Low-mass X-ray binaries

A-Ray Emission: BURSTS
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X-ray binaries: LMXB

Mass donor of late spectral type (G or later);
orbital periods of minutes to hours (typically)

M<1-2 Mg
Mass transfer via Roche lobe overflow (RLO)
Accretion via disk

Old systems, with characteristically low
magnetic fields (~10%° G)

Diversity of mass donors, compact object etc.

Example: Ultra-Compact X-Binary (UCXB) P< 1hr
Example: Accretion-powered neutron stars - AMXP
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(Taurs and van den Heuvel 2003). LAMS days
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(PSR 1855+09)

0.0 Myr
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CE ejected most of imes

13.9 Myr

15.0 Myr

More massive explodes

15.0 Myr

2.24 Gyr

2.64 Gyr

(not the only way.
but ok to have an idea)



Millisecond-pulsar

IGR ]18245-2452 Papitto et al. 2013, Nature 501, 517

ation and accretion power
Accretion: X-ray pulsar (LMXB) <> Rotation: (magnetic) radio pulsar



Log(Lx;erg/s): 31-32 33-34

PULSAR ACCRETION
WIND VS. LMXB
SHOCK ROTATION

(Rotation-powered) (Rotation?/Accretion) (Accretion-powered)

PULSAR DISK OUTBURST
STATE STATE STATE

Courtesy: Manu Linares



MSP “Spiders”

‘BIackWidow’ and ‘Redbacld Pulsar Binaries

So named because
these pulsars are
‘devouring’ (ablating) their
companions

Black widows:

<< 0.1 Msyn (semi) degenerate
companion

Redbacks:

~ 0.2Msun non-degenerate
companion




X-ray binary observational properties

* Varying spectral states during outbursts
correspond to changes in the accretion flow.

* Diagnostic tools:
— Spectral analysis (energy)
— Timing analysis (QPO)
— Color-Color Diagram (CCD)
— Hardness-Intensity Diagram (HID)



G eomet ry Wind of material

driven off disc produces
extended corona

Observed phenomenology
depends on viewing angle

impact region

For BH, X-ray emission is from disk. For NS, there is also emission from boundary
layer where disk meets NS and surface of NS. Optical emission arises from outer disk,
companion star, and X-rays reprocessed by disk or companion.
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LMXB spectral states

High soft state | S 1741 260 Low Hard State
1 I."I _— - T 4_,—-—/—(—'—/—/—. _-""""‘-\..'. - ) . .
Disc/NS: ~1keV - Disc/NS: ~1keV
. -2 [ "'. - T
5-15 L -9l pd 1723
E : - :
& ! = -‘-____‘:.-w“f‘i‘“ } 1
S i PR
..i', i b ‘¢\l 4'
= l \ 't;} 11
= i }‘ Il
Thermal Compt. 1 |
cutoffat~3kT | .
ol L1 c 4 ’
L0 3 :
10 100
Y Energy (keV) (Barret 2001} Y
Effich ling (~3keV) Inefficient cooling
icient cooling (~3keV e ;
(~30keV) |~~~ Corona
. [ ; H."'n
. @ |
Il.k . .;_. ———— II'-,“. : J
— ~ /
- S
e -
Mdot o

Always dim?



S osource

Atol

sSource

Hard Color
0.3

Soft Color
NS-LMXBs
ey — /\1 o
wLMXB Atoll ( ZJ
N~ K N S
NS transienis // N .
BH (ransients
0.001 0.01 0.1 1.0 10

L, /L paq (NS

CCD



Count rate (cts/s)
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(Black hole X-ray binaries)

GX 339-4 2002/2003 outburst
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The Eddington limit

* There is a limit to the
luminosity that can be

Radiation
produced by a given Y -
object, known as the ”'. W) apraten

c . . A Free Electron
Eddington luminosity.
M r m At this limit the inward gravitational
@- force on the accreting matter is

>0
<Emm) ilanced by the outward transfer of
Ferav  Frad  momentum by the accretion luminosity



The Eddington luminosity

Fully ionised plasma: only Thomson scattering

Radiation exerts force on electrons via Thomson scattering
Cross-section of protons is a factor (m./m,)?~ 2.5x107 smaller

Fmd
/ Thomsom cross-section:

F
¥ Radiation force: Fyq = o Fux o1 = 6.65 % 1077 m?
= 2
M,R GMm _2( &
Gravitation: Fgrav = R OT= 3\ 0
LR L GMm
L=4nR%Fux = Fq= e Mp=1830m. = Fya, = 2 P

m, = 1.67 x 10-*’kg

At the limit (Eddington):

_ aGMmgc] M=1Ms = Lg=1.3x10"Js™

oT
L ~ 1.3 x 1078 %) erg s

FI_..Id — Fgra‘-,r =i LE




Eddington limit application 1

Some thermonuclear bursts
are bright enough to exceed
the Eddington limit at the
peak

The atmosphere is
(temporarily) unbound and
will expand, sometimes to
very large radii

Provided the mass range of
the neutron stars are small,
these events serve as a
standard candle for distance
estimation

3 3 KS 1731-26
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Fic. 2.—Spectral evolution in a thermonuclear burst exhibiting photospheric
radius expansion, from KS 1731—26. Top: Burst luminosity Ly, in units of ergs s~ !;
middle: blackbody (color) temperature k Ty ; bottom: blackbody radius Ryy,. The Ly
and Rpyy, are calculated at an assumed distance of 7.2 kpc (Table 9). Note the anti-
correlation between & Ty, and Ry, in the first few seconds, indicative of the expand-
ing photosphere, and the approximately constant flux throughout the expansion.
The time at which the flux reaches a maximum is indicated by the open circle;
by then the radius has declined to the asymptotic value in the burst tail, suggesting
that the photosphere has settled (“touched down™) on the NS surface.

via the triple-« process, which is moderated by the strong nuclear



Eddington limit application 2

LNV, Ly UV L LALs 1NASU LAINNJLY W LM\

 The Eddington flux, AES
combined with other ‘
measurements from :
bursts, can be used to
infer the mass and
radius of the neutron
star

* This can in turn provide ° AT
Radius (km)

CO n St ra I n t S O n t h e Figure 5. Plot of 1o and 20 contours for the mass and radius of the neutron

. star in EXO 1745—248, for a hydrogen mass fraction of X = 0, based on
t t t the spectroscopic data during thermonuclear bursts combined with a distance
n e u ro n S a r e q u a I O n measurement to the globular cluster. Neutron star radii larger than ~ 13 km are
inconsistent with the data. The descriptions of the various equations of state and
t t the corresponding labels can be found in Lattimer & Prakash (2001).
O S a e (A color version of this figure is available in the online journal.)
Ozel, Guver &c, 2006—; see also
Steiner et al. 2010




Eddington limit application 3

Fig.3 Uvw2 mage from 150 ks of Swift UVOT data.
The white contours show the onientation of the galaxy, and
the white circle mndicates the Chandra position of HLX-1.
The green circle indicates the position of the background
emission-line source (see Figure B).

Farrell et al. 2009, 2011 etc.

The growth history of
supermassive black holes
is basically a mystery

We know of no
intermediates more
massive than the stellar-
mass black holes in XRBs
Eddington-limit
arguments offer evidence
for intermediate-mass BH
via ultra- (and even
hyper-) luminous X-ray
sources in other galaxies
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THERMONUCLEAR BURNING ON THE NEUTRON STAR 201
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Fig. 8.11 Schematic of the thermonuclear flash model of an X-ray burst. Al the top the neutron
star is accreting hydrogen from its accretion disc, forming a layer typically 1 m thick. This
fvdrogen burns steadily into helium, forming a layer of comparable thickness. Fventually the
conditions in the helium layer go critical and a thermonuclear flash takes place (centre panel). The
process then begins again.  (Diagram by Waller Lewin, MIT.)

TYPE |

Fig. 8.19 Magnetospheric
gate model of the Rapid Burster.
Material accreting from the disc is
held back (top panel) by the
neutron star’s magnetosphere.
When enough material has buili
up outside this gate, the
magnelosphere can no fonger hold
it and it ruptures (middle panel),
thereby allmving it to_fall onto the
newlron star, producing a type 11
burst.  With the material gone,
the gate re—forms and the process
starts again, (Diagram by
Walter Lewwin, MIT.)

1AL KAFID BUKSIER




Type-ll X-ray bursts: not thermonuclear

Only 2 Type-Il X-ray bursters
known so far:

MXB 1730-335 (Rapid Burster)
and the Bursting Pulsar

GRO J1744-28 (no type I).

3—33
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Rapid Burster —

24 -minute snapshots from 8 orbits on March 273 , 1976
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(Lewin et al.,, 1995, Fig. 4.19)

Bursting of the “Rapid Burster” 1730—-335: Type | and Type
Il bursts.
Type |l bursts: magnetospheric gate model: B-field blocks

accretion until gas pressure > magnetic pressure —»
BOOM.




Black Holes have no surface = no X-ray bursts!
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X-ray burst oscillations

Power spectrum showing
millisecond variability

", during X-ray bursts

X-ray burst power spectra
sometimes show millisecond
variability corresponding to the
neutron star spin frequency,
thus indicating a local asymmetry
on the surface of the neutron star

W during the burst.

Ti |

Fig. 26, An X-ray burst from 417 1725-34 cbserved with the PCA onbcard RXTE. The
main panel shows the X-ray counts chserved by the PCA in (1732) s bins. The insst panel
shows the power spectrum in the vicinity of 363 Hz (after Strohmayer ot al. 1996,
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Time !j_:' S ) Strohmayer & Marckwardt, 1999)

Slight variations in burst oscillation frequency during the tail may be
related to atmospheric motion and/or spreading on the neutron star
surface, but not all burst oscillations show a consistent picture.



Spin modulation

Burst oscillations are associated with a hot spot expanding on the
NS surface like a deflagration flame and modulated by the NS
rotation. The modulation drops as spot grows. The frequency drift
seems associated to the burning layer elevation.

Spitovsky et al., 2002 g
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E. ..~ 1.35 + 6.05X MeV/nuc (Goodwin, Heger, Galloway, 2019)%5
£ 4 <50 : mostly H
_ grav _ pers ~ _ . y ._gz
“« = E At =30~200 g4, mostly He ::
nuc b O(JH| 30 60 90 120 150 180 210 240 27

Burst energetics

Nuclear energy vs. gravitational energy

Relationship between accretion and thermonuclear burning processes

~1.4 MeV/nucleon

Number of nucleons in nucleus

= Ineffective process compensated by accumulation

Relationship between accreted material and burning regimes



Cts/s (3—20 keV)

Cts/s (20—60 keV)
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Intermediate long bursts from SLX 1737-282 (Falanga, Chenevez et al., 2008)
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Two-phase long burst from GX 3+1

| | | |
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Chenevez et al., 2006
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Intermediate long bursts

Only =70 bursts have shown a duration of a few tens of minutes

Most intermediate bursts are observed from low luminosity
sources and are interpreted as long pure He bursts. If no H is
accreted, they are consistent with the burning of a slowly
accreted, thick He layer, in Ultra Compact X-ray Binaries
(UCXB) where the donor star is probably a degenerated helium
white dwarf.

Unusually long bursts seem generally to be associated with
mixed H/He burning at low accretion rate. Depending on the
actual accretion rate, either the burning of a large amount of H is
triggered by an He flash, or a large column of “sedimented” He is
triggered by H ignition.

(Two phase burst from GX3+1: aborted superburst due to the
premature ignition of a carbon layer triggered by an He
detonation may also be considered.)




DTU Space

National Space Institute Superbursts

Compared to normal type I X-ray bursts, superbursts are ~1000 times
more energetic (E, ~10* ergs), ~1000 times longer (from hours to half
a day), and have recurrence times of the order of years. They are very
rare, only 25 such events having been found from 10 sources.

Superbursts display the same properties as ! ]
usual X-ray bursts. i T

They are thought to arise from Carbon shell

|21

flashes in the sub-layers where heavy oo | |
elements have previously been produced g

through the occurrence of H/He bursts. =

Their long duration is explained by their %«’

depth below the surface. sl

Superburst from 4U 1820-30

| 1 1 1 1 | 1 1 1 [

on 9/9/1999 (Kuulkers, 2003) o 5000 ot e

Time {(s=c)
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SAX J1747.0-2853 (3-25 keV) Bintime: 30.00 s
' | ' | ' | ' | ' | ' |

Firestarter?
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100
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4000 | GUOD 8000 10 | 1.2x 10 | 1.4x 10 |
Chenevez et al. 2011 Time (s)
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More or less long bursts
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Histogram of MINBAR 7000 short duration bursts
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Photospheric
Radius Expansion

PRE
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PRE burst from INTEGRAL light-curves (Falanga et al., 2006)

Count Rate (3—18 keV)

Count Rate {18—40 keV)
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Recall: the Eddington Limit

For any luminous object, there is a maximum luminosity beyond which radiation
pressure will overcome gravity, and material outside the object will be forced away
from it rather than falling inwards.

» Eddington luminosity

4mcGM
Ly = 21 3x10% M
o M

e Sun

-1
erg s

» Eddington temperature

7 Y
Edd j Peak Temperature (at “touchdown™):

Stefan-Boltzmann: 7., =
F [47Z'R§,SG

» Eddington accretion rate
M= Jj_(@ yr_1 Per unit area: m,,, = g cm2 s
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Eddington Luminosities

38 M
e = 1:3-107 x—erg/s
M,

- M
For Solar composition: [ =1.7-10" xﬁerg/s
®

Forpure H: [

38 M
e = 2-7-107 x—erg/s
M,

Observationally (bursts in globular clusters) : Lg ,~3.8 x10® erg/s (Kuulkers et al. 2003)

For pure He: [,

Application

» X-ray bursts as standard candles: if L= L,4,=d  thanks to flux conservation

L<L,, <4rnd  F<L,,

& d< ‘/ﬂ : upper limit to distance
4 F
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Investigation method

Time-resolved spectral analysis

» Standard method: modelling of the net burst emission by blackbody (BB)

 2-component method: modelling of the total burst emission by BB+PL
(PL is fixed by pre-burst “persistent” emission)

* New method: impact of the burst on the accretion flow is accounted for
by a variable factor (f, ): BB + f,xPL
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Blackbody emission from a neutron star

Flux conservation: I—emi - CI)ObS

S A4r R;B O Tez, =4r szBB (Stefan-Boltzman’s law)

d /F
SR, = 7 GBB
eff

Caveats:
» Burst emission is assumed isotropic (£=1)
L=L (1+z)
 Gravitational redshift effects T=T,(1+z)
R=R (1+z)

» What is actually observed is a “colour temperature”...
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GX3+1 XrB 20040831

Total XrB spectrum
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Example of Results

e L ‘ Bolometric luminosity -

The time-resolved spectral analysis rﬁ; 5 N (assuming d = 5 kpc)

of GX 3+1 long X-ray burst reveals & [ T ]

variations 1n the temperature and 20 S e
inferred blackbody radius which < | | Blackbody temperature

o . . = 2 ;H ]

indicate expansion and contraction of < I % ]

the emission region. S S

°r J( Inferred blackbody radius |

26 )

S S

2 4}— B

I I CI) . I I . ‘IDIOD I l l I ZOIOD

Chenevez et a|_, 2006 Time from start of burst {sec)
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