
FROM MERIS TO OLCI AND SENTINEL 2: HARMFUL ALGAL BLOOM 
APPLICATIONS & MODELLING IN SOUTH AFRICA

L. Robertson Lain(1), S. Bernard(2), H. Evers-King (1), M. W. Matthews (1), M. Smith (1)

(1)Oceanography Department, University of Cape Town, Private Bag, Rondebosch 7700, South Africa.  
Email:lislrobertson@gmail.com

(2) CSIR, 15 Lower Hope St, Rosebank 7700, South Africa
Email:sbernard@csir.co.za

ABSTRACT

The Sentinel 2 and 3 missions offer new capabilities for 
Harmful Algal Bloom (HAB) observations in Southern 
Africa and further afield on the African continent where 
there is a great need for improved monitoring of water 
quality:  both  in  freshwater  resources  where 
eutrophication  is  common,  and  in  vulnerable  coastal 
ecosystems. Two well validated algorithms - Equivalent 
Algal  Populations  (EAP)  &  Maximum  Peak  Height 
(MPH)  -  available  for  operational  use  on  eutrophic 
waters  are  described.  Spectral  remote  sensing 
reflectances (Rrs) and inherent optical properties (IOPs) 
are  characterised  via  measurement  and  modelling  of 
phytoplankton  assemblages  typical  of  high  biomass 
algal  blooms  of  the  Southern  Benguela  and   inland 
waters  of  South  Africa.  Sensitivity  to  phytoplankton 
functional  types  (PFTs) is  investigated,  with focus on 
optically  significant  biological  characteristics  e.g. 
particle  size  distribution  and   intracellular  structure 
(including vacuoles).

1. INTRODUCTION

There  is  a  pressing  need  in  both  coastal  and  inland 
resource  management  systems  for  routine  HAB 
detection  and  water  quality  indicators.  Eutrophication 
and harmful  cyanobacterial  blooms are  widespread  in 
South African inland water bodies. Since South Africe 
suffers from water scarcity, surface reservoirs constitute 
the country's primary water resources for potable uses, 
industry, agriculture and recreation. The St Helena Bay 
area of the Southern Benguela upwelling system has a 
well  established  history  of  Harmful  Algal  Blooms 
(HABs),  affecting  commercial,  subsistence  and 
recreational  fisheries  activities,  and  which  regularly 
threaten  ecosystem  health  due  to  the  proliferation  of 
toxic  species  and/or  subsurface  anoxia  leading  to 
massive faunal mortalities. 

2. CHARACTERISING HIGH BIOMASS Rrs

A 10 year archive of in situ bio-optical measurements 
has been compiled from the S. Benguela, mostly during 
the  bloom  season  (late  summer).  Three  main 
phytoplankton groups  are found to be optically distinct 
and the main contributors of response to the light field 
in  Benguela  bloom  conditions:   diatoms  & 

dinoflagellates,  nanophytes  (including  chlorophytes) 
and  cryptophytes  (representing,  in  the  Benguela,  the 
autotrophic  ciliate  Mesodinium  rubrum).  The  inland 
waters  sampled  are  typically  dominated  by 
cyanobacteria, with some dinoflagellate species present. 

Tethered  Satlantic  Radiometer  Buoy  (TSRB) 
measurements from the Benguela, processed to Rrs using 
the  Satlantic  proprietary  software  PROSOFT,  are 
presented in 3 Chl-a classes in Fig. 1 (a).

 

Figure 1 (a). Measured Rrs (S. Benguela) 

The  blooms  represented  here  are  mostly  diatom 
dominated up to Chl-a of  20 mg/m3,  occasionally  M. 
rubrum dominates with an identifiable widened peak at 
510  nm  displaying  the  additional  absorption 
characteristics of the pigment phycoerythrin. The signal 
dampening  effect  of  cell  size  can  be  seen  in  the 
magnitude of the Rrs for certain samples, e.g.  the blue 
line at the very bottom of the Chl-a>60 mg/m3 category 
represents an Alexandrium catenella bloom with a Chl-a 
of 309 mg/m3.  A. Catenella is a large dinoflagellate of 
around  30  µm  diameter,  and  characteristically  forms 
chains  which  may  have  a  further  signal  dampening 
effect.  The  majority  of  samples  are  dinoflagellate- 
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dominated at very high (>60 mg/m3) biomass. At lower 
biomass, the signal in the red is primarily fluorescence 
with  quantum  yields  of  <0.5%  [1,  2].  Some  shift 
towards 709 nm is  seen  as  absorption/  backscattering 
processes  become  important  in  combination  with 
fluorescence.  At  high  biomass,  an  inflection  point 
appears at 620 nm, related to secondary Chl-a and Chl-c 
absorption peaks. 

Figure 1 (b). Measured Rrs (inland waters)

 Chl-a concentrations are inset.

Many of the same spectral features can be observed in 
the ASD-measured Rrs from the inland water bodies. It 
should be noted though that where the Benguela waters 
can  be  typified  as  high  biomass  Case  1,  the  inland 
samples  are  generally  representative  of  waters  with  a 
total suspended solids (TSS) count of 0.1 to 300 mg/l. 
They are dominated either by Microcystis cyanobacteria 
or dinoflagellate  Ceratium assemblages. Phytoplankton 
typically contributes 20% to 100% of the  Rrs signal [3]. 
The Rrs for eukaryotic assemblages (thicker lines, dot in 
legend)  are  very  similar  to  those  measured  in  the 
Benguela.  However  Rrs representing  vaculoate 
prokaryotic  (cyanobacteria)  populations  are  much 
brighter due to the effect of the air-filled vesicle on the 
cells' refractive index [4]. The peak near 660 nm caused 
by phycocyanin and Chl-a pigment absorption bands at 
620  and  665  nm  is  an  identifiable  feature  of 
Microcystis-dominated  assemblages.  The  absorption 
minima  of  water  at  750  and  990  nm  also  become 
important spectral features. 

3. COUPLED RADIATIVE TRANSFER, ALGAL 
POPULATION MODELLING

A  solid  modelling  capability  is  critical  to  the 
understanding  of  phytoplankton-driven  bio-optical 
variability,  and  PFT  analysis.  A  comprehensive  IOP 
model  is  also  a  central  component  of  any  inversion 
scheme.

The  Equivalent  Algal  Populations  (EAP)  model 
(Robertson  et  al. in  prep)  is  coupled  with  Ecolight 
radiative  transfer  software  (Sequoia  Inc.)  to  model 
phytoplankton IOPs and Rrs. The EAP model is based 
on a 2 layered sphere geometry [5] and is well validated 
for these high biomass conditions. 

Modelling from first  principles (cell  refractive indices 
mathematically derived from measured phytoplankton-
specific  absorption,  and  the  size  distribution)  allows 
explicit calculation of component IOPs and theoretical 
optical  quantities  that  form  the  basis  of  a  coherent 
understanding  of  their  relationship  to  each  other  and 
resulting water-leaving signal e.g. shape factors used in 
the reflectance  approximation,  such  as  the f/Q factor. 
The model allows admixtures of various phytoplankton 
types,  population  size  distributions  (e.g.  standard 
normal,  inverse  gaussian,  jungian)  with  varying 
statistical  parameters  e.g.  effective  variance.  Other 
variables include the chlorophyll-a density per cell, and 
phase  function  selection  (constant  bb/b  vs  spectrally 
variable  bb/b,  for  example).  Studies  are  under  way to 
determine the sensitivity of the model to small changes 
in  these  quantities.  While  the  2-layered  spheres  are 
phytoplankton-specific,  additional  components may be 
added to simulate naturally occurring water types. Non-
phytoplankton contributions can be modelled in various 
ways, and currently a default scheme is used whereby a 
combined gelbstoff and non-algal absorption term varies 
non-linearly with increasing Chl-a, and a simple spectral 
slope  non-algal  backscattering  term  is  used  [6].  The 
fluorescence quantum yield varies from 0.8% to 0.1% as 
eutrophication increases [2].

The EAP model emphasises and depends heavily on the 
size-related aspects of assemblage modelling due to the 
structure of the 2 layered sphere as the IOP determinant. 
As Chl-a concentration increases from 0.1 to 300 mg/m3 

(in  Fig.  2  (a)  IOPs  are  shown  for  idealised  diatom/ 
dinoflagellate assemblage, effective diameter of 16 µm), 
spectral  detail  in the total  scatter becomes significant. 
This has an impact on the total backscattering profiles, 
where  it  can  be  seen  that   variability  in  the  spectral 
shape becomes substantial at even relatively low Chl-a 
concentrations (around 3 mg/m3). The ability to detect 
distinct  phytoplankton  classes  depends largely on this 
detailed spectral backscattering (see Fig. 3).
Comparing equivalent  Chl-a concentrations within the 
same modelled population types, it can be seen that at a 
concentration  of  1  mg/m3 there  is  little  to  distinguish 
spectrally  between  a  diatom/dinoflagellate-dominated 
sample and a cryptophyte-dominated sample. However 
at 10 mg/m3 this ability increases due to the separation 
of the maximum phytoplankton Chl-a absorption peak 
at 560 nm into its distinctive phycoerythrin peak in the 
cryptophyte  sample.  By  100  mg/m3 the  spectra  are 
significantly different spectrally.

             



Figure 2 (a). Modelled Rrs and IOPs for an idealised  
diatom/dinoflagellate assemblage, with effective  

diameter 16 µm and non-phytoplankton components as  
described in text.

Figure 2 (b). Modelled Chl-a-specific absorption and 
backscattering for two different assemblage types:  
diatom/dinoflagellate- and cryptophyte-dominated

 



Figure 3. Modelled Rrs at selected Chl-a concentrations  
for two different phytoplankton types:  

diatom/dinoflagellate- and cryptophyte-dominated

Synthetic  data  can  be  generated  in  this  way  for  any 
defined ranges of biophysical parameters, in imitation of 
the  variability  in  naturally  occurring  populations  and 
aquatic  conditions.  Ongoing  work  is  focused  on 
systematically  constraining  the  dataset  to  ensure  that 
natural variability is adequately represented, based upon 
established  abundance  and  allometric  evidence  [7]. 
Constrained  as  such,  this  dataset  can  be  used  for 
algorithm development and testing. Exploratory efforts 
towards the development of a water type classification 
scheme  look  promising  as  a  framework  for  further 
describing the variability of IOP subcomponents. 

4. EAP INVERSION

The coupled EAP-Ecolight model is also well validated 
as an inversion model (Fig.s 4(a) & 4(b), Evers-King in 
prep).  The  inversion  can  be  performed  on  in  situ 
hyperspectral  water-leaving  reflectance  or  on 
atmospherically  corrected  L2  satellite  water-leaving 
radiance data. The algorithm was used extensively for 
the  retrieval  of  Chl-a  concentration  and  changes  in 
population effective diameter from L2 MERIS images 
as  a  component  of  the  routine  monitoring  and  HAB 
detection activities in the Southern Benguela from 2002 
until the demise of Envisat in 2012 [8,9]. 

Fig. 4 (b) shows the errors on the retrieval of effective 
diameter and Chl-a: the model performs best (errors of 
less  than  30%)  at  larger  effective  diameters  where 
chlorophyll concentrations are above 10 mg/m3 - i.e. in 
bloom  conditions.  Where  Chl-a  concentrations  fall 
below 10 mg/m3 it appears there is not sufficient size- 
related Rrs signal to retrieve effective diameter directly, 
within suitable confidence intervals.

Figure 4 (a). EAP inversion validation for Chl-a  
retrieval (top) and effective diameter (bottom). R2 for  

Chl-a is 0.89 with p<0.005, R2  for size is 0.5 with 
p<0.005.

Figure 4 (b). EAP inversion validation: errors on  
retrieval of chlorophyll and effective diameter 

5. MPH ALGORITHM

The  Maximum  Peak  Height  (MPH)  algorithm  [3] 
detects  trophic  status  (chlorophyll-a),  cyanobacterial 
blooms and the presence of surface scums and floating 
vegetation.  The  algorithm  uses  a  baseline  subtraction 
procedure to calculate the height of the dominant peak 
across the red and near-infrared MERIS bands between 
664  and  885  nm  caused  by  sun-induced  chlorophyll 
fluorescence  (SICF)  and  particulate  backscatter.  One 

   



great  advantage  of  this  approach  is  that  where  the 
available  spectral  bands  are  in  close  proximity,  the 
differential  spectral  signal is sufficiently large that the 
algorithm can be used on TOA (top of atmosphere) data 
corrected  only  for  gaseous  absorption  and  Rayleigh 
scattering, and so avoids the problems associated with 
the correction of  aerosol  absorption over small  inland 
water bodies. The algorithm is specifically designed for 
MERIS wavebands from TOA, and is therefore ideal for 
use  with  OLCI.  It  may  be  possible  to  employ  some 
analogous scheme on Sentinel 2 data but with some loss 
of sensitivity in lower biomass conditions as there is no 
explicit fluorescence band on Sentinel 2. 

Figure 5. 10 year time series of phytoplankton biomass  
(top), percentage cyanobacteria (middle), and 

percentage surface scums (bottom) for Hartbeespoort  
Dam, using the MPH algorithm applied to MERIS FR 

data. (Matthews, in prep)

6. SATELLITE PRODUCTS

South African HAB observations depended heavily on 
MERIS both operationally and for research, due to the 
highly  optimised  nature  of  the  sensor  for  eutrophic 
waters. Significant progress was also made with MERIS 
in  terms  of  processing,  storage  and  dissemination 
capabilities.  These  systems  can  now  be  adapted  in 
readiness for OLCI. There is a strong dependence on a 
closely  clustered  set  of  bands  in  the  red-NIR  range, 
most importantly the 709 band, for  HAB detection and 
monitoring  at  high  biomass.  Sentinel  2,  with  much 
increased  spatial  resolution  and  good  signal-to-noise 
ratio, offers sufficiently good spectral resolution in this 
range to be of considerable value for inland HAB and 
water quality applications.

OLCI,  with  its  bands  optimised  for  the  retrieval  of 
reflectances  over dark surfaces,  presents many further 
opportunities  for  algorithm  development  and 
application.  

7. CHALLENGES

Spatial and temporal variability of blooms is significant 
when matching  in  situ  to  satellite  data and has  to  be 
addressed  with  extensive  documentation  of  each 
sampling/measurement  activity.  Aside  from  logistical 
difficulties, in eutrophic and hypertrophic water bodies, 
measurements  are  frequently  made  at  depths 
approaching one optical depth. Instrument performance 
and reliability may be uncertain under these conditions. 
For example, the TSRB measures upwelling irradiance 
Lu at 0.66 m. Fig. 6 shows the optical depths (1/KLu) for 
various  high  biomass  samples  from  the  Benguela 
(inversely modelled from the measured Rrs using EAP 
IOPs). 

Figure 6. Optical depth of selected high biomass  
samples 

The  calculation  of  the  diffuse  upwelling  radiance 
coefficient  (KLu) remains a challenge.  This quantity is 
necessary for the extrapolation of Lu(z)as measured by 
an  in-water  radiometer,  through  the  surface  to  Rrs. 
Literature KLus available for Case 1 waters such as those 
of  Albert  and  Mobley  [10]  are  typically  lower  than 
those  modelled  by  Ecolight  using  the  EAP inversion 
technique.  The selection  of  KLu for  the  processing  of 
measured radiometric data obviously has a significant 
impact on the resulting Rrs.

Other  measurement  challenges  include  AC-type 
absorption  measurements,  for  e.g.,  those  measured  at 
Chl-a concentrations of over 500 mg/m3 were an order 
of magnitude lower than those derived from filter pad 
measurements because the samples were too viscous to 
move through the detector properly.

There  remains  a  need  for  the  development  of 
measurement protocols for eutrophic water  conditions, 
similar  in  breadth  and  quality  to  those  prepared  for 
SeaWiFS validation by Mueller et al. [11].



Figure 7. Albert and Mobley (2003) KLu vs. EAP 
inverted, Ecolight modelled KLu for a sample with  

measured Chl-a of  309 mg/m3.
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