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S U M M A R Y
We incorporate a maximum entropy image reconstruction technique into the process of mod-
elling the time-dependent geomagnetic field at the core–mantle boundary (CMB). In order to
deal with unconstrained small lengthscales in the process of inverting the data, some core field
models are regularized using a priori quadratic norms in both space and time. This artificial
damping leads to the underestimation of power at large wavenumbers, and to a loss of contrast
in the reconstructed picture of the field at the CMB. The entropy norm, recently introduced to
regularize magnetic field maps, provides models with better contrast, and involves a minimum
of a priori information about the field structure. However, this technique was developed to
build only snapshots of the magnetic field. Previously described in the spatial domain, we show
here how to implement this technique in the spherical harmonic domain, and we extend it to
the time-dependent problem where both spatial and temporal regularizations are required. We
apply our method to model the field over the interval 1840–1990 from a compilation of histori-
cal observations. Applying the maximum entropy method in space—for a fit to the data similar
to that obtained with a quadratic regularization—effectively reorganizes the magnetic field
lines in order to have a map with better contrast. This is associated with a less rapidly decay-
ing spectrum at large wavenumbers. Applying the maximum entropy method in time permits
us to model sharper temporal changes, associated with larger spatial gradients in the secular
variation, without producing spurious fluctuations on short timescales. This method avoids
the smearing back in time of field features that are not constrained by the data. Perspectives
concerning future applications of the method are also discussed.

Key words: historical geomagnetic field modelling, inverse problem, maximum entropy
method, regularization, secular variation.

1 I N T RO D U C T I O N

The evolution of the geomagnetic field takes place over a wide spec-
trum of timescales ranging from 10–103 yr for secular variation to
105–106 yr for polarity reversals (Merill et al. 1996). Numerical
simulations of convective dynamos in rapidly rotating spherical ge-
ometry are now able to reproduce the primary (large lengthscale)
features of the Earth’s magnetic field and its long term evolution. De-
spite the limitations of the numerically accessible parameters, these
help to provide mechanisms for the geodynamo process (Kono &
Roberts 2002). A problem is however presented by the wide variety
of dynamo behaviour found in numerical simulations and observed
in planetary magnetic fields (Jones 2003). This diversity makes it
difficult to reach a comprehensive understanding of the geodynamo.
More detailed observational knowledge of the spatial structure and
temporal evolution of the geomagnetic field is needed to help distin-
guish the true mechanisms underlying the generation and evolution
of the Earth’s magnetic field.

Databases of observations of the Earth’s magnetic field, devel-
oped from modern sources, historical sources (Bloxham et al. 1989;
Jonkers et al. 2003) or archaeomagnetic sources (Korte et al. 2005),
have lead to construction of continuous models of the magnetic
field at the core–mantle boundary (CMB) from decadal timescales
(Sabaka et al. 2004; Olsen et al. 2006) to historical (Bloxham
& Jackson 1992; Jackson et al. 2000) and millennial timescales
(Korte & Constable 2005). It is well known that given a finite data
set, many possible models can be found that fit the data equally well
(Backus & Gilbert 1970). To avoid this issue some recent models
minimize not only the fit to the data, but also a measure of field
complexity. This procedure (known as regularization or damping)
leads to simpler—and perhaps more realistic—models, and avoids
overfitting of the data (Parker 1994). A variety of norms have been
used to measure complexity in field models, many of which have
been quadratic functions. All quadratic norms tend to heavily pe-
nalize small length-scale field structure, causing a loss of contrast
in the reconstructed picture of the field. Their use involves a priori
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assumptions concerning the field structure, and introduces artificial
correlations (for a simple demonstration see the well known ‘kanga-
roos’ argument for example in Sivia & Skilling 2006, p. 111–112).
Furthermore, the minimization of a quadratic norm of the magnetic
field at the CMB is not a procedure derived from any fundamental
physical law, so that one cannot argue that any specific quadratic
norm is ‘the’ relevant measure of field complexity.

In the 1980s the maximum entropy image reconstruction method
was developed (Gull & Skilling 1984; Skilling 1988, 1989; Gull
1989). Entropy, in this information theory context, is a non-quadratic
measure of model complexity that arises from a minimum of a pri-
ori assumptions, and which reduces artificial correlations. Its math-
ematical form (see Section 3.3) can be derived by requiring that any
sensible measure of model complexity should have properties of
subset independence, co-ordinate invariance, system independence
and should scale correctly (Skilling 1988). Further background de-
tails are presented in the companion paper by Jackson et al. (2007),
hereinafter referred as Paper I. First developed for positive images
only, the maximum entropy method was later extended to non-
positive fields (Gull & Skilling 1990; Hobson & Lasenby 1998).
Recently, Jackson (2003) applied it to reconstruct snapshots of the
radial magnetic field at the CMB for the epochs 1980 and 2000,
using the Magsat and Ørsted satellite data. The maximum entropy
method is known permit high contrast images, with well-resolved
maxima and minima. As pointed out by Jackson (2003), sharper pic-
tures of the radial magnetic field at the CMB are of interest, since
numerical simulations often present rather sharp concentrations of
magnetic field lines (e.g. Rau et al. 2000).

In Jackson (2003) as well as in Paper I the entropy norm was com-
puted in the spatial domain. In the present study we show how to
implement it while working in the spectral (spherical harmonic) do-
main. At the same time we extend the method to the time-dependent
problem, and test its ability to model the main field and its secu-
lar variation from historical data over the period 1840–1990. The
structure of the paper is as follows. In Section 2, we present the
main characteristics of the data sets used during this study. In Sec-
tion 3, we detail the notation and the methods used to invert the
data, including both quadratic and maximum entropy regularization
techniques. Then in Section 4 we compare the results obtained with
the two types of regularization. Finally, in Section 5, we discuss
perspectives for the method and implications for our understanding
of the dynamics of the Earth’s outer core.

2 DATA C O M P I L AT I O N

In this study we use the same data compilation as was employed by
Jackson et al. (2000). However, the time span has been shortened

Table 1. The total number of data and the time span for each data set: X , Y and Z stand for the three Cartesian components of the
magnetic field, H , F, I and D stand for the horizontal intensity, total intensity, inclination and declination, respectively.

Data set Period X Y Z H F I D Total

Obs.a 1840.5–1989.5 8995 9000 8736 – – – – 26 731
P. N. A. L.b 1840.0–1867.0 – – – – – – 13 439 13 439
Surveys 1840.0–1979.8 – – 11 477 58 515 28 092 43 563 93 011 234,658
DE2 1981.8–1983.0 – – – – 461 – – 461
Magsat 1979.8–1980.0 – – 365 – 121 – – 486
POGO 1965.8–1970.8 – – – – 737 – – 737

Total 8995 9000 20 578 58 515 29 411 43 563 106 450 276 512
aObservatory data are included in The form of finest differences of annual means in order to be insensitive to the crustal field (see text).
bData from the Paris National Archives & Library.

to the interval 1840–1990, where the data coverage and quality is
best. This avoids the need to parametrize the axial dipole intensity
before 1840, when no intensity data were available (Gubbins et al.
2006). Here, we briefly recall the most important characteristics of
each data set. For more detailed information and references, see
Bloxham et al. (1989), Bloxham & Jackson (1989), Jackson et al.
(2000) and Jonkers et al. (2003). A few statistics concerning the
data’s temporal distribution and accuracy are presented in order to
give a feeling of the constraints provided by the data on the magnetic
field models. The major categories of data in the compilation are
listed below. The number of data in each category is summarized in
Table 1, together with the time interval covered.

(1) Survey data: The survey compilation (around 85 per cent of
the total amount of data in this study) covers the whole time-span
except the last 10 yr. These data have been spatially culled in order
to avoid too much correlation from the crustal field arising due to
dense local sampling (Bloxham et al. 1989; Jackson et al. 2000). We
use a standard estimated error of 200 nT to account for this effect.
Note also that some of these data are actually repeat stations that
could be used in the future as pseudo-observatory data.

(2) Observatory data: Composed of annual means of the X , Y
and Z components of the field at the Earth’s surface, these are first
differenced in order to become free from the affects of the static
crustal magnetization. These data cover the whole time span, though
rather few go back to the 19th century. Median values of the esti-
mated errors associated with all three components are, respectively,
5.1, 2.9 and 6.6 nT yr−1. Although these constitute only around 10
per cent of the total amount of data, they provide our best constraint
on the time derivative of the field.

(3) Data from the Paris National Library and Archives: These
were collected on ships over the first 27 yr of the time span. Com-
posed of declination measurements only (with a median value of the
estimated error of 39 min arc), they constitute around 5 per cent of
the total number of data.

(4) Satellite data:
(i) POGO (1965–1970): only quiet time intensity F data were

considered (see Langel et al. 1980, for precise details on the
selected data), at altitudes from 399 to 1519 km, with typical
estimated error of 9 nT.

(ii) DE2 (1981–1983): only intensity F data were considered
(Langel et al. 1988), at altitudes from 248 to 912 km, with typical
estimated error of 20 nT.

(iii) Magsat (1979): quiet time intensity F and vertical Carte-
sian component Z data were considered, with a Dst correction for
the external fields (Langel & Estes 1985), at altitudes from 350
to 575 km, with typical estimated errors of, respectively, 15 and
9 nT for F and Z.
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Figure 1. Temporal evolution of the number of data per year, over the period
1840–1900.

Only satellite data with angular separation greater than 15 degrees
have been included to avoid bias from the crustal field (Bloxham
& Jackson 1989). Although the satellite data only represent 0.6 per
cent of the total amount of data, they provide a very good spatial
constraints around 1970 and 1980, in the last 25 yr of the model.
This has implications for the modelling since it permits us to build
a more complex picture of the field at the end of the time span

The whole data set is then composed of more than 276 000 data, of
which nearly 40 per cent are declinations, 20 per cent are horizontal
intensities, 10 per cent are total intensities, 15 per cent are inclina-
tions, 15 per cent are Cartesian (northward, eastward or downward)
components (see Table 1). We show on Fig. 1 the evolution of the
total number of data with time. The sparsity of the data near t e =
1990, as well as the lack of high quality data near t s = 1840, have
implications for the boundary conditions imposed during the mod-
elling (see the discussion in Section 3.2).

3 M E T H O D S A N D N O TAT I O N S

3.1 General framework

Most of the concepts and notation used here are standard (see, for
example, Langel 1987). We adopt a spherical coordinate system (r ,
θ , φ); a = 6371.2 km is the Earth’s radius and c = 3485 km is the
outer core radius. We assume the mantle is an insulator, so that the
magnetic field can be derived from a potential: B = −∇V for r >

c. As there are no magnetic monopoles (∇ · B = 0), we look for the
solution of the equation ∇2V = 0. Note that the radial component
of the magnetic field Br entirely describes the potential V for this
problem of Laplace’s equation with Neumann boundary conditions.
The radial magnetic field at the CMB, which we want to reconstruct,
is then Br |CMB =−∂ r V |r=c. We use a spherical harmonic expansion
of V that can be written for any radius r > c as

V = a
L∑

l=1

(
a
r

)l+1 l∑

m=0

[
gm

l (t)cosmφ + hm
l (t)sinmφ

]
Pm

l (θ ), (1)

where the Pm
l are the associated Legendre functions. Regardless of

the regularization employed (quadratic or maximum entropy) the
same truncation level L = 24 is used throughout this paper. This
rather high truncation level enables the undesirable effects produced
by over-zealous truncation to be avoided. Note that for l > 13 the
core field is dominated by the crustal field at Earth’s surface; the
field models presented here are controlled only by regularization

beyond this point. All models (both quadratic and maximum entropy
regularized) converged satisfactorily for l < 24.

We follow Bloxham & Jackson (1992) and use B-splines of order
4 (Lancaster & Salkauskas 1986) as the basis functions to represent
the time-dependence of the coefficients gm

l ,

gm
l (t) =

T∑

n=1

n gm
l Bn(t), (2)

with a similar expression for the hm
l . We use T = 63 B-splines for

the temporal representation of the period [t s , t e] = [1840, 1990],
erected on T + 4 knots regularly spaced every 2.5 yr. Endpoints were
treated by adding three extra knot positions beyond t s and t e—trials
showed that this produced identical results to using three repeated
knots positions at t s and t e as is done, for example, by Olsen et al.
(2006). In summary, our model m = {n gm

l , nhm
l } consists of a set of

P = TL(L + 2) = 39 312 free parameters to represent the spatial
structure and temporal evolution of the CMB field.

The complete set of observations γ, comprising N data, is related
to the model m through a forward function f , and we therefore,
wish to find solutions to the problem f (m) = γ. Note that we
assigned to each datum γ i an uncertainty ei and considered errors
to be independent, so that the covariance matrix C e is diagonal
(see Jackson et al. 2000, for a detailed description of our error
treatment). As discussed in the introduction, the inverse problem of
finding a model consistent with the data is an ill-posed problem with
an infinite number of possible solutions. Acceptable solutions are
found by adding a priori constraints concerning the complexity of
the magnetic field model and minimizing an objective function of
the form,

%(m) = [γ − f (m)]T C−1
e [γ − f (m)] + R(m). (3)

The first term on the right-hand side is the χ 2 measure of the dis-
crepancy between the model predictions and the data. The second
term on the right-hand side is a regularization function, which can
generally be written as the sum R = λSRS + λTRT , where λS

and λT are the damping parameters associated with, respectively,
the spatial RS and the temporal RT regularization functions. The
solution is sought iteratively using a standard least-squares scheme
based on Newton’s method:

mi+1 − mi =
[
2(∇ f i )T C−1

e ∇ f i + ∇∇Ri
]−1

×
[
2(∇ f i )T C−1

e (γ − f i ) − ∇Ri
]
, (4)

where the subscript ‘i’ stands for the functions evaluated at the
ith model iterate. To obtain an reasonable model the conventional
approach is to have a misfit to the data M =

√
χ 2(γ, m)/N of

order unity. As our problem relies on two damping parameters, a
wide family of (λS , λT ) can satisfy this demand. Moreover, the
statement M % 1 is reliable only if both correlation in the errors
and error estimates are perfectly represented; unfortunately this is
not the case for the geomagnetic problem. For instance anisotropy
in the error treatments as well as correlation between errors could be
taken into account (Holme & Jackson 1997; Rygaard-Hjalsted et al.
1997). Furthermore, a model m will in practise not simultaneously
satisfy the collection of conditions Mk =

√
χ 2(γk, m)/Nk = 1 for

all the subsets of data γ k , of size N k . For example, we find that our
treatment of the survey data globally overestimates the errors, and
tends to produce a global misfit M for this set that is weaker than
unity. Finally, for all the models presented here, we reject all data
further than 3 standard deviations (as measured by the estimated
error) from the model, except when considering observatory annual
means for which manual rejection was previously applied (Bloxham
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et al. 1989; Jackson et al. 2000). A consequence of this model-
dependent data rejection is that all the models reported do not rely
exactly on precisely the same number of data.

3.2 Quadratic regularization

The regularization functions RS and RT used in geomagnetic field
modelling are typically quadratic measures. Spatial norms such as∫

CMB |∇h Br |2 d( (Shure et al. 1985; Constable et al. 1993), or the
minimum ohmic heating norm (Gubbins 1975; Bloxham & Jackson
1989; Jackson et al. 2000) have been widely used. In this paper we
employ the norm of Shure et al. (1982),

QS(m) = 1
(te − ts)

∫ te

ts

∫

CMB
Br

2d(dt = mT Q−1
S m, (5)

where the integral is defined over a sphere of unit radius. Re-
garding the temporal regularization function, many time-dependent,
spline-based field models (e.g. Bloxham & Jackson 1992; Jackson
et al. 2000) have been built using the secular acceleration norm∫

CMB B̈2
r d(. Sabaka et al. (2004), in their comprehensive model

CM4, used instead the secular variation norm
∫

CMB Ḃr
2
d(, added

to a secondary norm
∫

CMB(∇2
h Ḃr )2d( in order to regularize the field

of internal origin, where Ḃr = ∂ Br/∂t and B̈r = ∂2 Br/∂t2. In this
study we use the a similar secular variation norm

QT (m) = 1
(te − ts)

∫ te

ts

∫

CMB
Ḃr

2
d(dt = mT Q−1

T m (6)

to implement quadratic temporal regularization. We note that for
the quadratic norms (5) and (6), the Hessian and gradient operators
of the regularization function R appearing in the solver scheme (4)
take the form ∇R(m) = ∇∇R(m)m = 2

(
λS Q−1

S + λT Q−1
T

)
m.

We choose the damping parameters (λS , λT ) in order to achieve
a balance between the spatial and temporal smoothness, while still
satisfactorily fitting the data. Of particular importance in this regard
is the sensitivity of model behaviour to the boundary conditions
implemented at the endpoints. Because of the lack of information
at the extremities of the time span, a relatively strong temporal
damping will usually imply that the temporal norm tends towards
zero at t s and t e. A natural consequence of our scheme (4), where
we find a model that minimizes (3), is that the spatial norm can
become very large, especially at t s where there is a much weaker
constraint from the data. To help avoid such undesirable effects we
strictly imposed the boundary conditions B̈r (ts) = B̈r (te) = 0 (note
that this does not force the temporal norm to be zero).

We choose λS by producing a time-dependent quadratic inversion
with spatial norm in 1980 similar to that of a 1980 snapshot model,
built separately from the Magsat data set (this is the data set which
has best coverage and is least noisy). This procedure suggested set-
ting λS = 10−10 (in nT−2 throughout the paper). We then found that
taking λT = 5 × 10−6 (in (nT/yr)−2 throughout the paper) provided
a reasonable balance between the temporal and the spatial regular-
izations. Models were checked to ensure that neither the temporal
or spatial norms strongly diverge close to the endpoints. We also
note that our results do not depend on the number of splines used.
The damping parameters are kept fixed at λS = 10−10 nT−2 and
λT = 5 × 10−6 (nT/yr)−2 throughout the paper, for both quadratic
and maximum entropy regularized models.

3.3 Maximum entropy regularization

In this paper we investigate using the entropy of the radial magnetic
field image at the CMB as a spatial norm and the entropy of the radial

secular variation image at the CMB as a temporal norm, rather than
the traditional quadratic norms discussed in the previous section.
Skilling (1988) defines the entropy S of a positive function H , over
a domain (, as

S [H, d] =
∫

(

{
H − d − H ln

[
H
d

]}
d(, (7)

where d is a measure which can be interpreted as the default model
obtained in the absence of any constraints (the so-called ‘flat map’).
From (7) it is possible to define the entropy for functions H con-
sisting of both positive and negative values (Gull & Skilling 1990;
Hobson & Lasenby 1998):

S [H, d] =
∫

(

{
ψ − 2d − H ln

[
ψ + H

2d

]}
d(, H non positive,

(8)

where ψ =
√

H 2 + 4d2 (see also eq. 12 of Paper I). When looking
at the limit of S [H , d] as d becomes very large compared to the
typical amplitude of H , a second order Taylor series expansion of
(8) gives (e.g. Maisinger et al. 2004)

S [H, d] % − 1
4d

∫

(

H 2d( as d ' |H |. (9)

It is therefore, possible to quantitatively benchmark the maximum
entropy regularization at large d against quadratic regularized in-
versions based on the integral of H2.

Since the radial magnetic field image at the CMB is not a positive
distribution, eq. (8) was used by Jackson (2003) to produce single
epoch models using the maximum entropy method. Here, for the
time-dependent problem, we take a slightly different approach and
begin by writing the spatial norm based on the entropy definition
(8) as

ES(m, dS) = −4dS

(te − ts)

∫ te

ts

S [Br (t), dS] dt, (10)

where d S is the default parameter associated with the spatial entropy
norm. Note d S has the same dimensions as Br , so that ES and QS

also have the same dimension. The −4d S factor in eq. (10) allows
us to take advantage of (9), to have a directly comparable damping
parameter for both the quadratic and entropy regularizations. Next
we discretize the CMB into a spherical triangle tessellation (STT,
see Constable et al. 1993) so the entropy function in (10) becomes,

S [Br (t), dS] =
C∑

i=1

ωi

{
ψi (t) − 2dS − xi (t)ln

[
ψi (t) + xi (t)

2dS

]}
,

(11)

where ψi (t) =
√

x2
i (t) + 4d2

S and x i (t) = Br (c, θ i , φ i , t) is
the radial magnetic field evaluated at the centre of the cell i of
surface area ω i . C = 6480 cells relying on 3242 nodes were used
and some more expensive computations with 5762 nodes (11 520
cells) were carried out to verify that convergence as function of the
STT grid had occurred. The time span [t s , t e] is discretized over
4T equally spaced intervals to numerically perform the temporal
integration (10).

Then, using (1) and (2), the vector x(t) = {x i (t)}i=1,C , which
contains the radial magnetic field values in the cells, can be written
as a linear function of the spherical harmonic coefficients:

x(t) = M(t)m. (12)

The linear operator M(t), of size C × P, is calculated from the spher-
ical harmonic evaluated on each cell, and the B-spline functions
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evaluated at the time t (see Appendix A). From (10), (11) and (12)
we derive the gradient and Hessian functions in the spectral domain,
which we need to perform the iterative process (4):





∇ES(m, dS) = −dS

T

4T∑

p=0

MT ∇S[Br (tp), dS]

∇∇ES(m, dS) = −dS

T

4T∑

p=0

MT ∇∇S[Br (tp), dS]M

, (13)

with t p = t s + p(t e − t s)/4T . The gradient and Hessian functions of
S[Br (t), d S] in the physical domain are given by Hobson & Lasenby
(1998 and Paper I, eqs 13–14):





{∇S[Br (t), dS]}i=1,C = ln
[

ψi (t) + xi (t)
2dS

]

{∇∇S[Br (t), dS]}i, j=1,C = δi j

ψi (t)

, (14)

where δ i j is the Kronecker’s symbol.
In a similar manner to eq. (10) we define a temporal norm based

on the entropy of the radial secular variation image at the CMB,

ET (m, dT ) = −4dT

(te − ts)

∫ te

ts

S[Ḃr (t), dT ] dt. (15)

The associated gradient and Hessian functions are computed in the
same manner as in (13) and (14), but replacing Br by Ḃr and d S by
d T . The default parameter d T associated with the temporal entropy
norm has the same dimensions as Ḃr , so that ET and QT have the
same dimensions.

Note that Jackson (2003) described the entropy constraint in the
physical domain (r, θ , φ). Here the decomposition (12) allows us to
impose the maximum entropy constraint in the spectral (spherical
harmonic) domain in a similar manner as the quadratic constraints
were previously implemented. The entropy method also requires an
iterative approach using eq. (4), but in comparison with a quadratic
inversion, it requires a larger number of iterations to converge. Con-
sequently, we do not estimate the Hessian—the most time demand-
ing step—at every iteration when carrying out a maximum entropy
inversion. In practise, we find that convergence is straightforward for
relatively large values of the default parameters, but that it is more
challenging for smaller values of d T and d S , when it also becomes
necessary to recompute the Hessian more frequently. We imposed a
criterion that the norms presented in Table 2 be converged up to the
third decimal place.

Table 2. Values of the misfit M, the number of data N , the spatial norms QS and ES (in mT2), the temporal norm QT and ET [in
(µT yr−1)2], and the integrals FS (in mT) and FT (in nT yr−1) for several values of the default parameters d S and d T . In all cases the
damping parameters are fixed at λS = 10−10 nT−2 and λT = 5 × 10−6 (nT/yr)−2.

d S d T M N QS ES QT ET FS FT

(µT) (nT yr−1) – – (mT2) (mT2) (µT yr−1)2 (µT yr−1)2 (mT) (nT yr−1)

104 106 0.9479 262, 410 1.095 1.095 32.74 32.69 3.02 676
200 106 0.9476 262, 403 1.105 1.010 32.74 32.69 3.01 659
100 106 0.9474 262, 404 1.121 0.890 32.73 32.70 3.00 641
60 106 0.9472 262, 406 1.141 0.764 32.75 32.70 2.99 625
30 106 0.9470 262, 407 1.179 0.574 32.73 32.68 2.99 626
20 106 0.9469 262, 408 1.205 0.468 32.71 32.66 2.99 626

30 5000 0.9466 262, 408 1.178 0.574 32.90 32.54 2.99 619
30 2000 0.9453 262, 412 1.177 0.574 34.18 31.91 2.99 586
30 1000 0.9433 262, 454 1.175 0.573 37.01 30.32 2.99 567
30 500 0.9404 262, 520 1.176 0.573 42.51 27.10 2.99 549
30 300 0.9379 262, 598 1.176 0.574 49.34 23.95 2.99 541

We note that the particular choice of the spatial and temporal
entropy-based norm remains arbitrary, in a similar manner to how
the choice of a particular quadratic norm was arbitrary. In the regu-
larization procedure one could equally well use the entropy of any
scalar function of Br (involving any spatial or temporal derivatives)
to construct the norms ET and ES . If one wishes to image a par-
ticular function of φ(Br ), then the corresponding entropy function
S [φ(Br ), d] should be used to penalize the inversion. We have cho-
sen here φ S(Br ) = Br for the spatial regularization and φT (Br ) = Ḃr

for the temporal regularization because this is the most straightfor-
ward and easily understood scenario. Note as well that for the core
motions problem (Bloxham & Jackson 1991) one needs both Br

and Ḃr , so that it seems sensible to regularize the entropy function
of each of these.

4 M A X I M U M E N T RO P Y V E R S U S
Q UA D R AT I C M O D E L S

4.1 Comparison between quadratic and maximum
entropy spatial regularizations

We present in this section the effect of using, instead of a quadratic
spatial regularization, maximum entropy regularization in space.
The temporal regularization is kept the same (quadratic, i.e. very
large default value d T ) throughout this section. We reiterate here
that the damping parameters are kept fixed at λS = 10−10 nT−2 and
λT = 5.10−6 (nT/yr)−2 throughout this study.

In Table 2 we present the values of the different norms for all
the models we computed. We focus in this section on the upper part
of this table, where we test the effect of varying the spatial default
parameter d S . We checked that for large values of this parameter
(e.g. here d S = 104 µT) the norms, misfit and number of data ac-
cepted converge towards the values obtained in the quadratic case
(cf. Fig. 2 and Table 2). This constitutes a benchmark of our time-
dependent spectral domain maximum entropy method against the
previously used quadratic method. The convergence at large d S of
the magnetic field models spectra (Fig. 3a) also illustrates this point:
when d S ≥ 106 nT all the curves converge towards the quadratic
spectrum.

Decreasing the spatial default parameter d S has several implica-
tions when looking at the norms: ES decreases and QS increases
while the temporal norms QT and ET are almost unaffected. We
checked in Fig. 2 that no time-dependent bias appears when looking
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Figure 2. (a) quadratic spatial norm QS (in mT2) and (b) quadratic temporal
norm QT (in (µT yr−1)2) for d T =103 µT yr−1 and several values of d S . The
quadratic spatial norm QS is increasing with decreasing d S . The evolution
of the quadratic temporal norms is very similar in all cases, so cannot be
distinguished.

at the temporal evolution of the norms. The only modification is
an expected upward shift of the spatial quadratic norm (Fig. 2a),
while the temporal quadratic norm remains unaffected (Fig. 2b). It
is also interesting to note that the time averaged unsigned flux over
the CMB,

FS = 1
te − ts

∫ te

ts

∫

CMB
|Br |d(dt, (16)

remains almost unchanged between the quadratic and the maximum
entropy models (see Table 2). This is a good illustration of the mean-
ing of maximizing the entropy. The fact FS is not affected too much
as d S is changed tells us that the maximum entropy method is a way
of reorganizing a nearly constant amount of magnetic field lines go-
ing in and out of the core. This is done in such a way that maxima
are raised and minima are depressed—which also increases QS . It is
a completely different process than decreasing the damping param-
eter λS which would also result in an increase in QS . Decreasing λS

on the other hand leads to a decrease of the misfit to the data M,
that is, to undesirable overfitting. That is not the case when using
the maximum entropy in space, as shown in Table 2 where both the
misfit and the number of accepted data remain similar regardless
of the value of d S . One can check in Table 3 (upper part) that no
strong bias has been introduced when modelling the individual data
sets.

Another way to evaluate the success of the different regulariza-
tion methods is to look at the comparison between model predic-
tions and first differences of observatory annual means, as presented
in Fig. 4. Both the model built using quadratic spatial regulariza-
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Figure 3. Power spectrum for (a) Br and (b) Ḃr for d T = 106 nT yr−1

and several values of d S (in nT). When d S ≥ 106 nT the spectra converge
towards the quadratic case. The spectra for Ḃr all coincide, so cannot be
distinguished.

tion (large default value d S = 104 µT, black) and that built using
maximum entropy spatial regularization (low default value d S =
30 µT, blue) have similar fit to the data. The two model predic-
tions also agree precisely at the two example observatories Niemegk
(Germany, Fig. 4a) and Hermanus (South Africa, Fig. 4b). These ex-
amples were chosen to illustrate a geographical region where models
are tightly constrained by the presence of data from a large number
of observatories (in western to central Europe) and a more isolated
region in the southern hemisphere (South Africa).

Despite the similarity in their statistics the models with d S =
104 and 30 µT are rather different when snapshots of the field at the
CMB are considered, as is presented in Fig. 5. For an equivalent fit to
the data the maximum entropy method provides a significantly more
contrasted picture of the field, showing a larger number of distinct
flux patches (compare Figs 5a–b). At the same time the spectra
of Br at the CMB become more and more flat as d S decreases
(Fig. 3a), whereas the secular variation spectra remains unchanged
(Fig. 3b). Care must be taken when interpreting these results: the
maximum entropy method does not produce images containing very
small length-scale features such as those produced when damping
parameters are decreased. Instead it feeds the spectrum of the images
at small and intermediate lengthscales in such a way that the large-
scale features of the magnetic field become sharper. Of particular
interest is the fact that for all the models the spectra are similar for
spherical harmonics degrees up to l % 10. That gives a measure
of the typical minimum size of features that our inversions can
unambiguously detect, given the data sets (and their inherent errors)
that we have considered.
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Table 3. Values of the misfit MγK (with in parenthesis the associated number of accepted data NγK ) of the different subsets of data,
for models built with several values of the default parameters d S (in µT) and d T (in nT yr−1). In all cases the damping parameters are
λS = 10−10 and λT = 5 × 10−6.

d S d T obs.a P. N. A. L.b Surveys DE2 Magsat POGO

104 106 1.177 1.462(10, 554) 0.882(223, 553) 1.197(436) 1.138(424) 1.045(712)
200 106 1.177 1.462(10, 556) 0.882(223, 544) 1.196(436) 1.133(425) 1.036(711)
100 106 1.177 1.462(10, 557) 0.882(223, 545) 1.190(435) 1.128(425) 1.034(711)
60 106 1.177 1.462(10, 558) 0.882(223, 541) 1.208(438) 1.125(427) 1.029(711)
30 106 1.177 1.462(10, 558) 0.882(223, 542) 1.209(438) 1.119(427) 1.027(711)
20 106 1.177 1.462(10, 559) 0.882(223, 543) 1.211(438) 1.117(427) 1.023(710)

30 5000 1.176 1.461(10, 558) 0.881(223, 543) 1.207(438) 1.114(427) 1.025(711)
30 2000 1.173 1.459(10, 556) 0.881(223, 549) 1.197(438) 1.094(427) 1.017(711)
30 1000 1.166 1.457(10, 568) 0.880(223, 575) 1.178(438) 1.056(428) 1.010(714)
30 500 1.156 1.453(10, 583) 0.878(223, 608) 1.181(446) 1.006(433) 0.991(719)
30 300 1.148 1.450(10, 607) 0.876(223, 649) 1.153(448) 0.968(439) 0.961(724)
aNo data rejection was applied to observatory data, all the models are based on N obs = 26 731.
bData from the Paris National Archives.

When looking at snapshots of the field at the CMB, we see that
the spatial maximum entropy regularization (Fig. 5b) reveals sev-
eral features that were previously obscured in the quadratic model
(Fig. 5a). The blue flux patch over the Northern America is now
split into a series of four different patches, present throughout the
1840–1990 interval, and which stretch from under Alaska to un-
der the western Atlantic Ocean near Brazil. We also isolate, under
northern tropical latitude and between western Siberia and central
Africa, four blue patches that can be associated with the same num-
ber of red patches under the equatorial region. The two main red
patches in the southern hemisphere under mid-latitudes also show a
structure more elongated in the meridional direction, with perhaps
the presence of several extrema.

4.2 Comparison between quadratic and maximum
entropy temporal regularizations

We present in this section a comparison between a model constructed
in Section 4.1 (quadratic temporal normQT , maximum entropy spa-
tial norm ES with d S = 30 µT) and models built using a maximum
entropy norm for the temporal regularization. The spatial regular-
ization is kept the same throughout Section 4.2. The norms and
statistics relevant to this section are presented in the lower part of
Table 2.

First, we verify that in the case where the temporal default param-
eter is very large (d T = 106 nT yr−1) that the use of the maximum
entropy temporal norm ET gives a result similar to that when QT is
used. This constitutes a benchmark of the method. Then by decreas-
ing d T one can see that ET decreases, as QT increases. It is worth
noticing the spatial normsQS andES are almost unchanged. This be-
haviour is in accordance with our expectations, since it is equivalent
to what we observed in Section 4.1 when implementing the spatial
maximum entropy regularization and keeping the temporal regular-
ization fixed. We check in Fig. 6 that no spurious time-dependent
effects appear in the evolution of the norms. The main modification
is an upward shift of the temporal norm QT (Fig. 6b) while the
spatial norm QS remains rather unaffected (Fig. 6a).

As d T is reduced the spatial spectrum is not affected, as shown
in Fig. 7(a). Instead, the secular variation spectrum is enhanced at
large wavenumbers (Fig. 7b) in order that secular variation features
with larger spatial gradients (but not with shorter timescales) can be
observed. One can see that given our data set, the largest spherical

harmonic degree of secular variation that our modelling can unam-
biguously retrieve is around 6 or 7. We do not yet understand why
the Ḃr spectrum takes the peculiar form involving an inflexion in
the tail.

The integral FT of the absolute value of the secular variation |Ḃr |
over the CMB averaged over the time span,

FT = 1
te − ts

∫ te

ts

∫

CMB
|Ḃr | d(dt, (17)

decreases slightly as d T decreases (see Table 2). However, the ampli-
tude of its evolution is minor compared to those found for the other
norms QT and ET . In this regard the maximum entropy method can
still to a reasonable approximation be interpreted as the rearrange-
ment of the Ḃr distribution, in order to produce a secular variation
picture of higher contrast. It seems the stability of the norms QT

and FS , noted when decreasing the spatial default parameter d S in
Section 4.1, is stronger than the stability of the norms QS and FT

observed when decreasing instead the temporal default parameter
d T . This may be an indication that a smaller knot spacing is re-
quired as the temporal default parameter is reduced, which requires
that sharper temporal changes be modelled.

We have seen that analogies can be drawn between the appli-
cation of the maximum entropy method to temporal regulariza-
tion and its use in spatial regularization. There nevertheless ex-
ists an essential difference between using the maximum entropy
for the spatial and temporal regularizations: one can check in
Table 2 that the misfit to the data is slightly reduced as d T de-
creases, and also that a larger number of data are accepted. One
can see in Table 3 that all the different data sets follow this trend,
with the satellite and survey data misfits the most affected. How-
ever, this improved fit is not linked to a more complex temporal
evolution of the norms, as would happen if we decreased the tem-
poral damping parameter λT . Instead, for a given damping param-
eter, the entropy based temporal regularization allows us to model
sharper changes in Ḃr , without introducing fluctuations on shorter
timescales.

This point is illustrated in Fig. 4, where the fit of our models to
first differences of observatory annual means (a measure of secular
variation) is presented. At Niemegk we can see that all the mod-
els give exactly the same prediction, regardless of the value of d T

(Fig. 4a). Note that this time series goes back to around 1890, so
that our interpretation about the fit still holds for older data. On the
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Figure 4. Time series of the time derivative of three components of the magnetic field for (a) Niemegk (NGK) in Germany, together with the near-by
observatories SED and POT, and (b) Hermanus (HER) in South Africa. Comparison between the first differences of observatory annual means (open symbols)
and the predictions for several models: quadratic in space and time (d S = 104 µT and d T = 106 nT yr−1, black curve), quadratic in time and maximum
entropy in space (d S = 30 µT and d T = 106 nT yr−1, blue curve), and maximum entropy in space and time (d S = 30 µT and d T = 300 nT yr−1, red curve).
At Niemegk the black and blue curves are nearly invisible as it coincides almost exactly with the red curve. At Hermanus the black curve only is invisible,
superimposed with the blue curve. Note on (a) that we have chosen to show three distinct model predictions for the observatories POT, SED and NGK (these
result in discontinuities at the transition from POT to SED and from SED to NGK).

contrary, at Hermanus, the fit to the data improves as the temporal
default parameter is reduced (Fig. 4b). We interpret these results as
follows: the Niemegk observatory is situated in a very well sampled
area (Central Europe) where the data constraint is strong. There are
thus very few changes that can be made to the model predictions,
without greatly increasing the misfit. On the contrary, Hermanus lies
in South Africa where fewer observatories are located, so that the
secular variation is much less tightly constrained. Here, the maxi-
mum entropy temporal regularization allows us to take into account
large changes in the secular variation (especially in the 1960’s) with-
out having to decrease the damping parameter λT , thus avoiding
globally overfitting the data. Note also that for a specific observa-

tory data series, the better the quality of the data, the smaller are the
differences in the predictions made by the models built using the
QT and ET norms.

When looking at the field snapshots in Fig. 5, the global picture
seems to be mostly unchanged by the introduction of the temporal
maximum entropy regularization—compare the model built with d T

= 106 nT yr−1 (quadratic temporal norm, Fig. 5b) with the one built
with d T = 300 nT yr−1 (maximum entropy temporal norm, Fig. 5c).
This reflects the fact that the spectrum of Br is not affected, so
the same power is devoted to the small lengthscales in each case
(Fig. 7a). However, when looking more carefully at animations of
the field evolution, one can detect some important changes. The most
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Figure 5. Radial magnetic field at the CMB for six equally spaced epochs from 1840 (top) to 1990 (bottom), for models built using (a) quadratic regularizations
in space and time, (b) a quadratic temporal regularization together with a maximum entropy spatial regularization, and (c) maximum entropy regularizations in
space and time. For all the snapshots the colourbar ranges from −1 mT (dark blue) to +1 mT (dark red), with contours every 50 µT.

striking is related to the field evolution south of Madagascar, where
the birth of a reverse flux patch occurs much later when temporal
maximum entropy regularization is employed. One has to wait until
the early 20th century for the reverse flux patch to appear, whereas
it is already present in 1840 in the models derived using quadratic
temporal regularization, regardless of the spatial regularization.

This example is characteristic of one of the effects of maximum
entropy temporal regularization: it is capable of modelling sharper
temporal changes when needed, as was previously illustrated in the
comparison between model predictions and data at the Hermanus
observatory (Fig. 4b). Few data are available around the south-west
Indian Ocean in the early stages of the studied time span. The use
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Figure 6. (a) Quadratic spatial norm QS (in mT2) and (b) quadratic temporal
norm QT [in (µT yr−1)2] for d S = 30 µT and several values of d T . The
quadratic temporal norm QT is increasing with decreasing d T . The evolution
of the six quadratic spatial norms is almost identical. To help the comparison,
the vertical ranges have been chosen similar to those of Fig. 2.

of the quadratic temporal regularization QT tends to smear back
in time the presence of the reverse flux patch that is actually only
constrained by data from the first half of the 20th century. For any
specific epoch, the use of entropy as a temporal norm allows one
to produce time-dependent models without introducing temporal
correlation from one epoch to the other, unless the data require it.
In a sense it encapsulates the best qualities of snapshot models (e.g.
Bloxham et al. 1989) and of time-dependent models (e.g. Bloxham
& Jackson 1992).

5 D I S C U S S I O N

In this paper, we have proposed a new regularization method for
modelling the time-dependent magnetic field at the CMB, based on
maximizing the entropy of non-positive images. We introduced this
technique into the inversion process, and applied it to historical data
spanning the interval 1840–1990. Entropy norms have been intro-
duced for both the temporal and spatial regularization methods, and
comparisons have been carried out with more traditional quadratic
regularizations.

By applying the maximum entropy method to the spatial norm,
the spectrum of Br is enhanced at small-to-intermediate length-
scales, in a manner that produces sharper large-scale field features.
An image of the radial field at the CMB with improved contrast is
obtained without altering the characteristics of the temporal evolu-
tion. The fit to the data obtained, as well as the unsigned flux through
the CMB, are unchanged compared to the values found for an inver-
sion using quadratic regularization. For the same balance between
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Figure 7. Spectrum for (a) Br and (b) Ḃr for d S = 30 µT and several values
of d T (in nT yr−1). When d T ' 104 nT yr−1 all the curves converge towards
the quadratic spectrum. The spectra for Br almost coincide the one with the
other.

the misfit to the data and the damping our method provides an alter-
native way to organize the radial field lines, enabling sharp images
of the field to be obtained and making fewer a priori assumptions
about the structure of the field. Some new features become appar-
ent (e.g. above North America or Siberia previously broad patches
split into several smaller ones) and some previously known fea-
tures are observed more clearly (e.g. wave-like structures at low
latitudes).

Applying the maximum entropy method to the temporal norm,
the spatial characteristics remain largely unaffected and the spec-
trum of Br is unchanged. We are able to capture sharper temporal
variations (those associated with larger spatial gradients in the secu-
lar variation) but emphasize that this method cannot capture shorter
timescale fluctuations than those captured by conventional quadratic
regularization. As a consequences data can locally be better fit in
some areas where the geographical constraint on the field morphol-
ogy is not so strong (e.g. around South Africa). The fit remains sim-
ilar where the sampling is good, even going back to the 19th century
where the data coverage is not so dense (e.g. Western Europe). The
technique can, therefore, locally reduce the misfit to the data, but
also avoids the smearing back in time of features in the models that
are not constrained by the data. The most striking example of this
is the reverse flux patch below Madagascar, that appears only af-
ter 1900 when maximum entropy temporal regularization is used,
whereas it is smeared back to 1840 when a quadratic regularization
is employed. In this regard a problem of previous time-dependent
models in creating spurious temporal correlations between nearby
epochs is avoided.
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The method has been tested here on 150 yr of geomagnetic obser-
vations; in the future we plan to extend its application to the complete
historical data set used by Jackson et al. (2000), together with more
recent data spanning the past 15 yr. Improved tests concerning the
existence of the westward drift wave-like patterns (Finlay & Jackson
2003) and for their dispersion (Finlay 2005) will then be carried out.
The maximum entropy method could also be used to build a new
archeomagnetic field model, and help avoid artificial correlations
being introduced where gaps in the data are present in both space
and time, especially in the southern hemisphere (Korte & Consta-
ble 2005; Korte et al. 2005). It would be interesting to test such
models for the presence of both westward and eastward motions
of the magnetic flux patches on the millennium timescales (Dumb-
erry & Finlay 2006). In addition, one could apply our method to
both core and crustal fields in comprehensive models, or in focused
lithospheric field modelling. This could perhaps help push further,
in terms of spherical harmonic degree, the limit of the robust mod-
elling of the main field (Sabaka et al. 2004; Sabaka & Olsen 2006;
Maus et al. 2007).

The construction of maximum entropy models of the radial mag-
netic field and its secular variation is also promising from the per-
spective of obtaining more accurate models for the motions u at the
surface of the core, through the radial component of the induction
equation

Ḃr = −∇h · (uBr ) + Dr , (18)

where ∇ h = c−1[0, ∂ θ , (sin θ )−1 ∂φ] is the horizontal gradient oper-
ator, and Dr is the radial component of the magnetic field diffusion
operator. To reconstruct the velocity field workers often make the
assumption that diffusion is negligible, the so-called frozen flux
approximation (Roberts & Scott 1965). In addition a second con-
straint on the flow dynamics is also made—for example, steady,
tangentially geostrophic, toroidal motions, etc. (Bloxham & Jackson
1991). One can see from (18) that the inverse problem for the flow
does depend on the horizontal gradients in Br . Thus sharper models
of Br obtained with a maximum entropy regularization (capturing
larger horizontal gradients) may improve the resolution of core flow
features such as polar vortices (Eymin & Hulot 2005). Maximum
entropy regularized field models may also contain smaller regions
enclosed by iso-contours of Br/cos(θ ) not reaching the equator.
These so-called ‘ambiguous patches’ are regions where the flow
is non-unique under the widely employed tangentially geostrophic
approximation (Le Mouël 1984).

The frozen flux constraint implies that the magnetic field flux is
conserved inside null-flux curves (Backus 1968). It has been shown
that it is possible to build magnetic field models that satisfy this con-
straint (Constable et al. 1993; O’Brien et al. 1998; Jackson et al.,
submitted). Rau et al. (2000) also suggested that the frozen flux
approximation may be reasonable based on studies of some geo-
dynamo numerical simulations. However, the data constraints still
permit considerable freedom in the model parameters, and the pres-
ence of diffusive processes cannot be ruled out (Bloxham & Gubbins
1985). For example, some features required by the data, such as the
birth of a reverse flux patch under Madagascar, cannot be easily
accounted for within the framework of the frozen flux hypothe-
sis. Mechanisms involving magnetic diffusion, such as expulsion
of toroidal field by up-welling flow, must be invoked (Gubbins
1996). The maximum entropy method employed here has the in-
teresting property of clarifying the topology of the radial field map.
This should allow more accurate tests of the magnetic flux changes
through null-flux curves and therefore better tests the validity of

the frozen flux approximation, and its impact on the ability of field
models to satisfactorily explain observations.
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A P P E N D I X A : C O N V E RT I O N F RO M
S P H E R I C A L H A R M O N I C S T O S T T

The magnetic field x i (t) = Br (c, θ i , φ i , t) can be written from (1)
on any cell i as

xi (t) =
L∑

l=1

ϕ(l)
l∑

m=0

[
gm

l (t)cosmφi + hm
l (t)sinmφi

]
Pm

l (θi ), (A1)

where ϕ(l) = (l + 1) (a/c)l+2. Using the B-spline basis defined in
eq. (2) for the temporal representation, one can show that

xi (t) =
T∑

n=1

Bn(t)xn
i , where

xn
i =

L∑

l=1

ϕ(l)
l∑

m=0

[
n gm

l cosmφi + nhm
l sinmφi

]
Pm

l (θi ). (A2)

From (A2) one can write the magnetic field x i (t) at any given cell
and time as

xi (t) =
P∑

k=1

Mik(t)mk, (A3)

where mk is the kth component of the spherical harmonic model.
Each element of the matrix M(t) is given by

Mik(t) =
T∑

n=1

Fn(t)-ki , where

-ki =






ϕ(l)Pm
l (θi )cosmφi if mk = n gm

l

ϕ(l)Pm
l (θi )sinmφi if mk = nhm

l

. (A4)

C© 2007 The Authors, GJI, 171, 1005–1016
Journal compilation C© 2007 RAS


