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ABSTRACT

The Earth Observation Land Data Assimilation System
(EO-LDAS) project is uses the weak constraint
variational data assimilation (DA) technique for the
estimation of land surface parameters and their
uncertainties by the remote sensing data. The main goal
of the project is to make full use of different sources of
optical sensors data, to provide improved estimation of
structural and biophysical parameters of land surface.
Therefore a software tool – the EO-LDAS prototype –
was developed.

Within the frame of this work, the possibilities of EO-
LDAS have been demonstrated for MERIS/Envisat and
CHRIS/Proba data acquired during ESA SPARC 2004
field campaign over an agricultural test-site near Barrax
(Spain).

We have used a regularization approach and conditions
of spatial smoothness in order to better constrain the
problem. The EO-LDAS prototype has been used to
implement the weak constrain data assimilation (DA)
system, to estimate leaf area index (LAI) and
Chlorophyll (a + b) concentration as well as their
uncertainties.

1. INTRODUCTION

A large number of sensors orbits the earth and provides
observations at a variety of spatial and temporal
resolutions and spectral windows. These observations
require an interpretation, to extract useful information
for the understanding and monitoring of the land
surface. Typically, various interpretation approaches
were applied on data of individual sensors to generate
information on land surface parameters. With the advent
of the Sentinel era, this approach is counter-productive.

Modern data assimilation techniques allow the use of
physically based radiative transfer models to get a
robust estimate of the state of the land surface (as well
as detailed uncertainty information) conditional on all
available observations.

In this contribution, we explore the recently published
EO-LDAS (Earth Observation Land Data Assimilation
System) as a way to combine optical data with different

spatial resolutions and spectral characteristics[1]. The
EO-LDAS framework provides a 4DVAR assimilation
scheme with a weak constraint, resulting in an estimate
of the state that is constrained by both the observations
(using a suitable radiative transfer model) and prior
knowledge of the state values or their spatial/temporal
evolution. While vegetation models could be used to
predict the temporal trajectory of some states such as
leaf area index (LAI), for other components of the state
that are required to model the observed signals, these
models do not exist. Similarly, no spatial models are
available.

In the previous publication, it was found that the EO-
LDAS prototype is able to simultaneously estimate a
state vector of over 2000 elements of biophysical
characteristics in the synthetic experiment. It was
demonstrated the reduction in uncertainties of the
estimation of parameters in a temporal sense. Further it
was noted that it is possible to extend EO-LDAS to
spatial constraints but it wasn’t explored at those
time[1].

In order to solve the problem the spatial regularization
approach was proposed. Validation of the proposed
approach has been done with data from the ESA Barrax
test site.

2. THE EO-LDAS SCHEME

EO-LDAS was developed to solve the problem of
estimation of the state of the land surface by using all
given observations as well as all other sources of
information. Each source of information is represented
by a probability density function (PDF). A result of
combination of these PDF is a posteriori PDF - the
solution of the problem. Thus, posterior probability is
determined by the minimization of the cost function in
the form[1]:( ) = ( ) + ( ) + ( ) (1)

Where a priori information constraint:( ) = − − ( − ) (2)

an observational constraint:
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( ) = − − ( ) ( − ( )) (3)

where H(x)– observational operator. In this case a
semidiscrete model for the scattering of light by
vegetation [2]. Cp, Cobs – covariance matrices which
describe the uncertainties in the prior information and in
the observations.
The last term is a spatial smoothness constraint:( ) = ∙ ∆ , + ∙ ∆ , (4)

where ∆ , is smoothness operators for x and y direction
of smoothing. Spatial smoothness is weighted by the
corresponding regularization parameter or in other
words the model error. This parameter is determines to
which extent we trust to the expectation of smoothness.
Smoothness constraint is carried out per parameter. This
means that for instance there is an expectation of LAI
varying spatially smoothly independent of the smooth
variation of chlorophyll content.

In the case of multi-resolution processing eq. 1becomes( ) = ( ) + ( ) + ( ) + ( ) (5)

where ( ), ( ) are observational constraints
for high resolution and low resolution sensors
respectively.

3. REGION OF INTEREST

This study demonstrates the spatial capabilities of EO-
LDAS. As such, we think that concentrating efforts on a
couple of agricultural fields will be a reasonable choice
of sites to work on. Barrax is a widely-studied area,
where many field campaigns have taken place over the
years [3]–[6]. These campaigns have mostly dealt with
retrieval of biophysical parameters from optical data,
and as such, it is common for measurements of LAI,
Chlorophyll concentration, leaf equivalent water
thickness, leaf dry matter and soil spectral
measurements to be available. There is also a large
amount of EO data that has been collected by many
sensors, and the area is typically cloud free in summer.
This wealth of data allows one to test the impact of
cloudiness or sparse temporal sampling by simply
applying retrieval algorithms to a part of the dataset and
validating on the remaining observations. For all this,
Barrax is a very good site to try to understand spatial
capabilities of EO-LDAS.

4. DATA

In this study, we used data of PROBA\CHRIS and
Envisat\MERIS. CHRIS – Compact High Resolution
Imaging Spectrometer has 62 spectral bands from 400
nm to 1050 and a spatial resolution of 36 m. The images

are acquired in sets of 5 zenith angles: +/-55, +/-36 and
nadir. In this work we used 3 sets: nadir, +360, +550.
Due to high correlation between hyperspectral bands,
the number of information is much lower than the
number of bands. Because of this fact the number of
bands was reduced to 17 according to [7].

MERIS – medium spectral resolution, imaging
spectrometer has 15 bands and a spatial resolution of
300 m.

The prior information used in this study had very high
standard deviations (tab. 1). Hence, the problem is not
constrained to any specific values of the parameters.
The reason is that we modeled the situation when very
low amount of information about the land surface is
available. However, the prior information can decrease
chances to be trapped to a local minimum because it
changes the parameter space[7].

Table 1. The prior information
Parameter Mean; standard

deviation
LAI, the single sided leaf
area per unit ground area

5.99;  +6.0/-9.2

The canopy height, m 0.1; +/- 1
Leaf radius/ dimension, m 0.01; +/- 1
The concentration of
chlorophyll a+b, μg/cm^2

230; +239.8/-773.7

The proportion of
senescent material

0.001; +/- 1

Equivalent leaf water, cm 0.0002; +0.01/-0.23
Dry matter, μg/cm^2 0.01; +0.01/-0.1
The number of leaf layers 1.5; +/- 1

Soil PC1 (soil brightness) 0.05; +/- 1

Soil wetness 0.005; +/-1

5. RESULTS

The results of pixel by pixel inversion with the prior
information showed that despite of independent
processes of inversion for each pixel we can see spatial
structure of the considered area for all biophysical
parameters. Fig. 1A-B demonstrates an example for LAI
and chlorophyll. In addition the values of the parameters
are in range of the true values. It can be seen that the
canopy RTM is not able to retrieve chlorophyll content
for areas of the bare soil (Fig. 1).

The hypothesis was that spatial regularization and even
not strict prior information can self-contain the problem
in such a way that the values of the results will be
shifted to the range of the true values. In order to show
it the problem was solved for several Barrax fields.



Figure 1. Results of pixel by pixel inversion. LAI
(A) and chlorophyll content (B). 62 bands of
CHRIS/Proba on16/07/2004 with prior information.

In the first case, EO-LDAS inversion without spatial
regularization and without prior information was
applied for each pixel of a field where in situ data were
available. Inversion was done independently for three
CHRIS/Proba cameras. LAI r2 = 0.51 - 0.74,
p = 0.000001 - 0.008;Chl r2=0.64-0.72, p=0.003-0.03.
However, the uncertainties were huge +/- 10 for LAI
and +/- 400 for chlorophyll. That was to be expected
because we tried to estimate 12 parameters by quite
highly correlated spectral bands using only one set of
view angles. In fig. 2, the results for the chlorophyll
content estimation are shown in logarithmic scale
i.e. / .

Figure 2. Validation of the Chlorophyll a+b
content retrieval. J=Jobs - w/o prior information.
Logarithmic scale. Blue lines – std. dev.
CHRIS/Proba 360.

In the second case the inversion with spatial
regularization and with the priors was applied. In this
case LAI r2 = 0.71 - 0.8, p=0.000001-0.0004,
Chl r2 = 0.62-0.86, p=0.000001-0.3. The LAI
uncertainties = +/-4, Chl uncertainties = +/-50. There is
significant decreasing in uncertainties and increasing of

the estimation accuracy. Fig. 3 shows the results for
CHRIS/Proba camera +360.

Figure 3. Validation of the Chlorophyll a+b
content retrieval. J=Jobs+Jprior – with prior
information. Logarithmic scale. Blue lines – std.
dev. CHRIS/Proba +360.

The above results show that EO-LDAS is able to
estimate some of the biophysical parameters on pixel-
by-pixel basis. The prior information can help to
decrease the number of possible inversion solutions.
However, the uncertainties are still quite big and in the
case of availability of only single observation, we
cannot apply constraining by a dynamical model. A
possible solution is the use of the spatial constraints (eq.
4).

For the spatial constraint problem due to speed
limitations of the prototype software the number of the
CHRIS/Proba bands were decreased to 4 – 452, 553,
683 and 890 nm

In fig. 4A and 5A an example of the spatial solution
without constraining by space is given for the cornfield
C9. For this field we have 2 points of the field
measurements. The in situ values of LAI are in the
range of 2.92 to 3.1 and the chlorophyll (Chl) content is
about 52.94 mg/cm2. The estimation of the parameters
for this case: LAI = 3-4.5, Chl = 60- 78 mg/cm2.The
large values of the uncertainties can be seen for the
whole area of the field.
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Figure 4. Estimation of LAI,
CHRIS/PROBA (4bands). Corn, Field C9.
A - without priors and spatial regularization
(J=Jobs ), B – with priors and spatial
regularization (J=Jobs+Jprior+Jmodel).

In the second case i.e. with constraining by space
LAI = 2.5-3.5, Chl=50- 60 mg/cm2. I.e. solution after
applying spatial regularization and the prior information
was shifted to the range of the true values. The values of
uncertainties of the second-case estimation decreased
significantly (fig. 4B, 5B).

Figure 5. Estimation of the Chlorophyll a+b
content, CHRIS/PROBA (4bands). Corn,
Field C9. A - without priors and spatial
regularization (J=Jobs), B – with priors and
spatial regularization (J=Jobs+Jprior+Jmodel).

The next step is to model the situation when two sensors

with different resolution are available. The first sensor
has high spatial resolution but only a few bands and the
second one has low resolution but more spectral bands.
For this constellation, we use CHRIS/Proba with a
reduced number of bands (near infrared (NIR) and Red)
and MERIS/Envisat with 15 bands. On the one hand,
MERIS does not have enough spatial information for
spatial constraining because of the relatively small
Barrax fields. I.e. there are no homogeneous pixels,
which can constrain each other (fig. 6B, 7B).

Figure 6. Estimation of LAI. Sunflower,
Field SF1. A – CHRIS/Proba, B – MERIS,
C - CHRIS/Proba + MERIS.

On the other hand, two bands of the high-resolution
sensor do not have enough information content for the
model inversion (fig. 6A, 7A). In both cases, values of
chlorophyll content are quite far away from the truth
(fig. 6A-B, 7A-B). However, after solving the problem
in a way of eq. 5 values of chlorophyll were shifted to
the range of the true values (fig. 6C, 7C). I.e. both
sensors did not have true values in the estimation but
after combining them together optimal decision was
found.
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Figure 7. Estimation of the Chlorophyll
content. Sunflower, Field SF1. A –
CHRIS/Proba, B – MERIS, C -
CHRIS/Proba + MERIS.

6. DISCUSSION AND CONCLUSIONS

The main goal of the paper was the exploration of
spatial constraining possibilities of EO-LDAS. In the
frame of this work, small homogeneous fields were
used. The computational costs of the current EO-LDAS
implementation do not allow obtaining results for bigger
fields. However, we assumed that each field was
homogeneous and it is possible to extend values of one-
two measurements to a whole field. In this research, we
did not take into account the edge problem but in the
case of data that are more realistic, we should manage it
or do a kind of clusterization before estimation of the
parameters.

Another complication of this study is the estimation of
. The best way to do it is the cross-validation.

However, it is not possible to do now due to speed
limitations.

Despite of some simplicity of the input data the spatial
regularization has shown significant decreasing of the
uncertainties in the estimated data as well as
improvement in the accuracy.

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support of this

project through GIONET, funded by the European
Commission, Marie Curie Programme Initial Training
Network, Grant Agreement number PITN-GA-2010-
264509. We also acknowledge European Space Agency
for providing data access by the "EO-Support" system
(projects ID 13803 and 13931).

REFERENCES

[1] P. Lewis, J. Gómez-Dans, T. Kaminski, J.
Settle, T. Quaife, N. Gobron, J. Styles, and M.
Berger, “An Earth Observation Land Data
Assimilation System (EO-LDAS),” Remote
Sens. Environ., vol. 120, pp. 219–235, May
2012.

[2] N. Gobron, B. Pinty, M. M. Verstraete, and Y.
Govaerts, “A semidiscrete model for the
scattering of light by vegetation,” J. Geophys.
Res., vol. 102, pp. 9431–9446, 1997.

[3] S. Gandia, G. Fernández, J. C. García, and J.
Moreno, “Retrieval of vegetation biophysical
variables from CHRIS / PROBA data in the
SPARC campaign,” in Proc. 2nd CHIRS/Proba
Workshop, ESA/ESRIN, Frascati, Italy, 2004,
no. July.

[4] M. Gonzalez-Sanpedro, T. Le Toan, J. Moreno,
L. Kergoat, and E. Rubio, “Seasonal variations
of leaf area index of agricultural fields retrieved
from landsat data,” Remote Sens. Environ., vol.
112, no. 3, pp. 810–824, 2008.

[5] A. Verger, B. Martinez, F. Camacho-de Coca,
and F. Garcia-Haro, “Accuracy assessment of
fraction of vegetation cover and leaf area index
estimates from pragmatic methods in a cropland
area,” Int. J. Remote Sens., vol. 30, no. 10, pp.
2685–2704, 2009.

[6] J. Delegido, C. Vergara, J. Verrelst, S. Gandia,
and J. Moreno, “Remote estimation of crop
chlorophyll content by means of high-spectral-
resolution re ectance techniques,” Agron. J., vol.
103, no. 6, pp. 1834–1842, 2011.

[7] F. Vuolo, L. Dini, and G. D’Urso, “Assessment
of LAI retrieval accuracy by inverting a RT
model and a simple empirical model with
multiangular and hyperspectral CHRIS/PROBA
data from SPARC,” in Proc. of the 3rd ESA
CHRIS/Proba Workshop, 21–23 March, ESRIN,
Frascati, Italy, (ESA SP-593, June 2005), 2005.

A

B

C


