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ABSTRACT 

The series of upcoming Sentinel constellations is 
expected to provide satellite imagery of major 
significance for Earth-observation (EO) studies. The 
accuracy and the enhanced characteristics of the data 
will play an essential role for monitoring and mapping 
the land surface. Two critical issues in such-studies are 
how to deal with the heterogeneity of the landscape and 
how to treat the temporal changes, both of which 
usually require information of high spatial, spectral and 
temporal resolution. Taking these matters under 
consideration, the synergistic use of the advanced 
features of Sentinel-2 (S-2) and Sentinel-3 (S-3) optical 
sensors is investigated in this paper. In particular, an 
unmixing-based fusion technique is proposed with the 
aim of integrating in a composite image the high spatial 
resolution of S-2 (up to 10m) and the high spectral 
resolution of S-3 (21 bands). The fused products are 
intended to benefit significantly the land monitoring 
applications such as land-use change, forest cover, 
photosynthetic activity, soil quality, etc. 
 
1. INTRODUCTION 

Timely and accurate geoinformation is required for the 
effective monitoring and management of environmental 
changes in regional and global scale. The evolution of 
remote sensing sensors has supported the efforts to this 
direction by providing imagery with improved features. 
Detailed thematic and geophysical products at fine 
scales are currently feasible, facilitating the observation 
of phenomena indicating environmental alterations, like 
deforestation, desertification, urbanization, vegetation 
seasonal changes, etc. Nevertheless, in cases of rapid 
and emergent changes, the temporal resolution of 
current remotely sensed data is often inadequate for 
operational monitoring purposes. The temporal 
availability of the data could be further decreased due to 
cloud contamination that often hampers their effective 
usage [2], [13], [20]. Moreover, although time series 
analysis has been considered as a u seful tool to earth 
monitoring and change detection in a constant way, the 
spatial resolution of these data permits only the 
generation of products at low-resolution scales [7].  

Currently there is no instrument that combines all these 
capabilities, and typically sensors with high spectral and 
temporal resolutions provide imagery data at low spatial 
resolution. Even though the Sentinels mission will 
provide data at rather high spatial (S-2) and spectral (S-
3) resolution as well as with good temporal frequency 
(S-2 and S-3), the integrated data have a great potential 
to improve further the environmental monitoring [5], 
[13]. To this end image fusion approaches have been 
introduced towards combining in one composite image 
the advantages of multiple datasets acquired by different 
sensors and at different dates [18], [20], [1]. The 
unmixing-based image fusion methodologies have been 
proposed as an effective approach  t o cope with the 
mixed pixel problem and ameliorate the quality of fused 
image [18], [20], [21]. Spectral unmixing is the 
decomposition of a mixed pixel into a number of pure 
spectra (endmembers) weighted by their proportions in 
the pixel (abundances) [10].   
 
The developed methodology in this research is based on 
the one that [18] have introduced in order to integrate 
the thermal band with the corresponding reflective 
bands of Landsat/Thematic Mapper (TM). The 
unmixing process was accomplished in the following 
steps: the classification of the high resolution image, the 
estimation of each class contribution to the signal of 
low-resolution image, the calculation of the pure spectra 
(endmember) for every class and the restoration of the 
unmixed image pixel. The procedure was window-based 
and the value of the central pixel was retrieved by the 
contextual information of the surrounding pixels in the 
window. The proposed unmixing methodology has 
demonstrated a significant improvement in sharpness 
and radiometric accuracy of the fused image in 
comparison to the original images.  
 
The fusion approach of [18], in its original and alternate 
forms, found many applications the following years, 
employing a variety of imagery. Reference [12] 
combined the bands of a simulated MERIS image and a 
Landsat/TM image to derive an image with the best 
characteristics of each sensor. The experimental results 
indicated that the methodology is advantageous over 
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other unmixing methods that require a-priori knowledge 
of endmembers and their spectral profiles. Nevertheless, 
the main drawback of the proposed approach is that 
there is not spectral variability between the pixels 
belonging to a class and all the pixels belonging to one 
class have the same spectral profile. Recently, [20] and 
[21] have presented a detailed implementation of the 
unmixing-based data fusion approach [18] to combine a 
time series of MERIS FR images and TM data towards 
land cover mapping and monitoring vegetation seasonal 
dynamics. The assessment of the quantitative accuracy 
of the resulted images showed the potential of the 
proposed image fusion analysis. The main limitation of 
the study was the temporal interval between the 
acquisition dates of input imagery data, so only MERIS 
images acquired at about the same date as the TM image 
could be merged.  
 
An alternative approach was proposed by [1] to 
overcome the above-mentioned shortcoming of [18] 
methodology. In particular, the suggested methodology 
employed a fuzzy classification approach with the aim 
to preserve the spectral variability between the pixels 
belonging to the same class inside the analysed window. 
The soft clustering algorithm of Self-Organizing Map 
(SOM) was selected to estimate the membership pixel 
values to each of the clusters. The fusion procedure 
followed [18] processing steps, but instead of utilizing 
the ‘hard’ value of a pixel correspondence only to one 
class, the membership values to all the possible classes 
are employed. The proposed fusion process was 
implemented on Envisat/MERIS and Landsat/TM 
images and the qualitative and quantitative assessments 
of the product image illustrated its potential in image 
fusion. However in all the current unmixing approaches, 

whether ‘hard’ or ‘soft’ classification is involved, the 
number of clusters is defined through a t rial and error 
process, i.e. through analysing the impact of the number 
on the final result.  
 
To this end, in an effort to eliminate user’s involvement 
in the procedure, the definition of the optimal number of 
clusters in each case study is attempted in this study. 
Clustering validation measures are engaged to assess the 
clustering algorithm performance and to determine the 
clusters number that best fits to the data. Moreover 
alternative fuzzy clustering approaches are investigated 
and compared with regard to their ability to handle a 
complex landscape. The estimated land cover 
memberships of high spatial resolution (HR) image 
pixel are involved in the unmixing procedure of low 
spatial resolution (LR) image pixel, assuring the spectral 
variability within the study image window. 
 
The paper is structured in the following way. The 
proposed unmixing-based image fusion, including the 
clustering process and the automatic definition of the 
optimal number of clusters, is described in Section 2. 
The experimental results on the imagery data and their 
quantitative and qualitative evaluation are analysed in 
Section 3. Section 4 is dedicated to discuss the 
methodology and the results, conclusions and future 
perspectives. 
 
2. DEVELOPED METHODOLOGY 

A flowchart that describes the overall developed 
methodology for unmixing-based fusion is presented in 
Fig.1.  

 
Figure 1. The flowchart of the developed unmixing-based fusion methodology 

 
 



 

In particular, the process is accomplished within the 
following steps: a) unsupervised fuzzy classification of 
HR image to obtain a land cover map, b) estimation of 
the classes contribution to LR image pixel, concerning 
the membership values of HR classified pixels, c) 
spatial unmixing of LR image pixel (estimation of 
classes endmembers) through a system of a linear 
mixture equations and d) generation of a HR fused 
image pixel based on the linear combination of the 
estimated classes endmembers and membership values. 
The unmixing processing of the LR image is based on a 
moving window. The value of the central LR pixel is 
retrieved by the contextual information of the 
surrounding LR pixels, exploiting the surface types as 
identified by HR image classification.  
 

 Unsupervised Fuzzy Classification  2.1.

In an unsupervised classification (clustering), the image 
pixels are grouped into unique clusters based on 
statistically determined criteria. The pixels with similar 
spectral characteristics are assigned to the same cluster 
having a certain degree of closeness or similarity. The 
critical issue in clustering is that the land-cover types 
are not known a priori and the number of clusters should 
be assumed, when there is no available ground reference 
information [8], [9]. Clustering can be either hard or 
fuzzy depending on the possible values of membership 
function. In hard clustering the membership function 
can get only two values, ‘1’ or ‘0’, indicating its 
assignment or not to the corresponding cluster. The 
concept of fuzzy theory is to soften this strict constrain 
by allowing the membership function to vary in a  range 
from 0 to 1 and by giving in this way a partial 
membership of each image pixel to all the clusters. Such 
a flexibility sets fuzzy clustering more suitable to handle 
indistinct boundaries, which are usually met in the 
natural environment [8], [16]. In this paper Fuzzy C-
Means (FCM) and Fuzzy Maximum Likelihood 
Estimation (FMLE) clustering are investigated and 
evaluated based on their performance in unmixing 
procedure. 
 
The FCM is based on minimization of the following 
objective function (1):  

Jq(𝑈,𝑉) =  ∑ ∑ (𝑢𝑖𝑘)𝑞  𝑐
𝑖=1

𝑛
𝑘=1 (𝑥𝑘 − 𝑣𝑖)2 , (1) 

where U is the membership function matrix of uik, V = 
(v1, v2, …, vc) is the vector of cluster centres (i.e., the 
means of the clusters), 𝑛 is the number of pixels, c is the 
number of clusters, q is the weighting exponent that 
controls the fuzziness of the clusters and it can be any 
real number greater than 1, and (𝑥𝑘 − 𝑣𝑖)2 is the 
distance between the image pixel and the cluster centre.  
 
 
 

The membership function of each pixel to the 
corresponding cluster is estimated by the function (2): 

uic =  
� 1
d2(𝑋𝑗,𝑉𝑖)

�

1
(q−1)

 

∑ � 1
d2(𝑋𝑗,V𝑖)

�c
i=1

1
(q−1)

 (2) 

In the case of FCM the distance (𝑥𝑘 − 𝑣𝑖)2 is the 
Euclidean distance between the pixel and the cluster 
centre. In the case of FMLE the distance is calculated 
according to fuzzy maximum likelihood estimation 
proposed by [6], where it is an exponential function that 
employs the covariance matrix 𝐹𝑖   and the prior 
probability 𝑎𝑖 of selecting ith cluster.  
 

Dij(𝑥𝑗 , 𝑣𝑖) =  �det(Fi)
ai

exp ��𝑋𝑗 − 𝑉𝑖�
TF−1(𝑋𝑗 − 𝑉𝑖)/2� (3) 

The membership degrees 𝑈𝑖𝑗
(𝑙) are interpreted as the 

posterior probabilities of selecting the ith cluster given 
the data point 𝑥𝑗.   

Uij
(l) = 1

∑ (𝐷𝑖𝑗(𝑥𝑗,𝑣𝑖)/𝐷𝑖𝑗(𝑥𝑗,𝑣𝑖))
2

(m−1) c
j

    (4) 

The process in both cases is iterated until the difference 
between the successive estimated membership values to 
be less than a s pecific termination value. The FMLE 
clustering algorithm is able to deal with the problem of 
large variability in cluster shapes, sizes and densities, 
but it needs a good initialization [8]. Therefore [8] 
proposed that the cluster centroids can be initially 
estimated by the FCM algorithm, with the intention to 
perform an optimal fuzzy partition with the FMLE 
algorithm in the next phase. 
 
Nevertheless, despite the clustering algorithm, the 
choice of the proper number of the clusters is always a 
serious matter for its optimal performance. A good way 
to deal with it, is to apply certain validation criteria with 
the aim to evaluate clustering performance within a 
range of cluster numbers. The optimal value of the 
criteria performance indicates the optimal cluster 
number [8], [3], [4], [11]. Reference [8] reported that 
the optimal data clustering is achieved when the clusters 
are well-separated, they have minimal volume, and the 
data points are close to the cluster centroids (high 
membership values). Therefore, based on the concepts 
of hypervolume and density, they proposed the Fuzzy 
Hypervolume Validity (FHV) and the Partition Density 
(PD), involving the fuzzy covariance matrix of the 
cluster and  membership function values. There is a 
variety of validation indices in the literature that 
measure the separation of the clusters, their partition 
and compactness [3], [4], [11], [23]. It is worth 
mentioning that none of the indices can be standalone or 
effective to all the data sets, as each of them has 
different measure context (compactness, separability, 



 

fuzziness, etc.), so their combination is proposed for 
defining the optimal classes number [23]. Thus, besides 
the Fuzzy Hypervolume Validity (FHV) and the 
Partition Density (PD), in this study the calculated 
indices were: the Partition Coefficient (PC), that 
involves only the membership values and defines the 
amount of “overlapping” between clusters, the Partition 
Index (SC), that is the ratio of the sum of compactness 
and separation of the clusters, the Separation Index (S), 
similar to SC but divided by minimum-distance 
separation and Xie and Beni's Index (XB), the ratio of 
the total variation within clusters and the separation of 
clusters [3], [23].   
 

 Spatial Unmixing 2.2.

2.2.1. Estimation of the classes contribution to LR 
image pixel 

Taking into consideration the land cover classes 
(clusters) defined in the HR image, the proportion of 
each class in the LR image pixel is estimated. The 
membership values 𝑈𝑖𝑘𝐻𝑅 of HR image pixel i to the 
corresponding class k are employed at this step. The 
contribution 𝐶𝐿𝑅 to LR image pixel is resulted as the 
average of all the class contributions 𝑈𝑖𝑘  to LR pixel 
footprint N, according to Eq.5. The critical issue at this 
point is the accurate co-registration between the two 
images. In this study, LR image pixel footprint is 
resampled on HR image pixel size, considering that 
point spread function (PSF) is rectangular. Therefore N 
is the number of HR image pixels within LR image 
pixel footprint. 
 

𝐶𝐿𝑅 = 1
𝑁
∑ 𝑈𝑖𝑘𝐻𝑅𝑖∈𝑁    (5) 

2.2.2.  Window-based Spatial Unmixing 
The central pixel of each study window is unmixed by 
inverting a system of linear mixture equations for all the 
pixels in the window (Eq.6). 
 

𝑆𝐿𝑅 = 𝐶𝐿𝑅 ∙ 𝐸 + 𝑒   (6) 

where 𝑆𝐿𝑅 is the spectra of LR pixel in the window, 𝐸  
is the mean LR pixel signal (endmembers), and 𝑒 is the 
residuals of the linear model. In order to avoid the 
transmission of possible classification or misregistration 
errors to the endmembers calculation, any class with 
contribution less than 5% (𝐶𝐿𝑅<0.05) is discarded [1]. 
The inversion of the equation system (Eq.6) and the 
retrieval of the endmembers 𝐸 is achieved by 
implementing the least-squares method on each band 
independently.  
 
 
 
 
 
 

As the problem is ill-conditioned, [18] and [1] proposed 
to minimize the cost function by adding a regularization 
term, so as to achieve a more stable solution (Eq.7).  

𝐸 = ��𝑆𝑖𝐿𝑅 −�𝐶𝑖𝐿𝑅 ∙ 𝐸𝑖𝑘
𝐾

𝑘=1

�
𝑖∈𝑊

2

+ 

𝑎 𝑤2

𝐾
∑ (𝐸𝑖𝑘𝐾
𝑘=1 −  𝑆′𝑘𝐿𝑅)2    (7) 

The second term is the regularization term, where w and 
K are the window size and the number of classes, 𝑎 is a 
regularization parameter and 𝑆′𝑘𝐿𝑅  is the pre-set 
endmember of the class k.  In this study the 𝑆′𝑘𝐿𝑅  values 
were defined according to the LR image pixel value 
with the highest abundance of each class. Nevertheless, 
there are many proposed methods in the literature to 
calculate the purest spectra (endmembers) [1].    
 

2.2.3.  Reconstruction of Unmixed-pixel  
In the final step, the values of the fused image pixels 
𝑆𝐹 are resulted by assigning the estimated endmembers 
𝐸 to every HR pixel according to the corresponding 
class. The class membership values 𝑈𝑖𝑘  are also taken 
into consideration, preserving in this way the spectral 
variability inside the analysed window. 
 

SF = A ∙ E     (8) 

3. Experimental Results and Evaluation  

 Data pre-processing  3.1.

The developed methodology was applied to an available 
dataset consisted of a Landsat-5 TM image acquired on 
1 May 2005 a nd a MERIS full resolution level 1b 
acquired on 2 May 2005. The TM image is geo-
referenced in UTM map projection (ellipsoid WGS84). 
The MERIS image was ortho-rectified by using the 
AMORGOS software provided by European Space 
Agency (ESA). In order to generate accurate geo-
location information, the ortho-geolocation algorithm 
employs the GETASSE30 high resolution Digital 
Elevation Model (DEM) and auxiliary files related to 
satellite navigation and attitude along the orbit. The 
images depict a semi-urban/rural area in the region of 
Thessaloniki in the North of Greece (44x64km). The co-
registration of the data was accomplished by applying a 
first order polynomial transformation and a nearest-
neighbour resampling. Approximately a total of fifteen 
(15) ground control points were selected and the overall 
root mean square error (RMSE) was around 0.45 pixels 
for the image registration procedure. Both images were 
in top of atmosphere (TOA) radiance.  
 
 



 

 Clustering Results and Optimal Cluster 3.2.
Number 

The land cover types of the study area were the FCM 
and FMLE clustering results. The optimal number of 
clusters was selected by applying a number of validation 
measures (§2.1). In each clustering case the optimal 
number clusters was explored in the range of K = [5,30]. 
The results of the validation measures didn’t indicate 
the same number of clusters as the optimal one, but this 
number was varied in the range of K = [10, 14] and K = 
[14, 17] for FCM and FMLE approach correspondingly. 
For the sake of simplicity only the PD and S validation 
results (§2.1) are presented here (Fig.2), as they were 
representative of the validation values trend of the other 
criteria. The results presented in Fig.2 showed that the 
extreme values, which are the optimal values indicators 
for these measures, are K=13 and K=16 for FCM and 
FMLE clustering approaches respectively.  

  
Figure 2. The Partition Density (PD) and Separation 
(S) index results of FCM and FMLE clustering methods 
 
Having combined all the criteria, the minimum possible 
number of clusters was selected, that was K=13, for 
FCM, and K=16, for FMLE (Tab.1). 
 
Table 1. The optimal number of clusters as a result of 
validity indices implementation 

Clustering  
Method  

      Validity  
Indices 

FHV PD PC SC SI XB 

FCM 14 13 13 10 13 13 
FMLE 16 16 17 14 17 16 

 
Taking into account the optimal number of clusters for 
both clustering approaches, the corresponding land 
cover classes and the membership values were 
employed for the following unmixing procedure.   

 
 Spatial-Unmixing based Fusion  3.3.

As the proposed unmixing approach is a window-based 
process, one of the user dependent parameters is the 
window size. In this study a range of window sizes w = 
[5, 15] was tested and the performance of the spatial 
unmixing algorithm was evaluated by implementing the 
standard measure of ERGAS index (Erreur Relative 

Globale Adimensionnelle de Synthèse) [22], [1], [12] 
(Eq.9), 

𝐸𝑅𝐺𝐴𝑆 = 100 ℎ
𝑙 �

1
𝑁
∑ 𝑅𝑀𝑆

𝑀𝑖
2

𝑁
𝑖=1        (9) 

where, h is the resolution of the high spatial resolution 
image; l is the resolution of the low spatial resolution 
image, N is the number of spectral bands involved in the 
fusion; RMSEi is the root mean square error computed 
between the degraded fused image and the original low 
resolution image (for the band i) and Mi is the mean 
value of the band i of the reference image. Taking under 
consideration that the resulted fused images should be 
as identical as possible to the original low-resolution 
image, in terms of spectral information, the ERGAS 
index value should be close to zero. The assessment in 
both cases was conducted involving the corresponding 
bands of the input imagery data, namely the first four 
bands 1-4 of Landsat and 3,5,7,13 of MERIS imagery. 
The error computation was twofold, at low and high 
spatial resolution to estimate the spectral and spatial 
distortion correspondingly.  
  
The quantitative results of fusion quality assessment are 
illustrated in Fig.3. In the first comparison between the 
fused and MERIS imagery the error was increasing as 
the window size was getting bigger (Fig.3a). The 
reverse trend was observed between the fused and TM 
imagery (Fig.3b). The fact that there are not optimal 
parameters that minimize the error at both cases hinders 
the selection of the best fusion result and a further 
analysis is required. Nevertheless, after a cl ose 
inspection in Fig.3, one can observe that the ERGASM 
has rather small values and without great variations in 
both clustering methods, so the window size doesn’t 
affect significantly the unmixing result. Moreover, the 
low ERGAS values in both cases indicated that the 
unmixing-based data fusion product preserved 
effectively the spectral and the spatial information of the 
input data. As far as the clustering method is concerned, 
the FMLE results are slightly better than the ones of 
FCM in all the cases.  

 
(a) (b) 

Figure 3. The ERGAS index as calculated for the fusion 
output after FCM and FMLE clustering methods and as 
a function of window size w and regularization 
parameter α, considering MERIS (a) and TM (b) as the 
reference image 
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The fusion outcome is shown in Fig.4, in combination 
with the input imagery of MERIS and TM, as well as 
the corresponding NDVI images. The fused image in 
this case was resulted for w = 9, because it was one of 
the window sizes that kept both ERGASTM and 
ERGASM at some of the lowest values. By a visual 
inspection in the images, differences are observed at the 
built-up areas, where the spatial resolution of the low-
resolution pixel was not suitable to handle the 

complexity of urban features. The NDVI images though 
indicated that the approach handled effectively the 
vegetated areas. To sum up, the experimental results and 
the performed quantitative evaluation demonstrated the 
potentials of the developed unmixing-based fusion 
methodology, despite the difficulties towards indicating 
the optimal parameters automatically and simplifying 
such a procedure.  

 

MERIS Landsat TM Fusion Output  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   
R,G,B: Bands 7,5,3 R,G,B: Bands 3,2,1 R,G,B: Bands 7,5,3 

   
NDVI NDVI NDVI 

Figure 4. The RGB visualizaton (top row ) and the NDVI (bottom row) results of the MERIS, Landsat and fused subset 
images 
 
4. Conclusions and Future Work 

In this study, an unmixing-based approach towards the 
multispectral/multisensor data fusion was developed, 
with the aim to combine in the future the advanced 
features of Sentinel-2 (S-2) and Sentinel-3 (S-3) optical 
sensors. Since there are no such data at present, the 
methodology was evaluated on Landsat/TM and MERIS 
imagery. Different approaches were tested by 
employing different clustering methods and unmixing 
parameters. The experimental results required the 
definition of the proper window size, which was 
accomplished by a trial and error process, employing 

evaluation measures of methodology performance. The 
quality assessment results indicated that the 
combination of FMLE clustering and regularized 
sliding-window unmixing produced the optimal fusion 
image. It is worth mentioning at this point that in this 
study the optimal number of the clusters was defined by 
implementing a range of evaluation criteria, establishing 
in this way a more robust methodology.  
  
Moreover, the proposed approach is under investigation 
concerning its effectiveness on various sites and sensors 
data, as well as on time series imagery. The availability 



 

of fused images on successive dates would be of great 
interest for purposes concerning Earth observation 
purposes, i.e. land cover mapping, monitoring 
vegetation dynamics, etc., at high spatial, spectral and 
temporal resolutions. A further objective of this research 
is the estimation of fusion product accuracy and 
uncertainty. To this end, Monte Carlo statistical method 
will be employed to evaluate the effectiveness of 
multisource integration processing, taking into account 
the uncertainty of the input data as well as the error 
sources of fusion procedure. 
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