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S U M M A R Y
We introduce a formalism for estimating local spatial averages of the core–mantle boundary
(CMB) radial magnetic field and its time derivatives, based on magnetic field observations
collected by low-Earth-orbit satellites. This provides a useful alternative to conventional core
field modelling based on global spherical harmonic basis functions, where noise in the polar
regions maps into all harmonics, and model regularization and spectral truncation are required.
A powerful perspective offered by the proposed technique is formal appraisal of the spatial
resolution and variance of the resulting field averages. We use the Green’s functions for the
Neumann boundary value problem to link the satellite observations to the radial magnetic
field on the CMB and estimate field averages using a modified Backus–Gilbert inversion
approach. Our approach builds on the Subtractive Optimally Localized Averages (SOLA)
method developed in helioseismology, that seeks averaging kernels as close as possible to a
chosen target kernel. We are able to account for both internal and external field sources and
can incorporate data error covariance information, for example describing along-track serial
error correlation. As a proof of concept we present a global map collecting local estimates
of the radial main field (MF) constructed on a grid at the CMB with one degree spacing in
latitude and longitude, derived from 1 month of three component vector magnetic field data
collected by the Swarm satellite trio, using data from dark and geomagnetically quiet times.
Using sums and differences of the field components taken along track and in the east–west
direction we obtain estimates with spatial resolution kernel widths varying between 18◦ and
54◦ depending on the latitude, and a standard deviation of approximately 10 μT (i.e. 5 per cent
of the mean CMB field amplitude). The morphology of our CMB radial field map agrees well
with results from conventional spherical harmonic field models. In a second application, we
determine local estimates of the average rate of change, or secular variation (SV), of the radial
field at the CMB, initially considering 2-yr time windows, and performing the analysis on data
collected by either the Swarm or CHAMP satellites. We obtain stable local estimates of the
SV at the CMB, and present maps of estimates with averaging kernel widths of approximately
42◦, 33◦ and 30◦ on the equator, with corresponding standard derivations of 0.25, 2.5 and 5
μT yr–1. By subtracting SV estimates constructed at different epochs we are able to calculate
the local aggregated secular acceleration (SA) and to study its time changes. Differencing
SV estimates 2 yr apart, and considering an averaging kernel width of 42◦ on the equator,
we obtain SA maps similar to those found in the CHAOS-6-x7 field model truncated at SH
degree 10. Using our approach we are able to directly control the width of the spatial averaging
kernel and the length of the time window, enabling us to directly study the robustness of the
inferred SA. Pushing to higher resolution in time, considering 1 yr differences of SV estimates
constructed using 1 yr windows, we are able to track the evolution of coherent SA structures in
time-longitude plots at the equator. At 25◦W in mid 2007 we find a distinctive SA ’cross-over’
event, with strong, oppositely signed and adjacent, SA features rapidly changing sign within
a year. Our method is well suited for studying such spatio-temporally localized SA events at
high resolution; there will be further opportunities for such investigations as the time-series
of data provided by the Swarm mission lengthens.
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1 I N T RO D U C T I O N

The ability to construct reliable estimates of the core-generated magnetic field, tracking its morphology and time evolution, is essential in
efforts to improve our knowledge of core dynamics. With the advent of the low-Earth-orbit CHAMP and Swarm satellite missions collecting
magnetic measurements over multiple years, it has become possible to image small scale features of the core field that exhibit rapid temporal
variations (Lesur et al. 2008; Olsen & Mandea 2008; Finlay et al. 2016). The first and second time derivative of the main field undergoes
subdecadal changes that may be probed down to a period of about 1 yr (Chulliat et al. 2015). New techniques have been developed that
use spatial differences of the magnetic field observations in order to to enhance the recovery of small scale field features, since compared
to using vector data, they are less sensitive to unmodelled large-scale external field contamination (Kotsiaros et al. 2015; Olsen et al. 2015;
Finlay et al. 2016). Spherical harmonic (SH) models derived using Swarm observations have shown that the first time derivative of the field,
or secular variation (SV), can be obtained up to approximately SH degree 11 from 1 yr of measurements (Olsen et al. 2015, 2016). Studies
of geodynamo simulations have also recently suggested that the second time derivative of the field, or secular acceleration (SA), might be
expected to exhibit distinctive equatorial localization (Aubert 2018). Moreover, considering 3-yr data time windows, pulse like features in
the radial SA at the core–mantle boundary (CMB) concentrated along the geographical equator, have recently been observed (Chulliat &
Maus 2014; Chulliat et al. 2015) possibly indicative of a wave propagating or arriving at the core surface. The basic structure of the SA at
short length and timescales, and the details of the responsible core dynamics are however still unclear and further investigations are urgently
needed.

Assuming the region between the CMB and the observation site is an insulator, the magnetic field can be described by the gradient of
a scalar magnetic potential. In the conventional, so-called construction, approach to field modelling the potential is represented on a global
scale using a truncated SH expansion determined using a least-squares solution (Langel 1987; Parker 1994) that is often also regularized in
order to obtain stable solutions at the CMB (Bloxham et al. 1989). Here we use the term regularization to denote the modification of the
least-squares solution to the inverse problem such that a global norm of the model parameters is added to the data misfit norm in the cost
function being minimized. Since the SH functions are of global support, assuming equal data errors, they give equal weight to the entire data
set assigning isotropic resolution. Regularized B-splines are often used to describe the model time dependence; the temporal regularization
modifies the spline functions in a non-uniform manner influencing higher SH degrees the most (Constable & Parker 1988; Olsen et al. 2009).
Moreover, model uncertainties are usually not provided and validation typically relies on comparing models constructed using different data
selection schemes, external field parametrizations and regularizations.

Various alternatives to SH modelling have been investigated for studying the CMB magnetic field, for instance constructing models
based on icosodedral grids for the radial field at the core surface that can be forced to satisfy necessary conditions for frozen-flux and a
magnetostrophic force balance implemented via topology preservation constraints (Constable et al. 1993; Jackson et al. 2007). Techniques
such as harmonic splines introduced by Shure et al. (1982) and Parker & Shure (1982), a wavelet approach developed by Holschneider et al.
(2003), and Slepian functions (Plattner & Simons 2017) have also been explored. Most recently, Holschneider et al. (2016) have introduced
an attractive new technique, based on specifying appropriate correlation functions for internal and external sources, that has been used by
Lesur et al. (2017) to determine the Gauss coefficients for the SV from ground observatory monthly means between 1957 and 2014.

A difficulty with core field studies is that the CMB spectra of the SV and SA signals are blue (i.e. power increases with
SH degree). Although studies have shown encouraging coherence in field maps as SH truncation degree is increased (Holme et al.
2011; Aubert 2018) care is needed when interpreting the resulting fields. Furthermore, it has been argued that the temporal spec-
tra of the core field is such that higher order time derivatives of the field, in particular the SA, may be formally undefined as the
time window used to estimate them goes towards zero (Gillet et al. 2013; Bouligand et al. 2016; Lesur et al. 2017). Pushing to-
wards signal recovery on smaller length scales and shorter timescales, careful appraisal, comprising of resolution analysis and vari-
ance estimation, is required in order to assess limitations of the data and to establish the validity of features of interest in field
reconstruction.

Here we propose another approach to the above problems. We adopt a formalism for estimating the CMB radial field which is not
founded on spherical harmonics, thus is free of signal truncation in the spectral domain, relying instead on spatial averaging of the field.
We investigate the inverse problem using the Backus–Gilbert philosophy of appraisal (Backus and Gilbert, 1968; Backus and Gilbert, 1970;
Parker, 1977; Oldenburg, 1984), which provides the only unique information directly obtainable from the data, thereby enabling us to explore
whether all constructed models contain certain spatial field features of interest. In the case of accurate data, any linear data combination will
give a uniquely specified value of the magnetic field; this is equivalent to an unique spatial average value, determined by the inner product
of an averaging kernel with the true model around some location of interest (Oldenburg 1984; Pujol 2013). In the case of inaccurate data,
a variance is assigned to the estimated average and a trade-off arises between spatial resolution and variance. It should be stressed that the
obtained average will in general not fit the original data, nor is it directly supposed to. Any model obtained (e.g. in the least-squares sense)
which reproduces the data must attain this estimated average. It is relevant to note here that regularized least-square solutions are biased
towards a background model that is often assumed to be zero. A result of this is that rows of the model resolution matrix can sum to less
than 1 (see e.g. Nolet 2008, pp. 277–281). Another undesirable effect of regularization is to produce model covariance estimates that can
be unrealistically small. In contrast Backus–Gilbert estimates are unbiased (the averaging kernels integrate to 1) and the variances of the
estimated averages are meaningful. The Backus–Gilbert philosophy is thus fundamentally different from that of the conventional regularized
inversion construction approach, and it has been applied to a wide range of geophysical topics (e.g. Tanimoto 1985; Masters & Gubbins
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2003; Pujol 2013). In geomagnetism, Whaler & Gubbins (1981) used the Backus–Gilbert formalism to invert for an average vertical field
component at the CMB, taking Gauss coefficients derived from 80 ground observatories as data. Later Whaler (1984) used Backus–Gilbert
theory to estimate null-flux patch integrals of the radial SV component. Modifications to the original Backus–Gilbert method (referred to as
quelling by its authors and mollifying in mathematical literature), resembling the so-called Dirichlet deltaness criterion, have been developed
independently by Louis & Maass (1990) and Pijpers & Thompson (1992) in helioseismology, and termed Subtractive Optimally Localized
Averages (SOLA) by the latter. The SOLA approach estimates the coefficients of linear data combinations by minimizing a norm measuring
the squared distance between the averaging kernel and some chosen target kernel.

Here, we implement the SOLA technique such that at specified locations on the CMB, local spatial averages of the radial field are
calculated, that then allow for appraisal to be carried out. To do this we represent the magnetic potential, which satisfies the Neumann
boundary value problem for the Laplace equation, using the Green’s function method so that the CMB field is related to the observations
via appropriate Green’s functions (e.g. Gubbins & Roberts 1983). A general formalism is presented where the potential is described by
both internal and external source contributions. Section 2 provides a description of the selection criteria and processing procedures for
the data used in our chosen applications. Section 3.1 describes the potential field formulation relating the radial magnetic field at the
source regions to the satellite magnetic data. In Section 3.2, aspects of the SOLA approach to the inverse problem are described, allow-
ing for estimates of the field to be determined as localized spatial averages. Section 3.3 considers our numerical implementation of the
theory and Section 3.4 describes in detail how appraisal of the results can be carried out. Section 4 contains results from applications
based on (i) using Swarm data to estimate the field at the CMB and (ii) using Swarm and CHAMP data to estimate the secular vari-
ation, and the accumulated secular acceleration over chosen time windows, also at the CMB. Discussions and conclusions are given in
Section 5.

2 DATA

We take CHAMP vector magnetometer measurements from 2000 July 19 to 2010 September 1 and Swarm vector magnetometer measurements,
from all three satellites (Alpha, Bravo, Charlie), from 2013 December 1 up to the end of August 2018. We extract samples every 15 s
from low rate (5 Hz for CHAMP and 1 Hz for Swarm) calibrated magnetic field data in the Vector Field Magnetometer (VFM) frame
(in units of nT) provided by the CHAMP MAG-L3 and Swarm Level 1b MAG-L version 0505 data products. The VFM data are then
transformed into an Earth-Centred Earth-Fixed (ECEF) local Cartesian North-East-Centre (NEC) coordinate frame. This is done by data
alignment in which the VFM data are rotated into the Common Reference Frame (CRF) of the star tracker using the Euler rotation angles
as determined by the CHAOS-6-x7 model (an extension of the CHAOS-6 model using Swarm data and ground observation data up until
the end of August 2018, http://www.spacecenter.dk/f iles /magnetic-models/CHAOS-6/). We reject measurements for known disturbed days
where satellite manoeuvres took place and remove gross data outliers for which the vector field components deviate more than 500 nT
from CHAOS-6-x7 field predictions. Based on previous experience (e.g. Olsen et al. 2015; Finlay et al. 2016) we adopt the following
selection criteria: (1) only dark region data requiring the sun to be at least 10◦ below horizon in order to reduced ionospheric field
contamination; (2) for quiet time conditions we require the geomagnetic planetary activity index Kp < 2o; (3) for the magnethospheric
ring current and its Earth induced contribution the RC disturbance index is required to have |dRC/dt| < 2 nT hr–1 (Olsen et al. 2014)
and (4) restricting the merging electric field at the magnetopause such that Em ≤ 0.8 mV m–1 with Em = 0.33v4/3 B2/3

t sin(|�|/2) where

v is the solar wind speed, � = arctan(By/Bz) and Bt =
√

B2
y + B2

z is the magnitude of the interplanetary magnetic field (IMF) having

components in the geocentric solar magnetospheric (GSM) coordinate y–z plane, calculated using 2 hourly means based on 1-min values
of the IMF and solar wind extracted form the OMNI database (http://omniweb.gsfc.nasa.gov); (5) requiring that IMF BZ > 0nT and IMF
|BY| < 6nT in order to reduce substorm auroral electrojet contamination originating from field-aligned currents (Ritter et al. 2004). Finally,
CHAOS-6-x7 model estimates of the crustal field for SH degrees 14–120 and the external magnetospheric (plus induced) field together
with the CM4 (Sabaka et al. 2004) estimates of the ionospheric field and its induced counterpart scaled by the F10.7 solar flux index are
subtracted.

We work with magnetic vector field data as well as with sums and differences of the magnetic field components Bk = k̂ · B(r) in
geographic spherical polar coordinates where (k = r, θ , φ), such that �dk and �dk are data differences and sums, respectively. We construct
along-track (AT) and east–west (EW) differences �dk = (�dAT

k ,�dEW
k ), and data sums �dk = (�dAT

k , �dEW
k ). Note that it is necessary to

consider data sums as well as differences to ensure sufficient information on longer wavelengths. The along-track differences are calculated
using 15 s differences �dAT

k = [Bk(r, t) − Bk(r + δr, t + 15s)]. With a satellite speed of ≈7.7 km s–1 this corresponds to an along-track
distance of 115 km (Olsen et al. 2015). The along-track summations are calculated as �d AT

k = [Bk(r, t) + Bk(r + δr, t + 15s)]/2. The
EW differences are calculated as �dEW

k = [BSWA
k (r1, t1) − BSWC

k (r2, t2)] having an EW orbit separation between the Swarm Alpha (SWA)
and Charlie (SWC) satellites of ≈1.4◦ (corresponding to 155 km) at the equator (Olsen et al. 2015). The EW summation is calculated as
�dEW

k = [BSWA
k (r1, t1) + BSWC

k (r2, t2)]/2. For a particular orbit of Alpha we select the corresponding Charlie data to be the one closest in
colatitude such that |�t| = |t1 − t2| < 50 s.

We adopt error estimates that depend on quasi-dipole (QD) latitude (Richmond 1995) and make use of robust (Huber) weights appropriate
for a long tailed error distribution (Constable 1988). First, using all available data di within bins of 2◦ QD latitude, we determine separately
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1904 M.D. Hammer and C.C. Finlay

Figure 1. Latitude-dependent Huber weighted standard deviations in 2◦ bands (Northern hemisphere having positive QD) for CHAMP data (left-hand figures)
and Swarm data (right-hand figures). Top panels: using vector data, centre using data sums and bottom panels using data differences.

for each field component and their sums and differences for each satellite standard deviations, σ (θQD) according to

σ (θQ D) =
√∑

i wi (εi − μ)2∑
wi

, (1)

where (i = 1, ..., D) denotes the data elements within the bin, εi are the residuals to the CHAOS-6-x7 field predictions for SH degrees 1–13, μ
is the weighted mean residual and wi are the weights wi = min(cw/εi, 1) with a selected breakpoint cw = 1.5 (e.g. Constable 1988). Considering
separately each field component and their sums and differences for each satellite, weighted data error variances for data element n, where
(n = 1, ..., N), were specified as σ 2

w,n(θQ D) = σ 2(θQ D)/wn , where σ (�Q D) is the standard deviation for the QD latitude, data element and
satellite in question from (1), and wn is the Huber weight for data element n. Fig. 1 presents these latitude-dependent, Huber weighted, error
estimates as a function of QD latitude for CHAMP and Swarm vector data as well as data differences and sums. Large data error estimates are
confined to polar region latitudes (i.e. QD latitudes 60◦ to 90◦ and −60◦ to −90◦ for the northern and southern polar regions, respectively).
Data error estimates are larger for the horizontal components exhibiting a noticeable asymmetry between the northern and southern polar
regions, a feature also observed in previous studies (Kotsiaros et al. 2015).
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3 M E T H O D O L O G Y

3.1 Potential field formulation

Measurements of the magnetic field are made at geocentric radius r in the volume V of a spherical shell bounded as rc ≤ r ≤ rm, that is
assumed to contain no magnetization and no electric nor displacement currents. That is, V is bounded by a surface S having the disconnected
parts SC and SM; SC is closed and finite at radius rc and SM is closed and finite at radius rm. In the ECEF frame the magnetic vector field
B of this volume can be then represented by the gradient of a scalar potential function, B = −∇ψ , which fulfils the Laplace equation
∇2ψ = 0 (e.g. Backus et al. 1996). The Laplace equation subject to prescribed values of the outward normal derivative on SC/SM is
known, respectively, as the exterior/interior Neumann boundary value problem. Care is needed for geomagnetists with the notation here; the
’exterior’ problem involves fields produced by internal sources while the ’interior’ problem involves fields produced by external sources.
Because Maxwell’s equations are linear with respect to the sources, the total field is a superposition of fields produced by the two sources,
that is B = BC + BM = −∇ψC − ∇ψM , where ψC here describes the internal (core) sources and ψM describes the external (large-scale
magnetospheric) sources. From the Laplace equation, Green’s identities can be derived from which Green’s second identity allows a solution
for the potential to be formulated. The uniqueness theorem then assures that the solution found is unique up to an additive constant (e.g.
Barton 1989).

In the ECEF geographic spherical polar coordinate system the magnetic field components (k = r, θ , φ) at some observation location, r,
are linked to the radial field at surfaces SC and SM having position vector, r′, which we take to be at the CMB (r′ = rc = 3480 km) and at the
magnetosphere (r′ = rm = 4ra) (where ra = 6371.2 km is the mean Earth reference radius), respectively, by the gradient of the potential

Bk(r, t) = −
∮

SC

∇k NC (r|r′)Br (r′, t)r 2
c dS′

C −
∮

SM

∇k NM (r|r′)Br (r′, t)r 2
mdS′

M

=
∮

SC

GC,k(r|r′)Br (r′, t)dS′
C +

∮
SM

G M,k(r|r′)Br (r′, t)dS′
M , (2)

where dS′
C , dS′

M = sinθ ′dθ ′dφ′. Eq. (2) is a linear system which consists of a sum of two homogeneous Fredholm integral equations of the
first kind, for the unknown radial fields at the CMB and the magnetosphere. NC (r|r′), having absorbed the term r 2

c , is the exterior Neumann
Green’s function and NM (r|r′), having absorbed the term r 2

m , is the interior Neumann Green’s function (Barton 1989, p. 412). The directional
derivatives of the Green’s functions (with respect to r), GC,k(r|r′) and G M,k(r|r′), are known as the data kernels and can be derived using the
chain rule (Gubbins & Roberts 1983). The exterior data kernels (associated with internal sources) are given by

GC,r = −∂ NC

∂r
= 1

4π

h2(1 − h2)

f 3
(3)

GC,θ = −1

r

∂ NC

∂θ
= −1

r

∂ NC

∂μ

∂μ

∂θ
= −1

r

∂ NC

∂μ
[cosθsinθ ′cos(φ − φ′) − sinθcosθ ′] (4)

GC,φ = − 1

rsinθ

∂ NC

∂φ
= − 1

rsinθ

∂ NC

∂μ

∂μ

∂φ
= 1

r

∂ NC

∂μ
[sinθ ′sin(φ − φ′)], (5)

where the derivative with respect to μ is

1

r

∂ NC

∂μ
= h

4π

[
1 − 2hμ + 3h2

f 3
+ μ

f ( f + h − μ)
− 1

1 − μ

]
. (6)

The corresponding interior data kernels (associated with external sources) are given by

G M,r = −∂ NM

∂r
= 1

4π

[
h + h2(1 − h)

f 3

]
(7)

G M,θ = −1

r

∂ NM

∂θ
= −1

r

∂ NM

∂μ

∂μ

∂θ
= −1

r

∂ NM

∂μ
[cosθsinθ ′cos(φ − φ′) − sinθcosθ ′] (8)

G M,φ = − 1

rsinθ

∂ NM

∂φ
= − 1

rsinθ

∂ NM

∂μ

∂μ

∂φ
= 1

r

∂ NM

∂μ
[sinθ ′sin(φ − φ′)], (9)

where the derivative with respect to μ is

1

r

∂ NM

∂μ
= − h

4π

[
2h2

f 3
+ r ′/ f

r ′ − μr + r f )

]
. (10)

In the above expressions we have used h = r′/r, f = R/r, R =
√

r 2 + r ′2 − 2rr ′μ and μ = cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′), γ

being the angular distance. Note that in Gubbins & Roberts (1983) these expressions include the monopole term that was removed by Constable
et al. (1993) but we retain this terms as it proves useful when constructing localised Backus–Gilbert averaging kernels (see Section 3.2).
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Figure 2. Sensitivity of satellite measurements to the CMB field versus angular distance from target point as determined by data kernels using an observation
altitude of robs = ra + 400 km. Top panel: exterior data kernels plotted using a source radius r′ = rc. Bottom panel: interior data kernels plotted using a source
radius r′ = 4ra.

3.2 Modified Backus–Gilbert method

Applying the Backus–Gilbert formalism to the linear system (2), we determine an estimate, B̂r , of the radial field as a spatial average that is
optimally localized around a particular location and time of interest (r0, t0) = (rc, θ0, φ0, t0). The estimate is an inner product of the field of
interest and some averaging kernel, and can be written as a linear combination of the data (Backus & Gilbert 1968, Backus & Gilbert 1970)

B̂r (r0, t0|rn, tn) =
N∑
n

qn(r0, t0)dn(r, t), (11)

where (n = 1, ..., N) is the total number of data used over the specified time span. Data dn for a particular position rn at times tn and field
component k, are related to the radial field Br (r′, t) at the CMB and the magnetosphere as in (2), but we also allow the field at the core surface
to be time-dependent by adopting a first order Taylor expansion assumed valid close to a reference time t0

dk(rn, tn) =
∮

SC

G∗
C,k(rn|r′)Br (r′, tn)dS′

C +
∮

SM

G∗
M,k(rn|r′)Br (r′, tn)dS′

M

≈
∮

SC

G∗
C,k(rn|r′)

[
Br (r′, t0) + Ḃr (r′, t0)�tn

]
dS′

C +
∮

SM

G∗
M,k(rn|r′)Br (r′, tn)dS′

M , (12)

where G∗
k (rn|r′) are the appropriate data kernels for the vector field components or their sums and differences. The time difference to some

given reference time tref is �tn = tn − tref. Here we select the reference time to be the target time, that is tref = t0. The first order Taylor expansion
adopted is sufficient given the short time windows considered here, more complex time parametrizations are also in principle possible. Fig. 2
presents examples of the exterior and interior data kernels for vector data denoted {GC, k; GM, k}, data sums denoted {

∑
GC, k;

∑
GM, k} and data

differences denoted {�GC, k; �GM, k}, using an observation altitude above ground of 400 km. The plots illustrate how a given measurement
samples the CMB and the magnetosphere ; for instance the radial data dr samples the radial core field, via GC, r, most strongly directly below
the observation site while the radial difference �dr samples the radial core field, via �GC,r = [GC,r (r1|r′) − GC,r (r2|r′)], most strongly at
an angular distance of approximately 20◦ having no sensitivity directly beneath the observation site.
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Inserting (12), via the chosen data, into (11), the estimate at target time t0 can be written as

B̂r (r0, t0|rn, tn) =
∮

SC

N∑
n

qn G∗
C,k(rn |r′)Br (r′, t0)dS′

C +
∮

SC

N∑
n

qn G∗
C,k(rn |r′)Ḃr (r′, t0)�tndS′

C

+
∮

SM

N∑
n

qn G∗
M,k(rn|r′)Br (r′, tn)dS′

M . (13)

The weighting coefficients, qn, define spatial averaging kernels that are linear combinations of the data kernels

KC (r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗
C (rn|r′) (14)

KĊ (r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗
C (rn|r′)�tn (15)

KM (r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗
M (rn|r′), (16)

where the notation KĊ highlights the inclusion of the time difference �tn from the Taylor expansion to the data kernel defining G∗
Ċ

= G∗
C�tn .

Thus the estimated radial field consists of spatial integrals over the source spheres of the true field convolved with averaging kernels

B̂r (r0, t0|rn, tn) =
∮

SC

KC (r0, t0|r′, t)Br (r′, t0)dS′
C +

∮
SC

KĊ (r0, t0|r′, t)Ḃr (r′, t0)dS′
C

+
∮

SM

KM (r0, t0|r′, t)Br (r′, t)dS′
M . (17)

Varying the coefficients, qn, changes the shape of the averaging kernels. Incorporating the time differences in the averaging kernel may be
thought of as assigning temporal weights to that kernel. These weights may act in such a way as to produce SV field estimates; for instance,
selecting data from a time window of 2 yr centred on the reference time will assign equal weights having opposite signs relative to t0 such
that field differences are computed. In order for the estimate to represent a meaningful physical average and to avoid a biased result, a
normalization of the averaging kernels is implemented requiring a unimodular constraint to be fulfilled∮

SC

KC (r0, t0|r′, t)dS′
C +

∮
SC

KĊ (r0, t0|r′, t)dS′
C +

∮
SM

KM (r0, t0|r′, t)dS′
M = 1. (18)

In practice, we want the term of interest to integrate to one and the other terms to be zero. Seeking the radial main field, data from narrow time
windows are used such that the second term is neglected and the third term should integrate to zeros. Seeking an estimate of the temporal
radial field change during a selected time window, the first and last terms should integrate to zero while the second term should integrate
to one. It should be noted that the monopole term was retained in (3–10). This is necessary in order to prevent the averaging kernel from
integrating to zero in violation of the unimodular constraint (Whaler 1984).

A generalized formulation of the Backus–Gilbert method, known as Optimally Localized Averages (OLA) involves minimizing some
suitable measure of the averaging kernel (Pijpers & Thompson 1992; Pujol 2013)∮

S
J (r0)[K(r0|r′) − T (r0|r′)]2dS′, (19)

where J is a weight function and T is a target function. Selecting (J = 12(r − r0)2; T = 0) corresponds to the original Backus–Gilbert
approach of minimizing a product of the weight function and averaging kernel, also known as Multiplicative OLA (MOLA). The Subtractive
OLA (SOLA) approach, pioneered and publicized in a series of papers by Pijpers & Thompson (1992, 1994), instead uses a norm measuring
the squared distance between the averaging kernel, K, and some chosen target function, T 	= 0, taking J = 1. The advantage of using SOLA
over the MOLA, is that significant computational time can be saved when performing calculation of multiple estimates, see Section 3.3 for
more details. For the target kernel, T , we choose a Fisher function on a sphere using the angular distance �(r0|r′)

T (�) = κ

4πsinhκ
eκcos�, (20)

where κ is the width of the distribution (Fisher 1953). Here cos � = cos θ0 cos θ ′ + sin0 θ sin θ ′ cos(φ0 − φ′), � being the angular distance
between points r0 and r′ on the sphere. We enforce that T (�) integrates to one for the term of interest in (18) and zero for the remaining
terms. Following the SOLA approach, we define an objective function to be minimized, which comprises terms involved in the determination
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1908 M.D. Hammer and C.C. Finlay

of the estimate

� =
∮

SC

[KC (r0|r′) − TC (r0|r′)]2dS′
C +

∮
SC

[KĊ (r0|r′) − TĊ (r0|r′)]2dS′
C

+
∮

SM

[KM (r0|r′) − TM (r0|r′)]2dS′
M + λ2qT Eq, (21)

where λ (units of [nT−1]) is a trade-off parameter and E is the data error covariance matrix that is necessary because the real geophysical
problem involves noisy data. Which terms to include in the objective function depends on what we seek to estimate; for instance estimating
the radial field over a time window short enough that field time-dependence can be ignored, means that the second term is not included. On
the other hand estimation of the SV involves retaining the second term as well while setting the target kernels TC , TM to zero. The diagonal
elements of the data error covariance matrix are constructed from a combination of the QD latitude-dependent data error estimates, and Huber
weights, wn appropriate for a long-tailed error distribution (see Section 2)

σ 2
w,n(θQ D) = σ 2(θQ D)

wn
(22)

Eln = σ 2
w,ne

−�tln
τ , (23)

where the indices (l, n = 1, ..., N), �tln = tl − tn are data time differences and τ is the serial error correlation time set to 600 s based on the
findings of Lowes and Olsen (2004). We note that the covariance matrix is symmetric (i.e. Eln = Enl) and positive definite. When deriving main
field estimates using data taking along the satellite tracks at a sampling rate of 15 s, see Section 4.1, we multiply variances by a factor sinθ ,
where θ is geographic co-latitude, to account for there being more data close to the poles and in order to simulate an equal-area distribution
(Olsen et al. 2014). For estimates of the SV, see Section 4.2, data are selected such that a good global coverage is obtained overthe chosen
time window; in this case the differences in the data time are much longer than the correlation time and we are able to neglect the temporal
correlation.

3.3 Numerical implementation

The minimization of the objective function (21) is performed by taking the derivative with respect to qn,and requiring that ∂�/∂qn = 0.
Discretizing the integrals using a quadrature rule, the resulting set of equations subject to the constraint (17) may be written in the following
form (Larsen & Hansen 1997)[

K
C

W KT

C
+ K

Ċ
W KT

Ċ
+ K

M
W KT

M
+ λ2E

]
q(r0) = K

C
WtC (r0) + K

Ċ
WtĊ (r0) + K

M
WtM (r0) (24)

subject to
[
eT

p W KT

C
+ eT

p W KT

Ċ
+ eT

p W KT

M

]
q(r0) = 1. (25)

Here we define K matrices of size N × M, where M is the size of the quadrature grid, such that

(K)np =
[
G∗

C,n(rp), G∗
Ċ,n(rp), G∗

M,n(rp)
]
, n = 1, ..., N p = 1, ..., M (26)

and W is a diagonal matrix of the integration points of size M × M

(W)pp = l p, p = 1, ..., M (27)

and we have introduced the three vectors: ep = (1, ..., 1)T , t(r0) having elements (t(r0))p = T (r0|rp) and k(r0) having elements (k(r0))p =
K(r0|rp) for p = 1, ..., M. The discretized averaging kernel is calculated as k(r0) = KT q(r0). The required angular integrations over the CMB
and magnetosphere are performed numerically using Lebedev angular quadrature weights lp on a grid rp = (rc, θp, φp) (Lebedev & Laikov
1999; Parrish 2010) that allow efficient calculation of integrals on a sphere∫

S
F(r′)dS′ ≈

M∑
p=1

l p F(rp). (28)

We found that using M = 1730 Lebedev points, corresponding to SH degree and order 71, were sufficient to perform the integrations to the
required accuracy. We solve the normal equations for the coefficients, q = (q1, ..., qN ), using a Lagrange multiplier ν as proposed by Pijpers
& Thompson (1994)(

K
C

W KT
C

+ K
Ċ

W KT
Ċ

+ K
M

W KT
M

+ λ2E K
C

Wep + K
Ċ

Wep + K
M

Wep

eT
p W KT

C
+ eT

p W KT
Ċ

+ eT
p W KT

M
0

) (
q(r0)

ν

)
=

(
K

C
WtC (r0) + K

Ċ
WtĊ (r0) + K

M
WtM (r0)

1

)
.
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Local averages of the CMB magnetic field 1909

The first matrix term on the left-hand side is independent of estimate position r0. It therefore only needs to be computed once, significantly
reducing the amount of computation required for producing a number of estimates at different locations. The linear system is solved for the
vector containing (q1, ..., qN, ν), then the averages, the averaging kernels and the uncertainty estimates (variances) are computed. We note
that alternative LSQR solution schemes could also be used to solve such systems (Larsen & Hansen 1997; Zaroli 2016). When estimating
the radial MF at a given location, data from within a month is used, such that the term involving K

Ċ
is neglected and the target kernel terms

tĊ (r0), tM (r0) are set to zero. When estimating the radial SV the target kernel terms tC (r0), tM (r0) are set to zero.

3.4 Appraisal of the constructed averages

A primary concern of the Backus–Gilbert method is the appraisal of solutions, that is to attain information regarding the resolvability offered
by the magnetic field observations. A crucial insight is that the estimated average field is the only unique information offered by the data;
that is, the estimated average along with the averaging kernel constitutes our knowledge of the field in the vicinity of the target location
(Oldenburg 1984; Parker 1994). Appraisal typically consists of obtaining the averaging kernel, often described in terms of its width, together
with the uncertainty of the average. Here, we define the kernel width to be the angular distance between points at which the averaging kernel
reaches zero amplitude moving away from its maximum value (note that in contrast the original Backus–Gilbert method used the width as
the full width at half maximum). We calculate the variance, σ̂ 2(r0, t0), of the estimate of the radial field at location (r0, t0) propagated from
the data error covariance matrix by

σ̂ 2(r0, t0) =
N∑

l,n

ql Elnqn = qT Eq. (29)

A family of solutions with different levels of trade-off between fitting the target function and obtaining an estimate with low variance is
obtained; a small λ corresponds to fitting only the target function which decreases the width of the averaging kernel increasing the spatial
resolution but at the expense of the statistical reliability (i.e. yielding a large variance and error magnification), while increasing λ broadens
the averaging kernel lowering the spatial resolution, but produces a more reliable estimate (smaller variance). Note that contamination from
averaging kernel side lobs and from leakage of co-estimated fields have not been included in the variance estimates described here.

4 R E S U LT S

Here we demonstrate our geomagnetic SOLA method in two applications: estimation of the radial component of the core field (Section 4.1)
and estimation of the radial component of the secular variation (Section 4.2) at the CMB. Furthermore, we present computations of the change
in the radial secular variation (i.e. the accumulated SA) from differences in SV estimates.

4.1 Application to the main field

We begin by illustrating the SOLA method by determining estimates of the radial core field at a sequence of target locations at the CMB
using sums and differences of Swarm field measurements taken from March 2017 using data with a 15 sec sampling rate. Working with sums
and differences of the vector field, the data vector is d = {�dr , �dr ,�dθ , �dθ , �dφ,�dφ}. The data kernels are then constructed as

G∗ = {
�GC,r , �GC,r , �GC,θ , �GC,θ , �GC,φ, �GC,φ

}
,

where �GC,k = [GC,k(r1|r′) − GC,k(r2|r′)] and �GC,k = [GC,k(r1|r′) + GC,k(r2|r′)]/2 are data kernels for the differences and sums, respec-
tively with (k = r, θ , φ). Focusing solely on estimating the radial component of the core field and ignoring time-dependency, the second term
is omitted from the objective function (21) and the constraint (18). Note that in this application, using magnetic data sampled every 15 sec,
we have included an exponential serial data error covariance model and the equal area weighting factor as described in Section 3.2. In Fig. 3
we investigate the behaviour of the averaging kernel, KC , as a function of the target kernel width parameter κ and the trade-off parameter
λ by considering a series of example averaging kernels at QD latitude 0◦ and longitude −168◦. The plots provide the error estimate σ̂ for
the field average and the kernel width in degrees. Increasing κ (i.e. going from left to right in the plot columns) causes the kernel to become
narrower while increasing its amplitude and the variance. However, increasing κ induces more oscillations in the kernel structure around the
target location. Increasing λ (i.e. going from top to bottom in the plot rows) decreases the kernel amplitude and increases its width, reducing
the side lobe oscillations. In order to obtain a good resolution it is desirable to select a narrow, high amplitude, kernel, while at the same time
trying to keep the side lobe oscillations to a minimum. The kernels are all well behaved showing only minor side lobes compared to the kernel
amplitudes, hence we are motivated to push towards a high κ value. In general, we found that increasing the amount of data tends to decrease
the width of the averaging kernel and lower the variance.

Next we consider how the SOLA method performs at four different QD latitudes: (0◦, 35◦, 70◦, 85◦). The reason for choosing these
QD latitudes is to investigate the performance of the SOLA method in regions of external field disturbance with different amplitudes and
different data coverage; in the Arctic region QD latitudes 70◦ and 85◦ are located approximately within and poleward of the auroral oval,
respectively, while QD 35◦ represents mid-latitudes and QD 0◦ represents low-latitudes. The left-hand plot in Fig. 4 presents the local error
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1910 M.D. Hammer and C.C. Finlay

Figure 3. Main field application using data from March 2017 shown at target location with QD latitude 0◦: behaviour of the averaging kernel as a function of
Fisher function width κ and trade-off parameter λ. The value of κ increases from the left column having κ = 100 to the right column having κ = 600. The
value of λ increases from the top row of λ = 10−6 nT−1 to the bottom row having λ = 10−3 nT−1. In each plot the estimated uncertainty on the average, σ̂

,and kernel width in degrees are stated.

Figure 4. Main field application to the minimization problem eq. (21) using data from March 2017 for various target locations at QD latitudes 0◦, 35◦, 70◦
and 85◦. Left-hand panel: local average error estimate σ̂ (r0) versus trade-off parameter λ. Right-hand panel: local average error estimate σ̂ (r0) versus main
field averaging kernel width in degrees.

estimate versus the trade-off parameter λ.We find the size of the error estimates are of similar independent of the QD latitude for the various
trade-off parameters. Hence, we may use the left-hand plot in Fig. 4 to pinpoint a suitable λ that yields more or less uniform error estimates
for regional or global collections of point estimates. The right-hand plot in Fig. 4 presents the local error estimate versus the averaging kernel
width in degrees, and shows a characteristic L-curve shape (the curves for latitudes 0◦ and 35◦ are coinciding). Here we note a right-shift
of the L-curves as the QD latitude increases; for each curve the plot clearly illustrates how a low error estimate is associated with a large
averaging kernel width and vice versa. The low and mid-latitude kernel widths are seen to be significantly smaller than in the auroral regions.
This behaviour is expected since the data error estimates are larger in the auroral regions; hence to obtain the same variance the averaging
kernel needs to become broader. Based on the information contained in Figs 3 and 4 we have chosen to use a Fisher’s parameter κ = 600 and
trade-off parameter λ = 1 × 10−4 nT−1 in the following calculations of the main field.

The top left plot in Fig. 5 presents a global collection of such radial field estimates at the CMB with a 1◦ spacing. Associated plots
present the related error estimates (top right), the kernel widths (bottom left) and the data distribution under consideration (bottom right). We
observe that the radial field patches and their amplitudes are very similar to those seen in the CHAOS-6-x7 field model predictions for SH
degrees 1–13. Error estimates remain homogeneous as expected from Fig. 4. Kernel widths are seen to be more or less uniform at non-polar
latitudes showing coherence with the data distribution, while distinct behaviour of the kernels is found in the polar regions; in particular, a
striking region of increased kernel width coinciding with the auroral oval is observed as expected given the data error estimates shown in
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Local averages of the CMB magnetic field 1911

Figure 5. Main field application using March 2017 Swarm data sums and differences using κ = 600 and λ = 10−4 nT−1 showing: (a) radial MF estimates at
the CMB for a global 1◦ spaced collection of target locations, (b) uncertainty estimates for each target point, (c) averaging kernel widths for each target point
and (d) Swarm data distribution.

Fig. 1. On the CMB, at radius rc, the wavelength λn associated with a particular SH degree n is λn = (2πrc)/n (1◦ ≈ 61 km). Averaging
kernels having widths of ≈30◦ correspond approximately to SH degree 12. Hence, the resolution we obtain for the core field is comparable
to that provided by conventional core field models, but note that each local estimate is the result of an individual inversion.

4.2 Application to the secular variation and accumulated secular acceleration

Next we illustrate an application of the SOLA method to the radial field secular variation at the CMB using a time window of 2 yr of Swarm
vector field data from 2015.0 to 2017.0. Here we use only the radial field component of the satellite data in order to reduce external field
contamination at high latitudes and in an effort to maximize the data coverage for a given number of data, such that the data vector is here
d = {dr }, and the data kernels are G∗ = {GC, r} . For 2 month time windows starting from 2015.0, we constructed a regularly spaced global
distribution by randomly selecting data in time (within the 2 month window) on an equal area grid. A data set covering the period 2015.0
to 2017.0 was then generated by accumulating these 2 month data sets from the entire 2 yr, resulting in a total of 43 540 radial field data
points. Here, serial error correlation in the data was not accounted for as data were selected randomly from within the 2 months. We start by
considering the L-curve behaviour for the same QD positions investigated in the MF case. Fig. 6 presents the local error estimate versus the
trade-off parameter λ (left-hand plot) and versus the averaging kernel width in degrees (right-hand plot). As in the MF case the error estimates
are seen to be independent of location for a given λ value; for a given value of λ a corresponding σ̂ (r0) is fixed and we may read off the value
of the kernel width at a given QD latitude. Furthermore, in both plots we mark blue, red and green dots for selected λ values studied in more
detail in Figs 7 and 8. Here, we consider in detail three different λ values in order to investigate the resolvability of the SV with different
choices of the average kernel. Fig. 7 shows examples of the averaging kernels obtained using λ = 2.5 × 10−4 nT−1 (the blue dot in Fig. 6)
top left-hand plot, λ = 5 × 10−4 nT−1 (the red dot in Fig. 6) top right-hand plot and λ = 5 × 10−3 nT−1 (the green dot in Fig. 6) bottom plot,
having widths of ≈30◦, 33◦ and 42◦; comparing the three kernels it is clear that using λ = 2.5 × 10−4 nT−1 results in higher amplitudes and
a narrower averaging kernel. Fig. 8 presents a global collection of radial field SV estimates at the CMB having a 1◦ spacing on the left and
associated kernel widths on the right, here shown for λ = 2.5 × 10−4 nT−1 in the top plots, λ = 5 × 10−4 nT−1 in the centre plots and λ = 5
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1912 M.D. Hammer and C.C. Finlay

Figure 6. SV radial field application to the minimization problem eq. (21) using 2 yr of Swarm data between 2015.0 and 2017.0 having κ = 600. Plots showing
σ̂ (r0) trade-off curves at various target locations for QD latitudes 0◦, 35◦, 70◦ and 85◦ as a function of λ (left-hand panel) and kernel width (right-hand panel).

Figure 7. SV radial field application using 2 yr of Swarm data between 2015.0 and 2017.0 having κ = 600. Plots show example kernels at target location QD
latitude 0◦ for : (a) λ = 2.5 × 10−4 nT−1, (b) λ = 5 × 10−4 nT−1 and (c) λ = 5 × 10−3 nT−1 marked with blue, green and red dots in Fig. 6, respectively.
The green dot in the map locates the kernel centre. Contour interval is 2.0. Negative contours are dashed.

× 10−4 nT−1 in the bottom plots. The effect of changing λ, and thus the averaging kernel, is clearly seen in the these plots: the field structures
become smeared out as the kernel width is increased (i.e. going from top plots to bottom plots), decreasing the amplitude while a decrease in
the associated error estimates is also observed. The kernel width increases towards the polar regions resembling the results in the MF case
study, peaking at areas matching those of the auroral oval.

Remembering that our method involves no explicit spectral regularization of higher spatial frequencies of the signal, it is interesting to
compare our global SV estimates to SV field predictions of the CHAOS-6-x7 model. Though the method, as well as the data and the data
selection criteria, are not the same in the two approaches, similar SV structures can clearly be identified; in particular high amplitude features
appearing at low latitudes stretching over a longitudinal band of ±90◦, lower activity in the pacific region (at least for the broader averaging
kernels) and a sequence of high latitude patches encircling the north pole. Though decreasing kernel width may cause noise to become more
influential in the average estimate, in particular at mid-latitudes and polar regions, a clear change in the eastern pacific region is evident for λ
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Local averages of the CMB magnetic field 1913

Figure 8. SV radial field application using 2 yr of Swarm data between 2015.0 and 2017.0 showing a global collection of target points (1◦ spacing) having κ

= 600. Results shown are: (a and b) using λ = 2.5 × 10−4 nT−1, (c and d) using λ = 5 × 10−4 nT−1 and (e and f) using λ = 5 × 10−3 nT−1.

= 2.5 × 10−4 nT−1, which is interesting as recent SH based field models find distinct SA features in this region (Chulliat et al. 2015; Finlay
et al. 2016).

Fig. 9 reports the radial SA computed as the accumulated change in the radial SV between years 2015 to 2017, 2007 to 2009 and 2005
to 2007. To determine this, the SV in 2017.0 was computed from 2 yr of data (as above) using λ = 5 × 10−3 nT−1; that is, seeking SV maps
having detail levels as given in Fig. 8(e). In a second step, the averaging kernels determined using this value of λ, were used as the target
kernels for the SV in 2005, 2007 and 2015.0 in order to ensure the quantities to be differenced have been averaged in the same fashion. Finally
the accumulated SA was computed as the difference in SV between 2005 and 2007, respectively 2015 and 2017. Comparing such maps of the
accumlated SA with the SA predictions of the CHAOS-6-x7 model up to SH degree 10, the SOLA maps agree well with the CHAOS-6 model
predictions. Even small scale field features can be found in both models, though the high latitude SA signal is perhaps not as prominent in
the SOLA maps. Thus the SA predictions of regularized SH based models up to SH degree 10 are essentially reproduced by our approach.
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1914 M.D. Hammer and C.C. Finlay

Figure 9. SA computed as accumulated change in radial SV at the CMB from: (a) years 2015−2017, (c) years 2007–2009 and years 2005–2007 using λ =
5 × 10−3 nT−1. Plots (b), (d) and (f) show the CHAOS-6-x7 model SA predictions truncated at SH degree 10 for years 2016, 2008 and 2006 at the CMB,
respectively.

The evolution of the radial SA at the CMB is shown in Fig. 10, presenting time-longitude plots along the geographic equator as
determined using our approach. Here we have experimented by looking at 1 and 2 yr SV differences derived from data windows sliding in
steps of 1 and 2 month s, respectively. The reason for not showing results prior to 2004 in plots (c) and (d) is that using a 1 month sliding
time window causes a severe lack of data during this time with our data selection criteria. The left-hand plots show the SA evolution at the
equator while the right-hand plots show corresponding error estimates. From plots (a) and (c) coherent evolving structures are observed. This
is important as it illustrates the ability of our method to track temporal changes. As can be seen, much higher temporal resolution is gained
in (c) using 1 yr SV differences. Associated uncertainty estimates show an increase in amplitude between 2004 and 2005, which is likely
related to there being less data at this time. Striped looking patterns in the error estimates can be seen, which are probably related to the
regular spatial grid of the selected data . This behaviour may be reduced by seeking a different data grid setup. The SA patterns observed in
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Local averages of the CMB magnetic field 1915

Figure 10. Time-longitude plot of the accumulated SA along the geographical equator at the CMB. Showing (a) Difference of SV estimates 2 yr apart, each
derived over a 2 yr window, windows moving in 2 month steps, and derived using λ = 5 × 10−3 nT−1, (b) uncertainty estimates for plot (a), (c) Difference of
SV estimates 1 yr apart, each derived over a 1 yr window, windows moving in 1 month steps, again using λ = 5 × 10−3 nT−1, (d) uncertainty estimates for
plot (c).

plots (a) and (c), correspond qualitatively to those found in the CHAOS-6 model and in previous studies (Chulliat et al. 2015); in particular
the prominent features appearing between 2005 and 2009 in the longitude band from −100◦ to 20◦.

5 D I S C U S S I O N A N D C O N C LU S I O N

We have presented an application of the modified Backus-Gilbert formalism called SOLA, originally developed in helioseismology, to
determine local average estimates of the core-generated magnetic field and its time derivatives. These estimates are in good agreement with
maps of the CMB radial MF, SV and SA derived using conventional spherical harmonic modelling techniques.

The Backus–Gilbert formalism offers a useful alternative approach to retrieving information on the geomagnetic field in comparison to
conventional field modelling; instead of relying on a truncated and regularized spherical harmonic representation being downward continued
to the CMB, we average over the field directly at the CMB and thus obtain unbiased estimates. An important advantage of our method is that
it automatically provides the spatial averaging kernels and variances associated with the estimates thus allowing for a detailed appraisal of
the field averages; a range of well-characterized solutions can be realized by varying the target kernel width via the trade-off parameter λ; it
is desirable to have a low target width while at the same time having a sufficiently low uncertainty estimate for the field averages. In contrast
it is not straight-forward to provide variances for point estimates at the CMB field derived from truncated and regularized SH models, and
workers rarely compute the associated spatial averaging kernels. An advantage of SOLA compared to regularized least-squares inversion is
that the variance estimates are not artificially suppressed. The Backus–Gilbert estimate can in some circumstances be closer to the true value
than the least-squares solution, provided the quantity being estimated (in our case the radial field at the CMB, Br (r′, t)) is sufficiently smooth
(Parker 1977; Pujol 2013). Although the Backus–Gilbert approach was not originally intended for global model construction, the union of a
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1916 M.D. Hammer and C.C. Finlay

collection of point estimates has been considered by some authors to constitute a sensible approach (e.g. Parker 1994; Nolet 2008). In principle
a trade-off curve could be calculated for each location under consideration. We have instead selected one value for the trade-off parameter for
all locations, so the variances of the estimates and the kernel widths can vary with position reflecting for example uneven data distribution
or enhanced data errors in regions such as the auroral zone. Although the kernel width provides only a very crude summary of the actual
averaging scale (Parker 1994), for the satellite data considered here with their good global coverage, it is found to be a useful diagnostic. Our
averaging kernels are generally well behaved when using the same trade-off parameter for all locations, having averaging kernels without
significant side lobes (amplitudes are less than 10 per cent of the kernel peak amplitude). The possibility also exists of pre-specifying other
target kernels in order to estimate a particular form of spatial average; here we have chosen for simplicity to focus on a Fisher distribution
but other possibilities including for example a disc boxcar averaging function are possible depending on the desired application.

We obtained stable and spatially coherent local estimates of both the MF and SV at the CMB. Using 2 yr of data it is possible to make
stable SV maps at the CMB with averaging widths as small as 30◦, a wavelength similar to a SH representation up to degree 12. The SV is
thus known at this wavelength without regularization. Motivated by this we went a step further and determined the accumulated SA between
two epochs by differencing the SV estimates for the epochs. The resulting maps of radial SA at the CMB were found to be in good agreement
with the CHAOS-6-x7 field model truncated at degree 10. By varying the width of the spatial averaging kernel, and observing the change in
the resulting maps and their variance estimates, we can directly appraise how well the accumulated SA is known, something that has up to now
been difficult to assess in regularized field models. We carry out our SA estimates locally, so we are able to find the optimal spatial averaging
width for a specific location and time window of interest, without worrying that the inversion might be unstable due to high amplitude noise
in some other region. This enables us to study in detail rapid field changes in particular locations. Looking at time-longitude plots of the
accumulated SA at the equator, we have explored the coherence of the accumulated SA as the width of the averaging kernel is decreased, and
the time window is shortened. We find encouraging coherence at the equator down to an averaging width of 30◦, and for accumulated SA
within 1 yr based on 1 yr time windows for the SV. This may be a sign that we are unveiling a coherent underlying signal, albeit one that has
more power on shorter wavelengths (see also Holme et al. 2011; Aubert 2018). Note that since no spectral truncation is carried out, higher
spatial frequencies in our estimates may have a different appearance than that found in SH based models such as CHAOS-6 where temporal
regularization is known to heavily influence the SA above SH degree 9so the SA is often analysed by truncating or filtering above this degree
(e.g. Chulliat et al. 2015; Finlay et al. 2016). As an example, considering the accumulated SA at the equator derived from 1 yr differences
in the SV estimates, we find a distinctive ’cross-over’ feature in mid 2007 at 25◦ West. This involves two adjacent and oppositely directed
radial SA features that change sign within a year. Estimates of the accumulated SV made using longer time windows show a more gradual
evolution, and perhaps westward motions, as a result of smearing between patches on either side of the cross over. The SA cross-over is more
clearly seen for shorter time windows, confirming hints at its presence in models such as CHAOS-6 (Chulliat et al. 2015). The origin of such
features, that may involve a rapid change in sign of the azimuthal core flow acceleration (Gillet et al. 2015) may reveal new aspects of core
dynamics, so it is important that their characteristics are robustly determined. The method presented here is well suited to such investigations.

One shortcoming of the SOLA method at present is that it requires the solution of a linear system of size (number of data x number of
data). For large numbers of data locations, as are available from satellite missions, this can becomes prohibitive, especially if one wishes to
consider single satellite and inter-satellite sums and differences for each vector field component at each location. As the results presented
here show, the problem is not insurmountable, particularly if one is only interested in field estimates within a short time window, or is willing
to perform data decimation in order to obtain a data set with good spatial and temporal coverage. If we wish to push towards higher local
resolution in space and time, it is clear that using data sets that are as large as possible can be an advantage. Despite this, the major source
of error in the present determination of the core field is probably the incomplete separation of crustal and ionospheric signals. Since our
method is based on a potential field formulation, it is unable to perform such a separation with data from satellite altitude alone; bias from
incompletely separated non-core field sources cannot be excluded in the maps we have presented and is difficult to quantify. Including data
from several altitudes will help, as will experiments carried out for different external field selection criteria.

Having established here the utility of the SOLA approach in geomagnetism, there are now a number of interesting possibilities for future
applications. First, as the time-series collected by the Swarm mission lengthens, there will be more and more rapid field evolution events
that can be studied in detail. The ability to appraise inferred core field features will be especially important as we seek to study the temporal
evolution of small scale SA signals on shorter and shorter timescales, in an effort to understand the underlying geophysical processes. Moving
further back in time, the method could be applied to data from other satellite missions such as DMSP (Alken et al. 2014) or Cryosat to try to
fill the gap between the CHAMP and Swarm era. The method could be also be applied to ground observatory magnetic data; this would be of
particular interest in regions such as Europe, North America and Australia where there is excellent coverage with ground-based observatories.
This would provide an opportunity to study the local field evolution at high resolution and provide an important means of validating results
obtained with satellite data. The method could also be applied to produce local estimates at locations other than the CMB, for example
on a grid at mean satellite altitudes, as an alternative method of producing so-called virtual observatories (Mandea & Olsen 2006). Field
estimates on regular grids with suitable averaging and variance information would certainly be well suited for data assimilation applications.
Looking further afield, it may also be possible to apply the method in archeomagnetism and palaeomagnetism where the data coverage is
even more sparse, and appraisal information would again be valuable. As an example, perhaps the SOLA method could be used to study what
is happening at the CMB during archeomagnetic intensity spike events (Ben-Yosef et al. 2009; Shaar et al. 2016; Korte & Constable 2018),
although this would require linearization approaches in order to deal with non-linear intensity and directional data (e.g. Snieder 1991). The
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ability to study core field features directly from observations, independent of regularized spherical harmonic field models or other a priori
constraints, seems to be attractive for a broad range of applications.
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