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ABSTRACT 

This paper reviews current research into the estimation of 
uncertainties as a pixel-based measure to aid non-
specialist users of remote sensing products. An example 
MERIS image, captured on the 28 March 2012, was 
processed with above-water atmospheric correction code. 
This was initially based on both the Antoine & Morel 
Standard Atmospheric Correction, with Bright Pixel 
correction component, and Doerffer Neural Network 
coastal water’s approach. It’s showed that analysis of the 
atmospheric by-products yield important information 
about the separation of the atmospheric and in-water 
signals, helping to sign-post possible uncertainties in the 
atmospheric correction results. Further analysis has 
concentrated on implementing a ‘simplistic’ atmospheric 
correction so that the impact of changing the input 
auxiliary data can be analysed; the influence of changing 
surface pressure is demonstrated. Future work will focus 
on automating the analysis, so that the methodology can 
be implemented within an operational system.  
 
1. INTRODUCTION 

Earth Observation products, such as maps of chlorophyll 
concentration and land vegetation, from future 
spaceborne missions will have continuity with existing / 
historical missions such as Envisat/MERIS and MODIS-
Terra in terms of both the algorithms and products 
alongside the introduction of new approaches. Space 
agencies have also recognised the need for error and/or 
uncertainty estimates so that end users are provided with 
knowledge that allows them to have confidence in the 
data they’re using.  
 
Previous research, as part of the ESA Sentinel-3 Level-2 
Optical Prototype Processor contract [4], primarily 
focused on the impact of the input data and algorithm / 
modelling uncertainties. Primarily, a sensitivity analysis 
approach was utilised; akin to the ensemble approach 
used by the modelling community.  
 
The research within this paper is focused on investigating 
pixel based uncertainties for an example image as an 
expert user i.e. based on knowledge that has been 
gathered over a number of years. However, the longer-
term ultimate aim is to develop methodologies and 
implement solutions that will allow uncertainty estimates 
to be calculated on a pixel-by-pixel basis whilst being 
efficiently processed for operational implementation. 

 
2. APPLICATION TO ATMOSPHERIC 

CORRECTION 

 
Eq. 1 is a simplification of the Atmospheric Correction 
(AC) equation where Ltoa is the Top of Atmosphere 
(TOA) radiance (sensor radiance, which is measured), Lg 
is the ground radiance (term we are interested in 
deriving), Td is the diffuse transmittance (reduction in the 
ground radiance by absorption within the atmosphere) 
and Lv is the veiling radiance (additional radiance 
scattered into the atmospheric path and reaching detector, 
through single and/or multiple scattering). 
 

  L  T * L  L vdgtoa                    (1) 
 
The Guide to the expression of Uncertainty in 
Measurement [5] states that “…when all of the known or 
suspected components of error have been evaluated and 
the appropriate corrections have been applied, there still 
remains an uncertainty about the correctness of the stated 
result, that is, a doubt about how well the result of the 
measurement represents the value of the quantity being 
measured.” Therefore, uncertainty is a parameter that 
characterizes the dispersion of the values that could 
reasonably be attributed to the measurand. Also, a 
corrected measurement can unknowably be very close to 
the value of the measurand (i.e. have a negligible error), 
but at the same time may have a large uncertainty.  
 
If we add uncertainties () to Eq. 1 it becomes Eq. 2: 
 

 )  (L )  (T *)  (L   L vvddggtoatoa                
      (2) 
 
One approach to calculating standard uncertainty, which 
could result from random error (RE), is a Type A 
evaluation (Eq. 3) where s is the standard deviation and 
n is the number of measurements [5]. 
 

n
s  (u)y uncertaint standard    (3)   

 
When applied to remote sensing, as in Lavender et al. [4], 
the algorithm / model is run multiple times with 
variations in the input values (estimated uncertainties) 
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and the mean and standard deviation of the output is 
calculated. For the input values we are applying a Type 
B evaluation (Eq. 4) [5] where a is the mid-point between 
the upper and lower limits; only the limits of uncertainty 
are available until the previous step also has a Type A 
evaluation applied. The challenge is to expand outwards 
so that all the uncertainties for the inputs can be 
estimated, which quickly becomes a large effort.  
 

3
a  (u)y uncertaint standard    (4)  

 
Therefore, for the simplified AC equation (Eq. 1), the 
combined standard uncertainty would then be calculated 
from Eq. 5 assuming the terms are uncorrelated. Where 
the inputs are significantly correlated, the covariance’s 
need to also be estimated. 
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In addition, the usual assumption in data assimilation is 
that observational errors are unbiased; if biases are not 
effectively removed then the impact of the observation 
(i.e. satellite data) will be lessened and can even be 
detrimental. Therefore the bias, or total systematic error, 
would be calculated using Eq. 6; in practice it’s related to 
the calculation of a mean or average. 
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For further information, in addition to [5], the National 
Physics Laboratory also has online tutorials on 
uncertainty http://www.npl.co.uk/publications/good-
practice-online-modules/measurement-uncertainty/ 
 
The following Case Study focuses on an expert analysis 
of an example image in terms of understanding the spatial 
variability in the atmosphere versus ocean. Therefore, the 
results of visually analysing atmospheric by-products, 
veiling radiance (Lv) and diffuse transmittance (Td), are 
reported as the first step. The second step is an analysis 
of the auxiliary data. 
 
3. CASE STUDY: ANALYSIS OF AN EXAMPLE 

IMAGE 

Fig. 1 is a MERIS Reduced Resolution (RR) image from 
the 28 March 2012. As seen in the TOA pseudo-true 
colour radiance image (Fig. 1a), there are areas of cloud 
cover to the North and South (bright white). Regions of 
high suspended sediment concentration can be seen 
around the United Kingdom (UK) as pixels with a yellow 
coloration: Irish Sea; Bristol Channel; English Channel; 

Southern North Sea. Variations in chlorophyll are not 
readily visible. 
 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 1. 28 March 2012 Envisat MERIS Image as 

Pseudo-True Colour (bands 7, 4 & 2) images for a) Top 

of Atmosphere Radiance, b) Bottom of Atmosphere 

Radiance, c) Path Radiance and d) Diffuse 

Transmittance.  

 
The Bottom of Atmosphere (BOA) radiance image (Fig. 
1b) derived using the Case2R Neural Network (NNet), 
run within BEAM VISAT (http://www.brockmann-
consult.de/cms/web/beam/), and displays an output that 
enhances the prominence of the in-water features. The 
sediment concentration variation is much more visible 
alongside the variations in chlorophyll within the Bay of 
Biscay and off the coast of Portugal. 
 
Fig. 1c and Fig. 1d are images of the atmosphere 
components; path radiance and diffuse transmittance 
respectively. As the atmosphere typically has larger 
spatial scales than the ocean, sharp features wouldn’t be 
expected within these two atmospheric products unless 
there are point sources such as fires. For the NNet 
approach it should be noted that the atmospheric products 
are not subtracted from the sensor radiance during the 
processing, but rather the elements are decomposed and 
then the atmospheric by-products calculated. 
 
To investigate further, the Level 1 RR MERIS image was 
also processed using ODESA 

http://www.npl.co.uk/publications/good-practice-online-modules/measurement-uncertainty/
http://www.npl.co.uk/publications/good-practice-online-modules/measurement-uncertainty/
http://www.brockmann-consult.de/cms/web/beam/
http://www.brockmann-consult.de/cms/web/beam/


 

(http://earth.eo.esa.int/odesa/) with the 3rd MERIS 
reprocessing settings. Fig. 2 shows the diffuse 
transmission from the Antoine & Morel [1] Standard AC 
(SAC), including the Moore & Lavender [2] Bright Pixel 
AC (BPAC), and the Doerffer [3] Case 2 NNet. The SAC 
shows a much smoother pattern of transmission variation 
off the East coast of the UK in the southern North Sea, 
indicating that the feature seen in the Case2 NNet 
(southern North Sea) output is a water rather than 
atmospheric signal; has a pattern reminiscent of the 
sediment distributions seen in Fig. 1a. 
 

a) 

 
b) 

 
Figure 2. 28 March 2012 Envisat MERIS Image 

processed in ODESA with the a) Standard Atmospheric 

Correction and b) Case 2 Neural Network; atmospheric 

diffuse transmission being displayed.  

 
To investigate further the ‘Goodness of Fit’ for both the 
AC and In-Water NNets was examined (Fig. 3), which 
provides an insight into how well the trained NNet is able 
to model the provided radiance spectra; available when 
processing data through ODESA, but not currently 
available in the standard output product due to the 
Envisat N1 size / format restrictions. Another important 
source of information (not shown) is the indication of 
‘out of scope’ which highlights where the model has 
received real data that is considered within scope of the 
training dataset / methodology used e.g. concentration 
ranges. 
 
Eq. 7 is the calculation of chi_sum [3] where 12 is the 
number of bands being used within the NNet, RLtosa is the 
measured input NNet spectra and outnet is the spectra 
from the auto-associative NNet that tests if the measured 
spectra can be reproduced: 
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The chi_sum output for the AC NNet (Fig. 3a) highlights 
the spatial variability of the NNet solution when 
separating the atmospheric and in-water signals, with a 
larger chi_sum value for the turbid water pixels. 
 

a) 

 

 
b) 

 

 
Figure 3. 28 March 2012 Envisat MERIS Neural 

Network Goodness of Fit for the a) Atmospheric 

Correction and b) In-Water Neural Networks.  

 
To understand the input uncertainties caused by the 
auxiliary data, focusing on the meteorological data 
initially, a ‘simplistic’ AC [6] was updated to process 
MERIS imagery; single scattering aerosol estimation 
using the angstrom exponent for aerosol extrapolation i.e. 
a ‘CZCS type’ approach. For initial tests the BPAC has 
also been switched off (so there is no iteration / non-
linearity) and no flagging/masking of pixels is included.  
 
Fig. 4a displays the Bottom of Atmosphere Reflectance 
processed and a plot (for a single pixel) of the change in 
Bottom of Atmosphere Reflectance caused by adjusting 

http://earth.eo.esa.int/odesa/


 

the atmospheric pressure; European Centre for Medium-
term Weather Forecast (ECMWF) mean sea level 
pressure values are included within the Level 1b data on 
an interpolated tie-point grid; as the data is reprocessed 
then ECMWF analysis data is used. 
 
a) 

 
b) 

 
 
Figure 4. 28 March 2012 Envisat MERIS Image as (a) 

Pseudo-True Colour (bands 7, 4 & 2) Bottom of 

Atmosphere Reflectance processed using a simplistic 

atmospheric correction and (b) Plot of change in Bottom 

of Atmosphere Reflectance caused by adjusting the 

atmospheric pressure. The yellow lines/blue star mark 

the position of the extracted pixel shown in plot (b). 
 
The currently processed image probably indicates that an 
insufficient atmospheric signal has been subtracted as the 
BOA is still very hazy. However, this does not invalidate 
the results shown for atmospheric pressure. The image 
was processed with the standard atmospheric pressure 
(1013.25 hPa) whereas the MERIS auxiliary data 
suggests the value should be higher (over the whole 
image; mean of 1027.02 hPa, minimum of 1014.43 hPa 
and maximum of 1033.83 hPa). However, the error 
caused by using the wrong value will be small; BOA 

reflectance change of less than 0.001 at the shortest 
wavelength for the atmospheric pressure range used. The 
differences are higher in the blue as the atmospheric 
pressure influences the determination of the Rayleigh 
scattering.  
 
4. DISCUSSION AND CONCLUSIONS 

This paper reviewed the approach to calculating 
uncertainties numerically, but in the case study the expert 
analysis is visual as the research is at a preliminary stage. 
A second step is shown where the input data is variability 
and the sensitivity of the output analysed. 
 
The next step is to understand the outputs further by 
running the analysis on a number of images and 
ultimately determine a technique that will provide an 
automatic uncertainty flagging / analysis system. 
 
In Summary: 

 There are several methods to look at 
uncertainty: 

o Propagation of uncertainty through 
equations i.e. sensitivity of the output 
to the input (akin to the ensemble 
approach used within the modeling 
community);  

o “Goodness of fit” indicating how well 
the model understands the inputs. 

 
 Running a simplistic model in parallel with 

more complex approaches can be used to 
understand what the complexity is contributing 
 

 As an “expert” we use our eyes/brain to look for 
inconsistencies in products. Can we 
automatically capture this process? 
 

  In the end, the “non-expert end user” wants a 
probability that the answer can be believed…. 
Should be simple to understand even if getting 
there is complex. 
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