DTU Space National Space Institute

Neutron stars

Jérôme Chenevez, DTU Space

NS in different astrophysical contexts Energy source

- Pulsar Wind Nebulae (PWNe) Rotation
- Central Compact Objects (CCOs) Thermal (neutrino cooling)
- Magnetars
 - Anomalous Pulsars (AXPs)
 - Soft-Gamma Repeaters (SGRs) Magnetic field decay
- X-ray Binaries (XrBs) Accretion

Crab as a calibration source

...despite still on-going activity

The Crab pulsar and nebula

DTU Space

National Space Institute

Pulsar Wind Nebula (PWN)

A recent SN remnant

 $2,5' \leftrightarrow \approx 5 \text{ l.y.}$ Rotation-powered pulsar at 30 Hz

Plerion (no radio shell) $L_{bol} = 1.8 \times 10^{38} \text{ erg/s} \approx 10^5 \text{ L}_{\odot}$

The basic configuration of a PWN (plerion)

- Most (90%) of the spin-down power of a pulsar is released via a relativistic wind.
- The magnetized pulsar wind leaves the pulsar with almost the speed of c.
- A termination shock forms at the radius where the wind ram-pressure balances the pressure of the environments, and over there the particles are randomized and probably accelerated and begin to emit **synchrotron** photons (radio to gamma).
- The PWN is a magnetized particle bubble surrounded by the ISM.

(Rees & Gunn 1974)

$B \sim 10^{12} (-10^{15})$ Gauss

Emission models

Pair-particles produced from high E γ , accelerated in **B**-field eventually radiate synchrotron

Rotation-powered pulsar

Origin of the (radio) emission Moving **B**: $\frac{\partial B}{\partial t} = \nabla \times E$ Direction of rotation \Rightarrow e⁻ current Magnetic field lines Rotating neutron star Speed-of-light cylinder **EM** radiation Energy radiated by electrons

Emission mechanism

Power-law spectrum, X-ray photon index ≈ 2 (PWNe), ± 1 (pulsars)

Pulsar Basics (Measurable quantities)

$$\dot{E} = \frac{d}{dt} \left(\frac{1}{2}I\omega^2\right) = I\omega\dot{\omega} = -4\pi^2 I \frac{\dot{P}}{P^3}$$

spin-down luminosity

Pulsar period Age of a Pulsar Magnetic Field

 $t_{characteristic} = \frac{P}{2P}$ $B^{2} = \frac{3Ic^{3}}{8\pi^{2}R^{6}}PP$ $ightarrow P \sim B^2/P$ (Table 9.1) $\frac{dE}{dt} = \frac{4\pi^2 I \dot{P}}{P^3}$

 $P \propto -P^n$

 $n = P\ddot{P}/\dot{P}^2$

(Dipole limit)

 $\Rightarrow P - \dot{P}$ diagram

→ Energy release Spindown rate Magnetic dipole braking index

n = 1 : pulsar wind, n = 3 : magnetic dipole radiation, n = 5: Magnetic or gravitational quadrupole radiation, but n > 3 not observed (measured with young NS)

DTU Space

MAGNETARS

Only 29 known (≈1%) so far **A**nomalous X-ray Pulsars Soft Gamma-ray Repeaters

ulsar period	Р
ge of a Pulsar	$t_{characteristic} = \frac{P}{2P}$
lagnetic Field	$B^2 = \frac{3Ic^3}{8\pi^2 R^6} PP$
	$ ightarrow P \sim B^2/P$
nergy release	$\frac{dE}{dt} = \frac{4\pi^2 IP}{P^3}$
pindown rate	$\dot{P} \propto -P^n$
raking index	$n = P\ddot{P}/\dot{P}^2$

Mantle – crust interactions

1E 2259+586 2002 Glitch

- rotation glitch dP/P=4e-6
- Coincident with large flux flare, many other radiative changes
- Risetime ~seconds

VK et al. 2003; Woods et al 2004 Effect of *mantle* **superfluid vortices** in the *crust*

Mantle – crust interactions

... and 2012 Anti-Glitch!

Archibald R., Kaspi V. et al. 2013

Differential rotation due to strong magnetic field?

DTU Space National Space Institute

DTU Space National Space Institute

COSMIC CONNECTIONS

A magnetar is a neutron star with an extraordinarily strong magnetic field of 10¹⁵ gauss, a thousand times greater than the 10¹²-gauss field of an ordinary neutron star. The magnetic energy stored in this intense field can be released in the form of powerful bursts of X rays and gamma rays. (After C. Kouveliotou, R.C. Duncan, and C. Thompson, "Magnetars", *Scientific American*, February 2003)

Magnetars and Ordinary Pulsars

 This "starquake" creates a surging electric current, which decays and leaves behind a hot fireball.

 The fireball cools by releasing X rays fron its surface. It evaporates in minutes or less.

MAGNETARS / Soft Gamma-ray Repeaters

Curst Breaking Mechanism for Giant Flares

- Twisted magnetic field diffuses and stresses crust.
- Crust breaks and moves allowing magnetic field to reconnect, releasing huge energy observed in giant flares.
- Crust must be strong to control large energy in B field.

Thompson + Duncan

MAGNETARS / Soft Gamma-ray Repeaters

MAGNETARS / Soft Gamma-ray Repeaters

(Expected) observable phenomena

Measurement	<i>M</i> , <i>R</i> dependence	Approach
Redshift/compactness	$\beta = GM/Rc^2$	Lightcurves and spectra
Surface gravity	$g = GM/R^2$	Lightcurves and spectra
Light-bending magnified radius	$R_{\infty} = R \left/ \sqrt{1 - 2GM/Rc^2} \right.$	Thermal spectra
Maximum mass	$M \le M_{\max}$, for all R	Pulse timing
Minimum spin period	$P_{\rm min} \propto \sqrt{R^3/M}$	Pulsation searches
Fractional moment of inertia in crustal superfluid	$\Delta I/I \propto R^4/M^2$	Glitch monitoring
Seismic vibrations	Mode-dependent	Flux oscillations in flares, bursts

Light bending as around black holes

NICER Science objectives I — Neutron Star Structure

Probing ultra-dense matter through soft X-ray timing spectroscopy

Flat spacetime

Objective	Measurements
tructure — Uncover the nature of atter in the interiors of neutron stars	Neutron star radii to ±5%, masses, & Cooling timescales
ynamics — Reveal physics of dynamic nenomena associated with neutron star ariability on many timescales	Stability of pulsars as clocks. Properties of outbursts, oscillations, and precession
nergetics — Determine how energy is xtracted from neutron stars.	Intrinsic radiation patterns, spectra, and luminosities

NICER · SEXTANT

NICER Science objectives II — Neutron Star Dynamics

Characterizing dynamic behavior due to spin, accretion, and starquakes

RXTE PUFFED ACCRETION DISK VERSION 2 WITH NO WOBBLE

DANA BERRY SKYWORKS DIGITAL ANIMATION 310-441-1735

Clock stability, starquakes, thermonuclear explosions, and bulk quantum phenomena (cooling)

Objective	Measurements
Structure — Uncover the nature of matter in the interiors of neutron stars	Neutron star radii to $\pm 5\%$, masses, & Cooling timescales
Dynamics — Reveal physics of dynamic phenomena associated with neutron star variability on many timescales	Stability of pulsars as clocks. Properties of outbursts, oscillations, and precession
Energetics — Determine how energy is extracted from neutron stars.	Intrinsic radiation patterns, spectra, and luminosities

NICER Science objectives III — Neutron Star Energetics

Establishing sites & mechanisms of radiation in neutron star magnetospheres

ICER + SEXTAN

LSU ASTRIS SCIE

The most powerful magnetospheres known anywhere, only now beginning to be understood...

Objective	Measurements
Structure — Uncover nature of matter in the interiors of neutron stars	Neutron star radii to ±5%, masses, & Cooling timescales
Dynamics — Reveal physics of dynamic phenomena associated with neutron star variability on many timescales	Stability of pulsars as clocks. Properties of outbursts, oscillations, and precession
Energetics — Determine how energy is extracted from neutron stars	Intrinsic radiation patterns, spectra, and luminosities

NICER view of PSR J0030+045

Riley et al. 2019

Miller et al. 2019

Lightcurve modeling constrains the compactness (*M*/*R*) and viewing geometry of a millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending

DTU Space National Space Institute

The end!

THE END ?

Suggested literature: "Dragon's egg" by Robert Forward

Article references (III)

1. Instrumentation (JEM-X): Lund et al. 2003, A&A 411, 231

2. Supernovae (CasA v*): Grefenstette et al. 2014, Nature 506, 339

3. Cataclysmic Variables: Mukai 2003, Adv. Space Res. 32, 2067