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ABSTRACT 

In this paper, we investigate the potential of including 
cross-polarization data in an unsupervised classification 
method based on SAR data to determine ice extent over 
lakes in Northern Europe. By introducing cross-pol data 
we can increase the separability between open water and 
ice, and we can decrease misclassifications where open 
water with waves is classified as ice. Cross-pol data also 
helps with labelling of the classes. However, cross-pol 
data can decrease the separability between the classes if 
the ice on the lake is very thin.  
 
1. INTRODUCTION 

Measurements of ice extent on inland lakes are useful 
for the modelling communities in numerical weather 
prediction, regional climate models and hydrology. 
These communities have indicated a general lack of 
observations of lake ice, and classifications of lake 
surfaces into open water and ice-covered water based on 
earth observation are highly desirable [1]. Recent 
investigations into the importance of lake ice cover for 
these fields include [2, 3]. Previously, the use of earth 
observation data in lake ice classification have been 
limited to visual/manual inspections of optical satellite 
data. A review of methods for monitoring lake (and 
river) ice can be found in [4]. Synthetic aperture radar 

(SAR) satellite data offers a useful alternative to optical 

satellite data for lakes at high latitudes, in particular 

during the polar night period and during cloud cover 

when optical sensors are useless. Thus, we can 

potentially get observations more often using SAR. 

Recently there has been an increasing interest in using 

SAR data and automatic processing chains for 

determining lake ice cover (see e.g., [5,6]).  

In a previous work [7], we have developed processing 

chains for lake ice retrieval based on co-polarized (co-

pol) Envisat ASAR wide-swath data. The aim of that 

work was to create a fully automatic processing chain. 

However, we observed that the SAR data had a variable 

separability between open water and ice covered water. 

Generally, the backscatter from water in co-pol SAR 

images is very low, and the backscatter from ice on the 

lake surface has higher values. For co-pol data, the 

presence of waves on the water can increase the 

backscatter from water areas, even to a point where the 

backscatter from water is higher than the backscatter 

from ice. This will drastically decrease the classification 

accuracy of the method, and it will make it difficult to 

find a generic rule for assigning labels to the classes 

found in the image. This was previously solved by using 

auxiliary data. Furthermore, in [7] we had to perform a 

manual selection to  remove scenes where the water 

surface had wind effects. If we had measurements of 

wind strengths in the lake area we could include this in 

an automated scene selection, however this requires a 

weather station close to the lake in question and the 

wind to be constant over the lake. 

Upcoming SAR sensors such as Sentinel-1 will make 

more dual-polarization data available. Generally, the 

backscatter from water in cross-polarized (cross-pol) 

SAR data is very low, and the backscatter from ice on 

the lake surface has higher values. It is well known that 

cross-pol SAR data is less sensitive to waves on the 

water. Thus, in cases where the co-pol data have areas 

on the lake surface with a sea state such that the 

backscatter values are overlapping with the backscatter 

from ice, we can utilize cross-pol data to increase the 

separability between the two classes. Since the 

backscatter from water will not be higher than the 

backscatter from ice in the cross-pol data, we can base 

the labelling of the classes on which class that has the 

lowest cross-pol values. We also note that cross-pol 

backscatter from ice and open water is less dependent 

on the incidence angle that co-pol backscatter [8]. In 

this study, we use Radarsat-2 dual-polarization data 

over lakes in Norway and Sweden to investigate how 

dual-polarization data can improve the lake ice 

classification. Radarsat-2 SCNA data also has better 

resolution than Envisat ASAR wide swath data, 

allowing us to apply the method to smaller lakes (and 

potentially even large rivers). Dual-pol Radarsat-2 

SCNA data is comparable to Sentinel-1 EWS data, and 

the results of this study hence provide insight into 

operational use of Sentinel-1 for lake ice classification.  

2. STUDY SITES AND DATA 

Our source of satellite data is Radarsat-2 ScanSAR 
narrow (SCNA) dual-polarization data. We have 
considered two Norwegian lakes, Mjøsa at 60°40′N 
11°00′E and Femunden at 62°12′N 11°52′E, and one 
Swedish lake, Torneträsk at 68°22′N 019°06′E. Note 
that Torneträsk is north of the polar circle, thus optical 
satellites will be useless for this lake during the polar 
night. We have selected some scenes that illustrate the 
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potential and the potential pitfalls of including cross-pol 
data in the classification. We consider two scenes from 
each of the lakes, where five are from the break-up 
period of the lakes and one is from the freeze up period, 
as seen in Tab. 1. 
 
Table 1 Date of acquisitions 

Lake Scene 1 Scene 2 
Torneträsk 20121205 20130529 
Mjøsa 20130424 20130502 
Femunden 20130516 20130518 
 
 
3. METHOD 

3.1. Pre-processing 

We create backscatter images from the SAR data using 
precision geocoding software [9], projecting the images 
in UTM zone 33 north coordinates (WGS-84 ellipsoid) 
with a spatial resolution of 50 meters. A Lee filter of 
size 3x3 is applied to each image to reduce speckle 
noise while preserving edges in the images. Since we 
are only interested in the lake surface, we then apply a 
land mask to remove land pixels. We also mask out the 
five pixels closest to the shoreline, to avoid using pixels 
that contain both water and land in the classification 
scheme. Since we use a statistical method requiring 
several input pixels, we do not consider images that 
cover less than 30% of the lake’s surface. We also 
remove images that, based on the date of the 
acquisition, should contain only water or only ice.  
 
3.2. Classification 

Since we have dual-polarization data, we have two data 
values for each pixel in an image. We have three 
possible input data sets to a classification method: (i) 
use only co-pol data, (ii) use only cross-pol data, and 
(iii) use both polarizations simultaneously. Thus, the 
feature vectors are 1D for (i) and (ii) and 2D for (iii). 
We model the feature vectors using a Gaussian Mixture 
Model (GMM), i.e., we assume that the probability 
density of the feature vectors is a sum of normal 
distributions. Each normal distribution represents one 
class in the image. The mean, covariance and prior 
probability of each normal distribution is estimated 
from a subset of the data using an Expectation 
Maximization (EM) algorithm. We use a Bayes 
classifier, which assigns a class to an input feature 
vector by selecting the class whose probability density 
in the GMM gives the highest value give the input 
feature vector. The K-means classifier was successfully 
used in [5] to classify lake ice, we note that K-means 
can be considered as a special case of the Bayes 
classifier assuming a GMM.  
 
The classification method requires us to select the 
number of classes we want to segment the image into. 

We should have two classes in the final result, but for 
some scenes we need to segment the image into three 
(or potentially more) classes and merge some of the 
classes to obtain the final result. The number of classes 
used for each scene is selected by visual inspection of 
the backscatter images and the marginal and 2D 
histograms. If we use more than two classes, we need to 
merge the classes so we are left with two classes. For 
case (iii), we can have situations where we need one 
class for calm open water areas that are dark in both 
polarizations, one class for open water areas affected by 
wind which are dark in cross-pol and brighter in co-pol, 
and one class for ice covered areas that are bright in 
both polarizations. Based on this consideration, we 
choose to merge the two classes with lowest cross-pol 
values and label the resulting class as water. If we use 
more than two classes in case (i) or (ii) it is more 
difficult to propose a general merging rule. 
 
Using the Bayes classifier we obtain a segmented image 
where all pixels on the lake surface are assigned a class 
number. To get a final product we need to label the 
classes, i.e., specify which classes represent water and 
which classes represent ice. Since the strength of the 
backscatter from water relative to the backscatter from 
ice varies with the presence of wind in co-pol data, we 
need information about wind conditions to label the 
classes correctly. For cross-pol data, the backscatter 
from water should not be higher than the backscatter 
from ice regardless of wind conditions, thus the class 
with the lowest mean value should be labelled water and 
the others as ice. Likewise, we set the class with the 
lowest cross-pol mean in case (iii) as water. 
 
 
 

 

 
Figure 1. Upper: Backscatter images for Torneträsk on 

20121205, co-pol (left) and cross-pol (right). Lower: 

Classification results from co-pol only (left) and from 

combined dual-polarization data (right). 



 

4. RESULTS 

We classified the six scenes with the three different 
input data sets. For some scenes, there was little 
difference between the results from cross-pol and the 
results from both polarizations simultaneously. In these 
cases, we only show the combined classification. 
 
 

 

 

 
Figure 1. Upper: Backscatter images for Torneträsk on 

20130529, co-pol (left) and cross-pol (right). Middle: 

Classification results from co-pol only (left) and from 

cross-pol data only (right). Lower: Classification based 

on both co- and cross-pol data. 

 

4.1. Torneträsk 

Fig. 1 shows the co-pol and cross-pol backscatter 
images for Torneträsk on 20121205, along with the 
classification results assuming two classes based on 
only the co-pol data and based on dual-pol data. The 
result based only on cross-pol data is similar to the dual-
pol result, and is thus not shown here. There appears to 
be two classes present in the co-pol backscatter image, it 
looks like the darker areas on the lake surface are ice 
and the light areas are water with waves.  However, 
these potentially ice-covered areas are not apparent in 
the cross-pol image. We know that the backscatter in 
cross-pol from water is less sensitive to waves, such that 
the water areas in cross-pol will all be dark regardless of 
the wind. The scene is from early in the winter season, 
such that the ice on the lake has most likely just started 

forming. In this phase, the ice will necessarily be quite 
thin and may have a smooth surface, which will give a 
very low backscatter from the ice in both co-pol and 
cross-pol. Thus, we cannot separate the ice and water in 
cross-pol, and the only reason we can separate them in 
co-pol is the waves on the water. To avoid errors in the 
classification, we would need the entire water surface of 
the lake to have waves; areas without wind would be 
erroneously classified as ice. We see that the 
classification using co-pol data segments the image into 
two classes, and the result seems plausible. With the 
classification using the dual-pol data we have 
segmented the image into one class that is very bright in 
both backscatter images and one class for the rest of the 
pixels. These bright areas are probably land areas that 
have been included because of imperfections in the lake 
mask. In this example, we degrade the classification 
result by including the cross-pol data. Since the 
backscatter signatures from thin smooth ice and calm 
water (or water in all states in cross-pol) are hard to 
separate, we would not recommend using cross-pol data 
for the freeze period. Also, we need scenes with waves 
on the water to be able to use the co-pol data with any 
confidence. Note that we selected the labels for the 
classes manually for this scene, as the higher 
backscatter in co-pol represent the water in this case.  
 
 

 
Figure 3. Segment of Lance data from 20130528 over 

Torneträsk 

 

Likewise, we show the result  from  20130529 in  Fig. 2. 
The backscatter images show the ice-free water  as  dark 
areas and the ice-covered areas as bright in  both  co-pol 
and cross-pol. We also note some areas that are bright in 
co-pol and dark in cross-pol, which are most likely areas 
where wind is causing waves. Thus, we assume  that  the 
2D  input  vectors  consist  of  three  classes:  calm  open 
water, open water with waves and ice-covered water. By 
combining   the  two  classes  with  the  lowest cross-pol 
mean   values,  we  get   a  final  product  indicating   ice 
covered and open water. If  we  use  the same  procedure 
on   only   the   co-pol   data,   we   also   get   a  visually 
acceptable classification result. However, we needed the 
cross-pol data to indicate that the class  with  the  middle 
mean value actually should  represent  water  instead   of 
ice. If we base  the  classification  on  only  the  cross-pol 
data,   we  can   segment   the   image   directly   into  two 
classes,  and the  results  are  not  that  different  from  the 
other   approaches.  To  support  our  conclusion  that  the 
middle   class  (high  co-pol  backscatter,  low   cross-pol 
backscatter) is not ice, we compare it to a  segment  from 



 

the MODIS Near Real-Time Images from the previous 
day in Fig. 3 
(http://rapidfire.sci.gsfc.nasa.gov/realtime/). By visual 
inspection, we see that our classification results appear 
to match this optical image. 
. 

4.2. Mjøsa 

The scene over Mjøsa on the 20130424 in Fig. 4 shows 
how the open water can be completely inseparable from 
the ice-covered areas in co-pol, while cross-pol gives a 
clear distinction between the two classes. Using only 
co-pol, we conclude that there is only ice in the image. 
The product based on cross-pol show some of the open 
water, but there are some “noisy” classifications of ice 
in the water areas. By using both polarizations at the 
same time, we get a cleaner and more plausible 
classification result.  
 

 

 

 
Figure 4. Upper: Backscatter images for Mjøsa on 

20130424, co-pol (left) and cross-pol (right). Middle: 

Classification results from co-pol only (left) and from 

cross-pol data only (right). Lower: Classification based 

on both co- and cross-pol data. 

 

The result for 20130502 are shown in Fig. 5. Here, the 
co-pol backscatter is somewhat confusing, with some 
small dark areas, brighter areas to the north and bright 
smooth areas at the centre of the lake. Based on the 
cross-pol image it looks like there is ice at the north end 
of the lake and open water over the rest of the lake. 

However, it is not clear if the darker areas in co-pol 
actually are calm open water or water covered by a thin 
ice layer that is undetectable in cross-pol. We segment 
the 1D input vectors into two classes, and the 2D input 
vector into three classes. To produce the final ice cover 
product, we combine the two classes with the lowest 
mean values in cross-pol. We note that there are some 
differences in the classification results based on the 
three different approaches. Here, either the result based 
on cross-pol only or the result based on both input data 
sets seem the most plausible.  
 

 

 

 
Figure 5. Upper: Backscatter images for Mjøsa on 

20130502, co-pol (left) and cross-pol (right). Middle: 

Classification results from co-pol only (left) and from 

cross-pol data only (right). Lower: Classification based 

on both co- and cross-pol data. 

 
4.3. Femunden 

In Fig. 6, we again see a situation where the backscatter 
from water and ice has overlapping values in co-pol. In 
the cross-pol image, the values are quite different from 
the two classes. Here, we use two classes for all three 
different input vectors. The results based on cross-pol 
only and the results from the 2D data set were almost 
identical, so we do not show the cross-pol result here. 
These results are far better than the result based on co-
pol only, which have many “noisy” classifications.  

http://rapidfire.sci.gsfc.nasa.gov/realtime/


 

 

Figure 6. Upper: Backscatter images for Femunden on 

20130516, co-pol (left) and cross-pol (right). Lower: 

Classification results from co-pol only (left) and from 

combined dual-polarization data (right). 

 

Finally, Fig. 7 from 20130518 show a situation with 
separability in the cross-pol image and in the co-pol 
image, but with a small bright area in co-pol probably 
caused by wind. In Fig. 2 the backscatter from the wind 
areas were actually distinguishable from the backscatter 
from ice, and it was natural to classify the co-pol image 
into three classes. Here, the backscatter values are 
similar and the 1D co-pol data suggests only using two 
classes.  

 

 
Figure 7. Upper: Backscatter images for Femunden on 

20130518, co-pol (left) and cross-pol (right). Lower: 

Classification results from co-pol only (left) and from 

combined dual-polarization data (right). 

 

Likewise, we use two classes for the 1D cross-pol data, 
but the full 2D data is segmented into three classes. The 

results from the combined data set were comparable to 
the result from only cross-pol, thus we omit the cross-
pol results from the figure. We see that the results from 
co-pol only classifies the wind area as ice, while the 
combined result classifies these areas as water. 
 
5. DISCUSSION 

We have investigated the potential advantage of 
combining co-pol and cross-pol data in unsupervised 
classification method for determining ice cover on lake 
surfaces in Northern Europe. While we have illustrated 
that cross-pol data can increase the separability of ice 
and open water on a lake in thaw, including the cross-
pol for the freeze up can decrease the classification 
accuracy. Including cross-pol data has been successfully 
done for sea ice classification (e.g., [10]). However, it is 
far less likely to encounter sea ice that is as thin and 
smooth as to be indistinguishable from water in cross-
pol, which is the main problem we had with the cross-
pol data. We also observed that by only using the cross-
pol data we risk a result with more spurious wrong 
classifications than combining the co-pol and cross-pol 
data. Generally, combining the two images in a 2D 
input vector seems to give the more plausible results. 
Note that even if the classification method is 
unsupervised, a manual step is required to remove 
scenes with only water or only ice, and scenes that 
simply do not have enough separability between ice-
covered and open water.  
 
Sentinel-1A will be launched in 2014. The sensor will 
be operated mainly in the interferometric wide swath 
mode (IW) over Europe, but also in the Extended Wide 
swath mode (EW) over parts of Sweden, Finland and 
Russia where most of the largest lakes in Europe are 
localised [11]. For the EW-mode with dual-polarimetric 
data we expect that the results reported above will be 
directly parallel. Similar resolutions should, but more 
frequent acquisitions should yield a good potential for 
accurate classification of lake ice. The IW mode will 
only be delivered with single polarimetric data (HH or 
VV) due to limitations in duty-cycle and downlink 
capacity. The IW mode will have better spatial 
resolution at the cost of smaller swath width and lack of 
cross-pol channel.  The higher spatial resolution, 25m 
for IW mode vs. 50m for EW mode, could in some 
cases (e.g. for river ice classification) be an advantage, 
but in most cases for large scale automatic lake ice 
classification, we expect that it will yield a poorer lake 
ice extent product. 
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