC (using the curve_fit python function based on 
Vugrin et  al 2007) gives σ 2

1 = 64.9 nT2 , σ 2
2 = 23.1 nT2 , 

1/α1 = 2.6  yr, 1/α2 = 23.6  yr, and 2π/ω2 = 11.7  yr, that 
we approximate to the values given in Table 2. The period 
2π/ω2 of the damped oscillator is reminiscent of the solar 
cycle. The amplitude of the AR-1 process is larger by a 
factor ≈ 1.6 than that of the AR-2 process. The fit to the 
RC correlation function is shown in Fig. 4.

3.3 � Temporal representation of the Gauss coefficients
The model vector m contains Gauss coefficients ( kgml  , 
khml  , kqd ) at the discrete set of N epochs tk considered 
to build the field model. The tk are stored in a vector 
tm . We need a continuous representation for the model 
coefficients, e.g. gml (t) with t any epoch of interest, to 
estimate the model prediction at an observation epoch, 
or for interpolating and forecasting the field model. To 
this purpose we perform a Gaussian process regression 
(Rasmussen and Williams 2006), based on the auto-
covariance functions defined in §3.2. We follow the 
approach of Hellio and Gillet (2018), considering each 
Gauss coefficient individually. We store in a vector gx 
its values to be interpolated and/or extrapolated at a 
set of epochs tx , and in a vector gm its inverted values 
at the set of epochs tm . Based on the auto-covariance 
functions defined above, we build for each coefficient 
the covariance matrices

(7)
Cqd (τ ) =σ 2

1 exp (−α1|τ |)+ σ 2
2 exp (−α2|τ |)

[

cos(ω2τ )+
α2

ω2

sin(ω2τ )

]

.

which contain the a priori cross-covariances for all pairs 
of epochs within the vectors tx and tm . We use the nota-
tion g̃ to represent the anomaly w.r.t. the background 
model g . Within our setup, this latter is non-zero only for 
the internal axial dipole and the external dipole. Under 
Gaussian assumptions for the model distribution and 
uncertainties, the most likely estimate at epochs tx is then

where R is the error covariance matrix for the model 
parameters gm . Equation  (9) is used to calculate the 
model predictions Hi(m) to any datum yi at epoch ti (see 
§3.4). In this case we consider within the iterative inver-
sion procedure R = 0 . We use this approach as an alter-
native to the spline expansion introduced by Bloxham 
and Jackson (1992).

Once the final model parameters have been derived, 
the same Eq. (9) is used to provide our model estimates 
and their associated uncertainties at any epochs, both 
for interpolating and for forecasting. In this latter case 
R is obtained from diagonal elements of the posterior 
model covariance matrix (the inverse of the Hessian, as 
performed by Gillet et  al 2013). The above regression 
is applied separately for each coefficient, so that we 
avoid manipulating too large covariance matrices, thus 
reducing the risk of numerical instabilities associated 
with too wide ranges of eigenvalues.

On top of this estimate for the model coefficient 
series gx at epochs tx , we also provide the associated 
uncertainties based on the posterior model error covar-
iance matrix

To derive numerical values of the uncertainties on gx , 
we first perform the Cholesky factorization Ppost

xx = LL
T . 

From the the lower triangle matrix L we then generate an 
ensemble of Ne

= 500 realizations

where wi is a centered and unit variance normal random 
vector. The dispersion within this ensemble of series 
provides a useful measure of the model uncertainties 
through time.

(8)
Pmm =E

(

g̃mg̃
T
m

)

, Pxx = E

(

g̃xg̃
T
x

)

and Pxm = E

(

g̃xg̃
T
m

)

,

(9)gx = g + Pxm[Pmm + R]−1
(

gm − g
)

,

(10)P
post
xx = Pxx − Pxm[Pmm + R]−1

P
T
xm.

(11)gx,i = Lwi for i ∈ [1,Ne
],
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3.4 � Inversion procedure
As for previous editions of the COV–OBS models, COV-
SAT Gauss coefficients have been obtained iteratively via 
a Newton-type method minimizing a cost function J  
that consists of a sum of a misfit term M and a term N  
measuring the model complexity:

One evolution w.r.t. earlier releases is the consideration 
of Huber weights for the measure of the residuals (data 
misfit) instead of a L2 norm previously. This avoids the 
use of a strict rejection criterion (previously 3σ , now at 
10σ ), and we now rely on an iterative weighted least-
square method (Farquharson and Oldenburg 1998). The 
use of the Huber norm is a common way for dealing with 
outliers. The misfit to the data is then given by

where Hi is the forward operator associated with the ith 
datum yi , with estimated uncertainties σi . No is the total 
number of observations. Lδ is the Huber loss function 
defined as (e.g. Olsen 2002)

with δ = 1.5 the parameter controlling the normalized 
residual value above which Lδ morphs from a L2 measure 

(12)J (m) = M(m)+N (m).

(13)

M(m) =

No
∑

i=1

Lδ(ǫi), with ǫi = |yi −Hi(m)|/σi,

(14)Lδ(ǫ) =

{

ǫ2/2 for |ǫ| � δ

δ|ǫ| − δ2/2 otherwise
,

(for low |ǫ| ) to a L1 measure. Observation errors are sup-
posed independent.

The model complexity is measured as

The matrix P contains, for all coefficients, the tempo-
ral cross-covariance between all epochs, as described in 
§3.2.1 and 3.2.2. We assume a priori that the coefficients 
of different orders or degrees are independent. m is the 
background model (see above). The iterative process 
is stopped after 10 iterations, after which the relative 
change in the radial SV norm, averaged over the CMB of 
surface � and over the full era [ti, te],

is less than 10−3 from one iteration to the next.
Note that the projection onto wide correlation func-

tions (instead local functions such as of B-splines) comes 
with a numerical cost, as the filling of the matrices enter-
ing the iterative algorithm does not rely anymore on a 
banded storage. With global functions, the update of the 
Frechet derivatives for each datum requires one to fill all 
entries of the Hessian; this is the most time consuming 
part of the algorithm. Conversely, when using local func-
tions a banded storage can be employed. Then Frechet 
derivatives have to be calculated only w.r.t. model param-
eters at knots entering a limited bandwidth Nbw around 
the observation epoch. In practice one has Nbw

= j + 1 for 

(15)N (m) = (m −m)TP−1(m −m).

(16)

S(m) =
1

�(te − ti)

∫ ts

ti

∮

�

|∂tBr(c, θ ,φ, t)|
2d�dt,

Table 3  Dimensional and dimensionless misfit and bias statistics for GO SV data and GVO (“core”) MF data used when fitting theCOV-
SAT model. Stars indicate dimensionless values (see equ. 17)

See text for details. All dimensional values for σ and µ are given in nT (resp. nT/yr) for the MF (resp. SV) data

Data set Kind σ⋆ µ⋆

X Y Z F X Y Z F

GO SV 0.89 0.59 0.49 – 0.02 −0.02 −0.04 –

Ørsted MF 0.98 0.69 0.69 0.48 0.18 0.02 0.07 0.11

CHAMP MF 0.35 0.41 0.48 0.28 −0.01 0.01 0.01 −0.05

Cryosat-2 MF 0.54 0.52 0.77 0.51 0.09 0.00 0.12 0.29

GRACE MF 0.61 0.72 0.71 0.32 0.19 0.02 0.03 0.04

Swarm MF 0.43 0.36 0.53 0.30 −0.05 −0.02 −0.01 −0.09

Data set Kind σ µ

X Y Z F X Y Z F

GO SV 1.37 1.27 1.58 – 0.04 −0.04 −0.12 –

Ørsted MF 1.92 1.63 1.68 1.47 0.37 0.08 0.14 0.33

CHAMP MF 0.69 0.83 1.01 0.81 −0.16 0.02 0.02 −0.13

Cryosat-2 MF 1.18 1.12 1.58 1.41 0.24 0.03 0.33 0.92

GRACE MF 1.51 1.81 1.88 1.20 0.50 0.07 0.03 0.19

Swarm MF 0.81 0.77 1.00 0.80 −0.11 −0.04 −0.01 −0.24
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B-splines of order j, reducing the number of operations by 
a factor ∼ (Nbw/N )2 when filling in the matrices (neglect-
ing the extra knots at endpoints, so in practice a bit less). 
In our configuration with N = 26 , projecting onto order 
6 B-splines (for the SA to be continuous, as for AR-3 pro-
cesses) would reduce the computational cost by a factor 
about 10. Note that this reduction is valid when using the 
same knot spacing for both local and global functions, and 
that the projection of field changes with time-scales close 
to the knot spacing is sensitive to the choice of basis func-
tions. This issue could be mitigated by reducing the knot 
spacing when using B-splines (6 months is used for the 
CHAOS-7 model by Finlay et al 2020), reducing the rela-
tive advantage of local basis functions in terms of computer 
cost, as one then needs to invert a Hessian of larger dimen-
sion (another potentially costly part of the algorithm). With 
our global correlation functions, the computational cost 
may become significant if using a much higher sampling 
rate of the model, or when covering a much longer time-
span. On the other hand, when considering periods with 
lower observational coverage, the choice of geophysically 
motivated global functions may be beneficial, since model 
parameters at sparsely sampled eras are then influenced by 
data at other epochs (Hellio and Gillet 2018).

4 � Results
4.1 � Misfits and predictions to GO and GVO series
We provide in Table 3 some statistics regarding the COV-
SAT predictions for the GO SV and GVO MF data. These 
are produced separately for all components and for all 
satellite missions. The diagnostics are provided for the X 
(northward), Y (eastward) and Z (downward) components 

of the field, as well as for its intensity F. We introduce for 
each subset of data both dimensional and normalized 
measures of the misfits and biases. For this purpose we fit a 
Huber distribution (see Eq. 14)

to the normalized histograms of the dimensionless resid-
uals ǫ , with the dimensionless bias µ⋆ and misfit σ⋆ being 
the two adjustable parameters. The normalisation con-

stant kδ =
√

2πerf(δ/
√

2)+
2

δ
exp(−δ2/2) ≃ 0.3839 

ensures the condition 
∫

+∞

−∞

pδ(ǫ)dǫ = 1 for a probability 

density function (PDF). The dimensional diagnostics are 
obtained similarly from histograms of the dimensional 
residuals, by adjusting a dimensional bias µ and misfit σ . 
The adjusted misfit values are given in Table 3 for “core” 
field data and in Table 4 for “observed” minus “core” field 
data.

For “core” data, apart from Ørsted (X and F), GRACE 
(X) and Cryosat-2 (Z and F) data, dimensionless biases 
are less than 0.1 in absolute value. For all components, 
GO as well as CHAMP and Swarm data, that bring the 
most important observational constraint, show almost 
centered distributions for normalized residuals. Dimen-
sionless residuals are generally less than unity, denoting 
a possible over-estimation of the a priori data uncertain-
ties, in particular for CHAMP and Swarm (recall that 
these uncertainties do not refer directly to the satellite 
measurements, but to a local potential field model fit to 
these for a given time window). The lower dimensional 

(17)pδ(ǫ) =
1

kδσ ⋆
exp

(

−Lδ

(

ǫ − µ⋆

σ⋆

))

Table 4  Same as Table 3 for GVO “observed” minus “core” MF data, associated with our external field model and its induced 
counterpart

Data set Kind σ⋆ µ⋆

X Y Z F X Y Z F

Ørsted MF 0.67 0.38 0.42 0.52 0.18 −0.06 0.04 0.15

CHAMP MF 0.90 0.51 0.75 0.60 0.17 0.00 0.04 0.30

Cryosat-2 MF 0.47 0.40 0.35 0.37 −0.05 −0.10 −0.02 0.29

GRACE MF 0.30 0.41 0.30 0.19 −0.06 0.04 0.01 0.13

Swarm MF 1.28 0.59 0.77 0.84 0.23 0.03 0.00 0.23

Data set Kind σ µ

X Y Z F X Y Z F

Ørsted MF 3.12 2.23 2.75 3.13 0.84 −0.44 0.00 1.01

CHAMP MF 3.20 2.12 3.07 2.70 0.62 0.02 −0.12 1.60

Cryosat-2 MF 2.65 2.51 2.23 2.42 −0.32 −0.66 −0.20 2.32

GRACE MF 2.54 4.25 3.04 2.10 −0.57 0.46 0.06 1.54

Swarm MF 3.82 2.03 2.48 3.10 0.71 0.12 −0.11 0.94
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Fig. 5  Histogram of the normalized misfits ǫ for the various GO and GVO data sets, split into spatial components. The cyan curve represents 
the Huber distribution fitted to each histogram, with parameters µ∗ and σ ∗
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misfits are found for CHAMP and Swarm, where it is 
less than 1 nT for X, Y and F, and only slightly above 1 nT 
for Z data. All components from Cryosat-2 data are fit-
ted within 1.6 nT. The larger misfits values are found for 
Ørsted and GRACE GVO vector data. Ground SV data 
misfits are less than 1.6 nT/yr, the weakest for Y and the 
largest for Z data.

Dimensional misfits for “observed” minus “core” 
field data, used to estimate our external field model, 
show relatively larger values, ranging from 2 to 4.4 nT 
depending on the mission and component. The distinc-
tion between the missions is less obvious than for “core” 

field data, due to the crude external model considered 
in this study. Normalized misfits are nevertheless less 
than unity (except,for Swarm X data), in particular for 
the less accurate Ørsted, CryoSat-2 and GRACE data, 
suggesting that a priori error uncertainties considered 
in our inverse problem are possibly over-estimated. We 
note also for all satellite missions significant biases for 
F data used in the polar region (and to a lesser extent 
on the north–south X component used at nonpolar 
latitudes).

In addition, we represent in Fig. 5 for all missions and 
components the distribution of normalized residuals ǫ , 
superimposed with the best fitting Huber distribution. 

Fig. 6  Comparison between the SV observed at Honolulu (HON, Eastern Pacific) and Hermanus (HER, South Africa), and the predictions 
from COV-SAT and CHAOS-7, for the three components. Shaded areas represents the spread within ±1σ



Page 12 of 19Claveau et al. Earth, Planets and Space          (2025) 77:126 

Most histograms behave according to our assumptions 
on the residuals distribution. In some cases the PDF 
behaves closer to a Laplacian (e.g. for the X component 
for CHAMP and Swarm), with a sharper peak around 
0. Likewise, some asymmetries are seen for some PDFs 
for F data.

We further illustrate the ability of our model to fit 
the observations in Fig. 6, where we present SV series 
at the Honolulu ( 158◦ W, 21◦ N, Eastern Pacific) and 
Hermanus ( 19◦ E, 34◦ S, South Africa) ground stations, 
and in Fig.  7, where we present MF series at nearby 
GVO positions. Our model closely fits the observed 
series, with predictions comparable to those from the 
CHAOS-7 field model.

4.2 � Time evolution of internal field model coefficients
We next illustrate in Fig.  8 the evolution of some SV 
coefficients obtained from COV-SAT, in comparison 

with alternative models CHAOS-7, KALMAG  and 
COV-OBS.x2. The estimation is made using tx sampling 
2000–2030 every 0.2  yr, using the method described 
in §3.3. We note some significant changes in the rapid 
evolution of the axial dipole between COV-SAT  and 
COV-OBS.x2. Our new model is closer to CHAOS-
7, and generally to KALMAG  (with the exception of 
the period from 2010 to 2014, where CHAOS-7  and 
KALMAG  differ the most, a consequence of 
CHAOS-7  using Cryosat-2 data and KALMAG  lack-
ing satellite data). We believe this change is due to our 
revised setup now being based on “core” MF GVO and 
SV GO data that have been cleaned as much as pos-
sible from external sources (contrary to COV-OBS.
x2 for which magnetospheric corrections had not been 
applied). For other coefficients at low to moderate 
degrees l, the series of the several considered models 
largely overlap. Larger discrepancies are seen toward 

Fig. 7  Comparisons between the MF observed at two Swarm GVO and the predictions from COV-SAT and CHAOS-7, for the three components. 
Shaded areas represents the spread within ±1σ
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small length-scales (see for instance ġ512 , although the 
trend for CHAOS-7, KALMAG  and COV-SAT  are 
overall similar, with differences most often within the 
estimated errorbars.

Models based on stochastic priors can be used for 
forecasting possible evolutions after the date of the 

latest observation. We observe for COV-SAT  that the 
spread of the SV forecast behaves smoothly once the 
observational constraint is relaxed after te = 2024.5 . 
This is characteristic of AR-3 processes that are the 
basis of the temporal variations considered in this 
study, for which the SV is continuous and differentiable, 

Fig. 8  SV time series for several Gauss coefficients showing COV-SAT, compared with COV-OBS.x2, CHAOS-7 and KALMAG. For models provided 
with uncertainties, shaded areas represent the spread within ±1σ
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with a spread evolving ∝ (t − te)
3/2 . It contrasts with 

AR-2 processes for which the SV is continuous but 
not differentiable, which translates into a spread that 
increases sharply ( ∝

√

t − te  ), as observed for instance 
for the KALMAG model in Fig. 8.

We further compare the proposed uncertainties and 
the model differences in Fig.  9 (top), with MF and SV 
spectra at the Earth’s surface for the several models in 
2018 (qualitatively similar behaviors would be witnessed 
at other epochs). Spectra for the mean models almost 
superimpose. Our estimate of the MF errors is lower than 
those provided for KALMAG, in particular toward high 
degrees. SV uncertainties are on the contrary very simi-
lar between the two models (only slightly less for COV-
SAT  at low degrees). Toward low (resp. high) degrees 

our estimates of the SV uncertainties are revised upward 
(resp. downward) compared with COV-OBS.x2. This is 
partly the consequence of removing the projection onto 
splines with 2 yr knot spacing. Indeed, high degree coef-
ficients are hardly accessible on short time-scales, while 
there is potentially some observational constraint on low 
degrees (e.g. Ropp et  al 2020). Because the projection 
onto splines in COV–OBS models filters period shorter 
than 3–4 years, the estimated uncertainty level was char-
acteristic of a low-pass version of the model coefficients, 
which is by essence less than for instantaneous Gauss 
coefficients.

Spectra for the proposed SV model uncertainties and 
for the differences within field models are comparable 
(see Fig. 9, bottom), which suggests our SV error estimate 

Fig. 9  Top: MF and SV spectra for models COV-SAT, COV-OBS.x2, CHAOS-7 and KALMAG in 2018. Dashed lines correspond to the spectra 
for the model uncertainties (spread within ±1σ ). Bottom: MF and SV spectra for the difference between field models, with spectra for the model 
uncertainties again shown as dashed lines
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may be plausible. This is encouraging as this information 
is key for geomagnetic data assimilation and the recovery 
of the core dynamics (e.g. Sanchez et al 2020; Gillet et al 
2024). COV-SAT  MF errors seem under-estimated in 
comparison with MF spectra for models differences. This 
suggests a possible constant bias in our solution. It could 
be related to the lithospheric field that is not co-estimated 
(but corrected a priori) in this study, contrary to what is 
done for KALMAG  and CHAOS-7. This hypothesis is 
plausible, since MF differences between KALMAG  and 
CHAOS-7 are less than between COV-SAT and the two 
other models for medium to low degrees. Our formal 
error estimates, derived from the Hessian matrix about 
the estimated model, is indeed not capable of captur-
ing possible biases. Other possible sources of bias may 
involve the different treatments in the various models of 
ionospheric fields (these are internal to the satellite, espe-
cially in the polar regions) and the fields induced in the 
solid Earth by the time varying external fields. MF spec-
tra for uncertainties are nevertheless orders of magnitude 
less than for the mean models for all models. The pos-
sible under-estimation of the MF error level from COV-
SAT  is likely not a major issue for an application to the 
reconstruction of the core dynamics, which is more influ-
enced by the estimate of SV uncertainties (e.g. Gillet et al 
2019; Baerenzung et al 2018).

4.3 � Time evolution of the external dipole field
Finally we present in Fig.  10 the evolution of the exter-
nal field coefficient qd(t) . In our approach, its estimation 
is only related to the core field coefficients through the 
orientation of the internal dipole field, since we neglect 
induction in the core (see §3.1), and because we constrain 

the external field from differences between “core” and 
“observed” MF GVO series (instead of a co-estimation 
from GVO uncleaned for magnetospheric sources as it 
was the case in COV-OBS.x2), while internal coefficients 
are constrained from “core” GVO data. qd(t) overall 
exhibits variations similar to those from COV-OBS.x2, 
although showing slightly more rapid variations. These 
are most likely related to the temporal representation 
based on correlation functions that are more permissive 
than cubic B-splines with 2 yr knot spacing. The evolu-
tion of qd(t) is relatively close to the RC index once low-
pass filtered for periods longer than 2 years (using a 
Butterworth filter of order 2), meaning that our estimate 
seems to be a reasonable approximation for the slow evo-
lution of the magnetospheric ring current over the satel-
lite era. The increase in the uncertainty level between two 
successive epochs (tk , tk+1) , where the model is inverted 
results from the AR-1 part of the a priori auto-covariance 
function for qd(t) . This latter indeed allows on short 
lags the spread of interpolated solutions to evolves as 
√

|t − tk |.

5 � Discussion
We have presented COV-SAT, a field model covering the 
satellite era. It incorporates a priori information from 
order 3 autoregressive processes, with ranges, where the 
spectral density behaves as S(f ) ∝ f −p with p = 0, 2, 4 
and 6 from low to high frequencies. This a priori descrip-
tion of the field’s temporal behaviour is parsimonious, 
in the sense that it involves only a few free parameters. 
The auto-covariance functions that we propose indeed 
rely on a variance (function of the harmonic degree l), a 
time-scales related to τSV (l) that characterizes the tran-
sition from p = 0 toward p = 4 for all coefficients apart 
from g01 (decreasing from centennial to decadal periods 
from low to high degrees, see Lhuillier et al 2011), and a 
cutoff independent of l associated with the Alfvén time τa
(≈ 2 yr in the core), as observed in advanced geodynamo 
simulations (Aubert and Gillet 2021). An extra time τd is 
considered for the axial dipole that determines the cutoff 
between p = 0 and p = 2 seen in paleomagnetic records, 
associated with magnetic dissipation (e.g. Buffett and 
Puranam 2017).

The high frequency cutoff toward p = 6 reduces the 
leakage of external fields into our internal field model 
coefficients. We, furthermore, project in time the model 
parameters on the correlation functions that constitute 
the prior information (as previously performed by Hellio 
and Gillet 2018), which removes the need to use arbitrary 
support functions. The several developments presented 
here thus represent a methodological shift in comparison 
with the COV–OBS models, that were based on temporal 

Fig. 10  Time evolution of the external field coefficient qd(t) 
for COV-SAT, compared with its predecessor COV-OBS.x2 and the RC 
index low-pass filtered for periods longer than 2 years (and shifted 
by 8 nT to accound for the GSM field, see §3.2.2). Shaded areas 
represent the spread within ±1σ
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correlation functions characteristic of order 2 autore-
gressive processes and projected onto B-spline functions 
(Gillet et al 2013; Huder et al 2020).

The stochastic framework considered here allows us to 
propose errorbars on the model parameters. The mag-
nitude of the proposed SV errors is comparable to that 
of the difference between various models proposed by 
the community, which is encouraging for the purpose 
of geomagnetic data assimilation. Our measure of the 
SV model uncertainties is comparable to that provided 
with the KALMAG model (a bit less at the largest length-
scales) despite the use of different input data and mod-
elling strategies. The KALMAG  model is developed by 
time-stepping AR-2 stochastic equations in a sequen-
tial algorithm, whereas in our inversion, the prior infor-
mation enters via the correlation function. There is no 
barrier to the incorporation of the AR-3 prior that we 
propose into a sequential scheme such as employed by 
Ropp et al (2020) or Baerenzung et al (2022). We indeed 
propose in Appendix  A the corresponding stochastic 
equation. It will be worthwhile in the future to consider 
the AR-3 prior that we propose here for building a field 
model from observatory and satellite observations sam-
pled at a higher cadence, to see if the transition from − 4 
to − 6 spectral at a period about 2 yr is also found in the 
posterior PSD for the Gauss coefficients.

In the meantime the mean model we derived, esti-
mated from ground-based and virtual observatory 
data cleaned as much as possible for external sources, 
is close to alternative models such as the well-accepted 
CHAOS-7 (Finlay et al 2020) or KALMAG (Baerenzung 
et  al 2022) models, where data along satellite tracks are 
considered, and that involve the co-estimation of a com-
plex external field model. This indicates that GVO data 
produced following Hammer et  al (2021a) provide use-
ful observational constraints that allows one to infer 
the evolution of the core magnetic field from a reduced 
number of higher level post-processed magnetic data. 
The sampling at which we can consider GVO data is lim-
ited by the drift rate of the satellite orbits in local time. 
The Swarm constellation configuration with two well-
separated polar tracks reduces it to ≈ 4  months, which 
is less than that needed with a single satellite such as 
CHAMP. The inclined orbit mission MSS-1 reduces it 
further down to 2 months, covering latitudes less than 
41◦ (Jiang et al 2024). We can thus hope to get insight on 
more rapid core field changes with the current configura-
tion (MSS-1 plus Swarm), and the up-coming NanoMag-
Sat mission from ESA with 3 spacecrafts (one polar orbit 
and two inclined at 60◦ , see Deconinck et  al 2025). The 

production of GVO data from these new combinations of 
satellites will then be helpful to isolate core processes on 
periods shorter than a few years (Brown et al 2023).

This concerns first the presence of Magneto-Coriolis   
waves with short periods, as well as long period inertial 
waves. Such transient dynamics is expected from stud-
ies of eigenvalue and initial value problems in a rapidly 
rotating sphere in the presence of a non-axisymmetric 
imposed magnetic field (Gerick and Livermore 2024; 
Barrois and Aubert 2024). It also concerns identifying 
the actual high frequency cutoff for the magnetic signal, 
currently hindered by the dominant external sources 
on short time-scales, and only witnessed in geodynamo 
simulations. Extending to millenial timescales dynamo 
simulation series at Earth-like parameters, such as that 
by Aubert (2023), will be helpful to more accurately con-
strain the shape of the temporal spectrum at periods 
close to the Alfvén time. Detecting a decay in the PSD 
of the core signal is challenging but may help constrain 
physical properties of the Earth’s deep interior. We think 
here of bounds on the magnetic diffusivity η of the core 
material, to which the cutoff is related (Aubert and Gillet 
2021). We recall that η (and the associated thermal con-
ductivity) is a subject of debate within the community of 
mineral physics (e.g. Davies et al 2015; Zhou et al 2022). 
We also have in mind bounds on the electrical conductiv-
ity σm of the deep mantle, a quantity inaccessible using 
electro-magnetic sounding with external field variations 
as the source (Grayver 2024). Indeed, while σm  = 0 over 
a thick layer will act as a non-causal low-pass filter on the 
magnetic signal originating from the core (Jault 2015), 
σm  = 0 at the base of the mantle will alter the transient 
dynamics within the core through the electromagnetic 
boundary condition (Schaeffer and Jault 2016; Firsov et al 
2023).

Appendices

From the PSD to the correlation function
We derive here an AR-3 correlation function that satisfies 
the observational and numerical constraints from §3.2. 
Below we rely on the properties of AR-1 processes with 
variance σ 2

0  and decay frequency ω0 , which are character-
ized by a auto-covariance function

(A1)C(τ ) = σ 2
0 exp (−ω0|τ |)
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and a PSD (e.g. Yaglom 2004)

First we perform a decomposition in simple fractions of 
a PSD of the form (6). Consider three constants (a, b, c), 
and three frequencies (α,β , γ ) . Lets choose a PSD such 
that

where

Using Eqs. (A1 and A2), the correlation function associ-
ated with the PSD (A3) takes the simple form

For S(ω) to evolve as ω−6 toward high frequencies, we 
deduce the two conditions k2 = k4 = 0 . Imposing the 
variance σ 2

= C(0) of the signal leads to a third condi-
tion σ 2

= a+ b+ c . Knowing the values for the three 
frequencies (α,β , γ ) and σ 2 , we then have to solve the lin-
ear problem Mx = y where

We have

and the solution is

(A2)S(ω) =
σ 2
0ω0/π

ω2
0 + ω2

.

(A3)
S(ω) =

1

π

(

aα

α2
+ ω2

+

bβ

β2
+ ω2

+

cγ

γ 2
+ ω2

)

=

k0 + k2ω
2
+ k4ω

4

(α2
+ ω2)(β2

+ ω2)(γ 2
+ ω2)

,

(A4)







πk4 = aα + bβ + cγ

πk2 = aα
�

β2
+ γ 2

�

+ bβ
�

α2
+ γ 2

�

+ cγ
�

α2
+ β2

�

πk0 = aαβ2γ 2
+ bβα2γ 2

+ cγα2β2
.

(A5)
C(τ ) = a exp (−α|τ |)+ b exp (−β|τ |)+ c exp (−γ |τ |).

(A6)

M =





1 1 1
α β γ

α
�

β2
+ γ 2

�

β
�

α2
+ γ 2

�

γ
�

α2
+ β2

�



,

x =





a
b
c



 and y =





σ 2

0
0



.

(A7)
det(M) =γβ

(

β2
− γ 2

)

− αγ

(

α2
− γ 2

)

+ αβ

(

α2
− β2

)

,

(A8)































a/σ 2
=

γβ
�

β2
− γ 2

�

det(M)

b/σ 2
=

−αγ
�

α2
− γ 2

�

det(M)

c/σ 2
=

αβ
�

α2
− β2

�

det(M)

.

From these values we deduce the auto-covariance func-
tions (A5), that we use to build the prior covariance 
matrix when building our field model.

For all coefficients but the axial dipole, we could resort 
to only 3 spectral ranges of indices p = 0,−4 and − 6. 
However, we cannot use β = α , since in this case c = 0 
and then the PSD will behave as ω−4 on short time-
scales. However, this pathological case can be avoided by 
having α close to β , a bit larger.

The PSD and auto-covariance functions obtained this 
way are characteristic of the AR-3 process represented as

where Z is a centered white noise of variance

For the parameters chosen here, the roots of the denomi-
nator of (A3) being complex conjugates, a process such 
as (A9) is stationary. Note that we may simplify Eq. (A8) 
in the limit γ ≫ β ≫ α (as for the axial dipole), in which 
case det(M) ≃ −βγ 3 , leading to

Then one has k0 ≃ σ 2αβ2γ 2/π.

Choice of the input parameters
The AR-3 correlation functions designed above rely 
on the choice of some parameters. We consider here 
αAD

= ωd = 10−4 yr−1 for the axial dipole. We also fix 
γ = ωa = 2π/τa = π  yr−1 for all coefficients. We now 
wish to choose the frequency β(n) = ωu . We define 
ωu(n) as performed for previous COV–OBS models, 
i.e. based on the SV time-scale (5). The reason is that 
τSV (n) is a quantity accessible from geophysical obser-
vations via magnetic field models. To this purpose we 
use the relationship (e.g. Hulot and Le Mouël 1994)

for a process X(t) with auto-covariance function C(τ ) . For 
a function such as that defined by Eq. (A5), we then have

(A9)X
′′′
+ (α + β + γ )X ′′

+ (αβ + βγ + γα)X ′
+ αβγX = Z,

(A10)

k0 =
αβγσ 2

πdet(M)

(

β2γ 2
(

β2
− γ 2

)

− α2γ 2
(

α2
− γ 2

)

+α2β2
(

α2
− β2

))

.

(A11)
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




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a/σ 2
≃ 1

b/σ 2
≃ −

α

β

c/σ 2
≃

αβ2

γ 3

.

(B1)E

(

Ẋ2
)

= −

d2C(τ )

dτ 2 |τ=0
,
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Using (A8) in the limit where γ ≫ α,β we get

For all coefficients but the axial dipole, if we assume as 
above the condition cα = β with c a bit larger than one 
(to reduce the frequency range presenting a − 2 spectral 
index), this gives

This condition is close to that introduced previously by 
Gillet et  al (2013) for the cutoff frequency of Matern 
AR-2 processes. For the axial dipole (noted with a sub-
script ‘AD’) we obtain instead

where τADSV =

√

σ 2
g01
/σ 2

ġ01
 . A numerical application with 

1/ωd = 10  kyr, σġ01 = 10  nT/yr and σg01 = 7700  nT (or 
τADSV = 7700  yr, see Huder et  al 2020) leads to 
1/βAD

≈ 60  yr  ≫ τa . We check a posteriori that 
ωd ≪ βAD

≪ ωa.
A similar AR-3 formalism was considered by Sad-

hasivan and Constable (2022) for the dipole moment. 
By fitting the analytical AR-3 spectrum to a compos-
ite spectrum of historical and paleomagnetic models 
derived from magnetic observations, they obtained 
1/ωd ≃ 15  kyr, 1/βAD

≃ 30  yr and 1/ωa ≃ 2  yr. Their 
estimate of ωd (resp. βAD ) is comparable to ours, only 
1.5 (resp. 2) times smaller. The main difference con-
cerns their value for ωa that is smaller by a factor about 
6. This is because the high frequency cutoff is con-
strained in their approach by the PSD from a historical 
field model that does not capture variations on periods 
as short as the Alfvén time τa.
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