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ABSTRACT 

This paper presents results of LAI estimation from 
multi-polarimetric SAR data assessed for maize and 
winter wheat crop. Taking advantage of a large multi-
year data set of RADARSAT-2 and ground observations 
collected in Belgium and in The Netherlands, this 
research aims at improving a method that takes benefits 
of all linear polarizations to optimize the LAI 
estimation. The semi-empirical Water Cloud Model 
(WCM) is implemented to derive maize and winter 
wheat LAI values from each linear polarization. The 
cross-polarization and the VV polarization were found 
the most relevant polarization to retrieve maize and 
wheat LAI through this model. A combination of the 
retrieved LAI and their associated errors for each 
polarization is then computed to improve the LAI 
estimation. 
 
1. INTRODUCTION 
 
In agricultural applications, development of information 
systems of monitoring of agricultural production has 
become a major objective to anticipate difficult 
situations. The Leaf Area Index (LAI) is a key 
biophysical variable for crop growth monitoring. SAR 
data are seen of great potential for LAI monitoring 
thanks to their systematic acquisition offering a good 
temporal resolution along the crop growing season. 
Moreover, an important opportunity has been offered by 
the launch of polarimetric spaceborne SAR sensors. The 
RADARSAT-2 sensor presents a quad-polarization 
mode that multiplies information in one image by the 
simultaneous acquisition of the four linear polarizations 
(HH, VV, VH, and HV). Furthermore, SAR signal is 
very sensitive to plant water content, a variable highly 
correlated with the LAI during the vegetative phase.  

This relationship between the sensitivity of microwave 
dielectric constant and plant water content has led to 
much effort devoted to investigate the link of SAR 
sensors to the crop parameters. This sensitivity was 
observed for sugar beet [1], sugarcane [2], rice [3] and 
[4], maize [5] and [6] , potato [7]  and wheat  [8] and 
[9].  

Interaction between polarized microwaves and 
scattering elements of the canopy lead to differences 
both in the energy backscattered in those different 
polarizations and in the penetration through the soil. 
Thus, it is expected that the combination of microwave 

signature at different polarizations may provide 
different and complementary information on vegetation 
conditions. Several authors already developed empirical 
relationships between dual polarization ratios and 
physical parameters of crop fields. For example, [6] 
investigated the sensitivity of radar to maize crop 
growth by considering a wide range of frequencies and 
angles and all linear polarizations. Good correlations 
(larger then 0.7) with maize biomass and height were 
achieved by the co-polarization and cross-polarization 
ratios at C-band and observation angles above 30°. 
From a simulated data set, [5] found that dual-
polarizations indices were sensitive to maize growth; 
the VV/VH polarization ratios computed from signal 
recorded at high incidence angle (35° to 45°) could 
assess the crop growth till LAI reaches 4.9 m²/m².  The 
reference [10] showed that the L-band co-polarization 
ratio presents high correlation with grassland and winter 
wheat water content (R²=0.68). Radar’s sensitivity to 
biophysical parameters at different polarizations was 
observed for winter wheat [11]. The authors found the 
ratio HH/VV at C-band (with an incidence angle equal 
to 40°) to be strongly related to above-ground biomass 
with a correlation coefficient of 0.87. Reference [12] 
found a strong relation between the co-polarized ratio 
and wheat biomass water content. The cross-polarized 
ratio at C-band has been used for sugarcane LAI by 
[13]. Some attempts at using empirical relationships 
between HH/VV ratio and wheat LAI have been 
performed by [14], with a determination coefficient of 
0.82. The reference [15] showed that biomass retrieval 
benefits from the availability of cross-polarization data. 
The reference [16] reported than L-HV backscatter was 
highly correlated (r=0.83) with vegetation biomass for 
broadleaf crops.  

Next to various empirical relationships developed to 
retrieve crop variables from SAR data, semi-empirical 
model, such the Water Cloud Model (WCM) have been 
widely used for agricultural applications ( [17]; [18]; 
[19]; [20]). Although these studies demonstrated the 
performances of the WCM to retrieve crop LAI from C-
band SAR data, this research aims to use each linear 
polarization from polarimetric SAR images for maize 
and wheat LAI estimation. The objective is to improve 
maize and wheat LAI estimation and to reduce its 
associated uncertainty thanks to the potential of 
polarized C-band SAR sensors while using the WCM. 
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2. METHODOLOGY 

Use of SAR signal for crop growth monitoring often 
relies on radiative transfer models. In this study, the 
selected model for maize and winter wheat LAI 
estimation is the semi-empirical WCM [21]. In order to 
retrieve LAI values through model inversion, model 
parameters need to be calibrated first. Four parameters 
(A, B, C and D) are thus calibrated. During the 
calibration procedure, the model expresses the 
backscattering coefficient (σ°) as function of the LAI, 
the surface volumetric soil moisture (Vm) and the local 
incidence angle (θ). By contrast, during the inversion, 
the LAI is function of the surface volumetric soil 
moisture (Vm), the backscattering coefficient (σ°) and 
the local incidence angle (θ). The calibrations and 
inversions of the model were done separately for each 
linear polarization – VV, HH and HV – giving three 
estimations of the LAI – named LAIHH, LAIVV and LAIHV 
– for each observation of each data set.  

Calibrated parameters covariance and correlation 
matrices were estimated thanks to the Hessian matrix of 
the calibration objective function and permit to assess 
possible biases and instability problems in the 
calibration process. In order to analyze the impact of 
this instability, 1000 vectors of calibrated parameters – 
A, B, C, D – were simulated using a multivariate 
Gaussian assumption for their distribution. LAI 
distributions were then computed for each observation 
and polarization. This technique provides us a way to 
assess uncertainty on LAI values as the quality of the fit 
for the model varies. The standard deviations on LAI 
estimations were calculated for each polarization by 
averaging the LAI variance of each observation, named 
varVV, varHH, varHV. Assuming those distributions as 
independent Gaussian, they were combined to give LAI 
estimates with minimum variance by using the 
following formulas for the expectation and variance:   
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This LAI estimation was named LAIpond. 

 

3. WATER CLOUD MODEL 

The Water Cloud Model considers the canopy can be 
modeled as a water cloud whose droplets are held in 
place by the vegetation. The droplets are randomly 
distributed, have all the same size and are smaller than 
the wavelength [22]. The backscattering coefficient 
(σ0

total) can be formulated as the incoherent sum of the 
direct contribution of the vegetation (σ0

veg) and the 
contribution of the soil (σ0

soil) attenuated by the 
vegetation (t²): 

  0200 ²/² soilvegtotal tmm                                             (3) 

with:       )1(cos²/² 2tAmmo
veg                           (4) 

 )cos/.2exp(2 LAIBt                               (5) 
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where θ is the local incidence angle, Vm is the 
volumetric soil moisture, A, B, C, D the model 
coefficients. Parameter A is related to the scattering 
albedo of the canopy and B to its vertical depth [23]. C 
is assumed to be constant and represents the sensitivity 
of the signal to the soil moisture, D is assumed to be 
specific of the radar configuration and the soil 
roughness [23]. The linear relationship between soil 
backscattering coefficient and the volumetric surface 
soil moisture is based on experimental evidence 
indicating that the scattering coefficient of soil 
expressed in dB is approximately linearly dependent on 
the volumetric soil moisture content Vm (kg/m³) [21].  

Water Cloud Model calibration  

Calibration was run for each polarizations 
configuration. Four variables are needed: the LAI, the 
surface soil moisture (Vm), the SAR backscattering 
coefficient (σ0

total) and the local incidence angle (θ). The 
four parameters (A, B, C and D) are calibrated by non-
linear regression. Non-linear regression relies on the 
minimization of the Sum of Squared Deviations (SSD) 
between the measured signal (in dB) and the 
corresponding simulated values (in dB). The 
minimization function algorithm used is the Nelder-
Mead type simplex search method [24].  

Water Cloud Model inversion 

The inverse equation (7) was used to estimate maize and 
winter wheat LAI from the backscattering coefficient, 
the local incidence angle and the surface soil moisture.  
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The same SAR data and soil properties were used for 
both calibration and inversion. Thresholds were defined 
for signal values at which inversion led to values that 
don’t fit to the model. Those signal values correspond to 
LAI of 0.001 and 4 m²/m². This inversion forces a 
retrieved LAI necessarily below 4. This threshold value 
was used as prior information because of the saturation 
effect of the SAR signal on plant development [25].  

 
4. STUDY SITES AND DATA 

For this research, two data sets containing values for 
maize and two data sets for winter wheat are considered. 
These data sets hold in values of the four variables 
needed for the calibration of the WCM, i.e. LAI, surface 
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soil moisture, SAR backscattering coefficient and local 
incidence angle.  
 
The first data set (i) was obtained during the AgriSAR 
campaign carried out by ESA in Flevoland [26]. The 
second (ii) was acquired over Belgium and Flevoland 
during the 2008 and 2009 maize growth seasons. The 
two last (iii) and (iv) were obtained during the 2009 and 
2010 winter wheat growing season in Belgium. 
(i) AgriSAR maize data set 
The AgriSAR campaign was lead in Flevoland in 
central Netherlands. LAI data were derived from 
RapidEye optical imagery at three dates. More 
information about this LAI retrieval method can be 
found in [27]. Surface soil moisture (5 cm depth) data 
were measured on the ground using Thetaprobe [28]. 
Seventeen quad-polarization SLC RADARSAT-2 data 
were acquired from the 1st of June to the 9th of July, 
corresponding to the beginning of the maize growing 
season. The SAR preprocessing chain includes multi-
looking, geocoding and radiometric calibration to 
convert SLC products into Geocoded Terrain Corrected 
(GTC) products with a spatial resolution of 20 m. The 
per-field mean backscattering coefficient and local 
incidence angle were extracted for each parcel. Only the 
maize fields where the row orientation is mainly 
perpendicular, i.e. 50° to 90°, to the SAR beam were 
kept. Indeed, [28] and [29] showed that the planting row 
direction effects can cause significant backscatter 
differences between fields with the same crop type and 
crop condition for linear co-polarizations. The reference 
[19] demonstrated also that the relative orientation of 
the maize row with respect to the SAR beam direction 
has to be considered. Tab.1 summarizes the AgriSAR 
2009 data set, including the data of acquisition, the 
mean values of both soil moisture and LAI, and the 
number of observation.  
 
 
 
Table 1. AgriSAR 2009 and Belgium and Flevoland 
2008/2009 maize data sets 

Date Site Pass 
direction 

Inc. 
angle 

(°) 

Vm 
(%) 

LAI 
(m²/m²) 

N. 
obs  

1/06/2009 Flevoland Desc. 32.2 29.6 0.3 26 
1/06/2009 Flevoland Asc. 33.3 29.5 0.2 50 
8/06/2009 Flevoland Desc. 37.3 35.5 - 32 
8/06/2009 Flevoland Asc. 29 36.7 - 49 
11/06/2009 Flevoland Asc. 40.9 41.4 - 98 
15/06/2009 Flevoland Desc. 41 33.8 - 36 
15/06/2009 Flevoland Asc. 24.3 33.8 - 49 
18/06/2009 Flevoland Asc. 27.8 31.9 - 51 
25/06/2009 Flevoland Desc. 32.2 26.4 1.3 26 
25/06/2009 Flevoland Asc. 33.3 25.8 1.3 16 
2/07/2009 Flevoland Desc. 37.3 26.1 2 25 
2/07/2009 Flevoland Asc. 29 25.7 2 36 
5/07/2009 Flevoland Asc. 40.9 30.7 - 98 
9/07/2009 Flevoland Desc. 41 37.4 - 36 
9/07/2009 Flevoland Asc. 24.3 37.8 - 49 
12/07/2009 Flevoland Desc. 27.8 39.9 - 57 
12/07/2009 Flevoland Asc. 37.2 37 - 50 

30/06/2008 Belgium  Asc. 27.1 19.3 1.8 5 
1/05/2009 Belgium  Desc. 27.1 22.2 0.002 1 
25/05/2009 Belgium  Desc. 28 20.2 0.08 7 
1/06/2009 Belgium  Asc. 28 17.5 0.13 3 
18/06/2009 Belgium  Desc. 27.1 22.3 0.5 7 
25/06/2009 Belgium  Desc. 31 19.2 0.8 5 
8/06/2009 Flevoland Desc. 37.2 24.6 1 5 
2/07/2009 Flevoland Desc. 37.2 17.1 3.5 1 

 
(ii) Belgium and Flevoland 2008/2009 maize data set 
These data were acquired over various maize fields in 
Belgium and in The Netherlands along the beginning of 
the 2008 and 2009 growing seasons. Eight polarimetric 
RADARSAT-2 images were acquired on the 30th of 
June 2008 and from the 1st of May to the 2nd of July 
2009. The SAR preprocessing chain includes multi-
looking, geocoding and radiometric calibration with 
correction for the local incidence angle. A subset was 
applied excluding maize fields smaller than 3 ha and 
including only the perpendicular row-oriented fields to 
the SAR beam direction. In situ LAI measurements 
were collected on the ground during intensive field 
campaigns during 2008 and 2009 maize growing 
seasons in Belgium and in Flevoland. The LAI was 
either measured with LAI-2000 instrument (LiCor) or 
by taking hemispherical photographs processed with the 
CAN-EYE software1. For more details about this second 
technique, see [30]. Surface volumetric soil moisture 
was estimated thanks to the Soil, Water, Atmosphere 
and Plant model (SWAP). The SWAP model simulates 
transport of water, solutes and heat in the soil [31]. It 
was tuned to maize and winter wheat fields integrating a 
generic crop module WOFOST (World Food Studies).  
Soil surface moisture estimated through the SWAP 
model was found to be sufficiently accurate for maize 
LAI retrieval from SAR data through the Water Cloud 
Model by [32]. Tab. 1 summarizes the Belgium and 
Flevoland 2008/2009 data set.  
 
Table 2. Belgium 2009 and 2010 winter wheat data sets 

Date Site Pass 
direction 

Inc. 
angle 

(°) 

Vm+ 
(%) 

LAI* 
(m²/m²) 

N. 
obs   

14/04/2009 Belgium  Asc. 28 20.5 1.7 18 
1/05/2009 Belgium  Desc. 27.1 20.3 2.5 16 
8/05/2009 Belgium Asc. 28 18.2 3.1 12 
25/05/2009 Belgium Desc. 28 19.1 3.7 20 
1/06/2009 Belgium Asc. 28 16.1 3.8 21 
18/06/2009 Belgium Desc. 27.1 20.5 3.4 21 
25/06/2009 Belgium Desc. 31 19.6 3.1 10 
17/05/2010 Belgium  Dsc. 40.2 16.62 2.87 15 
24/05/2010 Belgium Dsc. 43.6 11.3 4.21 15 
27/05/2010 Belgium Dsc. 31.4 27.12 4.75 15 
31/05/2010 Belgium Dsc. 46.8 19.3 5.14 15 
13/06/2010 Belgium Dsc. 26.9 16.47 6.09 15 
20/06/2010 Belgium Dsc. 31.3 11.53 5.89 15 
7/07/2010 Belgium Dsc. 26.9 9.7 4.47 15 
11/07/2010 Belgium Dsc. 43.6 21.07 3.9 12 
18/07/2010 Belgium Dsc. 46.8 16.48 2.97 15 
21/07/2010 Belgium Asc. 22.1 10.85 2.48 15 
28/07/2010 Belgium Dsc. 40.2 11.02 1.46 15 

 
                                                           
1 CAN-EYE software – http://www.avignon.inra.fr/can_eye 



 

(iii) and (iv) Belgium 2009 and 2010 wheat data set 
The research concerning winter wheat is based on two  
data sets in Belgium. Two temporal series of 7 
RADARSAT-2 and 11 RADARSAT-2 have been 
acquired during the 2009 and 2010 wheat growing 
season (Tab. 2). The processing of the images series, the 
use of the SWAP model and the ground campaign is the 
same as the data set (ii). 
 
5. RESULTS AND DISCUSSION 

5.1. Water Cloud Model Calibration 
The Water Cloud Model was calibrated for each data set 
and polarization.  Fig. 1 shows the calibration results for 
the maize datasets. The mean Sum of Squared 
Deviations (SSD) between the measured signal and the 
corresponding simulated values varies from 0.73 to 1.83 
dB. Cross-polarization calibration seems the most 
interesting because of its much larger range of observed 
backscattering coefficient. The evolution of 
depolarization properties showed by the maize canopy 
for various development stages provides more 
information than the progressive attenuation of the co-
polarized signal by the vegetation. 
Fig. 2 illustrate the results related to the calibration of 
the wheat 2009 data set. In this case, the dispersion is 

significant with a mean SSD between 2.3 and 6.47 dB. 
The large range of observed backscattering signal for 
both datasets shows that the polarization VV is the most 
interesting. 

5.2. Analysis of the model stability 
The covariance and correlation matrices of the 
calibrated parameters A, B, C and D were estimated 
thanks to the Hessian matrix. Tab.  3 presents the values 
of calibrated parameters, A, B, C and D, their variances 
and their variation coefficient for maize dataset. This 
shows the high sensitivity of the calibration to the data 
set and/or the low sensitivity of the model to this 
parameter. Parameters related to the soil moisture (C 
and D) present higher variation than vegetation related 
parameters (A and B) for all data sets. The calibrated 
parameters with highest variances are found for the (ii) 
data set. This latter presents the more inhomogeneous 
conditions while mixing agro-ecological regions and 
growing seasons. This lack of homogeneity could 
explain high variances values. Regarding winter wheat 
(data not shown), the (iv) dataset presents higher 
variation for parameters A and B, it could be the cause 
of a heterogeneity of incidence angles and a reduced set 
of LAI < 4. 
 

 
Figure 1. Measured versus simulated backscattering coefficient (σ°) after Water Cloud Model calibration for VV, HH 

and HV polarizations using the AgriSAR 2009 (n=180) (i), The Belgium and Flevoland 2008/2009 (n=34) (ii) data sets 
for the model calibration. 

 

 
Figure 2. Measured versus simulated backscattering coefficient (σ°) after Water Cloud Model calibration for VV, HH 

and HV polarizations using the Belgium wheat 2009 (n=104) (iii) data sets for the model calibration. 

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 0.82SSD=

VV

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 0.73SSD=

HH

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 0.99SSD=

HV

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 0.24SSD=

VV

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 0.29SSD=

HH

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 0.53SSD=

HV

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 1.83SSD=

VV

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 1.24SSD=

HH

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

Measured ° (dB)

S
im

u
la

te
d
 

° 
(d

B
) 0.91SSD=

HV

(i)

(ii)

(iii)



 

Table 3. Calibration parameters A, B, C and D values, variances and variation coefficients for each data set. 
Data set Pol A Var (A) Var. 

coef. B Var (B) Var. 
coef. C Var (C) Var. 

coef. D Var (D) Var. 
coef. 

(i) Maize  AgriSAR 2009 

VV 0.12 0.00001 0.03 0.86 0.0026 0.06 4.7 1.9 0.29 618 6.3 0.00 

HH 0.18 0.00002 0.03 0.63 0.00098 0.05 4.7 1.3 0.24 526 5 0.00 

HV 0.04 0.00001 0.06 0.23 0.00028 0.07 5.0 0.9 0.19 803 0.4 0.00 

(ii) Maize- Belgium & 
Flevoland 2008/2009 

VV 0.39 0.0012 0.08 0.34 0.0239 0.43 46.9 101.1 0.21 15.2 4.3 0.13 

HH 1.27 2.6386 0.9 0.05 0.0087 1.40 36 52.1 0.2 13.3 2.4 0.12 

HV 0.13 0.0028 0.36 0.13 0.0071 0.59 70 115.6 0.16 32.4 5.6 0.08 

 

5.3. Water Cloud Model inversion and LAI retrieval 
Maize and wheat LAI estimates were obtained after 
model inversion from the backscattering coefficient, the 
local incidence angle and the surface soil moisture using 
equation (7). The error affecting the LAI estimation was 
calculated thanks to a comparison with the reference  

LAI values from the calibration data set. The Fig. 3 and 
4 present the simulated LAI as a function of reference 
LAI for each polarization and each data set. RMSEs on 
LAI estimation vary from 0.46 to 1.76 m²/m² for maize  

and 0.54 to 1.88 m²/m² for winter wheat. Similar results 
are observed for the two maize data. For these latter, the 
cross-polarization offers the most promising results with 
a smaller RMSE value compared to the two co-
polarizations. Especially at the very beginning of the 
growing season, small LAI are well estimated. By 
contrast, using VV polarization in particular, small LAI 
are often overestimated. LAI estimates from cross-
polarization still present overestimated LAI throughout 
the growing period observed. These estimations reach 
often the threshold value fixed to 4 m²/m².  

 
(i) 

 
(ii) 

Figure 3. Reference LAI versus simulated LAI, after Water Cloud Model inversion using VV, HH and HV polarizations 
and, after LAI recalculation by weighting VV, HH, and HV retrieved LAI using the AgriSAR 2009 data set (n=180 (i) 

and the Belgium and Flevoland 2008/2009 data set (n=34)(ii). 
 



 

 
Figure 4. Reference LAI versus simulated LAI, after Water Cloud Model inversion using VV, HH and HV polarizations 

and, after LAI recalculation by weighting VV, HH, and HV retrieved LAI using the Belgium wheat 2009 data set 
(n=118) (iii). 

 

In spite of high SSD obtained for the model calibration, 
the inversion performances are better for the 2009 wheat 
data set (iii) than for the 2010 (data not shown). The VV 
polarization for the year 2009 presents the best 
estimation with a RMSE of 0.65, compared to others 
polarizations. For small LAI (<3), this polarization 
shows a good estimation while HH and HV polarization 
tends to underestimate LAI. Concerning the year 2010, 
the LAI estimations are not explicit even for VV 
polarization where LAI are underestimated (data not 
shown). The heterogeneity of incidence angles and the 
absence of a larger range of LAI could explain this 
result for 2010. 

The LAI distribution summary statistics are reported in 
Tab. 7 for maize and wheat data sets. This provides us a 
way to assess uncertainty on LAI values as the quality 
of the fit for the model varies. In maize, the cross-
polarization and the LAI taking account all polarizations 
present a much lower standard deviation value 
compared to the co-polarization. Concerning the wheat 
data set, the VV polarization and the ponderation show 
the lower standard deviation for (iii) dataset, the most 
homogeneous. 

Table 7. Correlation matrices of the calibration 
parameters for each data set.  

Data set Polarization RMSE on 
LAI 

Std on 
LAI 

(i) Maize - AgriSAR 
2009 

VV 1.09 1.83 
HH 0.97 1.24 
HV 0.46 0.91 

Pond 0.65 0.02 

(ii) Maize- Belgium & 
Flevoland 2008/2009 

VV 1.76 1.02 
HH 0.87 1.17 
HV 0.66 0.52 

Pond 0.59 0.25 

(iii) Wheat - Belgium 
2009 

VV 0.65 0.16 
HH 0.91 0.79 
HV 0.99 0.79 

Pond 0.62 0.02 

(iv) Wheat - Belgium 
2010 

VV 1.25 0.55 
HH 1.6 1.11 
HV 1.88 1.15 

Pond 0.97 0.18 
 

 

 

5.4. Polarimetric responses of the maize canopy 

For a better understanding of these results, the different 
curves reported on Fig. 5 provide the simulated 
backscattered signal as a function of LAI for different 
soil moisture contents after WCM calibration for each 
polarization using the maize (ii) data sets. Large 
differences are observed concerning the soil 
contribution and consequently the total contribution. 
Looking first only at the contribution of the vegetation 
(blue curves), SAR signal seems to saturate the earliest 
with the VV polarization and the later with the cross-
polarization involving a better LAI retrieval for medium 
LAI values with the cross-polarization. 

 

 
 

Figure 5. Backscattering coefficient simulation 
according to LAI for different soil volumetric moisture 
values after WCM calibration for each polarization 
using the Belgian and Flevoland data set (ii). Green 
curves represent the total backscattering at different 
soil moisture values (from 5 to 40% by step of 5%). The 
red curve represents the backscattering coefficient from 
the soil attenuated by the vegetation for soil moisture of 
5 and 40%. The blue curve represents the vegetation 
backscattering coefficient. 
 
The analysis of Fig.5 enables to explain the sensitivity 
of polarimetric responses of maize crops. The sensitivity 
of SAR signal to maize growth for different soil 
moisture levels differs from one polarization to another. 
Indeed, for VV polarization, the lowest sensitivity of 
SAR signal to crop LAI is observed for intermediate 
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soil moisture values while for HV-polarization, this 
sensitivity is low for high soil moisture levels.  

6. CONCLUSIONS AND PERSPECTIVES 

This research analyzed methods for maize and wheat 
LAI retrieval from SAR data combining all information 
contained in polarimetric SAR data. The WCM was 
calibrated and inverted for each polarization and for 
four data sets. The C-band cross-polarization was found 
the more relevant to retrieve maize LAI from 
polarimetric SAR data using the WCM and allows a 
RMSE on LAI estimation of 0.46 m²/m² in the best case. 
Wheat LAI estimation with VV polarization was the 
most relevant with a RMSE of 0.16 for the (iii) dataset. 

The RADARSAT-2 and the SENTINEL-1 sensors offer 
multi-polarized C-band information that can directly be 
used in order to retrieve LAI. A combination of the 
retrieved LAI weighting by their associated errors for 
each VV, HH and HV polarization was carried out and 
rather improved the LAI estimation and surely reduced 
its associated uncertainty compared to LAI retrieved 
from single polarizations. With this method, the 
standard deviation on LAI retrieval decreases 
significantly comparing to the single polarization use 
for its retrieval.  

In the future, an analysis of the evolution of the WCM 
calibration with different incidence angles should be 
investigated.  

Another foreseen perspective that may follow this study 
is its promising application to other kind of crops. The 
results are assumed to be applicable for other similar 
broad leaves crops as sunflower or sorghum. They can 
maybe be applicable to other kinds of crops because the 
maize can be considered as a transparent canopy for the 
C-band signal and presents as well the difficulty of its 
row-orientation influence on the SAR signal.  
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