

Task 5.3: New current design and forecast data Jesper Sandvig Mariegaard DHI

LOTUS Final meeting Brussels, February 4th, 2016

Objective of Task 5.3

Develop and demonstrate a new data assimilation approach in which Level 2 altimeter data are directly assimilated into a high-resolution ocean model

Activities

- Development of data assimilation capabilities in DHI's flexible mesh marine models MIKE 21/3 FM for assimilation of along-track satellite altimetry
- Processed altimeter data of Sea Level Anomaly (SLA) from the SAR mode of CryoSat-2 for the NE Atlantic and North Adriatic Sea were provided by CLS
- Comparison of MIKE 21/3 FM model simulation data and altimeter data of SLA for the NE Atlantic and North Adriatic Sea
- Demonstration of assimilation of altimeter data of SLA for the North Adriatic Sea

Marine models in MIKE Powered by DHI

M

3D modelling of coast and sea

Advanced groundwater modelling

by DHI

MIKE 21

2D modelling of coast and sea

MIKE 21 Hydrodynamic model

- Tidal flow
- Storm surges
- Forcing driven:
 - Wind
 - Water level at open boundaries
- Large models $n \approx 10^5 10^8$

00:00:00 Time Step 0 of 0.

Data assimilation in MIKE 21/3

Data assimilation (DA): improving model prediction with observations

- Development started in 1999 in MIKE 21/3 classic
- Sequential DA with Ensemble Kalman filter (EnKF) .
- Mostly assimilation of tide gauge station data .
- Examples of operational DA models
 - NE Atlantic Hindcast/Forecast
 - Great Lakes Forecast
 - Caspian Sea Forecast

Jacob Tornfeldt Sørensen

- Ensemble: pertubate model through model errors on forcings •
- EnKF update: linear combination of ensemble members .

FM DA Module before 2015

- Few fixed positioned tide gauge stations
- Sequential algorithm one station at a time (Andersson&Andersson)
- Regularization
 - Error covariance temporal smoothing
 - Error covariance localization

New developments in FM DA Module

- New data structures and organization to allow changing positions and number of observations
- Implementation of ETKF and DEnKF (inspired by code by P. Sakov)
- Localization by Local Analysis
- Reading and processing track data observations (point set)
- EnOI (in progress)
- Other: Several error formulations pr model error, improved data structures (abstraction), improved IO, diagnostics, inflation, observation operator interpolation

Assimilating along track satellite altimetry

Along track altimetry observations(1)

- Raw data errors: st dev + correlation in time (along track)
- Errors estimated against 35 year hindcast NorthSea model

Along track altimetry observations(2)

Super observations ۲ 45.8 Model mesh CryoSat-2 track one pr element pr time window (step)₄₅₆ Construct local R Zoom of Adriatic mesh with one CryoSat2 track Adjusted st dev by local R Construct R pr model step 44.15 - (several super elements) 44.1 Validation tests performed with synthetic data 44.05 44 43.95 13 13.5 14 14.5

13.4

13.35

13.45

13.5

13.55

Northern Adriatic with CryoSat-2 tracks November 2013

Venezia

Italy

Great a

Ravenna

Case study: Adriatic Sea

Ancona

Trieste,

Bosnia and Hierzegovina:

Montenegro e

Macedor

S Benedetto del Tronto

Ortona

Tremill Vieste

Adriatic Sea case

HD 2d

- Approx 5000 elements
- 11 months (June 2013 May 2014)

DA

- 10 ensemble members
- Model errors
 - Wind
 - Water level on open boundary
- DA with 2 tide gauge stations
 DA with only track data
 DA with 2 stations and tracks

DA with along track altimetry

Altimeter data

- Less than one minute of data a day
- Average passing frequency of 1.5 days
- Error: temporal correlation: 25 sec
- Error: st. dev. 5 cm

RMSE in cm

	HD (no DA)	DA 2stations	DA 3 tracks	DA 2st.+3trck
Trieste (DA)	12.8	2.5	14.9	2.5
Venezia	11.5	4.0	13.0	4.0
Ravenna (DA)	12.4	7.6	13.6	7.7
Ancona	9.5	3.4	10.2	3.4

Conclusions

Task 5.3 completed

- Data assimilation in MIKE 21/3 improved and now handles along track altimetry data
 - Includes observation error description with correlated errors
 - Validated with synthetic data
- New data assimilation technique tested in real case: Adriatic Sea
 - Unfortunately too infrequent data to give positive results
 - Will presumably work well on larger areas and with more frequent (Sentinel-3) data

Thank you

Jesper Sandvig Mariegaard

