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ABSTRACT 

The European Space Agency created the Climate 

Change Initiative (CCI) to maximize the usefulness of 

Earth Observations to climate science.  Sea Surface 

Temperature (SST) is an essential climate variable to 

which satellite observations make a crucial contribution, 

and is one of the projects within the CCI program.  SST 

retrieval is dependent on successful cloud clearing and 

identification of clear-sky pixels over ocean.  At high 

latitudes image classification is more difficult due to the 

presence of sea-ice.  Newly formed ice has a 

temperature close to the freezing point of water and a 

dark surface making it difficult to distinguish from open 

ocean using data at visible and infrared wavelengths.  

Similarly, melt ponds on the sea-ice surface make image 

classification more difficult.  We present here a three-

way Bayesian classifier for the AATSR instrument 

classifying pixels as ‘clear-sky over ocean’, ‘clear-sky 

over ice’ or ‘cloud’ using the 0.6, 1.6, 11 and 12 micron 

channels.  We demonstrate the ability of the classifier to 

successfully identify sea-ice and consider the potential 

for generating an ice surface temperature record from 

AATSR which could be extended using data from 

SLSTR.  

 

1. BAYESIAN IMAGE CLASSIFICATION FOR 

SST RETRIEVAL 

Probabilistic cloud detection uses Bayes’ theorem to 

calculate the probability of an observation class (clear-

sky or cloud) given the satellite observations and prior 

knowledge of the background state [1].  In its general 

form this can be expressed as Eq. 1 where it is assumed 

that the prior background information is independent of 

the prior probability of a given class.   
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P denotes probability, y is the observation vector and x 

is the state vector.  Subscripts ‘o’ and ‘b’ denote the 

observed and background states respectively.  We apply 

this cloud detection algorithm to data from the 

Advanced Along-Track Scanning Radiometer (AATSR) 

instrument, using the 1.6, 11 and 12 μm channels during 

the day.  Over the oceans, the probability of the 

observations given the background state is split into two 

components: spectral and textural denoted by 

superscripts ‘s’ and ‘t’ in Eq. 2.  The textural probability 

density function (PDF) is constructed from the standard 

deviation in the 11 μm channel in a 3x3 pixel box 

centred on the pixel to be classified. 
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Clear-sky PDFs are simulated using the RTTOV 10.2 

[2] and VisRTM [3] radiative transfer models for the 

infrared and visible channels respectively.  Surface 

properties and atmospheric profiles are constrained 

using ERA-Interim ECMWF global reanalyses data.  

Cloud spectral PDFs and all textural PDFs are 

empirical, constructed offline using multiple years of 

data from the AATSR mission.   The prior probabilities 

of cloud and clear conditions are set using a global map 

of cloud probabilities. 

 

2. PERFORMANCE IN REGIONS OF SEA ICE 

Figures 1 and 2 give examples of the Bayesian cloud 

detection performance in high latitude regions.  When 

we establish a binary mask (clear/cloud) from the 

Bayesian scheme for SST retrieval purposes we want 

sea-ice to be classified as ‘cloud’ or ‘not clear’.  Figure 

1 shows a region of sea-ice shadowed by cloud.  In the 

baseline classifier we find that both areas highlighted by 

the white boxes have a high clear-sky probability but 

would be unsuitable for inclusion in a sea surface 

temperature (SST) record. 

 

    
Figure 1: False colour image and baseline Bayesian 

classifier performance for a region of sea-ice shadowed 

by cloud, marked by white boxes. 

 

Figure 2 shows a region of mixed ice.  The baseline 

classifier correctly identifies some of the thicker ice 
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towards the top and left hand side of the feature but 

wrongly classifies the mixed ice on the bottom right of 

the image as clear-sky over ocean.   

 
Figure 2: False colour image and baseline Bayesian 

classifier performance for a region of mixed ice, marked 

by white boxes. 

 

Table 1 summarises the baseline classifier performance 

with reference to a number of manually classified 

scenes from the SST Climate Change Initiative match 

up database.  Critically, 21.64% of all ice targets are 

misclassified as clear-sky over ocean which will affect 

SST retrieval. 

 
 Bayesian Classification 

Cloud Clear 

 

 

Validation 

Data 

Cloud 38804 1906 

Clear 151 8037 

Ice 4857 1341 

Cloud 95.32 % 4.68 % 

Clear 1.84 % 98.16 % 

Ice 78.36 % 21.64 % 

Classifier Accuracy 85.02 % 

 

Table 1: Baseline classifier performance for sea-ice 

affected regions with reference to manually classified 

cloud, ice and clear scenes.  Table presents results as 

total number and percentage of cases. 

 

3. CLASSIFIER DEVELOPMENTS 

In order to improve classifier performance for detecting 

clear-sky over ocean scenes a third class ‘clear-sky over 

ice’ was added for SST retrieval at high latitudes.  The 

Bayesian scheme can be generalised to ‘n’ number of 

classes as shown in Eq. 3 [4,5]. 
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Clear-sky over ice observations were modelled using 

the RTMs described in Section 1, with ERA-Interim 

skin temperatures (rather than SST) used to constrain 

surface temperature with a fixed error of 5 K.  Ice 

surface emissivity and reflectance is modelled based on 

observations of sun crust/compact snow surfaces [5]. 

 

Two further modifications to the classifier were made, 

first replacing the textural measurement in the 11 μm 

channel with the texture in the 1.6 μm channel which 

gave improved separation between the cloud and ice 

classes.  We also include an additional visible channel 

in the spectral PDF (0.6 μm).  Prior probabilities of the 

cloud, clear and ice classes remain constant at 0.8, 0.1 

and 0.1 respectively. 

 

4. THREE-WAY CLASSIFIER PERFORMANCE 

Figure 3 shows the performance of the modified 

classifier over the region of sea-ice in shadow presented 

in Section 2.  Here we see that the modified classifier 

now correctly identifies the entire ice sheet (shown by 

yellow colours in the false colour image) and the areas 

in both boxes affected by cloud shadow are no longer 

classified as clear-over ocean pixels.  

 

 
Figure 3: Modified Bayesian classifier (referred to as 

spectral textural modification) performance over a 

region of ice in shadow.  First two panels are as Figure 

1 for reference. 

 

Figure 4 shows the performance of the modified 

classifier over mixed ice.  In this example the certainty 

of the classifier has improved, with the thicker area of 

sea-ice no longer classified as clear-sky over ocean.  In 

the bottom left of the highlighted box, the classifier now 

correctly identifies individual leads in the mixed ice 

sheet. 

 

 
Figure 4: Modified Bayesian classifier (referred to as 

spectral textural modification) performance over a 

region of mixed ice.  First two panels are as Figure 2 

for reference. 

 

Table 2 summarises the performance of the classifier 

with reference to the manually classified observations in 

the validation dataset.  All ice misclassifications are 

now as cloud which is preferable for SST retrieval.  The 

Bayesian classifier also shows some skill at correctly 

identifying sea-ice with 77.72 % of observations 

correctly classified and a ~11 % increase in overall 

classifier accuracy.  

 

 



 

 Bayesian Classification 

Cloud Clear Ice 

 

 

Validation 

Data 

Cloud 39943 685 82 

Clear 83 8102 3 

Ice 1381 0 4817 

Cloud 98.12 % 1.68 % 0.2 % 

Clear 1.01 % 98.95 % 0.04 % 

Ice 22.28 %  0.0 % 77.72 % 

Classifier Accuracy 95.95 % 

 

Table 2: Modified Bayesian classifier performance with 

reference to manually classified cloud, ice and clear 

scenes.  Table presents results as total number and 

percentage of cases. 

 

Ice detection remains most difficult in cases of new/thin 

ice with low surface reflectance (not represented in the 

ice validation pixels defined above).  Development and 

testing of classifier performance under these conditions 

needs to be further pursued but is challenging due to the 

difficulty in identifying these regions in remote sensed 

imagery at infrared and visible wavelengths. 

 

5. CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

The modified Bayesian classifier in sea-ice affected 

regions shows improved skill in identifying clear-sky 

over ocean scenes.  The probabilistic method could be 

used to identify sea-ice for ice surface temperature 

retrieval and would be applicable to the Sea and Land 

Surface Temperature Radiometer (SLSTR) on Sentinel 

3. Further development is needed to apply this 

algorithm to the ATSR-1 and ATSR-2 instruments 

where observations in the 0.6 μm channel are either 

unavailable or limited and ensure sampling consistency 

over the entire data record.   
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