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ABSTRACT 

With the upcoming hyperspectral satellite mission 
EnMAP, a powerful instrument for the generation of 
Earth Observation Data will soon be available. EnMAP 
for the first time will enable the retrieval of 
multiseasonal hyperspectral observation series from 
space. For agricultural applications of EO data, this 
capability offers the highly relevant opportunity of 
retrieving the seasonal development of vegetation 
parameters not only for single plots, but with regional 
coverage. Information on the seasonal development of 
crop parameters thereby is one key to agricultural 
information products in the context of precision 
farming. Preparing for the data streams that will have to 
be expected from EnMAP and it follow-up missions, 
this study helped to compile multiseasonal hyperspectral 
data through an exhaustive airborne campaign during 
the summer of 2012. The study shows, how the 
hyperspectral data series may be used for the derivation 
of the seasonal development of vegetation parameters, 
such as leaf area index and canopy chlorophyll content. 
Thereby, the capability of hyperspectral data for the 
retrieval of vegetation parameters with the help of 
inverted canopy reflectance models is assessed.  
 
1. INTRODUCTION 

To ensure the sustenance of a growing world 
population, traditional farming methods are stretched to 
their limits. As a consequence, the importance of 
precision farming, i.e. an optimized and highly 
mechanized production of agricultural goods, is 
increasing. Hyperspectral remote sensing provides 
technology to derive biophysical land surface 
parameters, which are vital for improved land surface 
management, more precisely compared to multispectral 
methods [1]. From 2017 onwards, the upcoming 
German satellite mission EnMAP (Environmental 
Mapping and Analysis Program) will deliver high 
quality spaceborne hyperspectral data with a spatial 
resolution of 30 meters [2]. EnMAP will not only allow 
for the multiseasonal monitoring of dynamic vegetation 
development, but will also enable hyperspectral 
monitoring on the regional scale. Due to its off-nadir 
(+/-30°) pointing capability, EnMAP will theoretically 
be able to achieve a revisit time of up to 4 days. 
The Department of Geography of the LMU Munich is 

involved in the preparation of algorithms that are 
designed to fully exploit these special capabilities of 
EnMAP for innovative agricultural applications of EO 
data.  
Some of the algorithms developed in that context are 
and will be published within a software product called 
EnMAP-Box, entirely dedicated to the use of the 
EnMAP data. This EnMAP-Box is a platform-
independent software interface designed to process 
hyperspectral remote sensing data. It is intended to 
enable scientists, who are interested in working with 
EnMAP data, to perform basic but nonetheless state of 
the art image operations. The authors so far contributed 
three modules to the EnMAP Box that are of relevance 
in an agricultural context: 
 
• Agricultural Vegetation Indices (AVI) 
A collection of 65 hyperspectral vegetation indices that 
were selected based on an extensive literature survey. 
The indices are grouped according to their target 
variables: structure (13), chlorophyll (26), carotenoid 
(5), plant water content (8), dry mass (9) and 
fluorescence (4). 
 
• Analyze Spectra Integral (ASI) 
A module based on the concept of Continuum Removal, 
which is particularly suitable for the estimation of 
chlorophyll and water content of vegetation. The 
algorithm compares the integral of a defined region of 
the spectrum to the area enclosed by a spectral envelope 
that is adopted between the two specific border 
wavelengths. The module is dynamic, i.e. the border 
wavelengths may be defined by the user. 
 
• Advanced Statistical Evaluator (ASE) 
A collection of 17 statistical indicators, which are 
suitable for both, correlating two sets of point data as 
well as correlating two image data sets for the 
quantification of pattern agreement. The indicators are 
divided into three groups: Error indices (e.g. root mean 
squared error, RMSE), correlation-based measures (e.g. 
coefficient of determination, R²), dimensionless indi-
cators (e.g. Nash-Sutcliffe Efficiency, NSE). The aim is 
to provide a tool that may assist with improving the 
comparability of scientific results within the user 
community. 
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Apart from these contributions to the EnMAP-Box, 
methods and algorithms for the derivation of 
agriculturally relevant land surface parameters are 
developed to prepare for an efficient processing of the 
future satellite data. In regard to the increasing 
importance of precision farming and the capabilities of 
EnMAP, which will be able to deliver periodic products 
(near-nadir revisit in 21 days), one of the most 
important research questions is assessing the potential 
of EnMAP for the retrieval of multiseasonal information 
on the spatial distribution of biophysical land surface 
parameters from hyperspectral image data without the 
availability of in situ data. 
A special focus thereby may be directed to the retrieval 
of leaf area index (LAI) and canopy chlorophyll content 
(CCC), as they are important variables for the 
monitoring of the current status of plant or canopy 
physiology respectively. Since EnMAP data will not be 
available before 2017, airborne spectroscopy is widely 
used for the development of retrieval strategies, as it 
also was the case for this study. Applying commercially 
available imaging spectrometers, however, is limited by 
the sensor availability and often involves high costs, 
which makes it almost impossible to generate a 
multiseasonal data set for a specific test area based on 
commercial sensors alone. To overcome this limitation, 
a cost effective series of airborne imaging spectrometers 
called AVIS (Airborne Visible and Near Infrared 
Spectrometer) has been developed at the Department of 
Geography of the LMU Munich [3]. With the third 
generation sensor, AVIS-3, which is equipped with two 
camera systems (VNIR and SWIR1) covering a spectral 
range from 470-1700 nm, four acquisitions were 
successfully obtained during the course of the 
vegetation period of 2012 over a 12 km² large test site in 
Southern Germany (Neusling, Lower Bavaria). The 
multiseasonal campaign was complemented by two 
additional acquisitions from the airborne sensor 
HySpex, which is operated by the German Aerospace 
Center (DLR). Parallel to the imaging flights, in situ 
data were gathered, resulting in more than 500 
measurements of leaf area index, leaf chlorophyll 
content, soil moisture, plant height and phenological 
status of different crops (winter wheat, winter barley, 
rapeseed, maize, sugar beet). 
The challenge of estimating biophysical parameters 
from hyperspectral data without the use of in situ data 
leads to the application of physically-based methods, 
such as the inversion of canopy reflectance models. 
Quite in contrast to empirical-statistical models, such as 
vegetation indices, which have to be calibrated with in 
situ data, if they are to be used for the derivation of 
actual vegetation variables, physically-based methods 
may potentially be applied without in situ data 
available. Due to their intrinsic dependency on in situ 
data, empirical models may deliver high-quality results, 
but at the same time suffer from a very limited 
transferability. In addition to this limitation, empirical 

methods are sensitive to anisotropy effects that are 
resulting from a variable sun-sensor-target-geometry 
within the airborne data. Physically-based approaches 
may explicitly account for these anisotropies, so that 
illumination angle dependent nonlinearities, instead of 
being an error source, may serve as additional 
information, which can be integrated into the retrieval 
strategy, thereby improving the overall retrieval quality. 
For the physically-based retrieval of land surface 
parameters, the combined leaf optical properties model 
(PROSPECT5) and canopy bidirectional reflectance 
model (4SAIL) PROSAIL [4] was used, which 
simulates realistic reflectance data for homogeneous 
vegetated surfaces [5].  
To estimate biophysical parameters from spectral 
reflectance data, the canopy reflectance models must be 
inverted [6]. There are several inversion techniques 
described in the literature, which differ in computation 
speed, robustness and performance. The most common 
inversion techniques for parameter retrieval are 
numerical optimization algorithms, artificial neural 
networks (ANNs) and look-up tables (LUTs) [7]. 
Because of its simplicity, transparency and robustness, 
the LUT approach was chosen for this study. PROSAIL 
was used in forward mode for the simulation of spectral 
reflectances, based on a specific range of parameter 
combinations and thus to build up a spectral library, 
consisting of the spectra themselves and their 
corresponding parameter configuration. Based on a cost 
function, which searches for the lowest distance 
between two spectra, each measured spectrum of a data 
set is assigned to the respective spectrum from the LUT, 
which most closely resembles the measured reflectance. 
Consequently, it is assumed that the underlying 
parameter setting behind the modelled spectrum must be 
valid for the measured spectrum and thus represents the 
biophysical variables to be retrieved.  
As with neural networks, an advantage of LUTs is that a 
large part of computing time is done before the actual 
inversion is carried out [8]. However, in contrast to 
numerical optimization and artificial neural networks, 
the LUT approach admits a global search and is in this 
way not endangered to be trapped in local minima [6]. 
Numerous studies, e.g. [9], [10], show that LUTs often 
are more robust and generate higher accuracies 
compared to other approaches. Furthermore, LUTs have 
the advantage to represent a relatively simple method, 
their content being precisely defined [8]. This allows for 
the comprehension also of intermediate results, while 
neural networks often are criticized as black-boxes. 
Compared to iterative optimization algorithms, the LUT 
method is significantly less time consuming [11]. 
However, it is not as fast as a neural network. 
The quality of the inversion results then depends on 
several factors: the quality of the measured signal, the 
number of bands that is considered for the inversion, the 
applied cost function, the averaging method and the 
solution of the ill-posed problem, which may occur if 



 

the best fit happens not to be unique. This paper 
therefore explicitly addresses the findings on optimal 
inversion strategies that were obtained during the 
multiseasonal derivation of leaf area index and canopy 
chlorophyll content from airborne hyperspectral data. 
 
2. MATERIALS & METHODS 

2.1 Multiseasonal Campaign 2012 

As data basis for this study, a multiseasonal campaign in 
a 3x4 km area around Neusling / Lower Bavaria was 
realized. During the summer of 2012, six airborne data 
sets could be acquired, mostly covering arable surfaces. 
While for four imaging flights AVIS-3 (LMU) was 
used, two flights were realized with the HySpex sensor 
(DLR; Tab. 1).  
 

Table 1. Data acquisitions and corresponding solar 
zenith angles (SZA) of the multiseasonal campaign 2012 

Acquisition Date Sensor SZA (°) 
April, 28th 
May, 8th 

May, 25th 
June, 16th 

August, 12th 
September, 8th 

AVIS-3 
HySpex 
AVIS-3 
AVIS-3 
HySpex 
AVIS-3 

42 
45 
39 
28 
42 
45 

 
While HySpex is a commercially available imaging 
spectrometer, AVIS-3 is an in-house development of the 
Department of Geography at the LMU Munich. The 
platform-independent, light-weight sensor is built from 
commercially available components. Power supply is 
possible via two car batteries, thus rendering the system 
independent from the platform generator and thus 
avoiding any electrical disturbances that might evolve 
from a direct electrical connection between sensor and 
platform. For the imaging flights carried out in the 
frame of this study, a propeller-driven Dornier-27 
served as platform, which was kindly provided by the 
aviation group of Fürstenfeldbruck, Germany. The 
preprocessing of the airborne data, which also was 
carried out at LMU for the AVIS-flights, includes 
analysis of the spectral properties, sensor calibration, 
geometric correction, spatial data fusion, radiometric 
calibration and finally spectral data fusion. Having gone 
through all corrective steps, AVIS-3 data consists of 
197 spectral bands, covering a spectral range from 477-
1704 nm at a spectral resolution of 5.8 nm (< 994 nm) 
and 6.6 nm (> 994 nm) respectively. The ground 
sampling distance in this case was 4 m. An important 
step of the preprocessing is the consideration of viewing 
angle information. For this purpose, sensor zenith and 
azimuth angle were stacked to the spectral data as 
additional bands (Fig. 1).  
  

   
Figure 1. AVIS-3 data layers, consisting of spectral 

information resulting from two camera systems (VNIR 
projected in true color, SWIR in coloured infrared; left). 
sensor zenith angle (middle) and sensor azimuth angle 
(right). Please note that the SWIR sensor has a lower 

swath width compared to the VNIR instrument.  
 
If this meta information is available in conjunction with 
the respective solar zenith angle for the acquisition, the 
illumination geometry can be traced for each pixel. 
Fig. 2 shows an AVIS-3 scene after the preprocessing. 
 

 
Figure 2. Completely preprocessed AVIS-3 image 
mosaic (8 stripes), projected in colored infrared 

(Sept 8th 2012) 
 
In order to address questions of scale in scope of the 
EnMAP mission, the imagery of both sensors was also 
spectrally and spatially resampled to simulate the 
properties of the future EnMAP HSI. 
Parallel to the imaging flights, an extensive in situ 
campaign was carried out. More than 500 measurements 
of biophysical variables, such as leaf area index (LAI), 
leaf chlorophyll content (LCC), soil moisture, 
phenology and plant height complete the multiseasonal 
campaign. This data is of major importance, as it not 
only may serve for the calibration of empirical retrieval 
models, but may also serve for the validation of 
physically-based retrieval approaches, such as the 
applied canopy reflectance model. 
 



 

2.2 Look-Up Table Inversion 

Based on randomly chosen parameter configurations, 
where each parameter range is bounded and normally 
distributed around a focus of most probable values, the 
LUT is accumulated before the actual inversion. The 
quality of a LUT depends on the range, discretion levels 
and amount of parameter configurations as well as on an 
optimal search strategy. Although Weiss et al. evaluated 
an optimal LUT size of 100 000 as a good compromise 
between computer resources requirements and retrieval 
accuracy [12], another approach was chosen in this 
study.  
Based on the given parameter combination and a fixed 
illumination and viewing angle setting, a LUT 
consisting of 50 000 spectra and their corresponding 
parameter configuration is generated. To take the 
possible variations of the illumination geometry into 
account, the LUT is generated repeatedly for several 
classes of observer zenith and azimuth angles. The step 
size of zenith angles thereby was 5°, covering a range 
from -25° to +25°. The required range was determined 
by the highest and lowest observer zenith angle in all 
available images. For the azimuth angle, a step size of 
10° in a range from 0° to 180° was chosen, so that all 
observer angles contained in the image data were 
covered. Finally, a selection of LUTs is calculated, each 
considering the respective solar zenith angle of each of 
the six imaging flights. In the case of the six flights that 
are part of this study, four iterations were sufficient, 
because two times solar zenith angles turned out to be 
almost identical for two imaging flights. Thus, the 
finally compiled LUT library consists of 50 000 
(parameter-based) * 11 (zenith angle classes) * 19 
(azimuth angle classes) * 4 (sun zenith angles) = 
41 800 000 spectra and their corresponding parameter 
settings. 
 
2.3 Model Inversion 

Although, the advantage of hyperspectral data surely 
lies with the possibility to examine an almost 
continuous spectrum, a band selection was performed as 
a first step towards an optimized inversion strategy. It 
was found that not all of the initial 197 bands of AVIS-3 
may successfully be used for the inversion, mostly due 
to two reasons. First, bands sensitive in the water 
vapour absorption range from 1100-1170 and 1300-
1500 nm were excluded. Second, bands with a reduced 
sensitivity, located at the marginal areas of the CCD 
devices, were equally excluded to ensure only high-
quality bands to be used. Thus, 146 bands were finally 
used in the inversion process. To evaluate the quality of 
the setting, two additional merely multispectral band 
combinations were tested, which correspond to the 
spectral bands of Landsat TM (4 bands within the 
spectral range of AVIS-3) and the upcoming Sentinel-2 
instrument (9 bands within the spectral range of 
AVIS-3).  

The root mean squared error (RMSE) served as cost 
function, as proposed in several studies, e.g. [7]. 
Besides the RMSE, we tested the applicability of the 
Nash-Sutcliffe Efficiency (NSE) as selection criterion, 
since it precisely indicates the predictive power of 
models [13]. For the averaging of the spectra that were 
selected from the LUT, both, the effects of averaging by 
mean and median were examined.  
Probably the most important point for increasing the 
quality of any inversion process is the solution of the ill-
posed problem. Combal et al. explained that for an exact 
solution of the model inversion, the inversion problem 
must be well-posed [9]. A physically-based model is 
well-posed, if (i) a solution exists, (ii) the solution is 
unique and (iii) the solution depends continuously on 
the data input. If one of these conditions is not met, the 
problem will be ill-posed. The ill-posed nature of 
radiative transfer models (RTM), such as the PROSAIL 
model that is applied in the context of this study, occurs 
from the fact that entirely different parameter settings 
may result in the simulation of very similar spectra.  
Other reasons for the ill-posed problem are model 
uncertainties as well as uncertainties in the reflectance 
data. While physically-based models may be quite 
sophisticated, models remain a mathematical abstraction 
and thus a simplification of reality. In case of the 
PROSAIL model this means that complex reflectance / 
scattering behaviour at leaf level cannot be considered 
by the model in its entirety (yet). Calibration errors and 
sensor noise in the reflectance data can also lead to 
uncertainties [14]. 
The consequence of the accumulated uncertainties for 
the model inversion is that the best fit may not 
necessarily lead to the correct parameter 
specification [10]. In contrast to a well-posed problem, a 
major consequence of model and reflectance 
uncertainties at ill-posed problems is that these will not 
just result in uncertainties in the solution, but rather lead 
to outright errors. This is due to the fact that the solution 
space is very widespread and not centred around one 
true solution [14].  
To solve the ill-posed problem, regularization strategies 
are necessary. One way is the use of a priori information 
to exclude spectra based on unlikely parameter 
configurations from the inversion process [9]. A priori 
information can be provided by knowledge based on in 
situ data. Since the purpose of this study is the 
assessment of retrieval strategies that are independent 
from in situ data, another approach was selected. 
Thereby, a certain amount of best fits between measured 
and modelled reflectance signatures are taken into 
account. Based on the best fit determined by the cost 
function, a threshold is defined. Within the resulting 
range, all given parameter combinations are averaged. 
Richter et al. used the RMSE as cost function and 
considered the average within less than 10% of the 
lowest RMSE value [7]. Alternatively, a fixed number 
of fits can be used instead of a percentage weighting to 



 

define the threshold. For this study, various thresholds 
for the definition of the best fit range were tested, such 
as percentage weighting as well as the usage of a fixed 
value. Despite the availability of a priori information, it 
is a goal of this study to obtain adequate and 
representative results without dependence on any a 
priori information. Nevertheless, in situ information 
served for validation purposes. 
 
2.4 Validation 

An extensive validation of the results is important to 
guarantee comparability with the findings of other 
studies. Based on a recommendation by Richter et al., a 
set of optimized statistical measures is chosen [13]: 
Root Mean Squared Error (RMSE) from the group of 
error indices; coefficient of determination (R²), slope 
(m) and intercept (b) of Theil-Sen regression from the 
category of correlation-based measures; relative RMSE 
(RRMSE) and Nash-Sutcliffe Efficiency (NSE) from 
the category of dimensionless indices. This indicator set 
ensures the following essential model validation criteria: 
 
• non-dimensionality, to avoid influence from the 

magnitude of values  
• bounded, for effortless comprehension of its 

meaning 
• symmetry, data sets should be interchangeable  
• catching the difference in the data to understand the 

magnitude of the error 
• model prediction capability (compared to 

measurements) 
 
3. RESULTS & DISCUSSION 

Based on the different options for the LUT inversion, an 
extensive evaluation was carried out. Tab. 2 shows a 
subset of these results, evaluated for leaf area 
index (LAI).  
The overall best result (VIII in Tab. 2) originates from a 
setting that uses 146 bands, an RMSE cost function, 
averaging the best 20 fits by mean and under 
consideration of the illumination geometry (viewing 
angles).  
Directly compared to mere multispectral approaches (I 
and II in Tab. 2), the use of spectrally continuous data 
results in a distinct increase in accuracy. The 
unsatisfying result of III (in Tab. 2) shows the 
anticipated effect of the ill-posed problem, because only 
the single best fit was used for estimation. Likewise, the 
accuracy decreases, if illumination geometry is not 
considered (IV in Tab. 2). This clearly indicates the 
strong influence of anisotropies and the potential of 
physically-based approaches to compensate such 
disparities. Instead of using a fixed number of best fits, 
a weighted factor also leads to a decrease of accuracy 
(V in Tab. 2). Using NSE as cost function (VI in Tab. 2) 
or median as averaging method (VII in Tab. 2) 
generates an almost equally high accuracy compared to 

using the RMSE/Mean method. 
 
Table 2. Validation results for the retrieval accuracy of 

the variable LAI, depending on the applied spectral 
setting and inversion technique. The blue frame marks 
the inversion setting that performed best on the study 

data. 

 
 
Evaluation of chlorophyll content is more challenging, 
as leaf chlorophyll content (LCC) is difficult to estimate 
from airborne image data, mostly due to the scale gap 
between the footprint of the sensors and the size of 
single leaves. If coupled with LAI information, the 
canopy chlorophyll content (CCC) may be derived, its 
scale more corresponding to the observation. However, 
the result will be clearly predominated by LAI. The 
results show that an estimation of CCC is still possible 
with adequate accuracy (Fig. 3). 
 

ID I II III IV
Bands used 4 9 146 146
Cost Function RMSE RMSE RMSE RMSE
Averaged by mean mean mean mean
Best Fits (n) 20 20 1 20
Viewing Angles yes yes yes no
R² 0.78 0.79 0.68 0.81
m 0.82 0.86 1.01 0.92
b 0.72 0.61 -0.01 0.32
RMSE 0.52 0.51 0.73 0.49
RRMSE 0.14 0.14 0.20 0.14
NSE 0.77 0.77 0.53 0.79
ID V VI VII VIII
Bands used 146 146 146 146
Cost Function RMSE NSE RMSE RMSE
Averaged by mean mean median mean
Best Fits (n) factor 1.5 20 30 20
Viewing Angles yes yes yes yes
R² 0.81 0.84 0.85 0.86
m 0.85 0.94 0.94 0.96
b 0.68 0.41 0.26 0.27
RMSE 0.49 0.48 0.43 0.43
RRMSE 0.14 0.13 0.12 0.12
NSE 0.79 0.80 0.84 0.84



 

 
Figure 3. Estimated variables against in situ 

measurements of leaf area index (left) and canopy 
chlorophyll content (right) 

 
The results are of high importance to the extent that the 
method works across the entire season. By considering 
the illumination geometry within the LUT, the retrieval 
approach was able to compensate different solar zenith 
angles as well as different atmospheric conditions. 
Since the main focus of this study is the assessment of 
the potential of the future EnMAP mission for the 
retrieval of biophysical land surface parameters, the 
method was transferred to the simulated EnMAP data 
with its lower ground resolution of 30 m. Fig. 4 shows 
the LAI estimation of the six simulated EnMAP datasets 
of 2012. Even at the lower resolution, the model is able 
to derive the dynamic progression of leaf development 
of crops during the growing season. Furthermore, land 
surface heterogeneities are projected as well. 
The answer to the question, if the development of 

specific crops can be monitored, is given in Fig. 5., 
which shows the progressing development of rapeseed, 
winter wheat, winter barley, maize and sugar beet 
projected through the development of leaf area index 
and canopy chlorophyll content.  
 

 
Figure 5. The seasonal course of the estimated 

parameters indicates the seasonal development of the 
specific crops. 

 
Fig.5 traces the growth cycles of different crops from 
emergence until harvest. The development of winter 
barley, corn and sugar beet shows the typical behaviour 
of increasing LAI and CCC in spring, a maximum in 
mid-summer and a decrease due to senescence after 
maturity. However, the decrease of the actual LAI is 
overestimated compared to reality, mostly because the 

   
April 18th May 8th May 25th 

   
June 16th August 12th September 8th 

Figure 4: Results of LAI estimation for the test area during the growing season 2012, calculated for the simulated 
EnMAP images. 

 



 

model is not able to simulate senescent vegetation, but 
rather simulates the spectral effects of green LAI, based 
on the amount of chlorophyll stored within 
photosynthetically active leaves. 
 
4. CONCLUSIONS 

Based on the results presented above, it can be assumed 
that the LUT inversion of a canopy reflectance model is 
able to monitor the dynamic development of biophysical 
vegetation parameters during a growing season without 
the need of calibration or the use of a priori information 
respectively. This is of importance in context of the 
future EnMAP mission, as EnMAP will provide images 
at a maximum size of 30x1000 km.  
The inversion method of averaging the parameters of 
the best 20 fits between measured and modelled spectra 
seems to represent a good compromise between 
eliminating ill-posed spectra without blurring the 
results. However, there might still be ways to increase 
the accuracy of the inversion. A larger size of the LUT 
with finer graduations or the use of a priori information, 
such as knowledge of the land use and / or phenological 
status of crops could enable a more precise estimation. 
An important finding of this study is the confirmation 
that hyperspectral data compared to multispectral data 
results in improvement with respect to the quality of 
biophysical parameter retrieval, mostly due to the 
applied curve fittings being more accurate than it is 
possible with multispectral data. With this in mind, 
EnMAPs role as a most valuable instrument for future 
investigations of regional crop development is 
confirmed. For agricultural purposes, EnMAP will 
provide data that enables the transfer of sophisticated 
hyperspectral biophysical variable retrieval techniques 
from the limitations of airborne acquisitions towards a 
regional coverage and thus provide useful information 
in the context of precision agriculture. 
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