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Abstract

There is a need for near-shore bathymetric mapping for ship navigation and mon-
itoring effects of climate change and natural disasters. This project presents the
benefits and limitations of boat and airborne methods, which often have high ac-
curacy but are time consuming and expensive. Therefore satellite based meth-
ods have become increasingly popular. A method for estimating bathymetry from
ICESat-2 LIDAR will be presented in this report. The seafloor photon data is ex-
tracted and corrected for refraction and tides. The results are validated using sin-
gle beam echo sounding data. ICESat-2 bathymetry shows promise, as it is able
to estimate bathymetry with an accuracy resulting in a RMSE of 1.5-3.5 % of the
maximum depth. However, there are limitations to ICESat-2 LIDAR bathymetry,
ones being the spatial coverage which is limited to tracks. Since surface coverage
is often needed, a satellite derived bathymetry method using multi-spectral im-
ages from Sentinel-2 combined with the ICESat-2 estimated depths is proposed.
For most methods deriving bathymetry from multi-spectral imaging, in situ mea-
surements are essential. By using ICESat-2 in place of in situ measurements,
it is possible to create a method based solely on satellite data. The combined
Sentinel-2 and ICESat-2 data is used in a linear band model and implemented
using least square regression. The resulting model had an RMSE accuracy of
0.79-9.2 % of the maximum depth.
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1 Introduction

1.1 Motivation
Bathymetry is the information of underwater topography and water depths. The
ocean covers more than 70% of the Earth’s surface, yet only a small part has
been mapped directly. With climate change, natural disasters, habitat loss and
an increase in offshore energy amongst other things, there is a growing need for
bathymetric mapping (Wölfl et al., 2019). The need for assessing climate change
impact in coastal environments makes near-shore bathymetry (also called coastal
or shallow bathymetry) very important. Coastal areas are very dynamic and can
change with erosion, flood etc. (Misra et al., 2018, Casal et al., 2020), creating a
need for frequent bathymetry measurements of the same areas. The most com-
monly used methods for bathymetric mapping are carried out from boat or planes,
making them time consuming and expensive. Especially boat based methods are
limited, as they are not always able to reach the shallow water closest to the
coast. Methods for deriving bathymetry from satellite data have also been devel-
oped, and with high resolution data freely available, the satellite based methods
can provide cheap near-shore bathymetric maps, with a wide coverage (Geyman
and Maloof, 2019).

1.2 Satellite based methods for bathymetric
mapping

The Ice, Cloud, and Land Elevation Satellite-2, ICESat-2, is a satellite carrying
a single instrument, ATLAS, with a photon-counting LIDAR. The satellite was
launched in September 2018, and even though it was not part of the mission goal,
studies have shown that the ICESat-2 LIDAR can be used for bathymetric map-
ping (Parrish et al., 2019, Ma et al., 2020). The study by (Parrish et al., 2019) pre-
sented the first early orbit validation of ICESat-2 bathymetry and they developed
and tested a refraction correction in their work. They found ICESat-2 bathymetric
mapping to be a promising new tool to assist in nearshore bathymetry. However,
more knowledge of how well ICESat-2 is able to measure seafloor depths is still
valuable. The drawback of ICESat-2 bathymetry, is that the data is collected along
tracks, making it hard to get wide surface coverage for bathymetric maps.
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In an effort to remedy this limitation, satellite bathymetry from optical imagery was
considered and implemented in this project. With multi-spectral bathymetry the
physical property that light attenuates in water is used to explain the relationship
between reflectance and depth (Geyman and Maloof, 2019). Many multi-spectral
bathymetry methods require prior knowledge of the depths in the area of interest.
Therefore it can only be used in areas that have already beenmapped to some ex-
tent, or it will require new measurements to be taken. With ICESat-2 bathymetry,
it is possible to measure seafloor depths in the area of interest, and use them as
the input in the multi-spectral bathymetry model, enabling a fully satellite derived
bathymetry method. This has already been attempted using Sentinel-2 images
and ICESat-2 by (Ma et al., 2020). In their study a point cloud processing algo-
rithm was used to estimate bathymetry from ICESat-2, and they also implemented
the refraction correction developed by (Parrish et al., 2019). They tested twomulti-
spectral methods for modelling bathymetry, the linear band model and the ratio
band model. Both methods showed promising results. The linear band model and
Sentinel-2 imagery will also be used in this project, as it provides high resolution
images in the required bands.

1.3 Project goals
This project aims to test the capabilities of ICESat-2 for bathymetric mapping as
well as the combination of ICESat-2 and Sentinel-2 for satellite derived bathymetry.
The project was carried out in cooperation with the department Mapping & GIS
at NIRAS, who provided single beam echo sounding data for islands in the Mal-
dives. This ensured a perfect study area for the project, where we would be able
to validate the results. The project will try to answer the questions:

• Is ICESat-2 LIDAR a good supplement for bathymetric mapping?

• How accurately can ICESat-2 determine the depth of the seafloor?

• How deep can ICESat-2 LIDAR penetrate?

• Can a combination of ICESat-2 and Sentinel-2 result in bathymetry with an
accuracy comparable to current methods?

• How do the methods compare to non-satellite based methods?

The conventional bathymetric mapping methods will be reviewed shortly in chap-
ter 2, as well as a more detailed description of the methods used in this project.
The study area will be introduced in chapter 3. The satellites used will also be
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presented, and the details of the data and data acquisition in the project will ex-
plained as well.
Then the pre-processing steps for both the ICESat-2 data and Sentinel-2 data will
be presented in chapter 4.
The resulting bathymetry data will be validated using the single beam echo sound-
ing data in chapter 5. Limitation of the validation and the maximum depth penetra-
tion will also be discussed. Additionally the ICESat-2 bathymetry will be used as
input in a multi-spectral bathymetry model, together with optical image data from
Sentinel-2. The satellite derived bathymetry will also be validated, and the advan-
tages and disadvantages of combing ICESat-2 and Sentinel-2 for bathymetry will
be discussed. Finally ideas for future work will be presented in chapter 7.
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2 Bathymetric Mapping
Bathymetry is the study of underwater seafloor depths. The need for measuring
bathymetry has been around for a long time. It is especially important for ship
navigation, but also used for flood prevention, coastal monitoring, climate change
protection amongst many other things.
Near-shore bathymetry is the focus of this project, as it is still considered difficult
to map water depth in very shallow waters, and it is also time consuming and ex-
pensive to gain high accuracy maps (Parrish et al., 2019, U.S. Geological Survey,
2021).

There are many methods for measuring near-shore bathymetry. The oldest meth-
ods, going as far back as 3000 years, included standing with a pole in shallow
waters or throwing weighted lines off boats. These methods are very limited and
it would of course take a long time to get substantial coverage.(Wölfl et al., 2019)

Today another boat based methods is used. One of the most popular methods for
bathymetric mapping is using an echo sounder on boats, which is able to cover a
substantial area with high accuracy. There are two methods: single beam echo-
sounders and multi beam echo-sounders (Wölfl et al., 2019). The general idea
behind both methods is the same, a sound wave is emitted from an echo sounder
(attached to the side of a boat) and the two-way travel time is used to determine
the water depth. However, boat based methods are time consuming and expen-
sive.

Airborne methods for bathymetric mapping have also been used, such as airborne
LIDAR. This is also expensive, just like boat based methods, but it is possible to
cover large areas and there are no limitations to how close to the coast it is possi-
ble to measure. This method is not able to measure as deep as SBES and MBES
and is more dependent on clear waters, with an accuracy of up to 15 cm (Gao,
2009).

Then there are methods for mapping bathymetry using satellite data. Methods for
using multi-spectral images have been developed and used since the 1970’s, but
LIDAR bathymetry from ICESat-2 is a new method that can also be used. The
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advantage of using satellite data, is that there are many free data sources that
can easily be accessed. This makes it possible to cover large areas without the
need to travel to the area you want to map, making it much cheaper and less time
consuming. It also makes it much easier to revisit the same area, as changes in
bathymetry can occur, especially in areas with a soft bottom type, where erosion
can change the seafloor drastically (U.S. Geological Survey, 2021, Wölfl et al.,
2019, Lyzenga et al., 2006). Weather is a limitation, since these methods utilise
optical light which is unable to penetrate clouds. Therefore the satellite has to
cross the area of interest when the sky is clear of clouds.

This project is focused on the use of satellite data for bathymetric mapping. The
use of LIDAR andmulti-spectral images for bathymetry will be explained in greater
detail in the following sections.

2.1 LIDAR Bathymetry
The general principles of LIDAR bathymetry are the same whether it is airborne
or satellite based. Simply put, LIDAR measures the height of the seafloor by
measuring the time is takes for a laser beam to return to the instrument. Bathy-
metric LIDAR is often a green laser (532 nm), and most airborne LIDAR missions
also carry an infrared to measure the height of the water surface (Irish and White,
1998, Wozencraft, 2002). The maximum water penetration is found when using
a laser with wavelength 532 nm. If the laser has a longer wavelength it is more
prone to absorption by water. Shorter wavelength have another issue, since they
will encounter stronger scattering and absorption by in-water constituents (such
as dissolved gasses and minerals), resulting in shallower depth penetration. For
those reasons, the green LIDAR is the most used (Gao, 2009). The infrared laser
is not able to penetrate the water making it ideal for measuring the water surface
height (Quadros et al., 2008). However it is also possible to determine the height
of the water surface using the green laser (Parrish et al., 2019).

If an infrared laser is included, the depth is found as the difference between the
return time of the signals, while if only a green laser is used, both the seafloor and
water surface must be identified separately to estimate the depth. This requires
more time when processing the data.

If ideal conditions are present, airborne LIDAR bathymetry can measure depths
of up to 60 meters (Quadros et al., 2008), but in most cases it will be able to
penetrate 25-40 meters. The LIDAR on the ICESat-2 satellite has been seen to
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penetrate 0.96 Secchi depths (Secchi depth is the maximum depth that can be
seen optically) by (Parrish et al., 2019), where the maximum observed depth was
38 meters. For comparison, some echo sounder systems can penetrate down
to 3600 meters depth (KONGSBERG MARITIME, 2021). LIDAR is not able to
replace echo sounder systems, however they offer a great addition, especially in
the very shallow waters where echo sounders are not able to gain access.

2.1.1 Refraction
As LIDAR penetrates the water, it is also affected by refraction. Since the speed
of light is different in air and water, the laser will refract when it hits the water. This
results it both a vertical and horizontal displacement. A method to correct for this
has been proposed by (Parrish et al., 2019) to be used on ICESat-2 LIDAR.

Figure 2.1: Visualisation of ICEsat-2 photon refraction in water (Parrish et al.,
2019)

In figure 2.1 the refraction of photons (that make up the laser beam) in water is
visualised. Since the LIDAR instrument does not know whether the measured
return photon has gone through water or not, an error is introduced. The photons
are geolocated based on the return time and the assumption that they follow a
straight line the entire way. However, when the laser beam penetrates the wa-
ter, the beam is slowed down and the beam will also ”bend” due to the reduced
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speed. This is illustrated in figure 2.1 as the red and green dots. The red dots
are the geolocation ICESat-2 assumes the seafloor has, while the green dots are
where the photons actually hit the seafloor.

With the refraction correction which will be described below, it is possible to com-
pute both vertical and horizontal corrections. The variables introduced in the equa-
tions are illustrated in figure 2.2.

Figure 2.2: Visualisation of ICEsat-2 photon refraction in water (Parrish et al.,
2019)

The depth, D, is the distance between the water surface and uncorrected bot-
tom return photons (how this is found is described in section 4.1). The angle of
incidence, θ1, can be found as:

θ1 =
π

2
− ref_elev (2.1)

where ref_elev is the elevation of the unit pointing vector for the reference photon.
This value is included in the ICESat-2 data.
From the angle of incidence we can find the refraction angle, θ2. The refraction

CHAPTER 2. BATHYMETRIC MAPPING 7



angle in also dependent on the refractive index of air, n1, and water, n2. The re-
fractive index of air is known to be 1.00029. The refractive index of water depends
on salinity, temperature, pressure and wavelength of the laser. In (Parrish et al.,
2019) they use a default value for salt water, with the assumption that the pres-
sure is at 1 atmosphere, the water temperature is 20 oC, the salinity is 35‰ and
the wavelength is 540 nm.

θ2 = sin−1

(
n1 sin θ1

n2

)
(2.2)

From the law of cosines we can find the slant range to the uncorrected bottom
return photon, S, as a function of D and θ1.

S =
D

cos θ1
(2.3)

The corrected slant range, R, which is the actual distance the photon traveled
through the water, can be found from the relationship between S, n1 and n2. This
is to account for the different speed of light in water.

R =
Sn1

n2

(2.4)

Another variable that is needed for the correction is the angle β (see figure 2.2 for
reference).

β = γ − α (2.5)

β is found as the difference between the two angles γ and α. Since the triangle
where γ is one of the three angles, is a right-angled triangle, the angle can be
found as

γ =
π

2
− θ1 (2.6)

α is found in the triangle made up by the sides R, S and P, and from the law of
sines it can be found as

α = sin−1

(
R sinϕ

P

)
(2.7)

Finally the distance between the corrected and uncorrected photon return, P, is
found by using the law of cosine

P =
√

R2 + S2 − 2RScos(θ1 − θ2) (2.8)

The horizontal corrections can then be found as∆Y and the vertical offset as∆Z.
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These are the offsets that can be seen in figure 2.2. Y and Z are in a satellite
centered coordinate system, and in order to add the correction to the coordinates
of the bottom return photons, they must be projected onto a local (E,N) coordinate
system. In order to do this, the azimuth of the unit pointing vector is needed. This
is written as κ, and found as parameter ref_azimuth in the ICESat-2 data.

∆Y = P cos β (2.9)
∆Z = P sin β (2.10)
∆E = ∆Y sinκ (2.11)
∆N = ∆Y cosκ (2.12)

Once the horizontal correction has been projected onto the (E,N) coordinate sys-
tem, we have a correction in the vertical direction (Z) and in the east (E) and north
(N) direction. The corrected coordinates can be found as E ′, N ′ and Z ′.

E ′ = E +∆E (2.13)
N ′ = N +∆N (2.14)
Z ′ = Z +∆Z (2.15)

Without this correction the photon returns could have up to 9 cm errors at 30
meters, and it is therefore an important thing to account for, if the aim is to have
high accuracy. The refraction error will be larger at larger depths, so it is especially
important when dealing with deeper waters.

2.2 Satellite Derived Bathymetry using
multi-spectral images

Another satellite basedmethod for bathymetricmapping ismulti-spectral bathymetry,
where optical imagery is used. This method utilises the relationship between bot-
tom reflectance and depth in shallow water. It often utilises the blue and green
spectral bands, since they have the best ability to penetrate through the water
(Gao, 2009). It is often referred to as satellite derived bathymetry. This might be
confusing, since ICESat-2 LIDAR is also used to derive bathymetry from a satellite
based instrument. Satellite derived bathymetry will be used to refer to the com-
bined bathymetry method using both multi-spectral imagery and satellite LIDAR.
The general method of utilising optical imagery for bathymetry estimates will be
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referred to as multi-spectral bathymetry.

Multi-spectral bathymetry can be split into two methodologies: empirical models
and physics-based models. Both models rely on the physical knowledge of light
through water. However, for empirical models, known bathymetry data points
are needed. Physics-based approaches can be applied without knowing anything
about the bathymetry, but they are more challenging to implement and require
more computational power. Therefore empirical approaches are still commonly
used for deriving bathymetry (Casal et al., 2020) and the method used in this
project will also be empirical.

Themost commonly used empirical methods are the linear bandmodel (LBM) pro-
posed by (Lyzenga et al., 2006) and the band ratio model (Stumpf et al., 2003).
The LBM has been adapted and used by many for bathymetric mapping, because
it is efficient and simple (Geyman and Maloof, 2019). However, both the LBM and
the band ratio model are limited by the fact that they are unable to fully accommo-
date variable bottom types. Other methods for utilising the properties of optical
imagery for bathymetry have also been proposed such as using a support vector
machine method (Misra et al., 2018) or cluster-based regression (Geyman and
Maloof, 2019). Even though these methods have shown promising results, the
LBM still outperforms other methods in certain cases. Since the LBM is a well
recognized model, that will also be simple to implement, it was chosen for this
project.

2.2.1 Linear Band Model for estimating bathymetry
The linear band model proposed by (Lyzenga et al., 2006) assumes that a linear
relationship between the water depth and log-transformed radiances exists. The
model works best in clear water and with a homogeneous bottom type, as vari-
ability in the reflectances causes large errors. This is accounted for by including
multiple bands in the model, making it less sensitive to variable bottom albedo. In
theory, if more bands are used, a larger range of variations can be tolerated. The
best results are achieved when using atmospherically corrected images (Vahtmäe
and Kutser, 2016). The model uses satellite images at different optical bands. In
situ measurements are also needed to estimate depth using the LBM.

The derivation behind the LBM can be found in (Lyzenga et al., 2006). The result-
ing model for estimating depths H can be described as
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H = h0 −
N∑
j=1

hjXj (2.16)

for N optical bands. h0 and hj are variables defining a linear relationship between
Xj and depth. They can be found via a regression analysis using in situ depths.
The variable Xj is defined by (Lyzenga et al., 2006) as

Xj = ln(Rj −Rwj) (2.17)

where Rj is the above surface radiance in band j, and Rwj is the average deep
water radiance. The radiances are log-transformed to create a linear relationship
between input radiance and depth. The issue with this version of Xj, is that if
some of the above surface radiance’s have a lower intensity than the deep water
radiance, the productRj−Rwj would be negative, resulting in imaginaryXj values.
To account for this (Bramante et al., 2013) proposed a different Xj

Xj = ln(nRj) (2.18)

where n is a fixed constant. For consistence with (Vahtmäe and Kutser, 2016 and
Bramante et al., 2013) n = 1000 is used.

2.2.2 Implementation of Linear Band Model
In order to use the linear band model (LBM) for estimating depths, the parameters
h0 and hj have to be found. The linear band model is set up as an inverse prob-
lem to find the model parameters, which can then be used in a forward problem
to find the depths in the entire scene covered by multi-spectral satellite imagery.
This project used Sentinel-2 imagery as the multi-spectral band data and ICESat-
2 LIDAR estimated bathymetry will be used as the known depth (instead of in situ
measurements). The pre-processing of these data is described in section 4.

The inverse problem can be solved in many ways, but in this project the prob-
lem was solved using both a least squares method and a damped least squares
method. The two methods were tested in order to determine which was the best
choice.

The LBM can be described as a forward problem, which can generally be written
as
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d = Gm (2.19)

where m is the model we want to find, d is the data, in this case depths, and G is
a kernel matrix. In an inverse problem we first solve for m

m = Gd (2.20)

The LBM described in section 2.2.1 is defined by equation 2.16 and 2.18.

H = h0 −
∑

hjXj

Xj = ln(nRj)

h0 and hj are constants defining a linear relationship between Xj and depth H.
The model parameters that we want to estimate are h0 and hj for each band that
we use. If 3 bands are used, that results in 4 model parameters.

m =


h0

h1

h2

h3

 (2.21)

The d in the forward model will be the estimated depth for each pixel in the multi-
spectral image used, and the d in the inverse problem is the in situ depth. d can
be defined as a collection of depths, either the known or estimated depth from
pixel 1 to pixel p.

d =



H1

H2

.

.

.

Hp


(2.22)

When training the model, each pixels with a corresponding in situ depth are ex-
tracted from each band. In the forward model all pixels are used to build the
model.The kernel matrix G can be written as
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G =



−1 X1
1 X1

2 X1
3

−1 X2
1 X2

2 X2
3

. . . .

. . . .

. . . .

−1 Xp
1 Xp

2 Xp
3


(2.23)

Where p is the number of pixels used (this will be smaller when training the model,
and will be the total amount of pixels in the image when building the full model).
X2

1 is ln(nR2
1), whereR2

1 is the reflectance in the second pixel of the first band. The
model is set up, such that each row in m, d and G correspond to the linear band
model in equation 2.16. When solving this as a system of many equations with
many H values, the least squares method or damped least squares method will
estimate the model parameters inm, so they best describe the linear relationship
between all the known depths and pixel reflectances in the multi-spectral image.
The least squares solution for finding m is defined as

mLS = (GTG)−1GTd (2.24)

and the damped least squares can be written as

mDLS = (GTG+ α2I)−1GTd (2.25)

I is an identity matrix and α is the dampening parameter. It can be estimated in
many ways. In this project, α was estimated using an L-curve. The aim of the
L-curve is to find the model with the smallest model norm and model misfit (resid-
uals). You can have a smaller model norm with a larger model misfit and vise
versa, however the damped least squares method tries to find the best trade-off
between the two. The normal least squares only tries to minimize the model misfit.

Summarizing, we have known depths that correspond to some of the pixels in the
multi-spectral image. This is used to train the model, in order to find the model
parameters in m. This is set up as a system of equations and solved as an in-
verse problem, using either the least squaresmethod or the damped least squares
method. The resulting model parameters can then be used, together with the pixel
values in each of the multi-spectral bands, to estimate a depth in each image pixel.

2.3 Echo Sounders
Single Beam Echo-Sounders (SBES) and Multi Beam Echo-Sounders (MBES)
are popular methods for mapping bathymetry, as they have high accuracy and can
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penetrate down to 3600 meters depth (KONGSBERG MARITIME, 2021, Wölfl et
al., 2019). The accuracy has been found to be between 3-30 cm (Ernstsen et al.,
2006).

Echo sounders work by emitting a sound wave and measuring the two-way travel
time, in order to determine the water depth. The echo sounder is usually operated
from a boat, with a GNSS receiver on board measuring the exact location of each
sounding. With MBES a fan (or multiple beams) of sound is emitted, allowing for
mapping of a larger area at the time. SBES is often used for smaller water bod-
ies, where MBES is used for larger areas. The challenge with boat based echo
sounding methods, is the danger involved with operating the boat in shallow wa-
ters. This has prompted the National Oceanic and Atmospheric Administration to
implement a policy of not surveying too close to the shore (NOAA, 2014). Another
issue with echo sounding methods, is that it is time consuming since it requires
sending a boat out to the area that needs mapping. This also makes the method
expensive.
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3 Study Area and Data

3.1 Study Area
The Maldives is an island country in South Asia, made up of 26 atolls. The chain
of atolls stretches out over 871 km, crossing the equator. There are 1190 islands,
most of them very small and no more than 2 meters above sea level (FAO, 2011).
The Maldives was chosen based on the availability of high accuracy validation
data around five islands, which was made available through collaboration with NI-
RAS.
The bathymetry of the five islands has been mapped using single beam echo
soundings, however only three of these islands are used in this project, since
ICESat-2 data was only available for those islands.

Figure 3.1: Map showing the location of three islands, in the Maldives, used as
the study area
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The Maldives is an ideal place to study bathymetry, as it has clear waters with
Secchi depths measured to be between 15-34 meters near the capital Malé in the
Kaafu Atoll (Knaap et al., 1991). This is not near any of the islands used in this
project, however it is the only available measurements. It is assumed that the Sec-
chi depth would be at least 20-30 meters around the selected islands (Bundgaard,
2020, personal communication).

In figure 3.1 the study area is presented. The Maldives is shown to be located
south-west of India, close to the equator. The three islands: Dhiggaru, Mulah and
Buruni are located fairly close to each other, and a closer look at the islands is
also shown in the figure.

Dhiggaru and Mulah are both located in the Mulaku atoll. The atoll, like all other
atolls, is made up of a ring-shaped coral reef. Both islands are located on the
barrier reef (the outer ring reef), Dhiggaru is on the northern side of the atoll, while
Mulah is on the east side of the atoll. The coral reef making up the atoll has sev-
eral openings, with the only opening or channel on the eastern side being right
next to Mulah. This channel is called Mullah Kandu. There is another channel
east of Dhiggaru called the Dhiggaru Kandu. The channels are openings in the
ring reef, making them much deeper than the reefs and creating a passage into
the atoll for boats (themaldivesexpert.com, 2018).
It was not possible to find information on the specific corals and other bottom types
that surround the three islands. From other atolls in the Maldives, it is known that
inside the atoll there are many reef systems. Between the reef systems inside the
atoll, it is assumed that the bottom is sand. Therefore it is possible that there is
some sandy bottom around Dhiggaru, Mulah and Buruni as well. However it is
mostly coral reefs, which we can assume are fairly hard and unchanging (Knaap
et al., 1991, Bundgaard, 2020).
Buruni is located on the northern side of the Kolhumadulu Atoll, with an opening
in the reef east of the island. Dhiggaru is ~500 m across, Mulah is ~1.35 km long
and Buruni is ~1.45 km long (measurements based on satellite images). Satellite
images of each island reveal the coral reefs and the openings in the coral reefs
near each island in figure 3.2.

The Maldives has a tropical monsoon climate, with mean annual temperatures
of 28 oC. The country is affected by monsoons, however rainfall is uniformly dis-
tributed throughout the year (FAO, 2011). The Maldives is a very sunny country,
and it has 40 % more sunshine hours (or 1000 sunshine hours more) than Den-
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(a) (b) (c)

Figure 3.2: Satellite images showing a) Dhiggaru b) Mulah c) Buruni

mark (DMI, 2021, weatherandclimate.com, 2021). This increases the chance of
imaging the study area from satellites.

3.2 Data
For this project data from both the satellite ICESat-2 and the satellite Sentinel-2
have been utilised. A short description of both satellites will be presented in this
section, as well as the description of the data sets used from the two platforms.
Finally, additional data sources used in the processing and validation will be in-
troduced.

3.2.1 ICESat-2
Satellite
The Ice, Cloud, and land Elevation Satellite 2, ICESat-2, was launched Septem-
ber 15, 2018. On board, ICESat-2 carries a photon-counting laser altimeter, and
it measures the elevation of ice sheets, glaciers, sea ice and more by sending
out 10,000 laser pulses a second, resulting in a high resolution along the satel-
lite track (Neumann et al., 2020). While the name and mission statement do not
mention water or bathymetry, the photon counting laser is able to measure water
surface heights and penetrate the water in order to see the underlying bathymetry
in coastal areas (Parrish et al., 2019).
ICESat-2 carries a single instrument, the Advanced Topographic Laser Altimeter
System (ATLAS). ATLAS measures the travel times of the laser pulses in order
to calculate the distance between the spacecraft and Earth’s surface. The laser
light on ATLAS has a wavelength of 532 nm, green on the visible spectrum.
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Figure 3.3: ATLAS idealized beam and footprint pattern (Neumann et al., 2020)

Each transmitted laser pulse from ATLAS is split by a diffractive optical element to
generate six individual beams. The beams are arranged in three pairs, with each
pair having a weak and a strong beam. The beam pairs have an energy ratio
of approximately 1:4. In figure 3.3 the beam and footprint pattern is visualised.
The three beam pairs are approximately 3 km apart in the across track direction,
while the distance between the weak and strong beam in each pair is 90 m in
the across-track direction, and 2.5 km in the along-track direction. As the satellite
moves in the along-track direction, the collection of overlapping footprints create
6 ground beam tracks. Each ground beam track is numbered according to its po-
sition, with ground track 1L (GT1L) on the far left and ground track 3R (GT3R) on
the far right. The first beam pair is GT1L & GT1R, the second GT2L & GT2R ect.
As the satellite moves it traces out an imaginary Reference Ground Track (RGT),
which is were ATLAS is pointing too. It gives an indication of the area the three
beam pair will cover. The ICESat-2 mission acquires data along 1,387 different
RGTs and each RGT has a 91-day repeat cycle (meaning it will revisit the same
place every 91 days). Each beam footprint is approximately 17 meter in diameter.
(Neumann et al., 2020)

Data
The level 2 product ATL03 will be used in this project. ATL03 contains time, lati-
tude, longitude, and ellipsoidal height (WGS84) for each photon event. For each
beam the data file contains information on height and geolocation, but also geo-
physical corrections. The heights are already corrected for several geophysical
phenomena, such as effects of the atmosphere and solid earth deformation. All
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corrections can easily be removed, and some effects, such as ocean tides can
easily be added if needed. Each photon is also classified, based on surface type
and signal photon confidence (either low, medium, or high confidence) (Luthcke
et al., 2019). There was no need for removing photons based on surface type,
and the signal photon confidence was not used to ensure that possible bathymetry
was not accidentally classified as noise.

ATLAS splits the laser into six beams, which means that each time the ICESat-2
satellite passes over the study area, there are six beams that could potentially
cover the specific area in question. The beams are in three pairs of two, with the
three pairs being 3 km apart. So for the small islands that we are looking at in the
Maldives, it is likely only one beam pair that is useful, for each data acquisition.
There was validation data available for five islands, however for two of these is-
lands there were no beam tracks close enough to the islands.

Figure 3.4: All tracks from 2020-03-10 in the area close to Dhiggaru

In figure 3.4 the six beams are shown from 2020-03-10. In this case, only the
GT3L and GT3R beam tracks (red tracks) cross Dhiggaru. All data files (from Oc-
tober 2018 - November 2020) that had tracks in proximity of on of the islands were
visually inspected to select the beam tracks that intersected with the islands. The
data acquisition goes back to October 2018, and ~85 files were inspected for the
project. The data was acquired from the The National Snow and Ice Data Cen-
ter (NSIDC) website (NSIDC, n.d., Neumann et al., 2020). From all the potential
dates, five beam pairs came close to Dhiggaru, eleven were close to Buruni and

CHAPTER 3. STUDY AREA AND DATA 19



six were close to Mulah.

Once all the beam tracks that cross each island have been identified, it is possible
to see the extend of the coverage. In figure 3.5, all the tracks that came close to
Dhiggaru are shown. Each of these tracks follow the same RGT, however off-
pointings have resulted in the beam tracks being separated slightly. This allows
for greater coverage.
The tracks only cover a small part of the coral reef around the island, however the
tracks are close together in the covered area. The tracks with the same color are
the weak and strong beam from the same date. The weak and strong beam pairs
are 90 meters apart.
Some of the beam tracks in figure 3.5 are not continuous, such as the orange
tracks. Data gaps can occur for many reasons, and some tracks that should have
covered the area are completely absent, possibly due to cloud coverage.

Figure 3.5: All tracks from ICESat-2 that come close to Dhiggaru

From the remaining nine tracks (from five dates) that cover Dhiggaru, they were
each visually inspected to see if they contained possible bathymetry. The track
from December 12th 2018 (blue) turned out to have no discernible bathymetry,
leaving eight tracks with visible bathymetry, which have to be processed to get
the seafloor depths. Buruni had 14 beam tracks from eight dates and Mulah had
eight beam tracks from four dates, with discernible bathymetry. The tracks used
for Dhiggaru and Mulah have Reference Ground Track 1141, and the tracks cov-
ering Buruni are from RGT 0257 and 0066.
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The beam tracks used to estimate the bathymetry around Mulah and Buruni are
shown in figure 3.6.

Figure 3.6: Beam tracks from ICESat-2 that come close to Buruni and Mulah with
usable bathymetry data

3.2.2 Sentinel-2
Satellite
The Sentinel-2 mission is comprised of two polar-orbiting satellites, phased at
180° to each other. It has a wide swath of 290 km and a high temporal resolution.
With one satellite there is a revisit time of 10 days at the equator, and when using
both satellites the same area will be imaged every 5 days. The main instrument
on-board the Sentinel-2 satellites is the MultiSpectral Instrument (MSI). The MSI
works passively, by collecting sunlight reflected from the Earth. A push-broom
sensor works by collecting rows of image data across the orbital swath, making
use of the forward motion of the satellite. MSI measures the Earth’s reflected radi-
ance in 13 spectral bands from visible to short wave infrared (SWIR). Four bands
have a spatial resolution of 10 m, six bands have a spatial resolution of 20 m, and
the remaining three have a spatial resolution of 60 m. (ESA, 2015)

Data
Sentinel-2 data was taken from Copernicus Open Access Hub (ESA, 2020). The
level-2A product was chosen, since an atmospheric correction has already been
carried out, resulting in bottom of atmosphere (BOA) reflectance, instead of the

CHAPTER 3. STUDY AREA AND DATA 21



top of atmosphere (TOA) reflectance of the level-1C product. The level-2A prod-
uct is not available for older data, however the atmospheric correction can be
carried out in the Sentinel Application Platform (SNAP). The best result for the
linear band model (LBM) is found when using atmospherically corrected images
(Vahtmäe and Kutser, 2016). The data is downloaded in tiles of size 100 x 100
km. A single tile (T43NCD) covers both Dhiggaru and Mulah. While a second tile
was necessary to also cover Buruni (T43NBC). Two identical Sentinel-2 satellites
(2A and 2B) operate simultaneously, phased at 180° to each other. They have a
slightly different spectral resolution. Only Sentinel-2A was used in this project.

For the LBM, if a larger number of bands is used, theoretically a larger range of
variations in bottom type can be tolerated (Vahtmäe and Kutser, 2016). However,
MSI only measures three visible bands a 10 m resolution. If more bands were to
be included, it would be at the expense of the high spatial resolution. Many other
studies have also successfully estimated bathymetry using the LBM with bands
in blue, green and red (Ma et al., 2020, Casal et al., 2020, Misra et al., 2018).
Therefore these are the three bands that will also be used in this project.

Band number Spectral resolution Spatial resolution

2 Blue (492.4 nm) 10 m

3 Green (559.8 nm) 10 m

4 Red (664.6 nm) 10 m

8 NIR (832.8 nm) 10 m

12 SWIR (2202.4 nm) 20 m

Table 3.1: Sentinel-2 bands B02, B03, B04 and B12. Spectral resolution is the
central wavelength.

The spectral bands utilised for the project are described in table 3.1. Where B02,
B03 and B04 are the blue, green and red bands respectively, B08 is near infrared
(NIR) and B12 a slightly coarser SWIR band. The SWIR band B12 will be used
for a land and cloud mask, while NIR will be used for sun-glint removal.
In figure 3.7 a subset of a Sentinel-2 image is shown, in four of the spectral bands
(B02, B03, B04 and B12). It is easy to see that land and clouds have a significantly
different pixel value than water in the SWIR band. Several images from different
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dates were inspected to find one with the smallest amount of cloud coverage. Ul-
timately two image tiles from 2020-06-30 were chosen to cover the three islands.

(a) B02 (b) B03

(c) B04 (d) B12

Figure 3.7: Subset of Sentinel-2 image from 2020-08-19 (Showing the island Dhig-
garu)

3.2.3 Single Beam Echo Sounding
Single beam echo sounding data was collected around Dhiggaru, Mulah, Buruni
and two other islands in the Maldives, and made available for this project by the
consultancy firm Riyan Private Limited (Abid, 2020), through collaboration with
NIRAS. The single beam data is the best measurements of depths around these
islands, and therefore the ideal data to use for validation. The accuracy is as-
sumed to be 5-10 cm for the measured depths, with the accuracy decreasing with
depth (Bundgaard, 2020, personal communication).

In figure 3.8 satellite images of the 3 islands are shown. For each island we see
a satellite image with the single beam data shown on top. The data is collected
by boat, and the images clearly show the track the boat followed. The colourbar
illustrates the depths in the areas.
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Dhiggaru is shown in figure 3.8a, where the depths are measured down to 75
meters. The majority of the covered area however, is 0-10 meters deep, with the
water outside the atoll (north of the island) being the deepest. In figure 3.8b we
see Mulah. The depths around the island are between 0-75 meters, and not sur-
prisingly, the water is more shallow close to the coast and deep further away from
the island. The shallow area appears to be smaller than for Dhiggaru. Buruni also
has a large area with depths ~5-10 meters, and a drop to much deeper waters
outside the coral reefs north of the island.

(a) (b) (c)

Figure 3.8: Satellite image of with single beam data tracks and depth values a)
Dhiggaru b) Mulah c) Buruni

3.2.4 Mean Sea Level data
The mean sea level (MSL) is used as reference height for all measured depths.
Since the single beam depths are given in reference to the local MSL for each
island, the same will be done for the depths estimated in this project for easy
comparison. The photon height data in the ICESat-2 ATL03 data set is given in
reference to the WGS84 ellipsoid, so it was decided to find the MSL around each
island in WGS84. The MSL information comes from the DTU15MSS (Mean Sea
Surface) model (Andersen, 2015), and the MSL for each island is shown in table
3.2.

Island Dhiggaru Mulah Buruni
MSL (WGS-84) -96.037 m -96.184 m -94.771 m

Table 3.2: MSL in WGS84 in reference to the DTU15MSS model
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4 Methods and Data processing
The pre-processing steps for both the ICESat-2 and Sentinel-2 data is presented
in this chapter. The method for combining the data from the two satellites for a
satellite derived bathymetry model is shortly described as well.

4.1 ICESat-2 LIDAR
The data set used for the ICESat-2 bathymetry estimates, is the ATL03 data set.
ATL03 contains heights above the WGS84 ellipsoid , latitude, longitude, and time
for all photons. Tracks that overlap with the area of interest are identified, and the
ones that appear to have bathymetric information go through the processing steps
described below. The tracks chosen for each island are described previously in
section 3.2.1.

Drawing inspiration from (Parrish et al., 2019), the processing of the photon data
from ATL03 is split into several steps:

1. Separate seafloor and water surface
2. Define water surface
3. Correct for refraction
4. Tide correction
5. Remove outliers and define smooth bathymetry profile

Most of the processing steps require manual decisions. Since the goal of the
project is to test how well the ICESat-2 LIDAR is able to measure depths, and to
use the ICESat-2 bathymetry as input in a LBM for satellite derived bathymetry, it
was not prioritised to create a fully working automated process.

4.1.1 Separate seafloor and water surface
To Illustrate the data processing steps, the GT3R beam track crossing Dhiggaru
on 2020-03-10, will be used.
To separate the seafloor photons and the water surface, a manual inspection was
used. Photon height and coordinates from an ATL03 data file were extracted in
a small area around the islands of interest. The photon height is plotted as a
function of latitude in figure 4.1. The water surface and seafloor can be spotted
already in this unprocessed profile. The water surface will always have a strong
return and is assumed to be straight, so the straight line defined by a high den-
sity of photon returns, must be the water surface. Despite the noisy data, the
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Figure 4.1: Bathymetry profile of beam GT3R across Dhiggaru from 2020-03-10.

bathymetry is fairly easy to see as well. Since the Maldives has very clear waters,
the bathymetry is much easier to detect than it might be in murkier waters (where
the Secchi depths are more shallow). The red line in figure 4.1 indicates the sep-
aration of the seafloor and water surface. In this project the separation was done
manually, by defining the height in WGS84 that separates the water surface and
seafloor.

4.1.2 Define water surface
The data above the red line in figure 4.1 is used to define the water surface height.
We want to define the water surface height as the mean of the straight dense col-
lection of points that clearly make up the water surface. In the profile shown in
figure 4.1 there is a lot of noise, making it harder to automatically determine the
water surface height. In the cases where there was a significant amount of noise in
the data above the water surface, the water surface height was manually defined
by drawing a straight line through the data points that make up the water surface
and manually reading the WGS84 height of the line. In the case where the noise
was less prominent, an outlier removal removed the small amount of noise around
the water surface. This was done in a moving window, where outliers were de-
fined as elements more than three local scaled MAD (median absolute deviation)
from the local median. The water surface was then found as the average height
of the remaining data points. This was possible to do for most of the data tracks,
and was faster then having to define a line through the water surface points.
Thewater surface height is found, because the depth fromwater surface to seafloor
is needed in the refraction correction.
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Figure 4.2: Illustration of effect of refraction correction (beam GT3R from 2020-
03-10)

4.1.3 Tidal and Refraction correction
All data points below the red line in figure 4.1 are corrected for refraction and
tides. Since the beam tracks used to estimate the bathymetry around all three
islands are acquired on different days at different times, the tides will vary. For
some tracks the water surface is above the MSL, and for others the water surface
is below the MSL. In order to compare the measured water depths, they all need
to refer to the same reference frame.
In figure 4.2 the data is corrected for tides. This is done by defining all depths in
reference to the local MSL instead of the water surface. The MSL for the water
around each island was found in WGS84, to easily implement it in this project,
since the photon data is in WGS84. As an example, the MSL around Dhiggaru
is -96.037 m in WGS84, so this MSL value is subtracted from all photon depths,
resulting in the MSL=0 m in the new reference system. All depths were then de-
fined as positive, since this was easier to work with going forward. The local MSL
was found for each island, since this was the same reference point used in the
single beam data that will be used for validation, making it easier to compare the
two data sets.

The refraction correction described in section 2.1.1 is used, and the result can be
seen as the red points in figure 4.2. Without refraction correction, the bathymetry
would be found as the green points (both the red and green points have also been
through outlier removal and have been smoothed out to make it easier to see them
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in the figure). It is clear that the refraction correction has a significant influence on
the seafloor depths, and that the effect is larger for deeper waters. To carry out the
refraction correction, several variables are needed. The elevation and azimuth
parameters are included in the ATL03 data file, and are easily implemented. A
refractive index of water is also needed, and was chosen to be 1.34116, the same
as used in (Parrish et al., 2019).
The refractive index of water in Maldives is affected by the warmer waters, since it
is near the equator, and high salinity due to more evaporation in the warm climate.
An increase in salinity will increase the refractive index, while warmer waters have
the opposite effect. For this project the refractive index was first estimated using
tables in (Leyendekkers, 1977). Later, the refractive index was found using the
method described in (Quan and Fry, 1995), where the refractive index is found as
a function of wavelength, temperature and salinity. The mean water temperature
in Malé (the capital of the Maldives) is 29.1 oC (seatemperature.org, 2021) and
the salinity is between 33.8-34.7‰ (University of Salento, 2011), and since we are
looking at shallow water where there is more evaporation, the salinity is chosen
to be 34.7‰ for the calculation. The wavelength of the laser is also needed,
and that is 532 nm for ICESat-2. This resulted in a refractive index of 1.3402,
which is slightly smaller than the one used in (Parrish et al., 2019). However, the
difference in the refractive index found by either of the two methods compared to
the refractive index used in (Parrish et al., 2019) would only result in depth errors
as small as a few millimeters. This would not have a significant influence on the
final result, so the refraction correction is carried out with the refractive index of
1.34116 in this project.

4.1.4 Outlier removal and smoothing
The blue data points in figure 4.2 represent the ICESat-2 data before any correc-
tions are carried out. In order to extract only the bathymetry estimates, outliers
are found and removed and the data is smoothed. Since there have been few
attempts at using ICESat-2 for bathymetry, there is no standard way of determin-
ing which photons should be kept as bathymetry. A few studies have looked at
ICESat-2 bathymetry, (Parrish et al., 2019) does not explain their method and
(Ma et al., 2020) uses a point cloud processing algorithm for estimating seafloor
photons. The latter method could have been used, however it would be slightly
more complicated to implement. Therefore trial end error was used, to find the
best procedure for the ICESat-2 tracks used in this project. For removing outliers,
a moving window method was implemented. First a moving window with a size
of 100 data points is used. This is equivalent to ~20 meters in a strong beam
track and ~80 meters in a weak. This removes a good amount of the outliers, but
especially in the areas of the bathymetry with rapid changes in depth, a smaller

28 CHAPTER 4. METHODS AND DATA PROCESSING



window is needed. The smaller window of 30 data points (~5-10 meters for strong
beam and ~25 meters for weak beam ) will be able to find outliers within a smaller
area, such that only the data points in areas with a high concentration is remain-
ing. Outliers in this process are defined as elements more than three local scaled
MAD (median absolute deviation) from the local median over a window. This was
more robust than using three standard deviations from the mean, which was also
tested. The process of removing outliers in a moving window with a size of 30 data
points is done with 10 iterations. Only doing it once did not remove all outliers,
however, 10 iterations appeared to remove a substantial amount of outliers with-
out requiring a lot of computational time. A more refined method could possibly
be implemented, but for this study area the method worked well enough.

Figure 4.3: Outlier removal and smoothing of data in bathymetry profile (beam
GT3R from 2020-03-10)

After removing outliers the data is smoothed using a moving average with 10 data
points at the time. This is to find the mean depth at a certain point, instead of
the small dense ”cloud” of data points we are left with after outlier removal. The
moving average is done in a small window, such that the areas where there is a
rapid change of depth does not affect the result. In a large window the average
might be effected by depths that are several meters away, while the small window
ensures that only the surrounding data points effect the final depth estimate.

The outlier removal and smoothing of the data is visualised in figure 4.3. The top
image shows the data before and after outlier removal (in a small subset of the
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data also used in figure 4.1 and 4.2). At this point in the data processing the data
points that appear to be bathymetry are easily discernible. After smoothing, the
bathymetry estimates are less scattered, and the final bathymetry profile (the red
line in the bottom image) is more clear than before the processing steps.

Another example of the data processing of a bathymetry profile is shown in figure
4.4 and 4.5 for beam GT3R from 2019-09-10. The data in this ICESat-2 track is
less affected by noise, but the processing steps are still the same. The result-
ing bathymetry after processing is the red line in figure 4.5. In the left side of
the bathymetry profile we see that the outlier removal and smoothing has only
revealed noise, however in the raw data in figure 4.4, we see that there is an in-
dication of bathymetry in the same area. This illustrates that the outlier removal
used is not perfect, since it has removed data points that appear to be bathymetry.
This can be handled by either manually extracting the data points or by improving
the outlier removal process. During this project a few different things were tested,
however no method was successful in removing the noise close to the water sur-
face while also extracting the bathymetry that appears to be present in the very
left side of figure 4.4.

Figure 4.4: photon height data from ATL03 data file before data processing (beam
GT3R from 2019-09-10)

After all the data processing steps, it is clear that there are areas in the profile
that are not bathymetry. These are the areas with no clear bathymetry (or not
clear enough for it to not be mistaken for noise), but where the outlier removal
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and smoothing still gave an estimate of the bathymetry. These areas are easy to
spot as noise in figure 4.5. By looking at the standard deviation of the data, it is
possible that some of the areas could be classified as not bathymetry automati-
cally. However, a good automated process for doing this was not developed in
this project. Instead, the areas that were clearly not bathymetry data points were
manually removed.

Figure 4.5: Bathymetry profile after data processing (beam GT3R from 2019-09-
10)

4.2 Sentinel-2 multi-spectral imagery
Before building a model that can predict water depths based on the multi-spectral
images from the Sentinel-2 MSI product, the data first has to go through some
pre-processing steps. All pre-processing steps are carried out in SNAP.

1. Resample images
2. Spatial subset and band subset
3. Remove land and cloud pixels
4. Remove sun-glint if needed

After the data has been pre-processed it can be used together with ICESat-2
bathymetry data, to build a linear band model (LBM) for water depth prediction.
The model is implemented as an inverse problem in MATLAB using the methods
described in section 2.2.2.
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4.2.1 Resample images
First, the data has to be resampled. Since the SWIR band, B12, is needed for a
land mask, it needs to have the same spatial resolution as the other 3 bands (10
m). Each B12 pixel (20m) is simply slit into four new pixels with the same pixel
values as the original pixel. This means that the land mask will not be as detailed,
as if we had a SWIR band with 10 m resolution, but it is sufficient for this project.

4.2.2 Subset Images
In figure 4.6 band B02 from the Sentinel-2 scene covering Dhiggaru and Mulah is
shown. The full scene is very big, and since we are only interested in the coastal
areas around specific islands, a spatial subset was taken. The subsets used for
Dhiggaru and Mulah are shown in pink on the figure. Only a few bands (out of the
13 bands available in the Sentinel-2A product) were needed, and therefore only a
few bands are saved and used later. The subset is carried out in the SNAP graph
builder. The band subset includes B02, B03, B04, B12 and B08.

Figure 4.6: Full Sentinel-2 scene (B02) from 2020-08-19, with the Dhiggaru and
Mulah subsets in pink.

4.2.3 Land and cloud mask
Once the data is resampled and reduced in size, the land and cloud pixels have
to be removed. In figure 3.7d it is clear that land and clouds are easily discernible
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in the B12 SWIR band. Since the SWIR band has almost no reflectance in water
it is very easy to separate water from land and clouds. In this project, a simple
threshold was used. All pixels below a certain threshold was seen as water, and
all pixels with values above the threshold was set to NaN. A similar method was
used in (Misra et al., 2018).

This successfully removes land mass and also clouds. However, any shadows
from clouds are not removed. In figure 3.7d a cloud shadow is visible under the
cloud in the upper left corner of the image. The built-in cloud mask from the
Sentinel-2 MSI product does not capture small clouds such as the one in the im-
age in figure 3.7d. It is possible to manually mask out the entire cloud, however
that would be quite tedious. In this case, the cloud and shadow is not in an area
where the model will be trained. Therefore the model itself will not be affected but
the water depth estimated within the shadow will be unreliable. The best solution
is to find a Sentinel-2 image where the study area is cloud free. An image cover-
ing Dhiggaru and Mulah was also found on a different date with no clouds, which
is the optimal solution, and the one used to build the final model in this project.

4.2.4 Sun-glint
Sun-glint is the specular reflection of light from the water surface. It it will often
cause very bright pixel values, especially on rough water surfaces. This can in turn
obstruct seafloor features below the water affected by sun-glint. If the seafloor re-
flection is obscured, it is hard to distinguish different bottom types and to map
the bathymetry. The issue is more problematic for high resolution imagery and at
shallow waters, where wind blown waves occur easily (Overstreet and Legleiter,
2016).

The intensity of sun-glint depends, among other things, on illumination and view-
ing geometry. Therefore it is possible to design flight paths to minimize sun-glint.
Sun-glint typically forms along wave edges, and can be seen as white bands in
figure 4.7, where Buruni is shown in the blue band B02. Buruni is located on the
northern side of the Thaa Atoll, which means that north of Buruni we see big open
ocean waves. These are not the issue, as they are over optically deep waters,
where the seafloor is not visible regardless of sun-glint. It is not clear from the
image whether there is a significant amount of sun-glint closer to the island.
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Figure 4.7: B02 band from 2020-
06-30 (Buruni)

The bottom reflectance around Buruni (and
the other islands) is very bright, making it
hard to see the effect of sun-glint on possible
waves.
The issue of sun-glint on shallow water
is also a bigger problem with even higher
spatial resolution, than the 10 m resolu-
tion of the Sentinel-2 bands, since the
waves in these areas are smaller than ocean
waves. However, depending on the the
wind conditions, the angle of the sun and
the spatial resolution of the satellite images,
sun-glint correction can have a large influ-
ence on the ability to see the bottom re-
flectances.

(Hedley et al., 2005) presented a simple
method for de-glinting the water surface. The
method utilises two assumptions: that the NIR
band is composed only of sun-glint and a spa-
tially constant component and that there is a
linear relationship between the amount of sun-
glint in the visible bands and the NIR band. NIR wavelengths (700–1000 nm) are
not able to penetrate through deep water, and even in shallow waters NIR has a
low water-leaving radiance. This makes the NIR band perfect for sun-glint detec-
tion. The de-glinting method can be implemented with the following equation:

R′
i = Ri − bi(RNIR −MinNIR) (4.1)

Each pixel value, R, in band i can be corrected to a de-glinted pixel value, R′. This
is done using the NIR band (B08 in Sentinel-2). An area where the reflectance is
believed to be constant, if there was no sun-glint, is chosen. A linear regression
of NIR pixel values (x-axis) against the optical visible band pixel values (y-axis) is
carried out for each band, resulting in a slope, bi, for the i’th band. The minimum
pixel value in the NIR band in the chosen area is also needed. The difference
between the pixel value in the NIR band, RNIR, and the minimum pixel value in
NIR, MinNIR, illustrates the amount of sun glint in the given pixel. The slope of
the linear regression, bi, is used to predict the de-glinted value, since it reflects
the linear relationship between NIR and the given visible band.
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4.3 Combining ICESat-2 and Sentinel-2 for satellite
derived bathymetry

After pre-processing we have bathymetry estimates from ICESat-2 data. These
water depths will be validated using the single beam data available for the area.
The Sentinel-2 image has been reduced in size, and only de-glinted water pixels
remain for three optical spectral bands.

A combination of the ICESat-2 estimated depths and the reflectance values in the
post-processed Sentinel-2 images will be used in the linear band model. ICESat-
2 depths will be used as known depths in the LBM and Sentinel-2 as the multi-
spectral imagery. The implementation of the LBM using Sentinel-2 and ICESat-2
will follow the method presented in section 2.2.2. To train the inverse problem, the
ICESat-2 depths will all be assigned to the nearest pixel in the Sentinel-2 image.
If more than one ICESat-2 data point is assigned to the same pixel, an average
depth is found. This is similar to the method used in (Lyzenga et al., 2006).

Just like for the ICESat-2 data, tides should be considered for the Sentinel-2 data.
Depending on data acquisition time, the tides might be higher or lower than the
MSL. Since one of the inputs in the LBM is known depths, they will define the
reference height for the resulting modelled depths. It was tested in this project,
whether including information of the local tide at the Sentinel-2 acquisition time
would improve the model. However, it did not make any difference on the final
result. Therefore it is only important that the ICESat-2 depths in the LBM will de-
termine the reference frame of satellite derived bathymetry.

To sum things up, all ICESat-2 estimated depths are assigned to a pixel, and the
corresponding pixel values in each band and the average ICESat-2 depths in each
pixel are used to train the model, in order to find the model parameters inm. This
is set up as a system of equations and solved as an inverse problem, using either
the least squares method or the damped least squares method. The resulting
model parameters can then be used, together with the pixel values in each band,
to estimate a depth in each image pixel. This results in a fully satellite derived
bathymetric map, using a combination of ICESat-2 and Sentinel-2 data, which will
also be validated.
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5 Results
5.1 ICESat-2 LIDAR Bathymetry
All tracks covering the three islands were inspected and went through the pro-
cessing steps described in 4.1. All data points that were not considered to be
bathymetry at the end of the processing steps were removed manually.
In order to assess how well the ICESat-2 LIDAR measures seafloor depths, the
results are validated using single beammeasurements from the area around each
islands. The validation data was first interpolated to a grid, and then to the center
coordinates of the ICESat-2 data points. Only ICESat-2 points that were within
8 meters of a single beam measurement were included in the validation. If the
nearest validation data point is far away, the interpolated value is more likely to
be incorrect, and therefore a limit was imposed. Since the ICESat-2 footprint is 17
meter in diameter, the 8 meter distance between ICESat-2 and single beam data
point will ensure some overlap, and hopefully reduce the error introduced by the
interpolation. The data point positions might also have horizontal errors, however
any inaccuracies in the coordinate precision was not considered when deciding
which data points to use for the validation.

Figure 5.1: ICESat-2 estimated depth vs single beam depths (Dhiggaru). The red
line represents a 1:1 linear line, while the blue is a regression line.
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Figures 5.1 and 5.2 show the correlation between the depths estimated by ICESat-
2 and the depths estimated by the single beam measurement. The single beam
depths are the best estimate we have of the actual depths in the area. The red
line represents a 1:1 linear line, while the blue is fitted to the data. For Dhiggaru
we see a good linear correlation with an R2 value of 0.96 and a RMSE of 0.76 m.
Additionally we see that there are many measurements in the 0-15 meter range
and only a few between 15-25 meter. The deepest measurement is 22.6 meters.
While the correlation between the data points (especially between 0-15 meters
depth) is close to linear, there is a small bias for the ICESat-2 estimated depths
to be deeper than the single beam depths.
There are some data points above the blue line, where the residuals are fairly
large, and where ICESat-2 has underestimated the depths. These errors are most
likely from steep areas of the bathymetry, where large errors occur more easily,
as it is hard to capture a sudden change in depth. This will be explored further in
a visual analysis of the bathymetry in section 5.1.1.

(a) (b)

Figure 5.2: ICESat-2 estimated depth vs single beam depths a) Buruni b) Mu-
lah.The red line represents a 1:1 linear line, while the blue is a regression line.

In figure 5.2 the correlation between ICESat-2 and single beam depths for Buruni
and Mulah are also shown. For Buruni there is a good linear correlation with an
R2 value of 0.97 and the RMSE is 0.3 m, which is smaller then RMSE for the data
around Dhiggaru. From 5.2a it is also evident that there are fewer large residuals,
resulting in a smaller RMSE. However, there are also fewer deep measurements,
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and the largest concentration of points are between 0-5 m. The deepest mea-
sured depth in the water around Buruni is 19.7 m. The results of the ICESat-2
bathymetry around Mulah is the least successful. It is apparent in 5.2b, that there
is a poor correlation between ICESat-2 and single beam estimated depths. Be-
tween 1-2 meters depth there is a larger concentration of measurements with a
decent, close to linear, correlation. However most measurements deeper than
2 meters show no correlation. This is reflected in the low R2 value of only 0.19,
and the larger RMSE of 1.17 m. These values are even poorer considering the
measured ICESat-2 depths are only between 1-5 meters deep. While Dhiggaru
and Buruni have a RMSE of 3.5% and 1.5% of the maximum depth, Mulah has a
RMSE of 23% of the maximum depth. A visual inspection of the area and a few
selected tracks will shed some light on difficulty of mapping this area.

In (Parrish et al., 2019) the ICESat-2 bathymetry was estimated to have a RMSE
of 0.43-0.60 m, with a maximum depth of 38 m, resulting in a RMSE of 1.6% of
the maximum depth. While it is based on data with a deeper maximum depth
and validated using airborne LIDAR, it indicates the same accuracy as seen for
Dhiggaru and Buruni, where the RMSE is 1.5-3.5% of the maximum depth. They
also found the maximum penetration depth to be 0.96 Secchi depths. We do
not know the precise Secchi depth for the water around these islands, but the
penetration depth of 22.6 and 19.7 meters for Dhiggaru and Buruni is probably
around 0.66 - 1 Secchi depths (assuming a Secchi depth of 20-30 meters).

(a) (b)

Figure 5.3: a) MAE of ICESat-2 estimated depth vs ”true depths” (single beam)
for all three islands at different depths. b) Percentage MAE for Buruni.

An analysis of the error with increasing depth was also carried out. In figure 5.3a
the mean absolute error (MAE) at increasing depths is shown for all three islands.
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The MAE is generally low in the 0-5 meter interval, with values ranging from 0.15
m to 0.3 m. The MAE increases with increasing depth, with the lowest errors
seen for the ICESat-2 data around Dhiggaru. In the deeper water 15-25 meters,
the MAE is around 2 m for both Dhiggaru and Buruni. This is still acceptable, as it
is expected that the accuracy declines with depth. The same is expected for sin-
gle beam measurements, so the higher error at greater depths can also be partly
due to an error in the validation data. When looking at the error as a percentage
of the depth, we see that the average error is between 3-20 percent for ICESat-2
bathymetry measurements around Buruni.

5.1.1 Visual Inspection of ICESat-2 bathymetry

Figure 5.4: ICESat-2 bathymetry in red and single beam bathymetry in blue. The
white line across the satellite image shows where the bathymetry profile is from
(Dhiggaru). (ICESat-2 beam GT3R from 2019-09-10)
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Visual inspection can also shine a light on some validation issues and the limita-
tions of ICESat-2 bathymetry.
In figure 5.4 the result from a single ICESat-2 track is shown in parallel with the po-
sition of the track on a satellite image. The track crosses near the island Dhiggaru,
across the coral reefs surrounding the island. The bottom part of figure 5.4 shows
a bathymetry profile along the track, the red points are ICESat-2 points after the
processing described in section 4.1, and is actually the same profile as shown in
figure 4.5. Here we only look at the part of the bathymetry where ICESat-2 and
the verification data (single beam data) overlap. The single beam data has been
interpolated to the same coordinates as the ICESat-2 point coordinates for easy
comparison. There are gaps in the single beam profile, since only the data used
for validation is included. Gaps in the data indicate that the nearest single beam
data point was too far away, for the comparison to make sense. Generally it is
clear to see that the two bathymetry profiles follow each other well, especially in
the more shallow water. There is a tendency for ICESat-2 to measure the seafloor
as deeper than the single beammeasurements, which is more evident in the deep
water.

There is an obvious problem between 3.11 and 3.12 degrees north. When looking
at the satellite image in the top part of figure 5.4, we see that the track crosses
two coral heads. In the ICESat-2 bathymetry, there are two small bumps that
clearly correlate to the coral heads. In the single beam data, only one of these
coral heads are visible. Since the ICESat-2 footprint is 17 meters in diameter, it
might measure the coral head in the edges of the footprint. The single beam data
is interpolated the the center coordinate of the footprint, so while the single beam
measurements might have captured the coral head, it might simply be an interpo-
lation error. Or, perhaps the single beam did not cross this coral head. None the
less, for the coral head that is visible, the single beam method is able to discern
the top of the coral head as much more shallow than ICESat-2. When looking at
the original ICESat-2 data (also shown in figure 4.4), there is an indication that the
top of the coral head is measured. However, it is hard to distinguish from noise,
and it has been removed in the data processing.

There is a very steep area around 3.107 degrees north. Visually, the two bathymetry
methods follow each well, but the steep area introduces errors in the validation.
This is because a slight horizontal misalignment causes large vertical errors when
the area is this steep. The data points that are being compared all have the same
coordinate, but they appear to be up to 10 meters apart vertically. This is hard to

40 CHAPTER 5. RESULTS



account for in the validation, however it is important to note that some of the larger
errors seen in figure 5.1 are probably due to this rapid depth change, where both
single beam and ICESat-2 clearly captures the steep decent, but the interpolation
and small inaccuracies in coordinate position can contribute to a larger error, than
what is actually applicable.

At the deepest point in the bathymetry profile in figure 5.4, there is a gap be-
tween the ICESat-2 bathymetry and single beam bathymetry. They follow the
same curve, but the two methods disagree on the actual depth. What causes this
difference is hard to say, as the accuracy simply is worse at greater depths. It can
be an imperfect refraction correction, however the error can also be from inaccu-
racies in the single beam acquisition.

Figure 5.5: Beam track crossing the coral reef surrounding Mulah. Track shown
on satellite image (left). The profile showing the single beam depth (before and
after interpolation) and ICESat-2 depth. (top right). Just the ICESat-2 depths
(bottom right) (Beam GT3L from 2019-09-10)

Just like the steep slope mentioned above in 5.4, steep slopes are also a chal-
lenge around Mulah. In figure 5.5 an ICESat-2 beam track is shown to cross
the coral reef west of Mulah. In the satellite image, the red line shows the area
where bathymetry was estimated. The dark water between the bright coral reef
was to deep for any depth estimates from ICESat-2. The depth estimate from
ICESat-2 is shown in the bottom right bathymetry profile in figure 5.5, where we
see that the depths are around 1-2 meters. The same depth are shown in the pro-
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file above, where the single beam depths are also shown. The blue points show
the single beam data interpolated to the same location as all the red ICESat-2
data points. The black single beam depths show all the single beam data points
that fall on the line along and between the ICESat-2 beam track. The blue inter-
polated depths give us an insight in the interpolation limitation. Both the far left
side of the bathymetry and the right side of the bathymetry profile show large dif-
ferences between single beam and ICESat-2 depths. However, we also see that
the black data points, which are the single beam data before interpolation, are not
close to the interpolated points. It is also possible to see in figure 3.8b, where the
single beam track is shown, that the single beam data does not cover the smaller
coral reef, where the ICESat-2 track crosses at 2.954 degrees north. The boat
collecting the single beam data probably did not want to cross this area, as it is
so shallow it could impose a risk to sail across. This illustrates the importance of
satellite or airborne data, however it also means that we are not able to validate
the depths in this area. In the validation, only data points with a single beam data
point within 8 meters were used, so most of the ICESat-2 depths in the far left and
right in the bathymetry profiles are not included in the validation.

In between the two areas measured by ICESat-2 we know the depth because
the single beam was able to measure the depths in the area. From the top right
bathymetry profile in 5.5 we see that the depth drops from 2 meters to 40 me-
ters very rapidly. The steep slope is not captured by ICESat-2, however the very
edges of the coral reef is. Again a small error in the horizontal position might result
in large errors in the vertical.
The deepest measured ICESat-2 depth is 38 meters in the (Parrish et al., 2019)
study. This makes the seafloor around Mulah hard to map using ICESat-2. The
shallow coral reef is easy to identify, however the steep descent to deep wa-
ters, and the generally deep seafloor outside the coral reef makes it very hard for
ICESat-2 LIDAR to measure.

There is however an indication that ICESat-2 is able to penetrate far into the water.
In figure 5.6 we see the bathymetry profile of ICESat-2 beam GT3R from 2019-
09-1 as it crosses west of Mulah. The top profile shows the tide and refraction
corrected data, but without outlier removal as dark blue. The light blue in both
profiles shows the single beams data that falls on the same line as the beam track
(not interpolated). The red data points in the bottom profile is the ICESat-2 depths
after outlier removal and smoothing. In the red box we see something interesting.
Along the seafloor measured by single beam, there is a line of ICESat-2 data
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Figure 5.6: Bathymetry profile showing ICESat-2 data from 2019-09-10 (beam
GT3R). The tide and and refraction corrected ICESat-2 data shown in blue in the
top profile, and the same data after outlier removal and smoothing as red in the
bottom profile. The light blue data shows single beam depths.

points, that follow the same seafloor curvature as single beam has measured.
This is at around 30 meters depth, indicating a good water penetrating ability.
However, had we not had the single beam data in the same figure, this would
probably be categorized as noise even with visual inspection. It is therefore no
surprise that the outlier removal method used in the project has removed these
data points. This illustrates that even if the ICESat-2 LIDAR might measure the
seafloor, it can at times be indistinguishable from the background noise.
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5.2 Combined Sentinel-2 & ICESat-2 Satellite
Derived Bathymetry

This section will go through the process of choosing the most optimal model and
discus the parameters that were considered. The optimized model will then be
validated at all three islands using single beam data, while discussing factors that
can induce larger errors, and what is needed for a successful bathymetry model.
Finally, the model will also be validated in a case where the single beam data is
used to train the model instead of using ICESat-2 data.

5.2.1 Optimizing Satellite Derived Bathymetry Model
In order to optimize the model, different variations of the data input and parame-
ters have been tested.
Th variable Xj described in section 2.2 can be defined in different ways. In (Ma
et al., 2020) it is unclear how they define Xj, but it appears to simply be the re-
flectance value in the j’th band of the Sentinel-2 image. However, most other
implementations of the linear band model uses the log of the reflectances. In fig-
ure 5.7 the RMSE at increasing depths are shown, withXj as just the reflectances
and with Xj as described in equation 2.18 where the log of the reflectances are
used. The RMSE is based on the multi-spectral Sentinel-2 bathymetry model of
Dhiggaru validated using the single beam data. It is clear that the model with the
log of reflectances is much better.

Figure 5.7: RMSE at different depth intervals with or without logarithm in model
(Dhiggaru)

In order to train and build the model, an inverse problem was formulated. The
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model parameters used to build the model, was found using both a least squares
method and a damped least squares method. In figure 5.8 we see that the RMSE
at different depths varies very little between the two methods. Since it is easier to
implement the normal least squares, this will be used.

Figure 5.8: RMSE at different depth intervals with damped least squares or normal
least squares (Dhiggaru)

Another idea for how the model could be improved, was to distribute the model
input depths, such that there were an equal amount of data points at all depths.
The input depths from ICESat-2 are over represented in the shallow end, espe-
cially between 1-3 meters. Since the model tries to fit as many data points as
possible, the model will end up with only few deep areas, and possibly not fitted to
the deepest input points. So even though there are ICESat-2 data points down to
22 meters for Dhigarru, the maximum depths in the multi-spectral model is around
20 meters. To try and account for this, the ICESat-2 depths were redistributed,
such that the depths were more evenly distributed at all depths between 1-22 me-
ters. Figure 5.9 shows the RMSE at different depths with or without redistributing
the input depths. When redistributing the depths more evenly, the RMSE does
decrease in the 15-20 meter interval, however there is a small increase in RMSE
in the 0-5 meter interval. This is as expected, since the model should try to fit to
both the shallow and deep depths, instead of mostly fitting to shallow depths. The
difference is not big, however it is still noticeable especially in the deep end.
This also demonstrates that having a large amount of input data is not necessar-
ily an improvement. There is approximately 90% fewer data points as input with
even distribution of depths than without. Despite this, the model still performs al-
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most as good in the 0-10 meter depths and even better in 10-20 meter interval.
Therefore it is more important to have a wide variety of depths in the area than to
have many data points at the same depth.

Figure 5.9: RMSE at different depth intervals with or without even distribution of
depths as input in model (Dhiggaru)

Finally, a test was carried out in order to see if de-glinting the Sentinel-2 image
would improve the multi-spectral bathymetry results. The de-glinting was carried
out as described in section 4.2.4, and a comparison of the RMSE of the resulting
modelled bathymetry with or without a de-glinted image as input is shown in figure
5.10. Again we see only a small difference in the RMSE between the models with
the two different inputs. However, this is possibly due to a small amount of sun-
glint in the image over shallow water, and not necessarily because the de-glinting
method does not work. The sun-glint was not easily discernible in the shallow
waters around the 3 islands, but in areas where sun-glint is a bigger issue it could
be important to use de-glinted images in the model.
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Figure 5.10: RMSE at different depth intervals with or without de-glinting image
bands for input in model (Dhiggaru)

5.2.2 Validating final Satellite Derived Bathymetry model
The optimal parameters and inputs based on the previous section is used for all
validation of the model going forward. The logarithm of the reflectances, the nor-
mal least squares, even distribution of depth in the input depth data and Sentinel-2
image without de-glinting is used.

This resulted in three modelled depth maps, one for each island. They can be
seen in figure 5.11. Each map covers the full extent of the Sentinel-2 image sub-
set that was chosen. For Dhiggaru, the extent covers an area further away from
the island than for the other two islands. However, since the single beam data
used for validation is only available close to the islands, the size of the covered
area does not affect the validation.

It is apparent from the modelled depth maps, that the areas closer to the islands
are more shallow, and further away from the island the water becomes deeper.
This is of course no surprise, however only a little knowledge of the area is needed
to know that the areas further away from the islands are most likely deeper than
seen in the models. The water north of Dhiggaru in figure 5.11a is estimated to
be ~20 meters deep, which is unrealistic since it is open ocean, outside the atoll.
The water here, and possibly much of the water in these maps, is optically deep,
meaning that the seafloor is not visible, and the model has no chance of estimat-
ing the correct depth. It is possible to remove optically deep pixels, but it was
chosen to keep all the pixels for validation.
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(a) (b)

(c)

Figure 5.11: Modelled depths for a) Dhiggaru b) Buruni and c) Mulah

For both Dhiggaru and Buruni, figure 5.11 a and b, the modelled depths are es-
timated to be down to ~20 meters depth. However, there are also some areas
that are estimated to be above the sea level. Some of the areas estimated to be
above sea level were dark in the satellite image, meaning that it is likely a different
bottom type that is harder to map. These areas are small, and given that they are
not estimated as water depths, they can be classified as ”depth not known”. For
now they are still kept in the model. The validation was also carried out without
these values, but it did not affect the statistical analysis.
When looking at the modelled map for Mulah, in figure 5.11c, it is clear that it has
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not been as successful as for the two other islands. The depths are only estimated
down to 4 meters, however it is likely that the areas far from the island are much
deeper than this. Even before validating the model results, it is clear that there
are limitations to the multi-spectral bathymetry method, however we also see that
the model has clearly captured some depth variations around the islands.

The modelled depths have been validated using the single beam depth measure-
ments from around the three islands. Similar to the ICESat-2 bathymetry valida-
tion, only modelled depths within a certain distance of a single beam data point
are used in the validation. This is done because the single beam data is inter-
polated to the coordinates of the modelled depths, and if there is no single beam
data near the modelled data point, the interpolation will not be accurate.

(a) (b)

Figure 5.12: Modelled depths vs single beam depths for Dhiggaru. a) single beam
depths between 0-35 m b) single beam depths between 0-15 m. The red line
represents a 1:1 linear line, while the blue is a regression line.

The interpolated single beam depths are compared to the modelled depths in
figure 5.12 for Dhiggaru. The validation is carried out with all single beam data
between 0-35 meters depth being compared to the corresponding modelled depth
in a, and with only single beam depths between 0-15 meters depth in b. The red
line in the two figures is a reference line indicating a 1:1 correlation. The blue
lines are linear fits, with a corresponding R2 value. In the figure 5.12a, it is very
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clear that the data does not follow a perfect linear correlation. The blue fitted line
is far from the red 1:1 line, and the R2 value is 0.76, indication a slightly poor fit.
Visually, it is obvious that between 0-15 meters there are a lot of points that fall on
the red line. Above 15 meters in the single beam data, the correlation is non ex-
isting. The areas measured to be between 15-35 meters deep by the single beam
method are modelled to be 10-15 meters deep by the multi-spectral bathymetry
method.

However, when looking at the correlation between the single beam and modelled
depths in figure 5.12b, there is a good fit with the R2 value being 0.86. The RMSE
when only looking at depths between 0-15 meters is 1.38 m, much better than the
6.79 m RMSE we see when looking at 0-35 meters. The fitted blue line is also
very close to the 1:1 red line, indicating a close to linear fit. While the majority of
points follow close to the 1:1 line, there are still outliers both above and below the
fitted line, that contribute to large errors.

Figure 5.13: residual between modelled depth and single beam depths as a func-
tion of single beam depths (Dhiggaru)

Figure 5.13 shows the residual between the modelled depths and single beam
depth for each single beam depth. Again we clearly see that the residuals in-
crease around 15 meters depth. The model is built using ICESat-2 bathymetry
data, which results in limited depth estimates. Since there were only few data
points at depths below 15 meters, it is more challenging for the model to estimate
deeper areas correctly. This is even more evident when looking at the results from
Mulah, where the input data from ICESat-2 was between 0-5.5 m, with the major-
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ity of the data points between 1-2 meters depth. This results in the multi-spectral
modelled depths compared to single beam depths seen in 5.14c. There is a poor
correlation, which is also apparent in the R2 of 0.7 and RMSE of 0.96 m, based
only on depths between 0-5 meters. Visually, it is also clear that the expected
linear correlation is only evident between ~0-2 m.

For Buruni, in figure 5.12a and b, we see a result similar to themodelled bathymetry
around Dhiggaru. The correlation between the modelled depth and single beam
depths is fairly good down to 15 meters, where the fitted blue line and the 1:1
linear red line are close together and the RMSE is around 1.19 m, and R2 is 0.83.
When the model tries to estimate areas that the single beam has measured to be
deeper than 15 meters, the model starts to fail, and the deepest modelled depths
are only around 17 m.

(a) (b) (c)

Figure 5.14: Modelled depths vs single beam depths. a) Buruni: depths between
0-35 m b) Buruni: depths between 0-15 m c) Mulah: depth between 0-5 m. The
red line represents a 1:1 linear line, while the blue is a regression line.

In figure 5.15 the modelled depths are shown for the area around Dhiggaru where
the single beam data is also available. In figure 5.16 the residual are shown for
the same area. The model and residual maps make it possible to carry out a vi-
sual inspection and discover which areas are most problematic, when estimating
depths. In the model map we see that the shallow coral heads that ICESat-2 also
captured in figure 5.4, are visible in the western corner of the image. There are
small areas with more shallow depths than the surroundings. When looking at
the same area in the residual map, it is also clear that the coral heads have not
introduced significantly large errors. As expected, the more shallow areas with
depths in the interval 0-5 meters have the smallest residuals. The largest resid-
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uals are found in the deeper area east of the island. The channel between the
two coral reefs, the Dhiggaru Kandu, is hard to map for the multi-spectral method.
The area is as deep as 35 meters in some places, making it optically deep for the
multi-spectral Sentinel-2 image. This also explains the large residuals. As seen
previously, all deep areas are estimated at around 15-18 meters depth, even if
they are much deeper. This limitation results in the large residuals in the areas
deeper than 20 meters. By identifying the optically deep pixels, it would be possi-
ble to separate the areas where the model is likely to correctly have estimated the
depths to be ~15 meters, and the optically deep areas that should be categorized
as deeper than 15 meters.

Figure 5.15: Model Map of Dhiggaru in area where there is overlap with single
beam data

In (Ma et al., 2020), they also developed a method for processing ICESat-2 data
and combining ICESat-2 estimated depths with Sentinel-2 imagery using the lin-
ear band model, in order to estimate a satellite derived bathymetry. The study
was carried out for shallow water around atolls in the South China Sea and vali-
dated using airborne LIDAR. For depths between 0-18 meters they compared the
modelled depths with the airborne LIDAR depths with imagery from 4 different
dates. This resulted in R2 values between 0.89-0.93 and a RMSE between 1.25-
1.61 meters. These R2 values are slightly better than what is seen for Dhiggaru
and Buruni. However, the RMSE is in the same interval or lower for Dhiggaru and
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Buruni. Generally the result and estimated errors are very similar when compar-
ing the (Ma et al., 2020) study with the results of this project. They conclude that
the RMSE is lower or or close to 10% of the maximum depth. For Dhiggaru and
Buruni the RMSE is 9.2% and 7.9% of the maximum depth (15 meters).

Figure 5.16: Residual Map of Dhiggaru. The residuals are the difference between
modelled depths and single beam depths.

5.2.3 Single Beam as input in Linear Band Model
Another way of testing the model, is to use the single beam bathymetry data as
input in the model instead of ICESat-2 data. The single beam data is spread out
in the entire area around the islands with depths all the way down to 70 meters.
The single beam data was split into two equal data sets; training data for input in
the model and testing data used for validation.
The model was trained and build three time, once with single beam data between
0-25 meters and once with all the data between 0-70 meters. This is done for
Dhiggaru to test whether the model is improved by having more input data, and
also with single beam training data between 0-25 meters for Mulah.

In figure 5.17 we see the correlation between the model built on single beam
training data between 0-70 meters depths and the single beam testing data. The
same correlation, with only training data between 0-25 meters depth is shown in
figure 5.18. Just like with ICESat-2 as input in the model, there is a limitation of

CHAPTER 5. RESULTS 53



how deep the model can estimate depths. In figure 5.17, the model estimates
depths deeper than 30 meters. In the deeper end, the correlation between the
model and single beam depths is not as poor as it was when ICESat-2 was used
as input. However when looking at figure 5.17b, where the correlation is only
shown for single beam depths between 0-15 meters, it is clear that the correlation
in the shallow end is not good. The model is trained using depths between 0-70
meters, making it hard for the model to fit well in both the deep and shallow end.
This has resulted in an RMSE of 3.77 and an R2 of 0.57. This is much worse than
the results in the 0-15 meter interval when ICESat-2 depths were used to train the
model.

(a) (b)

Figure 5.17: Dhiggaru: Single beam depths (0-70 meters) as model input. Re-
sulting modelled depth compared to single beam testing data between a) 0-35
meters b) 0-15 meters. The red line represents a 1:1 linear line, while the blue is
a regression line.

To better mimic the conditions of the ICESat-2 input, the single beam depths be-
tween 0-25 meters depth was used as input, resulting in the correlations seen
in figure 5.18. Since the ICESat-2 depth around Dhiggaru were ~0-22 meters
deep, this resembles the same depth interval. The results are also much closer
to what we saw in figure 5.12 for Dhiggaru, with a close to linear correlation be-
tween 0-15 meters, and then a poor correlation at deeper depths. With the single
beam as training data, the maximum modelled depths are deeper at around 25
meters, compared to the 20 meters when ICESat-2 depths are used for training.
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The RMSE and R2 values are poorer in the 0-15 meter depth interval when single
beam depths are used, and it is also clear that the fitted blue line does not lie
as close to the red 1:1 line as it did in figure 5.12. The model has a tendency to
overestimate the depth, possibly because the single beam training data contains
more deep depths (15-25 meters) than the ICESat-2 training data. Therefore the
model tries to fit to both shallow and deep data points, resulting in a model that is
perhaps slightly better overall, but poorer in the shallow end.

(a) (b)

Figure 5.18: Dhiggaru: Single beam depths (0-25 meters) as model input. Re-
sulting modelled depth compared to single beam testing data between a) 0-35
meters b) 0-15 meters. The red line represents a 1:1 linear line, while the blue is
a regression line.

It is clear from figures 5.17 and 5.18 that the results are better when the training
data is between 0-25 meters than 0-70 meters. This is not surprising, since there
is a limit to how deep the optical images can ”see”. Even on a good day in the clear
waters of theMaldives, it is only possible to see the seafloor at 25-30meters depth.
Any area where the depth is greater than this, the water will be optically deep,
and have the same reflectance regardless of the depth being 40 or 70 meters.
Therefore, it will confuse the model, when it is told that pixels with the same value
have different depths.
The correlation in figure 5.17 clearly shows a very poor correlation in the 0-15
meter depth interval. There are also many depths estimated to be above water
level, despite single beam having measured the same areas as being 0-5 meters
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deep. This problem also occurred with ICESat-2 as model input, however the
problem is much worse in the case with single beam training data between 0-70
meters.

Figure 5.19: Mulah: Single beam depths (0-25 meters) as model input. Resulting
modelled depth compared to single beam testing data between 0-35 meters. The
red line represents a 1:1 linear line, while the blue is a regression line.

The model was also trained with single beam depths between 0-25 meters for
Mulah. The results for Mulah using ICESat-2 depths were very poor, however in
figure 5.19 it is clear that the model has successfully estimated the depths be-
tween 0-15 meters when using single beam as input. Just like we have seen in
the other correlation plots, there is a limit where the correlation is no longer close
to the linear red line. However, the correlation in the shallow end is decent, and
much better than the result with ICESat-2 as input. This clearly illustrates that
ICESat-2 is only useful for training the model, when it is able to estimate a large
variety of depths in the area.
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6 Conclusion
In this project, two methods for bathymetric mapping were implemented and val-
idated. ICESat-2 LIDAR data was used to estimate seafloor depths along beam
tracks as they crossed over three separate islands in the Maldives.
The pre-processing steps for estimating bathymetry from the raw ATL03 data was
presented, and the limitations were discussed. The other method for bathymetric
mapping combined the ICESat-2 estimated seafloor depths with the multi-spectral
properties of Sentinel-2, allowing for surface coverage that ICESat-2 alone could
not provide. The Sentinel-2 data from the MSI product also went through sev-
eral pre-processing steps, before being used for estimating bathymetry. ICESat-
2 estimated depths were used as known depths in the linear band model, while
selected optical bands from Sentinel-2 were the multi-spectral contribution to the
model. The model was implemented as an inverse problem and solved using a
least squares regression. This resulted in a fully satellite derived bathymetry.

Both methods were validated using single beam echo sounding data. The valida-
tions were carried out with data around three islands in the Maldives: Dhiggaru,
Mulah and Buruni. All three islands are surrounded by shallow coral reefs, and
the edges of the reefs have very steep slopes into deeper waters. The ICESat-2
estimated bathymetry was found to capture the seafloor well down to 22 and 20
meters for Dhiggaru and Buruni respectively. For these two islands there were
RMSE values of 0.77 m and 0.3 m and R2 values of 0.96 and 0.97. The RMSE
for Dhiggaru is higher than for Buruni, however tracks crossing Dhiggaru were
more affected by steep slopes that are challenging to capture, and where small
displacements in the horizontal coordinates can result in large vertical errors.
These validation results were similar to the ones presented by (Parrish et al.,
2019), where the maximum penetration was 0.96 Secchi depth, and the RMSE
was 0.43-0.60 m. It is hard to compare directly, since the Secchi depths around
the islands are not known precisely, however it is estimated that the maximum
penetration around Dhiggaru and Buruni is 0.66-1 Secchi depths.
The third island, Mulah, was more difficult to map. The shallow reef around the
island was around 2 meters deep, while the seafloor depths dropped to around
40 meters outside the reef. The seafloor at 40 meters is too deep for the ICESat-
2 laser, and therefore most of the estimated depths for Mulah are between 1-2
meters. A visual inspection showed an indication that the seafloor was detected
at 30 meters depth, however these data points were indistinguishable from noise,
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and they were only discovered because of the single beam validation data. The
correlation between the single beam depths and the ICESat-2 estimated depths
was good between 1-2 meters, however any depths deeper than 2 meters show a
very poor correlation, resulting in an R2 value of 0.19 between 0-5 m and a RMSE
of 1.17 m. The RMSE was 3.5%, 1.5% and 23% of the maximum depths for Dhig-
garu, Buruni and Mulah respectively.

The accuracy of the ICESat-2 estimated depths are reasonably good, especially
when considering that the single beam depth error is 5-10 cm as well. This means
that the measured error between ICESat-2 depths and single beam depths can
also be due to errors in the validation data. There is a tendency for ICESat-2
to overestimate the depths compared to the single beam depth measurements.
ICESat-2 provides free data from which it is possible to estimate bathymetry with
decent accuracy and a revisit time of 91 days makes it possible to track changes
in bathymetry over time. However, the data is gathered along three pairs of track
beams, that are 3 km apart. This means that ICESat-2 is not able to provide full
surface coverage.

By combining ICESat-2 and Sentinel-2 it is possible to use the empirical linear
band model method for bathymetric mapping, without the need for in situ mea-
surements. The method is not new, but the need for in situ measurements has it
limitations. By using ICESat-2 estimated depths in place of the in situ measure-
ments, it is possible to create a surface covering bathymetric map entirely from
free satellite data.
This method was implemented and validated using the single beam data around
all three islands. For Dhiggaru and Buruni the best results were between 0-15
meters depth, where the RMSE was 1.38 m and 1.19 m with an R2 value of 0.86
and 0.83 for the two islands respectively. For Mulah the results were much poorer
with a RMSE of 0.95 m and an R2 value of 0.7 when only looking at depths be-
tween 0-5 meters. This resulted in RMSE of 9.2%, 7.9% and 9% of the maximum
depth for Dhiggaru, Buruni and Mulah respectively. It was clear from the validation
that the model was limited by the ICESat-2 input. For Mulah the correlation be-
tween the modelled depths and the single beam depths was only linear between
1-2 meters depth, which is the depth interval where the majority of the ICESat-2
depths were found. For the two other islands the ICESat-2 estimated depths were
more evenly distributed, with a decent amount of depth being in the 0-15 meter
interval. Therefore the results are much better for these two islands. It was clear
when inspecting a residual map of Dhiggaru, that large errors occurred in areas
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where the water is most likely optically deep. In these areas the optical images
are not able to get reflectance of the seafloor, and therefore not able to correctly
estimate the seafloor depths. While the optically deep areas are probably deeper
that 15 meters, this appears to be the maximum depth for both Dhiggaru and Bu-
runi, where the depth is modelled correctly.
The validation results were also compared to the study by (Ma et al., 2020), where
a similar approach with combining ICESat-2 and Sentinel-2 with the linear band
model was used. Their results showed better R2 values and a similar or slightly
worse RMSE than what was found in this project.

To test the limitations of the method, the same model was build but with single
beam as known depths instead of ICESat-2 estimate depths. This test made it
clear that including depths in optically deep areas only make the model perform
worse. When using depths between 0-25 meters, the model performance is sim-
ilar to when ICESat-2 depths were used as known depths, indicating that having
data that covers the entire study area, with more data for training the model is not
necessarily an improvement. Therefore, if ICESat-2 is able to estimate depths in
the study area, the resulting model appears to be just as good as when using in
situ measurements. Sentinel-2 also has a revisit time of only 5 days, making it
even easier to track temporal changes in bathymetry. However, the accuracy is
not as high as for ICESat-2 on its own, and conventional methods such as echo
sounding still have a higher accuracy. The method is limited to areas covered by
the ICESat-2 satellite, where a large variety of depths are captured. Murky wa-
ters with a small Secchi depth will also be hard to map, as the method is reliant
on reflectance of optical light of the seafloor.

Both the ICESat-2 LIDAR bathymetry and the satellite derived bathymetry would
be a good supplement for bathymetric mapping. Both methods are cheap with a
large spatial coverage (especially the satellite derived bathymetry). The do not
have the same penetrating abilities as airborne LIDAR (up to 3 Secchi depths)
or multi beam echo sounders (up to 3500 m), however the accuracy of ICESat-2
LIDAR is comparable to these methods. The MAE of ICESat-2 LIDAR bathymetry
was 15-30 cm in waters of 0-5 meters depth, while airborne LIDAR has an accu-
racy of up to 15 cm. The echo sounder methods are still more accurate with a
precision of up to 3-5 cm.
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7 Future Work
While creating bathymetric maps using ICESat-2 and Sentinel-2 data was suc-
cessful, there are several things that can be improved in the processing stage
and potentially improve the accuracy of the satellite derived bathymetry.

The ICESat-2 data processing could be made more efficient, by creating an auto-
mated process for seafloor photon detection. In this project, the method required
several manual decisions, and the outlier removal process would in some cases
remove potential seafloor photons. The process worked, as a limited number of
tracks were processed. An automated process could enable fast processing of
many tracks. A process similar to the one used in (Ma et al., 2020) could be
implemented, however this method does not successfully remove all the noisy
photons either.

By being able to process more ICESat-2 data tracks, it would also make easier to
cover larger areas at the time. An entire Sentinel-2 image tile could be processed
in one go, using all the ICESat-2 data tracks with valid bathymetry in the 100x100
km area. In this case it would be important to remove optically deep pixels to
reduce the data size and computational time. However, it would ensure a large
variety of depths that would capture a maximum amount of bottom types. This
would also make it possible to create bathymetry maps for an area such as Mulah
where the local ICESat-2 bathymetry estimates were insufficient, or areas with no
ICESat-2 coverage.

In order to improve the satellite derived bathymetry methods, several ideas could
be tested. Since variable bottom types can introduce errors in the model, a clas-
sification map of bottom type could be implemented in the linear band model, in
an attempt to improve the model. This might also help solve the issue with some
areas being estimated as above sea level. It could also be possible to enforce a
limit when building the model, where the estimated depth values have to be in a
certain interval. It could also be interesting to test the inclusion of more spectral
bands, or a band ratio (which is used in the band ratio model (Stumpf et al., 2003) ).

Finally, the method should be tested in different water environments. Both in
murkier waters, and along reef free coastal areas, where the change from shallow
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to deep waters might be less steep and easier to capture. This is needed to gain
the full understanding of the method accuracy.
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