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MAGNETOHYDRODYNAMIC WAVES

Proudman-Taylor constraint, increases the length scale of the magneto-
convection cell and, hence, makes the system convect more readily
and efficiently. This characteristic of magnetoconvection has led to
an important suggestion that the dynamo of the Earth’s core operates
in the regime 7,'” ~ O where the geodynamo as a thermal engine is
most effective.

Magnetoconvection in spherical geometry

In rotating spherical geometry, magnetoconvection in the presence of
an imposed azimuthal field whose strength is proportional to distance
from the rotation axis has been extensively studied (for example,
Fearn, 1979, 1998; Proctor, 1994). Spherical magnetoconvection exhi-
bits similar features in a plane layer: the critical Rayleigh number R,
reaches an overall minimum as the magnetic field strength increases
to Q = O(T,'?) at which the Lorentz and Coriolis forces are of com-
parable size. For larger values of Q, the effects of the magnetic field
inhibit convection and thus R, increases with growing Q; for smaller
values of O, the small scale of the convection cells resulting from
the rotational constraint leads to extremely large R..

It should be pointed out, however, that spherical magnetoconvection
in the presence of a more realistic magnetic field that satisfies electri-
cally insulating boundary conditions shows a quite different behavior
(Fearn and Proctor, 1983; Zhang, 1995). It was found that the two-
dimensionality of purely thermal convection survives under the influ-
ence of a strong Lorentz force and that there exist no optimum values
of O that can give rise to an overall minimum of the critical Rayleigh
number (Zhang, 1995). The value of R, is a monotonically, smoothly
decreasing function of Q. This is because the more realistic magnetic
field can become unstable when O is sufficiently large (Zhang and
Fearn, 1993).

Keke Zhang and Xinhao Liao
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MAGNETOHYDRODYNAMIC WAVES

Introduction

Magnetohydrodynamic waves are propagating disturbances found in
electrically conducting fluids permeated by magnetic fields where
magnetic tension provides a restoring force on fluid parcels moving
across field lines. The role played by magnetohydrodynamic waves,
transporting disturbances in the flow and magnetic field and connect-
ing disparate regions of the fluid, is crucial to our understanding of
hydromagnetic systems. Magnetohydrodynamic waves in the Earth’s
liquid iron outer core have been proposed as the origin of changes of
the Earth’s magnetic field taking place on timescales of decades lo
centuries, and are thus of interest to both geomagnetists and paleomag-
netists.

In the Earth’s outer core, in addition to the magnetic forces acting
on the electrically conducting fluid, we must also consider Coriolis
forces resulting from planetary rotation, buoyancy forces due to grav-
ity acting on density gradients and the constraints placed on flow by
spherical shell geometry. Magnetohydrodynamic waves could be
excited by convection-driven instabilities (Braginsky, 1964), topogra-
phically as flow is forced over bumps at the core-mantle boundary
(Hide, 1966), by instabilities of the background magnetic field
(Acheson, 1972), or even tidally due to deviations of rotating core geo-
metry from exact sphericity (Kerswell, 1994).

This article focuses on the likely properties of magnetohydrody-
namic waves in the Earth’s outer core and provides a review of
attempts to observe them. After a brief account of the history of inves-
tigations into magnetohydrodynamic waves in the section “Historical
Review,” the physics underpinning their existence will be described
in the section “Force Balance and Waves in Rapidly Rotating Hydro-
magnetic Fluids.” In particular, attention will focus on the emergence
of a new characteristic timescale associated with such waves in rotat-
ing magnetohydrodynamic systems. Dispersion relations for magneto-
hydrodynamic waves when magnetic, buoyancy (Archimedes), and
Coriolis forces are of equal importance (MAC waves) will be derived
and interesting properties are noted in the section “Dispersion Rela-
tions for MC/MAC Waves in the Absence of Diffusion.” The influence
of diffusion, spherical geometry, and nonlinear effects on the waves
will be discussed in the sections “Effects of Diffusion on MC/MAC
Waves,” “Influence of Spherical Geometry on MC/MAC Waves,” and
“Nonlinear Magnetohydrodynamic Waves,” respectively. In the section
“Magnetohydrodynamic Waves in a Stratified Ocean at the Core
Surface,” the suggestion that a stratified layer may exist at the top
of the Earth’s outer core is described and the type of waves that
could be present there will be discussed. Finally, in the section
“Magnetohydrodynamic Waves as a Mechanism for Geomagnetic
Secular Variation,” attempts to identify the presence of magnetohydro-
dynamic waves in the Earth’s outer core through observations of the
Earth’s magnetic field will be reviewed and suggestions made as to
how the wave hypothesis of geomagnetic secular variation could be
tested using a combination of dedicated modeling and rapidly improv-
ing high-resolution observations.

For further details, the interested reader should consult the over-
views by Hide and Stewartson (1972) and Braginsky (1989) or look
in the textbooks by Moffatt (1978) or Davidson (2001). More technical
reviews of the subject include Roberts and Soward (1972), Acheson
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and Hide (1973), Eltayeb (1981), Proctor (1994), and Zhang and
Schubert (2000).

Historical review

Study of magnetohydrodynamic waves, especially with a focus on
geophysical applications has a rich history and has captured the atten-
tion of some of the finest applied mathematicians and theoretical geo-
physicists over the past 50 years. Alfvén (1942) initiated the study of
magnetohydrodynamic waves, investigating the simplest possible sce-
nario where a balance of magnetic tension and inertia gives rise to
waves, which became known as Alfvén waves in his honor (see Alfvén
Hannes and Alfvén waves). Lehnert (1954) deduced that rapid rotation
of the fluid system would lead to the splitting of plane Alfvén waves
into two circularly polarized, transverse waves, one with period similar
to inertial waves (a consequence of the intrinsic stability endowed
to fluids by rotation) and a second with a much longer period. The
latter represents a new, fundamental, timescale for rotating hydro-
magnetic systems which we shall refer to as the magnetic-Coriolis (MC)
timescale. Chandrasekhar (1961) studied the effects of buoyancy on
rotating magnetic systems, focusing primarily on axisymmetric motions
invariant about the rotation axis. Braginsky (1964, 1967) realized the
importance of nonaxisymmetric disturbances and showed that if mag-
netic, buoyancy, and Coriolis forces were equally important, fast inertial
modes and slower magnetic modes would again result, but with periods
also dependent on the strength of stratification. He christened these
waves dependent on magnetic, buoyancy (Archimedes), and Coriolis forces
as “MAC waves.”

Hide (1966) was the first to consider the influence of spherical geo-
metry on magnetohydromagnetic waves in a rotating fluid, studying
the effects of the variation of Coriolis force with latitude. He showed
that the resulting MC waves (commonly called MC Rossby waves)
had the correct timescale to account for some parts of the geomagnetic
secular variation, particularly its westward drift (see Westward drifi).
Malkus (1967) studied MC waves in a full sphere considering the spe-
cial case when the background field increased in strength with distance
from the rotation axis.

Elteyab (1972), Roberts and Stewartson (1974), Busse (1976),
Roberts and Loper (1979), and Soward (1979) have demonstrated the
importance of including magnetic and thermal diffusion in models of
MAC waves, showing that the most unstable MAC waves in plane layer
and annulus systems often occur on diffusive timescales. Elteyab and
Kumar (1977) and Fearn (1979) carried out the first numerical studies
of magnetohydrodynamic waves to include the effects of both buoyancy
and diffusion in a rotating, spherical geometry. Fearn and Proctor (1983)
went on to consider the effect of more geophysical physically plausible
background magnetic fields and nonzero mean azimuthal flows. Most
- recently, Zhang and Gubbins (2002) have discussed the properties of
convection-driven MAC and MC waves in a spherical shell geometry,
studying a variety of background field configurations.

Force balance and waves in rapidly rotating
hydromagpnetic fluids

A physical understanding of MC waves can be achieved through con-
sideration of the force balance in a rotating, electrically conducting,
inviscid fluid that involves inertia, magnetic tension resisting flow
across field lines (see Alfvén waves and Magnetohydrodyvnamics),
‘and Coriolis forces acting normal to flows and to the axis of rotation.
Coriolis forces are well known for causing circulating eddies in the
‘atmosphere (e.g., hurricanes) and arise because, in a rotating reference
frame, inertial motions follow curved trajectories rather than straight
lines. It is useful to think about rotation imparting vorticity to a fluid,
in the same way that magnetic fields impart tension perpendicular to
‘magnetic field lines; vorticity imparts tension perpendicular to vortex
lines (which lie parallel to the rotation axis) leading to a restoring force
‘when fluid flows across them.

In this system, four possible force balances are conceivable. The
first three require rapid fluid motions while the final is only possible
for slow fluid motions. They are as follows:

1. When magnetic forces are much stronger than Coriolis forces; mag-
netic tension alone balances inertia and disturbances are communi-
cated by Alfvén waves (see Alfvén waves).

. When Coriolis forces are much stronger than magnetic forces; vor-
tex tension balances inertia and disturbances are communicated by
inertial waves.

3. When magnetic and Coriolis forces are of similar strength; a com-
bination of magnetic field tension and vortex tension balances iner-
tia and disturbances are communicated by inertial magnetic Coriolis
(inertial-MC) waves.

4. When fluid motions are slow so that inertia is unimportant in the
leading order force balance but magnetic and Coriolis forces are
of similar strength; in this scenario, magnetic and vortex tension
are in balance and disturbances are communicated by MC waves.

(o]

Balance (4) thus permits the existence of a new class of slow wave in
rotating hydromagnetic systems, which is absent in nonmagnetic and
nonrotating systems. Time dependence in this case arises only through
changes in the magnetic field that, via the Lorentz force, produces
changes in the fluid flow.

An estimate of the MC timescale can be obtained by performing a scale
analysis of the important terms in the equations for conservation of
momentum and magnetic induction. In the momentum equation, Coriolis
and magnetic (Lorentz) forces are in balance, so 2QU = B fpLyc,
where Q is the angular rotation rate, U/ is a typical velocity scale,
B is a typical magnetic field strength, Ly is a typical length scale
over which changes associated with MC waves occur, p is the den-
sity of the fluid, andpis the fluid’s magnetic permeability. We also
know that for a highly conducting fluid, changes in the magnetic
field come primarily from advection, so scale analysis of the induc-
tion equation ignoring diffusion yields B/Tyc = UB/Lyc, where
Tye is a typical timescale over which changes associated with
MC waves occur. Substituting this expression for U into the force
balance leads to the relation Tyic = 2QL{cgyB*. The quantity
va =B/ (,gi”: has units of velocity and is the phase speed of Alfvén
waves (see Alfvén waves). Estimates for these quantities in the Earth’s core
are D =73x10°s"!, p=1x10*kgp=4n x 107> mkg™"' s?, so
that Ty = 107°L},./B%. Neither the magnetic field strength nor the
length scale associated with its variation in the Earth’s core is well known.
Taking B =5 % 10~*T as suggested by observations at the core surface
and Lyc=3.5x10°m, the core radius, yields Tyc=1.5x10° vy,
Equally plausibly, if we are consider a wave with azimuthal wave
number 8, and assume that the field inside the outer core is 10 times
the observed core surface field strength we find Tyye &~ 235 years. The
coincidence between the latter MC wave timescale and that of geomag-
netic secular variation motivates attempts to link the two phenomena.

In the Earth’s core, it is likely that buoyancy forces (either thermal
or compositional) could also be important in the primary force balance
(see Core convection). In the remainder of this article we shall there-
fore generalize our discussion to include buoyancy, which modifies
the MC timescale to a MAC timescale because Archimedes forces
are now present. In the next section we present an outline of the deri-
vation of the dispersion relation for MAC waves.

Dispersion relations for MC/MAC waves in the absence
of diffusion

To focus the discussion, while keeping mathematics to a minimum, we
shall consider a rather basic model of a rapidly rotating, electrically
conducting, incompressible fluid in an infinite three-dimensional
domain, where there are no dissipative processes (viscous, magnetic,
or thermal diffusion) operating. Buoyancy forces are included via the
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Boussinesq model, with the degree of stratification depending on the
magnitude of the background temperature gradient.

We shall work in Cartesian coordinates (X,y, ) with the axis of rota-
tion along Z, a uniform background field By = (Bo.X + By, J + Bo-2)
and a uniform background temperature gradient of —f=. If o is the
thermal expansivity of the fluid, then density is determined by the rela-
tion p = py(1 + @) where © is the perturbation from the background
temperature field, so that in a gravity field of —gZ there will be a buoy-
ancy force of magnitude go® in the 7 direction.

We shall consider small perturbations (u,b,®) about a state of
no motion (so the background velocity field is zero) and consider
only slow motions so that inertial terms can be neglected and atten-
tion can focus on the MC force balance. The linearized equations
governing the evolution of small perturbations are then the momentum
equation

1 1 =
Wxu = ——’C"p + ;[Bu Vb + ga@7
Coriolis e T buoyant
acoelrrsbion acceleration acceleration sdceleration
due to rotation  due to pressure due to
gradient field tension
(Eq. 1)
the induction equation
b
o = (By -V)u 2 (Eq. 2)
« e —
Change in the Stretching of magnetic
magnetic field field by fluid motion
and temperature equation
a0 2
3 = B(z-u) : (Eq. 3)
— .

advection of temperature

Change in the . A
field by fluid motion

temperature field

Taking d/at(V ) the momentum equation (1) to eliminate pressure
gives
l‘h’l {_Bu = V}

o d e
3 ’ i s b Sl 7 i ¥ -
2(£2- V) 5 o m(v % b) + gu * (V x 97), (Eq. 4)

while taking the curl (V) of the induction equation (2) we find,

il
;—f{beJ:{B[,-V){VXHJ, (Eq. 5)

Substituting from Eq. (5) into Eq. (4) for a/at(V x b) gives a vorticity
equation quantifying the MAC balance with terms arising from Corio-
lis forces on the left-hand side and terms arising from the magnetic and
buoyancy forces on the right-hand side

u_ (By-V)

dt U

d
2(Q- V) (V x u) +ga’i{v x @7). (Eq. 6)

Operating on Eg. (6) with ((By - \_-"]:Vx),fm,we can then eliminate
((By-V)'V x u}f,(ynfrom the term on the left-hand side by using
Eq. (6) once again. By utilizing the well-known relation for incom-
pressible fluids that V x V x # = —V?u, and then taking the dot
product with I while noting that Z-(Vx@®Z)=0 and
7+ (V x V x 07) = —(8*/ox + 8*/9y*)© = —V}0O leaves

a2
5 0°

4(Q-V)? (Bo - V)

Pp

(Bo- V) , 908
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2
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e

Finally, we make use of the temperature Eq. (3) to eliminate 40,
and obtain a sixth-order equation in w., which we shall refer to
the diffusionless MAC wave equation

4{.(1-?)3(_%+

(Bo- V)] s (By - V) 3
(Bg )] V‘—gaﬁl o+ V) Vs{ u, 208
o M ¥

Properties of diffusionless MAC waves can now be ded
by substitution of plane traveling wave solutions of the
u: = Re{i;e*"~"} where k is the wavevector and  is the an
frequency

(Bg - k)* y 2 (Bo- k) A Tiie
— | k= ——gafi(k+ k) =0,
J’)’\] s gafi(k; + k)

4Q - k)t -

This expression can be written more concisely by observing that tes
in it correspond to characteristic natural frequencies for magnetic-ine
tial (Alfvén) waves, gravity waves, and inertial waves in rotat
fluids, respectively

2 (Bo-kY? gl +k) A0k
iy Seiermmrm ] L e =i, e (r)E- = =
[ k= i k*

so Eq. (7) simplifies to

5§ L 5 i
W™ — (Ui{ — ), = 0.

Solving for @ gives the necessary condition (or dispersion relation]
that must be satisfied by the angular frequency and wavevectors o
plane MAC waves,

2
¥

)

(Eq.

3 9 1/2 2 2 X
w=+M (| +@) £ ii(-B“ 1 ga’f‘w’ H:—")
e Wiy 2002 - k) k2(By-k)

'3
Note that this is singular if By - k = 0 or if £ - k = 0, so diffusionless
MAC waves cannot propagate normal to magnetic field lines
the rotation axis. Their frequency depends strongly on their wavel
(i.e., they are highly dispersive) and on their direction (i.e., they are
sotropic). In the special case when the background magnetic field
the direction of the rotation axis are parallel to the direction of wave p
pagation, and when buoyancy forces are absent (z = 0), the dispersion
relation simplifies to w = Bf,k: [2Qmor Tue = 2Qplyvc fB% as
deduced from scaling arguments in the previous section. The ph
speed of the waves is then ¢ = w/k = Bjk/2Qpand it is seen that waves
with shorter wavelengths travel faster. i

&

Effects of diffusion on MC/MAC waves ‘

So far we have neglected the influence of any source of dissipation
(viscous, magnetic, or thermal diffusion) on the system in order to sim-
plify both the mathematical analysis and the physical picture. It is now
necessary to consider their effects. Naively, we might expect the pre-
sence of dissipation should merely damp disturbances and irreversibly
transform energy to an unusable form. Although such processes
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undoubtedly occur, they are not the only effects of the presence of dif-
fusion. Perhaps more importantly, diffusion adds extra degrees of free-
dom to the system and facilitates the destabilization of waves that are
stable in the absence of diffusion (see Roberts and Loper, 1979). This
rather counterintuitive effect means that instability of MAC/MC waves
can occur for smaller unstable density or magnetic field gradients than
if no diffusion were present. In fact, such diffusive instability turns out
to be possible, even in the presence of a stable density gradient.

The diffusive instability mechanism works most effectively when
the oscillation frequency matches the rate of diffusion, so the timescale
of the most unstable MC/MAC waves will be that of the diffusion pro-
cess that is facilitating the instability. Diffusion thus introduces new
preferred timescales into the MC/MAC wave problem.

To include diffusion in the mathematical description of MAC
waves, we must replace the operator d/dr by (a/at —vV?) in the
momentum equation, by (4/df — nV?) in the induction equation and
by (/0 — xV?) in the heat equation. Retaining the acceleration term
from the momentum equation and including the Laplacian (diffusion)
terms before the substitution of plane wave solutions results in a more
complicated dispersion relation for diffusive MAC waves

n

(w%fw + ."nlk: }1 — [:’rr) + ivk®)(w + i:]kz_] = erf“] )[w -4 f:\'k:)

+ rrif\{m + f:;kl}l [[u) + h'kzj{w + :'r;kz_] - "’ii] = {).
(Eq. 11)

Restricting ourselves to the conditions present in the Earth’s outer
core, where we expect ohmic diffusion to dominate viscous and ther-
mal diffusion (17 > v,x) and where we can again neglect inertial
~accelerations when considering slow oscillations, this expression
simplifies to

(ru%[u; + ink?)? — “);,1)“3 — wywi (o + ink?) = 0. (Eq. 12)

The link to diffusionless MC waves becomes apparent if buoyancy
forces are negligible (ws = 0) when Eq. (12) reduces to,

o=M_ i (Eq. 13)
e

Here the classical damping role of magnetic diffusion is obvious, caus-
ing MC waves with shorter wavelengths to decay in amplitude more
quickly than MC waves with longer wavelengths. More detail on dif-
fusive MC waves and their consequences for on geodynamo simula-
tions can be found in Walker er al. (1998).

Influence of spherical geometry on MC/MAC waves

The Earth’s outer core is not an infinite plane layer, but a thick sphe-
rical shell with an inner radius approximately one-third of its outer
radius. How does spherical shell geometry influence propagation prop-
erties, stability, and the planform of magnetohydrodynamic waves? It
appears that when the magnetic field is strong enough, and the Lorentz
force dominates the force balance in the momentum equation, then the
spherical boundaries play a secondary role. On the other hand, when
the magnetic field is weak, the influence of the Coriolis force and its
latitudinal variations caused by the spherical geometry are crucial.
In the absence of any certain knowledge of the strength of the mag-
netic field in the Earth’s core it is unclear if spherical shell geometry
has a controlling influence on magnetohydrodynamic waves there, so
the safest course is to use spherical geometry and study a variety of
magnetic field strengths.

- Hide (1966) was the first to appreciate the importance of the latitu-
dinal dependence of the Coriolis force for waves in the Earth’s core.

He developed a simple analytical model of MC waves retaining only
the linear variation of Coriolis force with latitude (this is known to
meteorologists and oceanographers as a f§ plane model and is the
necessary ingredient for the restoring force responsible for Rossby
waves). We shall refer to Hide’s waves as magnetic-Coriolis (MC)
Rossby waves. He showed they would propagate westward in a thick
spherical shell and could have a timescale similar to that of geomag-
netic secular variation.

Eltayeb and Kumar (1977) and Fearn (1979) included both thermal
buoyancy and diffusion and worked in spherical geometry. They were
confronted by a rather complex scene, with several different mechan-
isms giving rise to different types of magnetohydrodynamic waves,
any of which could potentially be important in the Earth’s core. They
identified four distinct regimes where different waves were favored.
Only a brief overview of the four possible regimes is presented here.

Type I: Magnetically modified, buoyancy-driven
Rossby waves

When the magnetic field is very weak, wave motion is essentially that
produced by convection in a rapidly rotating sphere (i.e., thermal
Rossby waves or Busse rolls—see Core convection). The flow con-
sists of columnar rolls parallel to the rotation axis, arranged on a
cylindrical shell that intersects the outer boundary at midlatitudes. At
the onset of convection and in the absence of any mean azimuthal flow
these waves drift eastward on a thermal diffusion timescale. The plan-
form of the waves is columnar because the Coriolis force promotes
invariance along the rotation axis (see Proudmann-Tavlor theorem).
The magnetic field acts only as a small perturbation and actually stabi-
lizes the system, increasing the critical Rayleigh number compared to
the nonmagnetic systems. Instability is driven by the component of
buoyancy perpendicular to the rotation axis and is balanced primarily
by the Coriolis force (varying with latitude due to the spherical geo-
metry) and viscous diffusion.

Type II: Buoyancy-driven magneto-Rossby waves

With stronger magnetic fields, buoyancy is balanced by the magnetic
(Lorentz) force as well as the Coriolis force. The planform of Type 11
waves is similar to those of Type I waves and they too propagate on
the thermal diffusion timescale. Both westward and eastward pro-
pagation of these waves is possible, depending on the relative magni-
tudes of magnetic and thermal diffusion. It should be noted that the
magnetic field now plays a destabilizing roll, catalyzing the onset of
convection. The dominant role of the uniform imposed magnetic field
causes an increase in the length scale so that the number of waves
fitting around a cylindrical shell decreases, while the latitude of the rolls
moves toward where the magnetic field is strongest. Figure M148
shows the form of the radial magnetic field disturbance produced by a
magneto-Rossby wave in spherical geometry when the imposed mag-
netic field increases linearly with distance from the rotation axis (the
force-free field of Malkus, 1967). This figure is the result of an eigenva-
lue calculation (using the code of Jones ef al., 2003) used to determine
the most unstable wave in a regime when magnetic and Coriolis forces
are approximately of equal magnitude.

Type lll: Buoyancy-driven MAC waves

When magnetic forces are much stronger than the Coriolis forces,
boundary curvature associated with spherical geometry plays a less
important role and the most unstable wave is of diffusive MAC-type,
again propagating on the thermal diffusion timescale. The planform of
the waves is no longer that of columnar rolls because the strong mag-
netic fields permit departures from =z independence. Both westward-
and eastward-propagating waves are possible in this regime.

|
|
;
|
:
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Figure M148 Anomalies in the radial magnetic field (B,) at r = 0.95r; produced by a marginally critical, m = 5, buoyancy-driven '
magneto-Rossby wave. The imposed magnetic field is purely toroidal and increases linearly in magnitude with distance from the
rotation axis. Units are arbitrary because no nonlinear saturation mechanisms are included in this model. Gray regions with solid
contours indicate negative field anomalies, and white regions with dotted contours indicate positive field anomalies.

Type 1V: Magnetically driven MAC waves

When the magnetic field becomes sufficiently strong or complex, then
MC/MAC waves can be produced by either diffusive (resistive) or
ideal instability of the background magnetic field. The resulting waves
are of diffusive MC/MAC or diffusionless MC/MAC type and propa-
gate on either the magnetic diffusion or on the MC/MAC timescale.
They do not require the presence of buoyancy for their existence,
and can even occur when the background density field is stable.

Fearn and Proctor (1983) have considered the additional effect of
the presence of a background azimuthal flow (including shear) and
found that this tends to stabilize diffusive MAC waves. They observed
that such waves are localised at the extrema of the shear, moving with
an azimuthal speed equal to the fluid velocity at that point. This indi-
cates MC/MAC waves could perhaps be preferentially excited in zonal
jets and would drift by advection rather than propagation, which could
perhaps be of relevance at low latitudes in the Earth’s outer core (see
the section “Magnetohydrodynamic Waves as a Mechanism for Geo-
magnetic Secular Variation™).

Nonlinear magnetohydrodynamic waves

All the magnetohydrodynamic waves discussed up to now have been
linear in nature. This implies that (i) waves can simply be superposed
without considering any mutual interaction and (ii) there is no feed-
back between the waves and the rest of the system. This scenario is
unphysical because unstable waves can grow without limit, but is
nonetheless useful for determining the types of waves most easily
excited in a particular regime of interest. Early studies by Braginsky
(1967) and Roberts and Soward (1972), though deriving linear equa-
tions for MAC waves riding on general background states, emphasized
the importance of understanding nonlinear feedback processes. They
noted that waves are determined by the background state, but the back-
ground state is itself altered by the waves. In seeking to interpret geo-
physical observations indicative of hydromagnetic waves in the
Earth’s core, we should remember that linear analysis is only formally
valid for small perturbations to an artificial, steady background state
and cannot tell us how waves will evolve, saturate, interact with each
other, or what flow structures might result from nonlinear bifurcations
of the waves. Attempts to understand such processes deserve a con-
certed theoretical and numerical modeling effort in the future.

Some progress in understanding nonlinear MAC waves has already
been made. El Sawi and Eltayeb (1981) have derived higher order
equations for MAC waves in a plane layer in the presence of a slowly

varying background mean flow. Their equations describe the evolution
of diffusionless MAC wave amplitude via the conservation of
action (wave energy divided by wave frequency per unit volume).
conservation law tells us that wave energy increases, at the expense 0
the energy of the background state, whenever a wave moves into
region where its frequency is higher. More recently Ewen and Sows
(1994) have derived equations describing the evolution of the a
tude of diffusive MAC waves in the limit of a weak magnetic
They find that an azimuthal (geostrophic) mean flow is driven by mag:
netic forces resulting from the MAC waves and is linearly damped by
viscous diffusion at the boundary. "

A start has also been made at numerically investigating the ng
linear evolution of magnetohydrodynamic waves in rapidly rotal
convecting spherical shells. As the unstable density gradient
increased, it is observed that the system undergoes bifurcations
steadily traveling magnetohydrodynamic waves to vacillating
motions for which both temporal and spatially symmetries have bees
broken (see Magnetoconvection). y

Study of nonlinear MC and MAC waves is still in its infancy ani
may yet yield important and exciting insights that will help us to b
understand how magnetohydrodynamic waves might manifest thes
selves in the Earth’s core.

Magnetohydrodynamic waves in a stratified
ocean at the core surface?

There has been some debate over the possibility of a stratified

“inner ocean” at the top of the Earth’s outer core and the MAC ¥
that would be supported there (Braginsky, 1999). This stratified I
has yet to be observed seismically, though its existence seems plaus
ble on thermodynamic grounds with light fluid released during
the solidification of the inner core expected to pond below the core
mantle boundary. Oscillations of such a layer would be of shorte
period than the MC/MAC waves expected in the body of the
core due to the presence of an additional restoring force due to de
stradification.

The dynamics of a stably stratified layer would be dominated by its th
spherical shell geometry. There would undoubtedly be many similaritie
with the water ocean on the Earth’s surface, but with the additional ca
plications caused by the presence of magnetic forces. In particular, §
Rossby waves, which rely on the change in the Coriolis force with latil
for their existence, are likely to be present within such an ocean. Bragi
has developed models of both axisymmetric and nonaxisym
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disturbances of such a stably stratified layer and has suggested they could
be responsible for short period geomagnetic secular variation.

Unfortunately, MAC waves and MC Rossby waves in a hidden
ocean at the top of the outer core are not the only possible source of
short period geomagnetic secular variation-torsional oscillations within
the body of the core (see Oscillations, torsional) are an equally plau-
sible explanation. Until the existence of the hidden ocean of the core
can be confirmed, study of magnetohydrodynamic waves that may
exist there will remain of primarily theoretical interest.

Magnetohydrodynamic waves as a mechanism
for geomagnetic secular variation

It has been common knowledge since the time of Halley that the
Earth’s magnetic field changes significantly over decades to centuries.
Perhaps the most striking aspect of this geomagnetic secular variation
is the westward motion of field features (see Westward drift). Several
explanations have been proposed for this Westward drift, but today there
are two widely accepted candidate mechanisms. The first involves bulk
fluid motion at the surface of the outer core that advects magnetic field
features. Bullard er al. (1950) originally envisaged this involving west-
ward flow of all the fluid close to the core surface, but modern core flow
inversions (see Core motions) have refined this suggestion—it now
appears that a westward equatorial jet under the Atlantic hemisphere is
sufficient to explain much of the westward drift of the geomagnetic field
observed at the surface. The source of this proposed equatorial jet is still
debated, but geodynamo models indicate that it could be produced by
nonlinear inertial forces that are a by-product of columnar convection
in a sphere, or by thermal winds due to an inhomogeneous heat flux into

the mantle (see Inhomogeneous boundary conditions and the dynamo).
The second possible mechanism is that motivating the inclusion of this
article in an Encyclopedia of Geomagnetism and Paleomagnetism—
propagation of magnetohydrodynamic waves in the Earth’s outer core.
We shall henceforth refer to this mechanism as the wave hypothesis.

Hide (1966) and Braginsky (1967) proposed the wave hypothesis on
theoretical grounds and each attempted to test it through the considera-
tion of available records of the geomagnetic secular variation. It is
informative to review these pioneering attempts before considering
other possible ways to search for the presence of magnetohydrody-
namic waves in the Earth’s outer core.

Hide (1966) identified three major factors in favor of the wave
hypothesis: (i) MC waves had periods comparable with the timescale
of geomagnetic secular variation; (ii) MC waves had dispersion times
comparable with the timescale of geomagnetic secular variation; and
(iii) shorter wavelength MC waves had larger phase velocities and
similarly higher order spherical harmonic components of the geomag-
netic field drifted faster. His observational analysis was based on
the mean westward drift rates of spherical harmonics up to degree 4,
from seven previous publications, spanning 135 years from 1830 to
1965. Despite the failure of detailed comparisons between the pre-
dicted and observed drift rates for individual spherical harmonics,
this study was instrumental in persuading many geophysicists that a
wave origin for geomagnetic secular variation was worth serious
consideration.

Braginsky (1967, 1972, 1974) sought to confirm the wave hypothesis
by comparing his own theoretical predictions of the spectrum of diffusion-
less MAC waves to an observationally inferred spectrum of geomagnetic
secular variation. Despite the poor quality of data available in the early
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Figure M149 Equatorial time-longitude plot of processed radial magnetic field B, (with time-averaged axisymmetric field and field
variations with timescales longer than 400 years removed) from the historical field model gufm1, (Jackson et al., 2000). Field evolution
in the azimuthal direction at the equator is shown.and consists of spatially and temporally coherent wavelike anomalies, with dominant
azimuthal wave number m = 5 and moving consistently westward. The contour lines are at intervals of 5 x 10*nT. Gray regions with
solid contours indicate negative field anomalies, and white regions with dotted contours indicate positive field anomalies.
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contours indicate positive field anomalies.

1970s, Braginsky's efforts were important in demonstrating that the wave
hypothesis was at least compatible with observations.

In the last 20 years there have been significant advances in our
observational knowledge of the Earth’s magnetic field and its evolu-
tion. Using over 365000 historical observations from maritime
records, observatories, surveys, and satellites, time-dependent models
of the global magnetic field have now been constructed covering
the past 400 years (see Time-dependent models of the geomagnetic
field). Use of regularised inversion methods has enabled the
construction of images of the magnetic field at the core surface
allowing us to map its evolution at the edge of the source region.
This technique has shown that the origin of the westward drift of
magnetic field is not due to the whole field drifting westward but
rather is due to the drift of small patches of intense magnetic field
(see Westward driff), particularly at low latitudes in the Atlantic hemi-
sphere. Advances have also been made in our understanding of field
evolution over longer time intervals, notably through the use of archeo-
magnetic and lake sediment records to construct global field models
for the past 3 ka (Korte and Constable, 2005). Although lacking
the resolution of the historical models, these models offer the first
glimpse of the long-term behavior of flux patches at the core surface
and with the inclusion of more data hold great promise for the future.

Can recent observational advances help us in our attempts to evalu-
ate the wave hypothesis by facilitating the identification of previously
obscured signatures of magnetohydrodynamic waves? The existence
of images of the evolution of the field at the core surface opens
up fresh possibilities for comparing not only timescales of predicted
wave motions, but also geographical features such as the latitude at
which waves occur, their equatorial symmetry and their dispersive
properties. Space-time analysis of geomagnetic field evolution, and
particularly the use of time-longitude diagrams (as employed by ocea-
nographers to study Rossby waves), can be carried out during the his-
torical epoch (Finlay and Jackson, 2003). As shown in Figure M 149,
after the removal of the time-averaged axisymmetric field and those
components of the field varying on timescales longer than 400 years,
spatially and temporally coherent (wavelike) evolution of the radial
magnetic field is observed at the equator. The clearest signal in the
time-longitude plot has an azimuthal wave number of m = 5, a period
of around 250 years and travels at ~17 km yr~! westwards. Figure M150
shows the result of frequency-wave number filtering to recover the
spatial structure of this wave at the core surface. The domination
of aspects of geomagnetic secular variation by a single wave number
disturbance suggests that a magnetohydrodynamic wave (perhaps

Figure M150 Snapshot from 1830 of the m = 5 radial magnetic field, core surface signal responsible for the wavelike pattern of fielt
evolution observed at low latitudes in the historical geomagnetic field model gufm1. This snapshot was obtained by restricting the
period of field variations to between 125 and 333 years and the wave number of field variations to m = 5 (i.e., FK filtering). The contou
lines are at intervals of 4 x 10*nT. Gray regions with solid contours indicate negative field anomalies, and white regions with

driven by an instability) might currently be present at low la
in Earth’s outer core.
The major challenge for theoreticians is to keep pace with improvi
observations and construct models accurate enough to predict the struct
of observable space-time features caused by magnetohydrod:
waves in the core. Modeling of convection-driven magnetohydrod
waves (see Magnetoconvection) suggests these might propagate
slowly to account for observed azimuthal field motions. However, thes
and magnetic winds in the core (see Thermal wind) could advect v Vi
patterns at the required speeds and produce spatially and temporall
coherent pattemns of field evolution consistent with observations.
The hypothesis that magnetohydrodynamic waves produce di
observable changes in the geomagnetic field cannot yet be concl
confirmed or rejected. The difficulty in rigorously testing the hypoth
is twofold. Firstly, one requires robust predictions of observable sig;
from theoretical wave models that take account of realistic backg
fields, diffusion, spherical geometry, and nonlinearity. Secondly,
requires self-consistent, high-fidelity observations over a long period
time to assess model predictions in a statistically significant way. Almost
40 years after the wave hypothesis was proposed this remains a tall ordes
but we are approaching the stage where such tests will be feasible.

Christopher Finlaj
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MAGNETOHYDRODYNAMICS

Introduction

Magnetohydrodynamics (MHD) is the study of the flow of electrically
conducting fluids in the presence of magnetic fields. It has significant
applications in technology and in the study of planets, stars, and
galaxies. Here the main focus will be on its role in explaining the ori-
gin and properties of the geomagnetic field.

The interaction between fluid flow and magnetic field defines the
subject of MHD and explains much of its fascination (and complex-
ity). The magnetic field B influences the fluid motion V through the
Lorentz force, J x B. The electric current density J is affected by the
fluid motion through the electromotive force (emf), V x B. The most
famous offspring of this marriage of hydrodynamics to electromagnet-
ism are the Alfvén waves, a phenomenon absent from the two subjects
separately (see Alfvén waves). In fact, many consider the discovery of
this wave by Hannes Alfvén in 1942 to mark the birth of MHD (see
Alfvén, Hannes). Initially MHD was often known as hydromagnetics,
but this term has largely fallen into disuse. Like MHD, it conveys
the unfortunate impression that the working fluid is water. In reality,
the electrical conductivity of water is so small that MHD effects are
essentially absent. Moreover, many fluids used in MHD experiments
are antipathetical to water. Even as fluid mechanics is now more
widely employed than hydrodynamics, the terms magnetofluid
mechanics or magnetofluid dynamics, which are already sometimes
employed, may ultimately displace MHD.

Since electric and magnetic fields are on an equal footing in electro-
magnetism (EM), it may seem strange that the acronym EMHD is not
preferred over MHD. In many systems, however, including the Earth’s



