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Preface to the Fourth Edition

The origin of this introductory textbook goes back to the booklet “Geodäsie”, 
prepared by the fi rst author and published in 1975 by Walter de Gruyter and Co. The 
English translation (1980) was well accepted by the geodetic and surveying com-
munity, which led to revised and extended editions in 1991 and 2001, as well as to 
translations into Spanish, Chinese, and Greek. Recognizing the continuing interest 
in the “Geodesy”, the publisher and the authors, both professors at the Institut für 
Erdmessung (IfE), Leibniz Universität Hannover, decided to prepare a fourth edition 
which is presented here. It is based on the third edition, and keeps the basic subdivi-
sion into eight chapters. An extensive revision was necessary in the chapters deal-
ing with reference systems, methods of measurement and modeling, and geodetic 
contribution to recent geodynamics research. This refl ects the central role which 
geodesy has achieved in the past 10 years, within the joint effort of the geosciences 
at monitoring and interpreting the global change of our planet. The Global Geodetic 
Observing System established by the International Association of Geodesy represents 
the outstanding example for the geodetic part of this interdisciplinary concert, with an 
overwhelming contribution of geodetic space techniques.  

The “Introduction” again contains the defi nition and an overview of about 2000 
years of the history of geodesy, with the current change to a four-dimensional con-
cept, and strong connections to astronomy, physics, and the other geosciences. The 
chapter on “Reference Systems and Reference Frames” has been revised thoroughly. 
It includes the recent defi nition and realization of celestial and terrestrial reference 
systems, and emphasizes the fundamental role of Earth’s rotation. Updating of “The 
Gravity Field of the Earth” concentrated on the geoid and mean sea level, with discus-
sion of the manifold problems at realizing these surfaces. Only minor changes were 
necessary in the chapter on “The Geodetic Earth Model”, which now also contains 
some defi nitions and parameters for optimum Earth models. The chapters on “Meth-
ods of Measurement” and “Methods of Positioning and Gravity Field Modeling” again 
comprise the core of the book, and required extensive revision and completion. This is 
due to the overwhelming contribution of geodetic space methods in solving the three 
basic problems of geodesy, i.e., the determination of the surface, the gravity fi eld, and 
the rotation of the Earth. Suffi cient space has been given to the description of Global 
Navigation Satellite Systems like GPS and to sophisticated space systems such as laser 
ranging and Very Long Baseline Interferometry, the successful gravity space missions 
are also explained in more detail. The present state of terrestrial positioning and gra-
vimetry is again discussed in some detail, as these methods still play an important role 
on a local scale, and serve for densifi cation and validation of satellite-derived results. 
The progress in gravity fi eld modeling is demonstrated by some examples of recent 
global and local gravity fi eld models, including GRACE- and GOCE-based satellite 
models, the Earth Gravitational Model EGM2008, and gravimetric geoid models for 
the U.S.A. and for Europe. The transition from classical geodetic control networks 
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to three-dimensional reference frames embedded in the global terrestrial reference 
system is treated in the chapter on “Geodetic and Gravimetric Networks”, where the 
impact of absolute gravimetry on the establishment of gravity networks also becomes 
visible. The fi nal chapter “Structure and Dynamics of the Earth” had to be extended 
signifi cantly, in order to adequately consider the geodetic contribution to the inves-
tigation and modeling of geodynamic processes of global to local scale. The present 
state of research is shown by several case studies, referring to, e.g., sea level change, 
glacial isostatic adjustment, plate tectonics, seismic and volcanic activity, hydrologi-
cal circulation, and Earth tides.

The text is illustrated by numerous fi gures, depicting either fundamental relations, 
or showing geodetic techniques, reference systems, gravity fi eld models and examples 
of geodynamics research. The book’s revision led to a volume increase of about 25%, 
the number of fi gures (now partly in color) increased even more. The reference list 
contains more than 900 entries, with about 500 of them published since 2000. 

The book is especially addressed to graduate students in the fi elds of geodesy, geo-
physics, surveying engineering, and geomatics, as well as to students of terrestrial and 
space navigation. It should also serve as a reference for geoscientists and engineers 
facing geodetic problems in their professional work. 

The contents of the book are partly based on lectures given by the authors at the 
Leibniz Universität Hannover, Germany, and on guest lectures given abroad. The authors 
are indebted to individuals and institutions for providing illustrations, due credit is given 
in the fi gure captions. Valuable information on dedicated problems was given by Prof. 
Matthias Becker, Technische Universität Darmstadt, Prof. Christopher Jekeli, Ohio State 
University, Dr. Corinna Kroner, PTB Braunschweig, Dipl.-Ing. Alexander Schunert, 
Institut für Photogrammetrie und GeoInformation, Leibniz Universität Hannover, and 
Prof. Florian Seitz, Technische Universität München. The staff of the Institut für Erdmes-
sung assisted in manifold ways, by discussion and by preparing geodetic products. We 
especially mention Dipl.-Ing. Philip Brieden, Dr.-Ing. Heiner Denker, Prof. Jakob Flury, 
Dr.-Ing. Olga Gitlein, Prof. Steffen Schön, Dr.-Ing. Ludger Timmen, and Dr.-Ing. 
Sybille Vey. M.Sc. Manuel Schilling handled the technical preparation of the manuscript, 
and assisted in text storage and proof-reading. All this is gratefully acknowledged. 
The good cooperation with the publisher, proven over nearly 40 years association, 
 continued, cordial thanks go to Dr. Christoph von Friedeburg, Mrs. Hella Behrend, 
Mrs. Sabina Dabrowski, and the staff at De Gruyter. Finally, our gratitude goes to our 
wives Renate and Sieglinde for their understanding and continuous encouragement, 
especially during the last year of increased activity.

Wolfgang Torge, Jürgen Müller
Hannover, December 2011
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1 Introduction

1.1 Defi nition of geodesy

According to the classical defi nition of Friedrich Robert Helmert (1880), “geodesy 
(γη = Earth, δαιω = I divide) is the science of the measurement and mapping of the 
Earth’s surface.” Helmert’s defi nition is fundamental to geodesy even today. The surface 
of the Earth, to a large extent, is shaped by the Earth’s gravity, and most geodetic obser-
vations are referenced to the Earth’s gravity fi eld. Consequently, the above defi nition of 
geodesy includes the determination of the Earth’s external gravity fi eld. Since ancient 
times, the reference system for the survey of the Earth has been provided by extrater-
restrial sources (stars). This demands the Earth’s orientation in space to be implied into 
the focus of geodesy. In recent time, the objective of geodesy has expanded to include 
applications in ocean and space research. Geodesy, in collaboration with other sciences, 
is also now involved in the determination of the surfaces and gravity fi elds of other 
celestial bodies, such as the moon (lunar geodesy) and planets (planetary geodesy). 
Finally, the classical defi nition has to be extended to include temporal variations of the 
Earth’s fi gure, its orientation and its gravity fi eld.

With this extended defi nition, geodesy is part of the geosciences and engineer-
ing sciences, including navigation and geomatics (e.g., Nat. Acad. Sciences, 1978; 
Herring, 2009; Plag and Pearlman, 2009). Geodesy may be divided into the areas of 
global geodesy, geodetic surveys (national and supranational), and plane surveying. 
Global geodesy includes the determination of the shape and size of the Earth, its orien-
tation in space, and its external gravity fi eld. A geodetic survey deals with the determina-
tion of the Earth’s surface and gravity fi eld over a region that typically spans a country 
or a group of countries. The Earth’s curvature and gravity fi eld must be considered in 
geodetic surveys. In plane surveying (topographic surveying, cadastral surveying, engi-
neering surveying), the details of the Earth’s surface are determined on a local level, and 
thus curvature and gravity effects are most often ignored.

There is a close relation between global geodesy, geodetic surveying, and plane 
surveying. Geodetic surveys are linked to reference frames (networks) established by 
global geodesy, and they adopt the parameters for the fi gure of the Earth and its gravity 
fi eld. On the other hand, the results of geodetic surveys contribute to global geodesy. 
Plane surveys, in turn, are generally referenced to control points established by geodetic 
surveys. They are used extensively in the development of national and state map-series, 
cadastral and geoinformation systems, and in civil engineering projects. The measure-
ment and data evaluation methods applied in national geodetic surveys nowadays 
mostly are similar to those used in global geodetic work. In particular, space methods 
(satellite geodesy) which have long been a dominant technique in global geodesy, are 
now also commonly employed in regional and local surveys. This also requires a more 
detailed knowledge of the gravity fi eld at regional and local scales.

With the corresponding classifi cation in the English and French languages, the 
concept of “geodesy” (la géodésie, “höhere Geodäsie” after Helmert) in this text 
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refers only to global geodesy and geodetic surveying. The concept of “surveying” (la 
topométrie, Vermessungskunde or “niedere Geodäsie” after Helmert) shall encom-
pass plane surveying.

In this volume, geodesy is treated only in the more restrictive sense as explained 
above (excluding plane surveying), and is limited to the planet Earth. Among the numer-
ous textbooks on surveying we mention Anderson and Mikhail (1998), Johnson (2004), 
and Kahmen (2006). For lunar and planetary geodesy see Nothnagel et al. (2010, p. 53 ff.) 
with respect to reference systems, and Wieczorek (2007) for gravity fi elds, see also 
Zumberge et al. (2009). Numerical values of astrometric and geodetic parameters are 
given by Yoder (1995) and Shirley and Fairbridge (1997, sections on gravitation and 
gravity fi eld of the terrestrial planets). For the planet Earth, we refer to Groten (2004) 
and Petit and Luzum (2010).

1.2 The objective of geodesy

Based on the concept of geodesy defi ned in [1.1], the objective of geodesy with respect 
to the planet Earth may be described as follows:

“The objective of geodesy is to determine the fi gure and external gravity fi eld of the 
Earth, as well as its orientation in space, as a function of time, from measurements on 
and exterior to the Earth’s surface.”

This geodetic boundary-value problem incorporates a geometric (fi gure of the Earth) 
and a physical (gravity fi eld) part; both are closely related.

By the fi gure of the Earth we mean the physical and the mathematical surface of the 
Earth as well as a geodetic reference model (e.g., Moritz, 1990).

The physical surface of the Earth is the border between the solid or fl uid masses and 
the atmosphere. The ocean fl oor may be included in this defi nition, being the bounding 
surface between the solid terrestrial body and the oceanic water masses. The irregular 
surface of the solid Earth (continental and ocean fl oor topography) cannot be represented 
by a simple mathematical (analytical) function. Continental topography is therefore 
described point wise by coordinates of control (reference) points. Given an adequately 
dense control network, the detailed structure of this surface can be determined by 
interpolation of data from spatial and terrestrial topographic and photogrammetric sur-
veying and from hydrographic surveys (e.g., Kraus and Schneider, 1988/90; Hake et al., 
2002; McGlone et al., 2004; Luhmann et al., 2006; Kraus, 2007; Konecny, 2009). On 
the other hand, the ocean surface (70% of the Earth’s surface) is easier to represent. If we 
neglect the effects of ocean currents and other “disturbances” like ocean tides, it forms 
a part of a level or equipotential surface of the Earth’s gravity fi eld (surface of constant 
gravity potential). We may think of this surface as being extended under the continents 
and identify it as the mathematical fi gure of the Earth, which can be described by a 
condition of equilibrium (Helmert, 1880/1884). J. B. Listing (1873) designated this level 
surface as geoid.

The great mathematician, physicist, astronomer and geodesist Carl Friedrich Gauss 
(1777–1855) had already referred to this surface: “Was wir im geometrischen Sinn Ober-
fl äche der Erde nennen, ist nichts anderes als diejenige Fläche, welche überall die Richtung 
der Schwere senkrecht schneidet, und von der die Oberfl äche des Weltmeers einen Theil 
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ausmacht…”, which reads in English translation: “What we call surface of the Earth in the 
geometrical sense is nothing more than that surface which intersects everywhere the direc-
tion of gravity at right angles, and part of which coincides with the surface of the oceans” 
(C. F. Gauss: Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen 
und Altona, Göttingen 1828. C. F. Gauss Werke, Band IX, Leipzig 1903, p. 49, see also 
Moritz, 1977).

The description of the external gravity fi eld including the geoid represents the physi-
cal aspect of the problem of geodesy. In solving this problem, the Earth’s surface and 
the geoid are considered as bounding surfaces in the Earth’s gravity fi eld. Based on the 
law of gravitation and the centrifugal force (due to the Earth’s rotation), the external 
gravity fi eld of the Earth can be modeled analytically and described by a large number 
of model parameters. A geometric description is given by the infi nite number of level 
surfaces extending completely or partially exterior to the Earth’s surface. The geoid as a 
physically defi ned Earth’s fi gure plays a special role in this respect. 

Reference systems are introduced in order to describe the orientation of the Earth 
in space (celestial reference system) as well as its surface geometry and gravity fi eld 
(terrestrial reference system). The defi nition and realization of these systems has become 
a major part of global geodesy; the use of three-dimensional Cartesian coordinates in 
Euclidean space is adequate in this context. However, due to the demands of users, ref-
erence surfaces are introduced. We distinguish between curvilinear surface coordinates 
for horizontal positioning, and heights above some zero-height surface for vertical posi-
tioning. Because of its simple mathematical structure, a rotational ellipsoid, fl attened at 
the poles, is well suited for describing horizontal positions, and consequently it is used 
as a reference surface in geodetic surveying. In plane surveying, the horizontal plane is 
generally a suffi cient reference surface. Because of the physical meaning of the geoid, 
this equipotential surface is well suited as a reference for heights. For many applica-
tions, a geodetic reference Earth (Earth model, normal Earth) is needed. It is realized 
through a mean-Earth ellipsoid that optimally approximates the geometry (geoid) and 
the gravity fi eld of the Earth. Fig. 1.1 shows the mutual location of the surfaces to be 
determined in geodesy.

The body of the Earth, its gravity fi eld and its orientation are subject to temporal 
variations of secular, periodic, and episodic nature; these changes can occur globally, 
regionally, and locally. Geodetic measurement and evaluation techniques are now 
able to detect partly these variations to a high level of accuracy. Accordingly, geodetic 
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Fig. 1.1: Physical surface of the Earth, geoid, and ellipsoid.
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observations and derived parameters must be considered as time-dependent quantities. 
If time-independent results are required, the observations must be corrected for temporal 
variations, and the fi nal results have to be referred to a specifi ed epoch. On the other 
hand, by determining temporal variations, geodesy contributes to the investigation of the 
kinematics and dynamics of the Earth. 

1.3 Historical development of geodesy

The formulation of the objective of geodesy as described in [1.2] did not fully mature 
until the nineteenth century. However, the question of the fi gure of the Earth was con-
templated already in antiquity. In fact, geodesy together with astronomy and geography 
are among the oldest sciences dealing with the planet Earth. Superseding the use of the 
sphere as a model for the Earth [1.3.1], the oblate rotational ellipsoid became widely 
accepted as the model of choice in the fi rst half of the eighteenth century [1.3.2]. The 
signifi cance of the gravity fi eld was also recognized in the nineteenth century, leading 
to the introduction of the geoid [1.3.3]. In the second half of the twentieth century, sat-
ellite techniques permitted the realization of the three-dimensional concept of geodesy 
[1.3.4]. At the same time, a drastic increase in the accuracy of geodetic observations 
required that time variations be taken into account. This led to the concept of four-
dimensional geodesy [1.3.5].

Extensive material on geodetic history is found in Todhunter (1873), Perrier 
(1939), Fischer (1975), Bialas (1982), and Smith (1986), while Levallois (1988) 
and Torge (2009) concentrate on the history of geodesy in France and in Germany, 
respectively.

1.3.1 The spherical Earth model

Various opinions about the fi gure of the Earth prevailed in the past, e.g., the notion of an 
Earth disk encircled by oceans (Homer’s Iliad around 800 B.C., Thales of Milet about 600 
B.C.). Considering the sphere aesthetically appealing, Pythagoras (around 580–500 B.C.) 
and his school proposed a spherical shaped Earth. By the time of Aristotle (384–322 B.C.), 
the spherical concept was generally accepted and even substantiated by observations. For 
example, observers noted the round shadow of the Earth in lunar eclipses and the appar-
ent rising of an approaching ship at the horizon. In China the spherical shape of the Earth 
was also recognized in the fi rst century A.D.

Eratosthenes of Alexandria (276–195 B.C.) was the fi rst who, based on the assumption 
of a spherical Earth, deduced the Earth’s radius from measurements (Schwarz, 1975; 
Lelgemann, 2010); he is often regarded as the founder of geodesy. The principle of 
the arc-measurement method developed by him was applied until modern times: from 
geodetic measurements, the length ΔG of a meridian arc (or any other great circle) is 
determined; astronomical observations furnish the associated central angle y (Fig. 1.2). 
The radius of the Earth is then given by

 R =   ΔG ___ y  . (1.1)

Eratosthenes found that the rays of the sun descended vertically into a well in 
Syene (modern day Assuan), at the time of the summer solstice. Whereas in Alexandria 
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(approximately on the same meridian as Syene), the sun’s rays formed an angle with the 
direction of the plumb line. From the length of the shadow of a vertical staff (“gnomon”) 
produced in a hemispherical shell (“skaphe”), Eratosthenes determined this angle as 1/50 
of a complete circle, i.e., y = 7°12’ (Lelgemann, 2000). From Egyptian cadastre maps, 
which were based on the information of “bematists” (step counters), Eratosthenes prob-
ably estimated the distance from Syene to Alexandria to be 5000 stadia. With the length 
of the Eratosthenes stadium assumed as 158.7 m (Egyptian norm), the Earth’s radius is 
computed to be about 6300 km, which is close to the real value of 6370 km. Another 
ancient determination of the Earth’s radius is attributed to Posidonius (135–51 B.C.). Using 
the (approximate) meridian arc from Alexandria to Rhodes, he observed the star Canopus 
to be on the horizon at Rhodes, while at a culmination height of 7°30’ at Alexandria, this 
again corresponds to the central angle between the two sites. Klaudios Ptolemaios (around 
100–160 A.D.) fi nally established the geocentric world system of Aristotle, by fundamen-
tal publications on astronomy (commonly cited with the Arabian naming “Almagest”) and 
geography (“Geographike hyphegesis”). These works included star catalogs, maps and 
lists with geographical coordinates of many places; they dominated the view of the world 
until the beginning of modern times (e.g. Kleinberg et al., 2011). 

During the middle ages in Europe, the question of the fi gure of the Earth was not 
pursued further, although the knowledge of the Earth’s spherical shape was not lost and 
especially kept in the monasteries. Documentation from China shows that an astro-
nomic-geodetic survey between the 17° and 40° latitude was carried out by the astrono-
mers Nankung Yüeh and I-Hsing c. 725 A.D. in order to determine the length of a 
meridian. A meridian arc of 2° extension was measured directly with ropes by the Arabs 
(c. 827 A.D.) northwest of Bagdad, during the caliphate of Al-Mámûn. At the beginning 
of the modern age, the French physician J. Fernel (1525) described an arc measurement 
between Paris and Amiens, at which the geographical latitudes were determined using 
a quadrant, and the length of the arc was computed from the number of rotations of a 
wagon wheel.

Later arc measurements based on the spherical Earth model benefi ted from fun-
damental advances in instrumentation technology, especially by the invention of the 
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Fig. 1.2: Arc measurement of Eratosthenes.
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telescope in the Netherlands (c. 1600), and its modifi cation and application in astronomy 
by Galilei and Kepler (1610/1611). Equally important was the progress in methodol-
ogy by the development of the triangulation. With this method, the hitherto tedious 
and inaccurate direct length measurement or even estimation of a spherical arc was 
replaced by an indirect procedure. The angles in a chain of triangles following the arc 
(triangulation network) were observed with angle measuring devices of high precision 
(the quadrant and later the theodolite), and the scale of the network was derived from 
one (or more) short baselines measured with high precision. With proper reduction of 
the observations to the meridian, the length of the arc then is provided by trigonomet-
ric formulae, cf. [7.1]. After the initial application of triangulation by Gemma Frisius 
(1508–1555) in the Netherlands, and by Tycho Brahe (1546–1601) in Denmark, the 
Dutchman Willebrord Snell van Royen, called Snellius (1580–1626), conducted a fi rst 
triangulation (1614/15) in order to determine the radius of the Earth from the meridian 
arc between Bergen op Zoom and Alkmaar (Holland), (Haasbroek, 1968). 

Although triangulation combined with astronomic positioning soon proved as an 
economic and accurate method of arc measurement, other strategies for determin-
ing the Earth radius were also pursued. A. Norwood, for example, still employed a 
direct length measurement using a chain when determining the meridian arc between 
London and York (1633–1635). The method of reciprocal zenith angles is another 
technique that has been used to determine the central angle between points on a 
meridian arc. Already proposed by Kepler (1607), the Italian priests F. Grimaldi and 
G. B. Riccioli used this method in 1645, between Bologna and Modena (Fig. 1.3). The 
central angle may be computed from the zenith angles z1 and z2 observed at locations 
P1 and P2 according to

 y  = z1 + z2 – p. (1.2)

This procedure makes an arc measurement independent of astronomic observations, 
but it does not yield satisfactory results due to the inaccurate determination of the cur-
vature of light rays (refraction anomalies) affecting the observed zenith angles.

Through the initiative of the French Academy of Sciences (founded in Paris, 1666), 
France assumed the leading role in geodesy in the seventeenth and eighteenth centuries. 

�G

R R

P
1

P
2

z
1

z
2

SPHERE

0

�

Fig 1.3: Central angle and reciprocal zenith angles.
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In 1669/70 the French abbot J. Picard measured the meridian arc through Paris between 
Malvoisine and Amiens with the aid of a triangulation network; he was the fi rst to use a 
telescope with cross hairs as part of the quadrant employed for the measurement of the 
angles. The value Picard obtained for the radius of the Earth (deviation from the exact 
value only +0.01%) aided Newton in the verifi cation of the law of gravitation, which he 
had formulated already in 1665/66.

1.3.2 The ellipsoidal Earth model

In the sixteenth and seventeenth centuries, new observations and ideas from astron-
omy and physics decisively infl uenced the perception of the fi gure of the Earth and 
its position in space. Nicolaus Copernicus (1473–1543) achieved the transition from 
the geocentric universe of Aristotle and Ptolemy to a heliocentric system (1543: “De 
revolutionibus orbium coelestium”), which Aristarchos of Samos (about 310–250 B.C.) 
had already postulated. Johannes Kepler (1571–1630) discovered the laws of planetary 
motion (1609: “Astronomia nova...”, 1619: “Harmonices mundi”), in which the planets 
followed elliptical orbits in a systematic manner. Finally, Galileo Galilei (1564–1642) 
established the fundamentals for mechanical dynamics (law of falling bodies and law of 
pendulum motion), and strengthened the idea of a heliocentric world system by a mul-
titude of astronomic observations of high accuracy. Being a strong advocate of the new 
system, he decisively contributed to its fi nal success, notwithstanding the long-lasting 
opposition of the Catholic Church.

In 1666, the astronomer J. D. Cassini observed the fl attening of the poles of Jupiter. 
On an expedition to Cayenne to determine martian parallaxes (1672/73), the astrono-
mer J. Richer discovered that a one-second pendulum regulated in Paris needed to 
be shortened in order to regain oscillations of one second. From this observation, 
and on the basis of the law of pendulum motion, one can infer an increase in grav-
ity from the equator to the poles. This effect was confi rmed by the English astronomer 
E. Halley when comparing pendulum measurements in St. Helena to those taken in 
London (1677/78).

Founded on these observations and his theoretical work on gravitation and hydro -
statics, Isaac Newton (1643–1727) developed an Earth model based on physical prin-
ciples, and presented it in his famous “Philosophiae Naturalis Principia Mathematica” 
(1687). Based on the law of gravitation, Newton proposed a rotational ellipsoid as an 
equilibrium fi gure for a homogeneous, fl uid, rotating Earth. The fl attening

 f =   a − b _____ a   (1.3)

(with semi-major axis a and semi-minor axis b of the ellipsoid) of Newton’s ellipsoid 
was 1/230. He also postulated an increase in gravity acceleration from the equator to 
the poles proportional to sin2j (geographical latitude j   ). At the same time, the Dutch 
physicist Christian Huygens (1629–1695), after having developed the principle of the 
pendulum clock and the law of central motion, also calculated an Earth model fl attened 
at the poles (“Discours de la Cause de la Pesanteur,” 1690). Shifting the source of the 
Earth’s attractive forces to the center of the Earth, he obtained a rotationally-symmetric 
equilibrium-surface with a meridian curve of fourth order and fl attening of 1/576.

Arc measurements at various latitudes were now required to verify the proposed ellip-
soidal Earth-models. Theoretically, the length of a 1° arc (meridian arc for a difference 
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of 1° in latitude), in the case of fl attened poles, should increase pole-ward from the 
equator. The ellipsoidal parameters a, b or a, f then can be computed from two arc 
measurements.

We distinguish between arc measurements along an ellipsoidal meridian (latitude arc 
measurement), along a parallel (longitude arc measurement), and arc measurements 
oblique to the meridian.

For the computations in a latitude arc measurement (Fig. 1.4), the angles Δj  = j2 − j1 
and Δj ′ = j ′2 − j1′ are formed from the observed geographical latitudes j1, j2, j1′ and j2′. 
The corresponding meridian arcs ΔG and ΔG′ are obtained from triangulation networks. For 
short arcs, one can replace the meridian ellipse by the osculating circle having the merid-
ian radius of curvature M = M (j) evaluated at the mean latitude j  =   1 _ 2   (j1 + j2), where M is 
also a function of the ellipsoidal parameters a, f. From ΔG = MΔj and ΔG′ = M′Δj ′, a and f 
may be determined. The larger the latitude interval j ′– j, the more accurate the computed 
fl attening; whereas, the accuracy of the semi-major axis length a depends in particular on 
the lengths of the meridian arcs.

For longitude arc measurements, corresponding relations are used between the arc 
lengths measured along the parallels and the difference of the geographical longitudes 
observed at the end points of the arcs. Arc measurements oblique to the meridian 
require a proper azimuth determination for reduction to the meridian. 

Initial evaluations of the older arc measurements (Snellius, Picard, among others) led 
to an Earth model elongated at the poles. The same result was obtained by La Hire, J. D. 
and J. Cassini. They extended the arc of Picard north to Dunkirk and south to Collioure 
(1683–1718), with a latitude difference of 8°20’. Dividing the arc into two parts, the 
separate computation of the northern and the southern segment yielded a “negative” 
fl attening of –1/95, which may be attributed primarily to uncertainties in the astronomic 
latitudes. The intense dispute between the supporters of Newton (fl attening at the poles) 
and those of the Cassinis (elongation at the poles) over the fi gure of the Earth was 
resolved by two further arc measurement campaigns sponsored by the French Academy 
of Sciences.

P. Maupertuis and A.-C. Clairaut, among others, participated in the expedition to Lap-
land (1736–1737). The Lapland arc measurement (average latitude 66°20’ and latitude 
interval 57’.5) was compared with the arc measurement through the meridian of Paris, 
revised by Cassini de Thury and La Caille, (1739–1740). The result confi rmed the polar 
fl attening, with a fl attening value of 1/304. On a second expedition (1735–1744) to the 
Spanish Vice-Kingdom of Peru (modern day Ecuador), an arc at an average latitude of  
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1°31’ south and with 3°7’ amplitude was determined by P. Bouguer, C. de La Condamine 
and L. Godin, supported by the Spanish navy offi cers J. Juan and A. de Ulloa. Combining 
the results with the Lapland arc led to a fl attening of 1/210. The fl attening of the Earth at 
the poles was thereby demonstrated by geodetic measure ments.

A synthesis between the physical and the geometric evidence of the ellipsoidal shape 
of the Earth was fi nally achieved by A.-C. Clairaut (1713–1765). The theorem (1743), 
which bears his name, permits the computation of the fl attening from two gravity mea-
surements at different latitudes, cf. [4.2.2]. A fi rst application of Clairaut’s theorem was 
by virtue of P. S. Laplace (1799), who derived a fl attening of 1/330 from only 15 gravity 
values. The wider application of this “gravimetric method” suffered from the lack of 
accurate and well-distributed gravity measurements and from the diffi culty of reducing 
the data to the Earth ellipsoid. Such problems were not overcome until the twentieth 
century. The theoretical basis, on the other hand, for physical geodesy was laid down 
between the middles of the eighteenth and the nineteenth century. It is related to the 
development of potential theory and connected with the names of the French mathema-
ticians J.-B. d’Alembert, J. L. Lagrange, A. M. Legendre and P. S. Laplace, followed later 
by C. F. Gauss and the British scientists G. Greene and G. G. Stokes.

With the rotational ellipsoid commonly accepted as a model for the Earth, numerous arc 
measurements were conducted up to the twentieth century. These measurements gener-
ally served as a basis for national geodetic surveys, see [1.3.3]. For example, the meridian 
arc through Paris was extended by Cassini de Thury and included in the fi rst triangulation 
of France (1733–1750). A geodetic connection between the astronomical observatories 
in Paris and Greenwich (1784–1787) was the beginning of the national survey of Great 
Britain, with the fi nal extension of the Paris meridian arc to the Shetland Islands. Particular 
signifi cance was attained by a new measurement on the meridian through Paris, between 
Barcelona and Dunkirk (1792–1798), commissioned by the French National Assembly 
and carried out by J. B. Delambre and P. F. A.  Méchain. The results served for the defi ni-
tion of the meter as a natural unit of length (1799). Combined with the Peruvian arc mea-
surement, these observations yielded an ellipsoidal fl attening of 1/334.

1.3.3 The geoid, arc measurements and national geodetic surveys

As recognized by P. S. Laplace (1802), C. F. Gauss (1828), F. W. Bessel (1837), and others, 
the assumption of an ellipsoidal-Earth model is no longer tenable at a high level of ac-
curacy. The deviation of the physical plumb line, to which the measurements refer, from 
the ellipsoidal normal can no longer be ignored. This deviation is known as the defl ection 
of the vertical. While adjusting several arc measurements for the determination of the el-
lipsoidal parameters, contradictions were found which greatly exceeded the observational 
accuracy. An initial adjustment of sections of the Paris meridian arc was carried out in 1806 
by A. M. Legendre in his treatise “Sur la méthode des moindres carrées”. The least-squares 
method of adjustment applied by him was also independently developed by C. F. Gauss. 
Gauss successfully used the method for the orbit calculation of the asteroid “Ceres” (1802), 
and also for early adjustments of the Paris meridian arc and of a triangulation network in 
and around the dukedom of Brunswick (1803–1807).

This led to the refi ned defi nition of the “fi gure of the Earth” by Gauss and Bessel, 
who clearly distinguished between the physical surface of the Earth, the geoid as 
the mathematical surface, and the ellipsoid as a reference surface approximating it, 
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cf. [1.2]. With the defi nition of geodesy [1.1], F. R. Helmert made the transition to the 
actual concept of the fi gure of the Earth (Moritz, 1990).

Friedrich Robert Helmert (1843–1917), one of the most distinguished geodesists of modern 
times, was professor of geodesy at the Technical University at Aachen, Germany, and later 
director of the Prussian Geodetic Institute in Potsdam and of the Central Bureau of the ‘Inter-
nationale Erdmessung’. Through his work, geodesy has experienced decisive impulses, the 
effects of which are still felt today. In his fundamental monograph (1880/1884), Helmert estab-
lished geodesy as a proper science (Wolf, 1993).

Despite the discrepancies found from the adjustments of different arcs, this method 
continued to be used to determine the dimensions of the Earth ellipsoid. However, the 
defl ections of the vertical were still treated as random observational errors in the adjust-
ments. As a consequence, this calculation method provided parameters for best-fi tting 
ellipsoids, approximating the geoid in the area of the triangulation chains. The method 
failed to deliver a globally best-approximating ellipsoid, which is also due to the lack 
of data on the oceans. Many of these best-fi tting ellipsoids have been introduced as 
“conventional” ellipsoids for calculating the national geodetic surveys, and thus arc 
measurements increasingly became part of the geodetic surveys. Established by triangu-
lation, these national surveys provided control points for mapping, which remained the 
basis for many national geodetic reference systems until recent time. Gravity observa-
tions by pendulum measurements started in the eighteenth century. Observations were 
carried out in connection with arc measurements and in dedicated campaigns, espe-
cially after the foundation of the “Mitteleuropäische Gradmessung”, cf. [1.4.2].

We mention the historically important arc of Gauss (arc measurement between 
Göttingen and Altona 1821–1824, invention of the Heliotrope, adjustment according to 
the method of least squares) and its extension to the triangulation of the kingdom of 
Hannover (until 1844). Initiated by the Danish astronomer H. C. Schumacher, this arc 
should become part of a central European network, running from Denmark to Bavaria 
(triangulation by J. G. Soldner, 1808–1828) and further southwards. Bessel and Baeyer 
carried out an arc measurement oblique to the meridian in East Prussia (1831–1838), 
which connected the Russian triangulations (W. Struve, C. Tenner) with the Prussian 
and Danish networks and fi nally with the French–British arc along the meridian of Paris. 
The extension of a triangulation chain from the observatory in Tartu/Estonia northwards 
to the Arctic Ocean and southwards to the Black Sea (1816–1852) led to the “Struve 
Geodetic Arc”, stretching over more than 2800 km around the 27°E meridian. In 2005, this 
international geodetic enterprise was inscribed on the World Heritage List of UNESCO.

Further long arcs linking national triangulation-chains were built up over the next 
100 years. Some of these were not completed until the 1950s, while others were never 
fi nished, owing to the replacement of classical geodetic observation techniques by sat-
ellite surveying methods. These long arcs include the American meridian arc (Alaska–
Tierra del Fuego), the North American longitude arc along the 39° parallel between 
the Atlantic and the Pacifi c Oceans, the West European–African arc along the merid-
ian of Paris (Shetlands–Algeria), the Arctic Ocean to Mediterranean Sea meridian arc 
(Hammerfest–Crete) as an extension of the “Struve Arc”, and the African 30° East merid-
ian arc (Cairo–Cape Town) tied to it, the European–Asiatic longitude arc measurements 
at 48° (Brest–Astrachan) and at 52° latitude (Ireland–Ural Mountains), as well as the 
latitude and longitude arc measurements in India (G. Everest, W. Lambdon).
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Since the 1880s, vertical control networks were established by geometric leveling 
within the frame of the national geodetic surveys but independently from the horizontal 
control systems. Heights were referred to a level surface close to the geoid and defi ned 
by the mean sea level as observed with a tide gauge. The accurate knowledge of the 
geoid was not needed in this separate treatment of horizontal position and height, as it 
was required only for the reduction of horizontal positioning. 

An inevitable presupposition for the evaluation of large-scale measurements was 
the introduction of a standard for length. But it was only about one century after the 
introduction of the meter in France that representatives of a large number of countries 
met at the International Meter Convention in Paris in 1875, and agreed upon a new 
defi nition for the meter and its realization through a standard meter bar. There was 
also an urgent need to introduce a world time system, and a common zero merid-
ian for the geographical longitude. Following a recommendation of the “Europäische 
Gradmessung” in 1883, the International Meridian Conference met in Washington, 
D. C. (1884). The Conference adopted the Greenwich meridian as the initial meridian 
for longitude, and the universal day (mean solar day) as the time unit referenced to 
this zero meridian.

1.3.4 Three-dimensional geodesy

The three-dimensional concept of geodesy consists of the common treatment of 
horizontal and vertical positioning within the same mathematical model. This was 
suggested already by Bruns (1878), who proposed to determine the surface of the Earth 
pointwise using a spatial polyhedron together with all exterior level surfaces. However, 
three-dimensional computations were not carried out in practice due to the problems 
associated with the inclusion of height measurements into the model. Trigonometrically 
derived height differences over large distances suffered from refraction anomalies, and 
geometric leveling could not be reduced to the ellipsoid as accurate geoid heights 
above the ellipsoid were not available. 

The concept of three-dimensional geodesy was revived by Marussi (1949) and Hotine 
(1969), while in 1945 Molodensky demonstrated that the physical surface of the Earth 
and its external gravity fi eld can be determined from surface measurements only, with-
out needing the geoid (Molodenski, 1958).

Väisälä (1946) introduced Stellar triangulation from high altitude balloons as a fi rst 
step to realize the three-dimensional concept. This technique was followed by electro-
magnetic distance measurements in the 1950s and 1960s, using both terrestrial and 
airborne methods. Satellite geodesy provided a technological breakthrough after the 
launch of the Russian satellite Sputnik I in 1957. Observations to orbiting satellites were 
used to establish control points in a three-dimensional system, and provided global 
gravity fi eld information. Beginning in the 1980s, the NAVSTAR Global Positioning Sys-
tem (GPS) today dominates geodetic measuring techniques. Since the 1990s, global 
geodetic networks have been built up by different space techniques, and are regularily 
maintained by international services. Among the practical problems which geodesy is 
facing today is the connection of classical horizontal and vertical control networks to 
the global system, and their transformation into three-dimensional nets. This includes 
the determination of the geoid with respect to a global reference ellipsoid, with high 
accuracy and spatial resolution.
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Recently, kinematic methods have gained great importance, especially with the 
extensive use of Global Navigation Satellite Systems (GNSS) like GPS. The measuring 
systems are carried on moving platforms (e.g., satellite, airplane, ship, car) and provide 
data referring to the geodetic reference system by continuous positioning (navigation).

1.3.5 Four-dimensional geodesy

The beginning of four-dimensional geodesy (Mather, 1973) may be reckoned from the 
detection of polar motion by F. Küstner (1884/85) and fi rst observations of the Earth tides 
by E.v. Rebeur-Paschwitz (1889–1893), at the Geodetic Institute Potsdam. Monitoring of 
crustal deformations related to seismic activities began in Japan and the U.S.A. about 
100 years ago. Interest in these phenomena was motivated by disastrous seismic events, 
such as the San Francisco Earthquake of 1906. In Fennoscandia, precise leveling and 
tide gauge registrations started in the 1880s and were used to determine the region’s 
large-scale vertical uplift caused by postglacial rebound.

Today, the variations of the Earth’s rotation and the movements of the tectonic plates 
are regularly observed through global networks. In addition, a number of regional con-
trol networks has been set up, especially at tectonic plate boundaries. Gravity fi eld 
variations with time are derived from the analysis of satellite orbits and from dedicated 
satellite gravity missions (global and regional scale), as well as from terrestrial gravity 
measurements (local scale). The Earth tides have also been modeled successfully using 
terrestrial and satellite methods.

Worldwide, large efforts are nowadays made to measure and analyze all types of 
geodynamic phenomena, with geodetic methods playing a signifi cant role, e.g. NASA 
(1983), Lambeck (1988), Herring (2009). With a further increase in accuracy of geodetic 
observations and a better resolution in space and time, geodesy now more than ever 
contributes to the understanding of the Earth system dynamics and global change pro-
cesses. A long-term enterprise directed to this objective is the Global Geodetic Observ-
ing System (GGOS) of the International Association of Geodesy (Plag and Pearlman, 
2009), cf. [1.4.2]. The time-variability of geodetic products (geometric and gravimetric 
networks, gravity fi eld, Earth’s orientation) also increasingly forces geodetic practice to 
take temporal changes into account, and to present geodetic products accordingly.

1.4 Organization of geodesy, literature

1.4.1 National organizations

The problems of global geodesy may be solved only by international cooperation of 
research institutions and national agencies, within the framework of international orga-
nizations and services, cf. [1.4.2].

University institutes and departments pursue fundamental and applied research in 
the fi elds of geodesy and remote sensing, geophysics, astronomy and space sciences, 
geomatics and surveying engineering. Worldwide, there is a multitude of corresponding 
institutions engaged in this research, which cannot be listed here explicitly (see Geod-
esist’s Handbook 2004, J. Geod. 77, No. 10–11). 

In several countries, academy or governmental institutes are also engaged in geodetic 
research.
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Examples are found in Austria (Institute of Space Research, Academy of Sciences, Graz), 
China (Institute of Geodesy and Geophysics, Wuhan), Czech Republic (Research Institute 
of Geodesy, Topography and Cartography), Finland (Finnish Geodetic Institute), Germany 
(Deutsches Geodätisches Forschungsinstitut DGFI, München, Deutsches Geoforschungszen-
trum GFZ, Potsdam), Japan (National Research Institute for Earth Science and Disaster Preven-
tion), Poland (Institute of Geodesy and Cartography, Space Research Center, Warsaw), Russia 
(Institute of Physics of the Earth, Moscow).

The national geodetic surveys are carried out according to the guidelines of the national 
survey authority, organized either as a central agency or in decen tralized institutions.

As examples, we mention Australia (Geoscience Australia, Geospatial and Earth Monitoring 
Division), Austria (Bundesamt für Eich- und Vermessungswesen), Brazil (Instituto Brasileiro 
de Geografi a e Estatistica IBGE), Canada (Geodetic Survey Division/Geomatics, National 
Resources Canada), China (National Bureau of Surveying and Mapping with affi liated 
Chinese Academy of Surveying and Mapping), Denmark (Kort and Matrikelstyrelsen), France 
(Institut Géographique National), Germany (State geodetic surveys in cooperation with the 
Federal Bundesamt für Kartographie und Geodäsie BKG), Great Britain (Ordnance Survey), 
India (Survey of India), Italy (Istituto Geografi co Militare), Japan (Geospatial Information 
Authority GSI), Norway (Statens Kartverk), Russia (Roskartografi a/Federal Service of Geod-
esy and Cartography), South Africa (Chief Directorate: Surveys and Mapping, Mowbray), 
Spain (Instituto Geografi co Nacional), Sweden (Landmäteriet), Switzerland (Bundesamt für 
Landestopographie), The Netherlands (Kadaster en Openbare Registers), and the U.S.A. 
(National Geodetic Survey/National Oceanic and Atmospheric Administration NGS/NOAA, 
formerly U.S. Coast and Geodetic Survey). 

In addition to these, a number of non-geodetic institutions, in the course of their special 
tasks and projects, are also concerned with geodetic problems. These groups develop 
theories, measuring systems and methods, and in particular are involved with the col-
lection and evaluation of geodetic data.

We mention space agencies (e.g., Agenzia Spaziale Italiana ASI, Matera; Centre National 
d’Etudes Spatiales, Toulouse; Deutsches Zentrum für Luft- und Raumfahrt; Goddard Space 
Flight Center of NASA, Greenbelt, MD, U.S.A.), space observatories (Astro-Geodynamics 
Observatory, Mizusawa, Japan; Geodätisches Observatorium Wettzell, Germany; Observatoire 
de Paris; Observatoire Royal de Belgique; Onsala Space Observatory, Sweden; Pulkovo Obser-
vatory, Russia; Royal Greenwich Observatory; Shanghai Observatory; U. S. Naval Observa-
tory), geologic and hydrographic services (China: State Seismological Bureau; France: Bureau 
des Recherches Géographiques et Minières; Germany: Alfred-Wegener-Institut für Polar- und 
Meeresforschung (AWI), Bundesanstalt für Geowissenschaften und Rohstoffe, Bundesamt für 
Seeschiffahrt und Hydrographie; Great Britain: Institute of Geological Sciences, Institute of 
Oceanographic Sciences; U.S.A.: U.S. Geological Survey), and military agencies (e.g., U.S.A.: 
National Geospatial-Intelligence Agency NGA, formerly National Imagery and Mapping 
Agency NIMA and Defense Mapping Agency DMA). More details may be found in Journal of 
Geodesy 74 (2000, p. 142 ff.).

1.4.2 International collaboration

At the beginning of the arc measurement in the kingdom of Hannover (1821), C. F. 
Gauss had already expressed his desire for international collaboration. According 
to Gauss, this geodetic network would be connected to neighboring triangulation 
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networks, aiming toward an eventual merger of the European observatories. Organized 
international collaboration originated with the memorandum by the Prussian general 
J. J. Baeyer (1794–1885): “Über die Größe und Figur der Erde, eine Denkschrift 
zur Begründung einer Mitteleuropäi schen Gradmessung“ (1861). In 1862, the 
“Mitteleuropäische Gradmessung” was founded in Berlin and was being among the fi rst 
international scientifi c associations of signifi cance; Baeyer became its fi rst president. 
After expanding to the “Europäische Gradmessung” (1867) and to the “Internationale 
Erdmessung” (“Association Géodésique Internationale,” 1886), the association engaged 
in fruitful activity, which was especially inspired by the works of Helmert as director of 
the Central Bureau (Levallois, 1980; Torge, 1996, 2005; Ádam, 2008).

After the dissolution of the “Internationale Erdmessung” during the fi rst World War, 
the “International Union of Geodesy and Geophysics” (IUGG) was founded in 1919. In 
2011, this organization had a membership of 65 countries. It consists of one geodetic 
and seven geophysical associations, dealing with the cryosphere, with geomagnetism, 
hydrology, meteorology, oceanography, seismology, and volcanology. The “Interna-
tional Association of Geodesy” (IAG) is led by a President who is elected every four 
years, and who is assisted by a Vice President and a General Secretary, together they 
form the IAG Bureau. The Executive Committee coordinates the IAG’s work and formu-
lates the general policy, while the Council (delegates from the membership countries) 
is responsible for governance, strategic policy and direction. The IUGG and IAG meet 
at General Assemblies at four-year intervals. In addition, numerous symposia and sci-
entifi c conferences are organized to treat special themes; among these are the IAG 
Scientifi c Assemblies, which are held between the General Assemblies.

The scientifi c work of the IAG is performed by Commissions, Services, Inter-
commission Committes, the Communication and Outreach Branch, and IAG Projects 
(Beutler et al., 2004, The Geodesist’s Handbook 2008, J. Geod. 82, No. 11). Currently 
there are four Commissions established for long-term problems (Reference Frames, 
Gravity Field, Earth Rotation and Geodynamics, Positioning and Application), which 
may set up Study Groups or Working Groups for topics of limited scope. A focal point 
for theoretical geodesy is the Inter-commission Committee on Theory. The “Global 
Geodetic Observing System (GGOS)” was established in 2003, as an integral IAG com-
ponent along with Services and Commissions (Plag and Pearlman, 2009). It “works with 
the other IAG components to provide the geodetic infrastructure necessary for monitor-
ing the Earth system and global change research” (Drewes, 2005; Terms of Reference 
2007, J. Geod. 82 (2008), No. 11: 826–829). 

An important part of the IAG work is done by Services, through collecting and analyz-
ing observations in order to generate products relevant to geodesy and other sciences 
and applications. 

We currently have the following Services partly maintained in collaboration with other 
scientifi c organizations: International GNSS Service (IGS) with the Central Bureau at the NASA 
Jet Propulsion Laboratory, Pasadena, California; International VLBI Service for Geodesy and 
Astrometry (IVS); International Laser Ranging Service (ILRS); International Gravimetric Bureau 
(BGI), Toulouse; International Geoid Service (IGeS), Milano; International Centre for Earth Tides 
(ICET), France; International Earth Rotation and Reference Systems Service (IERS) with the Cen-
tral Bureau at the Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt, a.M.; Interna-
tional DORIS Service, France; International Gravity Field Service with the Central Bureau at the 
National Geospatial-Intelligence Agency NGA, U.S.A.; International Centre for Global Earth 
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Models, GFZ Potsdam; International Digital Elevation Model Service, U.K.; Permanent Service 
for Mean Sea Level, Proudman Oceanographic Laboratory, Liverpool, U.K.; Bureau Interna-
tional des Poids et Mésures-Time, Frequency and Gravimetry Section, Sèvres, France; Interna-
tional Altimetry Service IAS (to be confi rmed); IAG Bibliographic Service, Leipzig, Germany.

1.4.3 Literature

References to textbooks and journals for geodesy and related fi elds (mathematics, phys-
ics, astronomy, geophysics, surveying engineering, mapping and geomatics) will be 
found in the running text. A list of geodetic and geodetically relevant publication series 
is given in Journal of Geodesy 77 (2004): 742–748, and a revised version is available at 
the IAG Website http://www.iag-aig.org.

We mention in particular the Journal of Geodesy (formerly Bulletin Géodésique and 
Manuscripta Geodaetica, Springer: Berlin-Heidelberg-New York), which is the offi cial 
journal of the IAG. The results of each General Assembly of the IAG are compiled in the 
Travaux (Proceedings). National reports are collected and stored at the Central Bureau of 
the IAG. The proceedings of IAG symposia are published in a separate series (Springer).

Among the recent scientifi c-technical journals in the fi eld of geodesy, geophysics, 
navigation, and surveying, we mention in particular: 

Acta Geodaetica et Geophysica Hungarica (Hungary), Acta Geodaetica et Cartographica 
Sinica (China), Acta Geophysica (Springer), Advances in Space Research (Elsevier), Allge-
meine Vermessungsnachrichten (Germany), Annals of Geophysics (Italy), Artifi cial Satellites 
(Poland), Australian Journal of Geodesy, Photogrammetry and Surveying, The Australian Sur-
veyor, Bolletino de Geodesia e Scienze Affi ni (Italy), Bolletino die Geofi sica Teorica ed Appli-
cata (Italy), Earth, Planets and Space (Japan), EOS Transactions (American Geophysical Union 
AGU, U.S.A.), Geodesia (The Netherlands), Geodeticky a kartografi cky obzor (Czech Repub-
lic), Geomatica (Canada), Geodesy and Cartography (Poland), Geodeziya i Aerosyemka, Geo-
deziya i Kartografi ya (Russia), Geomatik Schweiz: Geoinformation und Landmanagement 
(Switzerland), Geo physical Journal International (Wiley, U.K.), Geophysical Journal of the 
Royal Astronomical Society (U.K.), Geophysical Research Letters (AGU, U.S.A.), Geophys-
ics (U.S.A.), GPS World (U.S.A.), GPS Solutions (Springer), Inside GNSS (U.S.A.), Izvestiya, 
Physics of the Solid Earth (Russia/Springer), Journal of Applied Geodesy (Germany), Journal 
of Earthquake Prediction Research (China/Russia), Journal of Geodynamics (Elsevier), 
Journal of the Geodetic Society of Japan, Journal of Geophysical Research (AGU, U.S.A.), Jour-
nal of Surveying Engineering (U.S.A.), Kart og plan (Norway), Marine Geodesy (U.K.), Monthly 
Notices of the Royal Astronomical Society (U.K.), Navigation (U.S.A.),  Österreichische Zeitschrift 
für Vermessungswesen und Geoinforma tion (Austria), Physics and Chemistry of the Earth A: Solid 
Earth and Geodesy (The Netherlands), Reviews of Geophysics and Space Physics (U.S.A.), Revista 
Cartografi ca (Mexico), Space Science Reviews (Springer), Surveying and Land Information Sys-
tems (U.S.A.), Studia Geophysica et Geodaetica (Czech Republic), Survey Review (U.K.), Surveys 
in Geophysics (Springer), Tectonophysics (The Netherlands),  Zeitschrift für Geodäsie, Geoinfor-
mation und Landmanagement zfv (Germany).

Technical Reports are issued by university and research institutes, as well as by some gov-
ernmental agencies. We mention here:

Astron.-geodätische Arbeiten in der Schweiz (Schweiz. Geod. Komm.); Bull. d’Inf. Marées 
Terrestres, Brussels; Bull. Earthquake Research Inst., Univ. of Tokyo; Bull. Geograph. Survey 
Inst., Tokyo; Geod. Geophys. Arb. in der Schweiz; Geowiss. Mittl. Studieng. Verm.wesen, 
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TU Wien; IERS Techn. Notes, Frankfurt a.M.; IGS Techn. Reports JPL, Pasadena, U.S.A.; Journal 
of Wuhan Technical University of Surveying and Mapping; Metrologia (Inst. of Physics/BIPM, 
France); Mitt. Bundesamt Kart. u. Geod., Frankfurt a.M.; Mitt. Geod. Inst. Univ. Bonn; Mitt. 
Geod. Inst. TU Graz; Mitt. Inst. Geod. Photogr. ETH Zürich; NASA Goddard Space Flight Center 
Rep., Greenbelt, Md.; Nat. Survey and Cadastre, Geod. Div. Techn. Rep., Copenhagen; Neder-
lands Geod. Comm. Publ.; Newton’s Bulletin (formerly Bull. D’Inf. Bureau Gravimetrique Inter-
national, Toulouse); NGA/NIMA Techn. Rep., Washington D.C.; NOAA-NOS-National Geod. 
Survey Techn. Rep., Rockville, Md.; Publ. on Geodesy, Delft; Publ./Rep. Finnish Geod. Inst. 
Helsinki; Publ. Division of Geomatics, Univ. of Calgary; Rep. Dep. of Geodetic Science and 
Surveying, The Ohio State Univ., Columbus, Ohio; Rep. on Geodesy, Inst. of Geodesy and 
Geod. Astronomy, Warsaw Univ. of Technology; Math. and Phys. Geodesy, TH Delft; Schriften-
reihe d. Institute d. Fachber. Ver messungs wesen, Univ. Stuttgart; Univ. Rep. School of Geomatic 
Engineering, Univ. of New South Wales, Sydney; Veröff. Bayer. Komm. für die Internationale 
Erdmessung, München; Veröff. Deutsche Geod. Komm., München; Wiss. Arb. Fachr. Geodäsie 
und Geoinformatik (formerly Fachrichtung Vermessungs wesen), Leibniz Univ. Hannover.



2 Reference Systems and Reference Frames

Reference systems are required in order to describe the position and motion of the Earth 
and other celestial bodies including artifi cial satellites, positions and movements on the 
surface of the Earth, and the stationary and time-variable parts of the Earth’s gravity fi eld. 
They are represented by coordinate systems, which – in Newtonian space – are three-
dimensional in principle, and defi ned with respect to origin, orientation, and scale. A 
fourth dimension, time, enters through the mutual motion of the Earth and other celes-
tial bodies and through the temporal variations of the Earth’s shape, its gravity fi eld and 
its orientation. Present-day measurement accuracy even requires a four-dimensional 
treatment in the framework of general relativity, with rigorous coupling of space and 
time. Reference systems are realized through reference frames consisting of a set of 
well-determined fi xed points or objects, given by their coordinates and (if necessary) 
velocities at a certain epoch. They serve for modeling geodetic observations, as a func-
tion of a multitude of geometric and physical parameters of interest in geodesy and 
other geosciences.

Basic units and constants are fundamental to the geodetic measurement and model-
ing processes [2.1]. Time systems are based either on processes of quantum physics, on 
motions in the solar system, or on the daily rotation of the Earth [2.2]. The geometric 
properties of reference systems are provided by three-dimensional coordinates, here 
we distinguish between a space-fi xed celestial and an Earth-fi xed terrestrial reference 
system [2.3]. Conventional reference systems and corresponding reference frames are 
provided by the International Earth Rotation and Reference Systems Service IERS [2.4]. 
In addition, gravity fi eld-related local level systems have to be introduced, as most geo-
detic observations refer to gravity [2.5]. 

Fundamentals on three-dimensional and surface geodetic coordinates are provided 
by Heitz (1988), while Kovalevsky et al. (1989) and Nothnagel et al. (2010) in detail 
describe global reference systems and reference frames used in astronomy and geodesy. 
The impact of relativity on geodesy and reference systems is discussed in Soffel (1989) 
and Moritz and Hofmann-Wellenhof (1993). For reference systems and frames defi ned 
for the moon and the planets, see Seidelmann et al. (2007).

The treatment of height and gravity requires the introduction of dedicated reference 
systems. Vertical Reference Systems are based on the gravity fi eld of the Earth and will 
be discussed in [3.4.3] and [7.2]. Gravity measurements apply different techniques and 
deliver various gravity fi eld quantities. As a consequence, a Gravity Reference System 
has to be introduced in order to consistently evaluate the heterogeneous gravity data, 
cf. [5.4.3].

2.1 Basic units and constants

Time, length, and mass are basic quantities used in geodesy. The units for these quan-
tities are the second (s), the meter (m), and the kilogram (kg), respectively. They are 
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defi ned through the International System of Units (Système International d’Unités SI), 
established in 1960 by the eleventh General Conference of Weights and Measures 
(CGPM) in Paris (BIPM 2006), see also Markowitz (1973), Drewes (2008). The defi ni-
tions of these international standards are as follows: 

• The second is the duration of 9 192 631 770 periods of the radiation correspond-
ing to the transition between the two hyperfi ne levels of the ground state of the 
cesium-133 atom (CGPM 1967).

• The meter is the length of the path traveled by light in vacuum during a time inter-
val of 1/299 792 458 of a second (CGPM 1983).

• The kilogram is the unit of mass; it is equal to the mass of the international proto-
type of the kilogram (CGPM 1901). 

According to these defi nitions, the second and the kilogram are independent units. The 
meter, on the other hand, depends on the fi xed value of the velocity of light (see below). 

The establishment and maintenance of the reference standards for these units is the 
task of the Bureau International des Poids et Mésures (BIPM), located in Sèvres, France. 
BIPM cooperates with the national laboratories of standards under the guidelines of 
the International Meter Convention (1875). These national laboratories include the 
National Institute of Standards and Technology, Gaithersburg, MD, U.S.A., the National 
Physical Laboratory, Teddington, U.K., and the Physikalisch-Technische Bundesanstalt, 
Braunschweig, Germany.

The realization of the meter is based on interferometric measurements (relative uncer-
tainty 1 0 −12 ) using light with highly stable frequencies (stabilized lasers). The interna-
tional kilogram prototype has been kept in BIPM since 1889; national prototypes are 
related to it with an uncertainty of 1 0 −9 . The BIPM Time, Frequency and Gravimetry Sec-
tion (until 1987: Bureau International de l’Heure BIH, Paris) defi nes the second (uncer-
tainty now reaching 10–17) and the atomic time scale, cf. [2.2.1].

Previous defi nitions of the meter and the second were based on natural measures. The meter 
was intended to be one ten-millionth part of the meridian quadrant passing through Paris. Its 
length was derived from a dedicated arc measurement, cf. [1.3.2], and realized in 1799 by a 
prototype meter bar called “mètre des archives”. Following the International Meter Convention, 
a more stable version (platinium-iridium bar) was manufactured (international meter). It has 
been preserved since 1889 at the BIPM, and copies have been distributed to the participating 
countries. This improved realization (uncertainty 10–7) was valid until 1960 when, for the fi rst 
time, the wavelength of a certain spectral line of light became the defi ning quantity.

Since ancient times, the natural measure for time has been the daily rotation of the Earth about 
its axis. The mean solar day, cf. [2.2.2], was determined by astronomic observations, and the 
second was defi ned as 1/86400 part of that day, according to the subdivision of the day into 
24 hours, with the hour 60 minutes and the minute comprises 60 seconds. From the 1930s 
on, it became obvious that this defi nition was uncertain by about 10–7 due to irregularities of 
the Earth’s rotation, cf. [2.3.4]. Time measurements based on atomic clocks became possible 
in 1955, with a cesium standard constructed at the National Physical Laboratory (UK), Guinot 
and Arias (2005). 

As a supplementary SI unit, the radian (rad) is used for plane angles:

• The radian is the plane angle between two radii of a circle subtended by an arc on 
the circumference having a length equal to the radius.
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Geodesy, astronomy, and geography also use the sexagesimal graduation with 1 full 
circle = 360° (degrees), 1° = 60’ (arcminutes), and 1’ = 60” (arcseconds, also arcsec, 
with the milli- and micro-subdivisions mas and μas). With 2p rad corresponding to 
360°, an angle a is transformed from radian to degree by

 a ° = r °a rad, r ° = 180°/p. (2.1)

Among the fundamental physical constants used in geodesy is the velocity of light in 
vacuum, which is (exactly!) by the above defi nition (1983)

 c = 299 792 458 m s –1 , (2.2)

and the gravitational constant (CODATA System of Physical Constants 2006, Mohr et al., 
2008), which is given by

 G = (6.674 28 ± 0.000 67) × 10–11 m3kg–1s–2, (2.3)

with a relative uncertainty of 1 × 10–4. 

While the IERS Standards (1992) still recommended the former CODATA (1986) value of 
6.67259 × 10–11 m3kg–1s–2 for the constant of gravitation, the Numerical Standards given in the 
IERS Conventions (2010) contain the value given in (2.3), Petit and Luzum (2010). It should be 
noted that the uncertainty of G directly affects the calculation of mass and mean density of the 
Earth, and of its moments of inertia, cf. [8.1], [3.3.4].

Henry Cavendish carried out the fi rst experimental determination of G in 1798 with a torsion 
balance. Current work concentrates on increasing the relative accuracy of G to better than 10–4. 
This includes investigations into dependence of G on material, external infl uences, distance 
and direction, as well as non-inverse-square properties of gravitation (as the “fi fth force” dis-
cussed for a while), Gillies (1987), Fischbach and Talmadge (1999). The results obtained vary 
strongly, but a signifi cant accuracy increase has not been achieved, and evidence for deviations 
from Newton’s law have not been found. The limited accuracy obtained is due to the fact that 
only very weak gravitational forces can be produced experimentally, and that gravitation, unlike 
other forces, cannot be screened.

Other units and constants used in geodesy, astronomy, and geophysics, will be intro-
duced in the corresponding chapters. IERS and other services generally adopt corre-
sponding parameter values for a certain time period as standards (Petit and Luzum, 
2010), see also Ahrens (1995), Burša (1995a) and Groten (2004).

2.2 Time systems

Time plays a fundamental role in geodesy. This is, on the one hand, due to the fact that 
most geodetic observation methods use time or frequency measurements of electromag-
netic waves for positioning (this is especially valid for space geodetic methods), and that 
a uniform time scale is also needed in order to model the motion of artifi cial satellites. 
On the other hand, a time system is required for describing the relative motion of the 
Earth in the solar system with respect to inertial space and for dating all measurements 
and results.

Relativistic effects close to the Earth are at the order of 10–9 in a relative sense, which is at 
the order of accuracy at present-day geodetic measurements. This fact requires a relativistic 
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treatment of measurements using electromagnetic signals, and of reference systems moving 
with high velocities and in the neighbourhood of massive bodies. According to Einstein’s theory 
of General Relativity, systems of (four-dimensional) space-time coordinates within the gravita-
tional fi eld have to be defi ned and used for modeling (e.g. Damour, 2007). Consequently, the 
IAU (International Astronomical Union) introduced corresponding celestial and terrestrial refer-
ence systems in 2000, and IUGG and IAG followed the relevant resolutions (Petit and Luzum, 
2010). Reference systems are now defi ned within the frame of relativity theory, and satellite 
orbits and space geodetic observation are modeled and analyzed in the context of post-Newto-
nian formalism. On the other hand, at most geodetic applications and at modeling geodynamic 
phenomena, relativistic effects (being proportional to 1/c2) can still be taken into account by 
corresponding reductions, and geodetic calculations may take place in Newtonian space, with 
Euclidian geometry and absolute time. Therefore, time and coordinate systems are treated sepa-
rately in the following, with proper reference to the space-time relation (Müller et al., 2008).

Time systems are defi ned by the unit for a time interval (scale) and by a time epoch. 
They are based either on the defi nition of the SI second and on orbital motions in the 
solar system [2.2.1], or on the diurnal rotation of the Earth about its axis [2.2.2]. Fun-
damental descriptions of time systems are found in Moritz and Mueller (1987), and 
McCarthy and Seidelmann (2009), see also Nothnagel et al. (2010). For transformations 
between different time scales see, e.g., Soffel et al. (2003) and Guinot (2005), and the 
IAU2000/2006 resolutions (McCarthy and Petit, 2004; Petit and Luzum, 2010). 

2.2.1 Atomic time, dynamical time systems

A uniform time scale of high accuracy is given by the International Atomic Time 
(Temps Atomique International TAI). It corresponds to the defi nition of the SI second, 
cf. [2.1], which has been made approximately equal to the second of the formerly used 
Ephemeris Time (see below). The origin of TAI was chosen so that its epoch (January 1, 
1958, 0 h) coincided with the corresponding epoch of Universal Time UT1, cf. [2.2.2]. 
The TAI day comprises 86400 s, and the Julian Century has 36 525 TAI days. TAI is 
regarded as a realization of Terrestrial Time TT (see below).

TAI is provided by the BIPM Time, Frequency and Gravity Section, from the readings 
of a large set (presently more than 350) of atomic clocks (mostly cesium beam fre-
quency standards including about ten primary standards providing long-term stabil-
ity, and a few hydrogen masers) maintained at over 50 national laboratories (Börger, 
2005). Clock comparisons are performed at a number of timing centers, employing 
mainly GPS and geostationary telecommunication satellites for synchronization (Petit 
and Jiang, 2008), cf. [5.2.5]. From these local determinations, a weighted mean is 
calculated and disseminated at the BIPM. TAI stability is better than 10–15 (over min-
utes to several months) and decreases with time, it can be accessed by time transfer 
techniques with an accuracy of 1 ns and better, e.g., Weyers et al. (2001). A relative 
uncertainty of 1 0 −17 and better is expected through the development of new atomic 
clock technologies (laser-cooled cesium fountains, optical clocks using light instead 
of microwaves at the atomic transition process), and will strengthen the relativistic 
aspects of geodesy (Shen et al., 2011). 

According to the theory of General Relativity, the defi nition of a time system depends on the 
choice of the respective reference system; velocity and gravity potential at the clock’s site play 
an important role under this aspect. As a consequence, the readings of the atomic clocks are 
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reduced to a non-moving clock at sea level, introducing a standard potential value for the geoid 
(SI second “on the geoid”), see below and [3.4.1]. 

Dynamical time scales have been introduced early, in order to provide an independent 
and uniform time argument of barycentric ephemerides and equations of motion. This 
was achieved by time systems, based on the orbital motion of bodies in the solar system.

The Ephemeris Time (ET) was introduced by IAU in 1952. It was realized through long-term 
astronomical observations to the sun. Ephemeris Time was followed by dynamical time scales, 
referring either to the barycenter of the solar system or to the geocenter. Temps Dynamique 
Barycentrique (TDB), for instance, was used in celestial mechanics as an independent time 
argument for the barycentric ephemerides of the solar system bodies (sun, moon and planets). 

In 1991, the IAU introduced general relativity as the basis of four-dimensional space–
time reference systems, with a corresponding “coordinate time” for the individual sys-
tem (Müller, 1999; Petit and Luzum, 2010; p. 151 ff.). We distinguish between barycen-
tric and geocentric coordinate time. Barycentric Coordinate Time (Temps Coordonné 
Barycentrique TCB) refers to a reference system located at the center of mass of the solar 
system, and is used for the ephemerides of bodies moving in this system (planets, moon, 
interplanetary satellites). It replaces TDB (see above) which can be expressed as a linear 
function of TCB. Geocentric Coordinate Time (Temps Coordonné Geocentrique TCG) 
is the coordinate time of a reference system with origin at the Earth’s center of mass 
(Geocentric Celestial Reference System). It is based on the SI second, and of special 
importance for the equations of motion and ephemerides of artifi cial Earth satellites. The 
transformation between TCB and TCG is given by a four-dimensional transformation, 
which depends on geometry, kinematics, and potential in the solar system, cf. [2.4.1].

Terrestrial Time (TT) has been introduced as a coordinate time no longer based on 
celestial dynamics. It serves for dating events observed at the surface of the Earth or 
close to it, and thus it is the primary time scale for the relativistic treatment of space 
geodetic techniques. The defi nition of this time coordinate implies that TT (previously 
called Temps Dynamique Terrestre TDT) would be measured by an atomic clock located 
on the rotating geoid. TT differs from TCG only by a constant rate, d(TT)/d(TCG) = 1 – LG, 
with the unit of TT being chosen so that it agrees with the SI second on the geoid, and 
the defi ning constant LG = W0   /c

2 = 6.969 290 134 × 10–10 (W0 geoid potential, c veloc-
ity of light in vacuum), Fukushima (2009), Petit and Luzum (2010). As a consequence, 
although TAI and TT are independent time scales, the TT unit is practically equivalent to 
TAI, with a constant difference resulting from the epoch defi nition of TAI:

 TT = TAI + 32.184 s. (2.4)

2.2.2 Sidereal and Universal Time

The diurnal rotation of the Earth provides a natural measure for time. Corresponding 
time systems are introduced in order to relate Earth-based observations to a space-fi xed 
system: Sidereal and Universal (solar) Time. Hereby, two periodic motions of the Earth 
play a role (Fig. 2.1):

• The diurnal rotation (spin) of the Earth about its polar axis. This rotational axis ap-
proximately coincides with the axis of maximum moment of inertia, and it passes 
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through the Earth’s center of mass, cf. [2.3.4]. The equatorial plane is perpendicular 
to the axis of rotation.

• The annual revolution of the Earth around the sun. Following Kepler’s laws, the 
Earth describes an ellipse with the sun at one of its focal points. Minor perturba-
tions arise due to the gravitation of the moon and other planets. The plane of the 
Earth’s orbit is called the ecliptic plane; it has an obliquity e of about 23.5° with 
respect to the equatorial plane.

By circumscribing the unit sphere (celestial sphere) around the center of the Earth, sim-
ple geometric relations are obtained. The celestial equator and the ecliptic are defi ned 
by the intersections of the sphere with the corresponding planes. The vernal equinox 
(also First Point of Aries) is the intersection of the ecliptic and the equator where the sun 
passes from the southern to the northern hemisphere, it serves as the origin of the right 
ascension a. This classical equator–ecliptic system will be introduced in [2.3.1].

With the IAU2000/2006 resolutions, a slightly modifi ed defi nition of the origin of the 
right ascension has been introduced (within the frame of a more fundamental updating 
of the astronomic reference system), this will be discussed in [2.4.1]. Here and in the 
following, the classical system is still treated in some detail, as it certainly will be of 
practical relevance for a longer time span.

Sidereal time is directly related to the rotation of the Earth. Local Apparent (or 
true) Sidereal Time (LAST) refers to the observer’s (local) meridian; it is equal to the 
hour angle h of the (true) vernal equinox (Fig. 2.2), cf. [2.3.1]. The vernal equinox is 
affected by precession and nutation in longitude, and thus experiences long and short-
periodic variations, cf. [2.3.2]. If nutation is removed, we obtain Local Mean Sidereal 
Time (LMST), referring to the mean vernal equinox. For the Greenwich meridian the 
corresponding hour angles are called Greenwich Apparent Sidereal Time (GAST) and 
Greenwich Mean Sidereal Time (GMST), the symbol q is also often used for GAST. 
With the IAU2000/2006 resolutions, GAST has been replaced by the Earth Rotation 
Angle, see [2.4.2]. The astronomic longitude Λ is the angle between the meridian 
planes of the observer and Greenwich. It is given by, cf. [2.5]:

 Λ = LAST – GAST = LMST – GMST. (2.5)
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Fig. 2.1: Earth rotation, equatorial plane, and ecliptic plane.
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LAST is used at the evaluation of astronomical observations to fi xed stars and extra-
galactic radio sources, cf. [5.3.2], [5.3.4]. The mean sidereal time scale is still affected 
by precession (long-periodic). The mean sidereal day is the fundamental unit; it cor-
responds to the time interval of two consecutive transits of the mean vernal equinox 
through the meridian.

For practical reasons, solar time is used in everyday life. It is related to the (apparent) 
diurnal motion of the sun about the Earth. Since this revolution is not uniform, a fi cti-
tious “mean” sun is introduced which moves with constant velocity in the equatorial 
plane and coincides with the true sun at the vernal equinox. Mean solar time is equal 
to the hour angle of the mean sun plus 12 h, the beginning of the day is thus shifted 
to midnight. If referred to the Greenwich mean astronomical meridian, cf. [2.3.4], it is 
termed Universal Time (UT). Its fundamental unit is the mean solar day, being the inter-
val between two transits of the mean sun through the meridian. 

The conversion of Universal Time to Greenwich Mean Sidereal Time is rigorously 
possible and is given by a series development with time defi ned by the International 
Astronomical Union (Seidelmann, 1992/2006). Since the orbital motion of the Earth is 
about 1° per day (360°/365 d), the year has 1 day more in sidereal days than in solar 
days. We have the following approximation:

 1 mean sidereal day = 1 mean solar day – 3 m 55.90 s = 86164.10 s. (2.6)

The Earth’s rotation rate is 15.04107’’/ s, and its angular velocity is 

 w = 2p /86  164.10 s = 7.292  115 × 1 0 −5  rad   s –1  . (2.7)

Universal time is obtained from a network of space geodetic stations operating within 
the frame of the IERS, with the main contribution coming from Very Long Baseline Inter-
ferometry, cf. [2.4.4]. The observed local time UT0 refers to the instantaneous rotation 
axis, which is affected by polar motion, cf. [2.3.4]. In order to compare the results of dif-
ferent stations, reductions to a Conventional Terrestrial Pole are applied. The reduction 
in astronomic longitude ΔΛP corresponds to a change in time, cf. [5.3.3]. It transforms 
UT0 to UT1, which refers to the conventional terrestrial system, cf. [2.4.2]:

 UT1 = UT0 + Δ Λ P . (2.8)
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From a historical point of view, solar time UT1 has been the most important time-
scale for human life, but it still contains all variations of the Earth’s rotation with time, 
the same is valid for Greenwich Mean Sidereal Time. 

A practical time scale, as needed in navigation for instance, has to provide a uniform unit 
of time and maintain a close relationship with UT1, i.e., to Earth rotation. In 1972, this led 
to the introduction of the Coordinated Universal Time (UTC), as a compromise between TAI 
and UT1. The time interval of UTC exactly corresponds to atomic time TAI, cf. [2.2.1], and 
its epoch differs by not more than 0.9 s from UT1. In order to keep the difference

  | ΔUT |  =  | UT1 − UTC |  < 0.9 s, (2.9)

“leap seconds” are introduced in UTC when necessary. In 2011, we have a difference 
UTC – TAI = −34 s, and no positive leap second has been introduced at the end of 
December 2011. 

Like TAI, UTC is provided by the BIPM time, frequency and gravity section, while 
ΔUT is calculated and distributed by the IERS, cf. [2.4.4]. UT1 is now primarily regarded 
as the time-variable rotation angle of the Earth about its polar axis, containing a multi-
tude of information on geodynamic processes, and serving as one orientation parameter 
between the terrestrial and the celestial reference systems, cf. [2.4.3], [8.3.2].

UTC is disseminated through the Internet (e.g. U.S. National Institute of Standards and Tech-
nology, U.S. Naval Observatory), via radio, telephone, and GPS. Among the continuously 
broadcasting time stations are DCF77/Mainfl ingen (77.5 kHz), HBG/Prangins (75 kHz); MSF/
Rugby (60 kHz) in Europe; WWV resp. WWVB/Ft. Collins, Colorado (2,5 to 20 MHz resp. 
60 kHz); and WWVH/Kauai, Hawaii (2,5 to 15 MHz).

2.3 Reference coordinate systems: fundamentals

Reference systems in astronomy and geodesy are four-dimensional in principle, con-
taining a set of three-dimensional geometric coordinates and the time coordinate. Re-
stricting ourselves on the geometry in Newtonian space, the systems are defi ned by 
the origin and orientation of the fundamental planes or axes of a Cartesian coordinate 
system. For practical reasons, spherical (polar) coordinates are also introduced at both 
systems. We distinguish between the space-fi xed celestial reference system [2.3.1] and 
the terrestrial reference system fi xed to the Earth’s body [2.3.3]. The equatorial plane (or 
the Earth rotation axis, respectively) provides a common orientation for both systems 
which differ by their conventional orientation on that plane. The Earth rotation axis ex-
periences a multitude of variations with time, with respect to an inertial system as well 
as to the solid Earth, and so do the reference systems related to it [2.3.2], [2.3.4]. 

In this chapter, we discuss the fundamentals of celestial and terrestrial reference sys-
tems, following the classical defi nitions in astronomy. As mentioned already in [2.2.2], 
a number of IAU resolutions since the 1990s signifi cantly modifi ed and refi ned the 
concepts and defi nitions in fundamental astronomy in order to cope with the increased 
accuracy of the observations. As a consequence, the internationally adopted reference 
systems experienced some important changes, while the accuracy of the reference 
frames improved remarkably. The new defi nitions and the corresponding realizations 
will be introduced in [2.4], together with the relations between the classical and the 
modern systems, which will exist simultaneously for a certain transition time.
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The fundamentals of reference systems in astronomy are given in textbooks or 
monographies as Eichhorn (1974), Schödlbauer (2000), Kovalevsky (2002), and 
Kovalevsky and Seidelmann (2004). For reference systems in geodesy see textbooks 
as Hofmann-Wellenhof and Moritz (2005) and the publications on the actual Inter-
national Terrestrial Reference Frame, cf. [2.4.2].

2.3.1 Celestial Reference System

An inertial system is needed in order to model the ephemerides of celestial bodies in 
space, including those of artifi cial satellites. At the classical point of view, such a sys-
tem is characterized by Newton’s laws of motion; it is either at rest or in the state of a 
uniform rectilinear motion without rotation. A space-fi xed system (Celestial Reference 
System CRS) represents an approximation to an inertial system. We distinguish between 
a dynamical and a kinematic CRS.

A dynamical CRS is based on the ephemerides of solar system bodies (planets, moon, 
artifi cial satellites) and possibly also on the proper motion of stars. Dynamical reference 
systems have been realized through various optical measurements and radio data. The 
corresponding reference frames have been used for aligning star cataloges, but are of 
limited accuracy and not very practical for astronomical routine observations. Lunar laser 
ranging will provide a corresponding reference frame with an accuracy of 0.01″ and long-
time stability, in contrast to satellite techniques which only allow a reference time stabil-
ity of a few days. A kinematic CRS is defi ned by the positions and (if necessary) proper 
motions of stars or quasars. It is represented by the IAU International Celestial Reference 
System, and its realization is of extreme signifi cance for geodesy, cf. [2.4.1].

The coordinates of the classical celestial reference system are defi ned by the equato-
rial system of spherical astronomy. We introduce a three-dimensional Cartesian coor-
dinate system with the origin at the center of mass of the Earth (geocenter). The Z-axis 
coincides with the rotational axis of the Earth. The X- and Y-axis span the equatorial 
plane, with the X-axis pointing to the vernal equinox (First Point of Aries) and the Y-axis 
forming a right-handed system (Fig. 2.3), cf. [2.2.2]. As already mentioned above, 
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we here concentrate on the classical (and still wide-spread) defi nition of the equator/
ecliptic-system, the recent modifi cation based on the IAU2000 defi nitions will be dis-
cussed in [2.4]. 

In the sequel, we shall also shift the origin of this system to the position of an observer on the 
Earth (topocenter) or to the barycenter of the solar system. The directions to celestial bodies 
then vary with different defi nitions of the origin (parallaxes). Since the Earth’s radius is negligibly 
small compared to the distances to stars and extragalactic radio sources, no distinction is neces-
sary between a topocentric and a geocentric system, i.e. the daily parallax can be neglected, 
cf. [5.3.3].

We circumscribe the unit sphere (celestial sphere) about the Earth. The rotational 
axis meets the sphere at the celestial north and south poles PN and PS. The great 
circles perpendicular to the celestial equator, which contain the celestial poles, are 
called hour circles, and the small circles parallel to the equator are termed celestial 
parallels.

Star positions are usually given as spherical coordinates right ascension and dec-
lination: a,d-system, (Fig. 2.3). The right ascension a is the angle measured in the 
plane of the equator between the planes of the hour circles passing through the 
vernal equinox and the celestial body S; it is reckoned from the vernal equinox anti-
clockwise. The declination d is the angle measured in the plane of the hour circle 
between the equatorial plane and the line OS (positive from the equator to PN and 
negative to PS).

The position of a celestial body S now can be described either by the Cartesian coor-
dinates X, Y, Z, or by the spherical coordinates a, d, r (r distance from the origin O). We 
have the transformation 

 
r = 

 (     X 
 

 Y  
 
 

 Z   )  = r  ( 
cos a cos d
sin a cos d

sin d  ) . (2.10)

In geodesy, only directions are important for stars and extragalactic sources. With 
r = 1, a and d describe the position of S on the unit sphere. These angles can also be 
expressed by the lengths of the corresponding arcs on the equator and the hour circle.

We fi nally introduce the local meridian plane of the observer, spanned by the local 
vertical (direction of the plumb line) and the rotational axis, after a parallel shift from 
the geocenter to the topocenter. The zenithal point Z and the nadir point Z’ are the 
intersections of the vertical with the unit sphere, and the celestial meridian is the great 
circle through Z and the poles (Fig. 2.4). The hour angle h is measured in the equato-
rial plane between the celestial meridian through Z and the hour circle of S, reckoned 
from the upper meridian toward west. The great circles perpendicular to the horizon 
and running through Z and Z’ are called vertical circles, and the small circle through S, 
parallel to the horizon, is termed almucantar. Because of the Earth’s rotation, the hour 
angle system (h,d-system) depends on time. It is rotated, with respect to the (a,d)-system, 
about the polar axis by the angle of sidereal time LAST, cf. [2.2.2]. We have the relation 
(Fig. 2.2) 

 LAST = h + a , (2.11)

which is used with time determination, cf. [5.3.2].
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2.3.2 Precession, nutation

The Earth’s axis of rotation which has been introduced as the Z-axis experiences long-
term and periodic changes, with respect to a space-fi xed (quasi-inertial) system, cf. 
[2.3.1]: Precession and nutation (Moritz and Mueller, 1987; Seidelmann, 1992/2006; 
Schuh and Böhm, 2011). This is due to gravitational torques exerted by the moon, the 
sun and the planets on the fl attened Earth. The effect of precession and nutation on the 
position (a,d ) of celestial bodies has to be taken into account by corresponding reduc-
tions, based on precession-nutation models and observations; this will be discussed 
below and in [2.4.3].

The lunisolar precession is a secular effect caused by the gravitation of the moon and 
the sun on the equatorial bulge of the Earth. This creates a torque which tends to turn 
the equatorial plane into the plane of the ecliptic (Fig. 2.5). In combination with the 
moment of the Earth’s rotation, the Earth’s axis describes a gyration of a cone with a 
generating angle of 23°26′21.4″ at J2000.0 (corresponding to the obliquity of the eclip-
tic e ), about the northern pole of the ecliptic EN. As a consequence, the vernal equinox 
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moves clockwise along the ecliptic. The gravitation of the planets causes an additional 
slow dislocation of the Earth’s orbit and thereby an additional migration of the vernal 
equinox and a change in e : planetary precession. The sum of the lunisolar and the plan-
etary precession is termed general precession. With a rate of 5029.7962”/century along 
the ecliptic (general precession in longitude for J2000.0, also constant of precession), a 
complete revolution is performed in about 25 770 years. 

The precession is superimposed by periodic effects, known as nutation, which can be 
described by a rotation of the true pole about the cone of precession. Lunisolar nutation 
results from the periodic position changes of the moon and the sun relative to the Earth. 
The nutation periods range from short-periodic (a few days) to long-periodic (mainly 
18.6, 1.0, 0.5 years and 14 days). The 18.6 years period is caused by the inclination 
of the lunar orbit (approximately 5°) with respect to the ecliptic. This results in a cor-
responding movement of the orbital node along the ecliptic, where the semi-major axis 
of the 18.6 a-nutation ellipse (constant of nutation) amounts to 9.2025″ for J2000.0. 
Semi-annual and semi-monthly periods stem from the oscillations of the sun and moon 
between the Earth’s northern and southern hemisphere. 

The instantaneous position of a celestial body, cf. [2.3.1], is called true position at the 
epoch t. By accounting for nutation, we obtain the mean position at epoch t, which refers 
to the mean celestial equator and the mean vernal equinox, cf. [2.2.2]. If precession is 
also taken into account, we get the mean position at the reference epoch J2000.0.

Precession has been known already since antiquity (Hipparcos, 2nd century B.C.), and nutation 
was found in 1748 by James Bradley. Based on long-term astronomic observations and the 
ephemerides of moon, sun, and planets, a sequel of precession and nutation models have been 
developed in recent times. We mention the IAU1976 theory of precession, which used three 
time-dependent rotation angles for the reduction to a mean reference pole at epoch J2000.0 
(Julian epoch January 1, 2000, 12h), Lieske et al. (1977). It was followed by the IAU1980 theory 
of nutation which described the deviation of the true pole from the mean pole by series expan-
sions of two time-dependent parameters: “nutation in obliquity of ecliptic” and “nutation in 
ecliptic longitude” (Seidelmann, 1982). At this model, the Earth was regarded as an elliptical, 
rotating, elastic and ocean-free body with solid inner and liquid outer core (Wahr, 1981a).

Nowadays, VLBI measurements to quasars and lunar laser ranging mainly contribute 
to the development of precession-nutation models, based on more recent geophysical 
Earth models. The recent IAU2000/2006 precession-nutation model will be introduced 
in [2.4.1]. 

2.3.3 Terrestrial Reference System

An Earth-fi xed reference system, rotating with the Earth, is introduced for describing 
positions and movements of objects on and close to the Earth’s surface, thus providing 
the basis for national surveys, geoinformation systems and navigation. It also serves as 
geometric frame for the determination of the Earth’s gravity fi eld and other space depen-
dent geophysical/geological properties of the Earth, as well as for modeling deforma-
tions of the Earth’s body and other terrestrial variations with time. As with the celestial 
reference system, we introduce a three-dimensional geocentric Cartesian coordinate 
system, realized through the coordinates of a set of fundamental stations of a global 
geodetic network.
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The origin of this system of spatial Cartesian coordinates X, Y, Z (Fig. 2.6) is located 
at the Earth’s center of mass (geocenter), being defi ned for the whole Earth including 
oceans and atmosphere. The Z-axis is directed towards a conventional “mean” terres-
trial (north) pole, and should coincide with a corresponding “mean” rotational axis. 
The “mean” equatorial plane is perpendicular to it and contains the X- and Y-axis. A 
“mean” rotational axis and equatorial plane have to be introduced because the rotation 
of the Earth changes with respect to the Earth’s body over time, this will be discussed 
in [2.3.4]. The X, Z-plane is generated by the conventional “mean” meridian plane of 
Greenwich, which is spanned by the mean axis of rotation and the Greenwich zero 
meridian, to which Universal Time refers, cf. [2.2.2]. The Y-axis is directed so as to 
obtain a right-handed system. For the defi nition of the International Reference System 
see [2.4.2].

Comparing the defi nitions of the celestial and the terrestrial reference systems we 
recognize that the instantaneous axis of rotation is the common starting point for defi n-
ing the Z-axis of both systems. The directions of the X-axis of the systems differ by the 
angle of Greenwich apparent sidereal time GAST, cf. [2.2.2]. With the recent IAU2000 
system, GAST has been superseded by the Earth Rotation Angle, cf. [2.4.2].

In order to describe analytically certain physical properties of the Earth (gravity fi eld, 
magnetic fi eld, topography, etc.), spherical coordinates r, J, l are employed. Here, r 
is the radial distance from the geocenter, J the polar distance (co-latitude), and l the 
geocentric longitude. Instead of J, the geocentric latitude

  
__

 j   = 90° − J (2.12)

can be used (Fig. 2.7). The position of the point P is then given by the position vector 

 
r =

 
 (     
X

 
 

 Y  
 
 

 Z   )  = r
  ( 
sin J cos l
sin J sin l

cos J  ) . (2.13)
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2.3.4 Polar motion, Earth rotation

The rotation of the Earth can be described by a vector directed to the north pole of the 
instantaneous axis of rotation and by the angular velocity w, see (2.7). The direction of 
the (space-fi xed) rotational axis is given by the Celestial Pole, cf. [2.3.1]. Among the 
standard reference books on Earth rotation are the monographs by Lambeck (1980) and 
by Moritz and Mueller (1987), also Schuh and Böhm (2011). For the relations between 
Earth rotation and global geodynamic processes, as well as for measuring and modeling 
techniques see Plag and Pearlman (2009, p. 123 ff.), Gross (2009), and Seitz and Schuh 
(2010), cf. also [8.3.2]. 

Direction and magnitude of the rotational axis vector (and the equatorial plane 
attached to it) change with time with respect to the solid Earth, which is due to external 
gravitational forces and to internal geodynamical processes. Going more into details, 
we have the time-variable lunar, solar and planetary gravitation, on the one hand, and 
a multitude of variations in the Earth’s body on the other, ranging from mass redistribu-
tions in the atmosphere and the hydrosphere over tectonic plate movements, post-
glacial isostatic adjustment and mantle convection to liquid core motion. The changes 
are secular, periodic or quasi-periodic, and irregular in nature, and they are clearly 
visible in the Earth rotation parameters polar motion and Earth rotation angle. 

We here neglect the fact that there is a small deviation between the instantaneous axis of rota-
tion and the angular momentum axis, which conserves its direction in space. This deviation is 
less than 0.001″ with periods <1 day. 

The observation of the Earth rotation parameters consequently provides information 
about the physical properties of the Earth’s interior and on mass transport in the geo-
physical fl uids, which include the atmosphere and the oceans, continental water, and 
the mantle and core (Dehant and Mathews, 2009), cf. [8.3.2]. On the other hand, these 
parameters are part of the Earth Orientation Parameters (EOP), which provide the trans-
formation from the International Terrestrial Reference System to the International Celes-
tial Reference System as a function of time, and vice versa [2.4.3]. 
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Polar motion for a rigid Earth was already predicted in 1765 by Leonhard Euler. In 1884/85, 
F. Küstner observed corresponding latitude variations, with a period found in 1891 by S.C. 
Chandler, valid for a more realistic non-rigid Earth. International activities of monitoring 
polar motion date back to 1899, when the International Latitude Service (ILS) started latitude 
observations at fi ve observatories located around the globe on the 39°08″ northern parallel 
(Höpfner, 2000). The rotational velocity of the Earth was considered to be constant until the 
1930s. Improved astrometric observations then revealed seasonal variations (N. Stoyko, 1937), 
and since the 1950s atomic clocks offered new possibilities to identify temporal variations of 
the Earth’s angular velocity. After extension (1962) of the ILS to the International Polar Motion 
Service (IPMS), and in cooperation with the Bureau International de l’Heure (BIH) established 
in 1919, fi nally about 50 astronomical observatories contributed to the determination of polar 
motion and time (Höpfner, 2000). Using classical astrometric techniques, an accuracy of 0.02” 
resp. 1 ms was reached for mean values over 5 days (Yokohama et al., 2000; Guinot, 2000). 
Starting in the 1960s, polar motion and Earth rotation are now determined regularly by geodetic 
space techniques, within the frame of the IERS, cf. [2.4.4]. The results are provided with daily 
(and partly sub-daily) resolution and an accuracy improved by about two to three orders of 
magnitude with respect to classical techniques. 

Polar motion (or wobble) is the motion of the Earth’s rotation (spin) axis with respect 
to the Earth-fi xed reference system. It directly affects the coordinates of stations on the 
Earth’s surface and the gravity vector. Polar motion consists of several components:

• A free oscillation with a period of about 435 days (Chandler period), with a vari-
able amplitude of 0.1” to 0.2”, in a counter-clockwise (prograde) sense as viewed 
from the north pole. The Chandler wobble is due to the fact that the spin axis of 
the Earth does not coincide exactly with the (polar) axis of maximum moment of 
inertia (fi gure axis). For a rigid Earth, this would lead to a gyration of the rotational 
axis about the principal axis of inertia with a period of A/(C − A) = 305 days (Euler 
period). Here C is the Earth’s polar moment of inertia, and A is the mean equatorial 
moment (rotational symmetry assumed). The difference between the Chandler and 
the Euler period results from the non-rigidity of the Earth, and is a function of the 
internal structure and rheology. The elasticity of the Earth’s mantle should lead to 
internal friction with corresponding dissipation of energy, and result in a damping 
of the Chandler wobble with time. In reality, the wobble is continuously excited 
by atmospheric and oceanic processes, with minor contributions from continental 
hydrosphere and cryosphere, and no damping has been observed (Gross et al., 
2003; Seitz et al., 2004).

• An annual wobble, superposing the Chandler wobble, and caused by mass redistri-
butions and mass motions in the Earth. This includes the seasonal displacements of 
air and water masses, at which the annual high pressure system over Siberia plays a 
signifi cant role. The annual oscillation proceeds in the same direction as the Chan-
dler wobble with nearly a constant amplitude of about 0.1″, and the superposition 
of the annual and the Chandler wobble leads to an oscillation of 6.3 years, with 
0.25″ amplitude (Höpfner, 2004). 

• A secular motion of the pole as observed for more than 100 years. The motion 
consists of an irregular drift of about 0.003” to 0.004″/year (corresponding to about 
10 cm/year on the Earth’s surface) in the direction of 76° to 79° western longi-
tude. Secular motion is mainly due to glacial isostatic adjustment in Canada and 
Fennoscandia, but sea-level changes, large-scale tectonic movements, mass shifts 
in the Earth's interior and polar ice melting may also contribute to this trend. 
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Correlated with tectonic plate motions, secular motions of the pole attain large 
amounts over geological epochs: polar wander (Steinberger and Torsvik, 2008). 

• Periodic, quasiperiodic and more irregular variations occurring at time scales from 
days to decades, with amplitudes of 0.03” and more (decadal variations). Their 
origin reaches from ocean tides and ocean-tide loading (diurnal and semi-diurnal 
frequencies) over atmospheric and hydrologic processes (few days to few years) to 
oceanic and continental water variations (on inter-annual time scales from 1 year 
to 6 years and more), but is partly still unknown. 

• Other free motions in addition to the Chandler wobble, due to misalignments of 
rotational axis and fi gure axes related to the fl attened Earth’s mantle, and inner and 
outer core (Dehant and Mathews, 2009).

The nearly diurnal free wobble (NDFW) is caused by the misalignment of the fi gure axis of the 
mantle and the rotation axis of the fl uid outer core. As seen from the terrestrial reference sys-
tem, this mantle-core interaction results in a retrograde (opposite to the diurnal Earth rotation) 
motion of the Earth rotation axis with nearly diurnal frequency. In space it corresponds to a 
retrograde motion of the rotation axis with respect to the angular momentum axis, with a period 
of about 430 sidereal days (free core nutation FCN). The inner core reaction with the mantle 
should lead to another nearly diurnal retrograde period motion (seen from mantle-fi xed frame), 
and prograde decadal variations (space-fi xed frame). Again, these free motions are excited by 
geophysical processes. They reach only the order of a few 0.1 mas, and are still under discus-
sion (Greiner-Mai et al., 2003). 

The superposition of all these polar motion components results in a slightly perturbed 
spiral like curve of the instantaneous pole with a slowly advancing mean position (Fig. 2.8). 
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Over 1 year, the deviations from the mean position remain < 0.3”, corresponding to 
approximately 9 m on the Earth’s surface.

The reference for describing the actual position of the celestial pole with respect to 
the solid Earth is provided by a Conventional Terrestrial Pole. The corresponding IERS 
Reference Pole, cf. [2.4.3], agrees within 0.03” with the former Conventional Interna-
tional Origin, which was defi ned by the mean direction of the Earth rotation axis as 
determined between 1900.0 and 1906.0. The position of the instantaneous pole, with 
respect to the terrestrial reference pole is given by the rectangular coordinates xP, yP, 
which are defi ned in the plane tangential to the pole. The x-axis is in the direction of 
the Greenwich mean meridian (consistent with the previous BIH zero meridian), and 
the y-axis is directed along the 90°W longitude meridian. These plane coordinates are 
usually expressed as spherical distances (in units of arcsec) on the unit sphere, which 
corresponds to rotations around the respective axis of the geocentric coordinate sys-
tem. The direction of the zero longitude meridian (Greenwich Mean Observatory) was 
fi xed indirectly through the longitudes of the observatories determining Universal Time 
within the frame of the BIH time service.

The angular velocity w of the Earth’s rotation, as monitored from the Earth, changes 
with time. Relative changes may reach several 1 0 −8 , which corresponds to several ms for 
1 day. The variations are generally described by the excess revolution time with respect 
to the nominal Length-Of-Day (LOD) comprising 86 400 s, and then called excess of 
length-of-day: 

 ΔLOD = LOD − 86400 s. (2.14a) 

They are derived by comparing astronomical time determinations, which deliver Uni-
versal Time UT1, with the uniform time scales TAI or UTC, generally through the differ-
ence ΔUT = UT1 – UTC, cf. [2.2.2]:

 ΔLOD =  −   d __ 
dt

  (ΔUT) 86400 s. (2.14b)

The following components of LOD variations have been identifi ed, exploiting ancient 
records of lunar and solar eclipses, lunar occultation observations, and in modern times 
optical astrometric and VLBI measurements (Brosche and Sündermann, 1990; Morrison 
and Stephenson, 2001; Gross, 2009), see Fig. 2.9:

• A secular decrease in the angular velocity of the Earth’s rotation, caused mainly 
by tidal dissipation. It lengthens the day by about 2 ms/century (Brosche and 
Sündermann, 1978/1982).
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2001) and 2005–2010 (right: with data from IERS, http://hpiers.obspm.fr/eop-pc).



34     2 Reference Systems and Reference Frames

• Fluctuations over decades (amplitude of a few ms), due to motions in the Earth’s 
interior (core-mantle coupling) and to slow climatic variations.

• Tidal variations due to solid Earth and ocean tides (about 1 ms amplitude), with 
long- (annually) and short- (monthly, fortnightly, and especially diurnal and semi-
diurnal) periodic parts.

• Seasonal effects (amplitude less than one ms), explained mainly by annual and 
semiannual atmospheric excitation, with contributions from water and ice budget 
variations, and continental hydrology, Gross et al. (2004).

• More irregular oscillations ranging from days to several years and including in-
terannual and intraseasonal variations. They are predominantly of atmospheric 
origin, and caused by changes in the angular momentum of the zonal winds, 
as for instance connected with the El Niño Southern Oscillation phenomenon. 
Terrestrial mass displacements (Earthquakes) may also play a certain role. 

While the effect of polar motion on observations depends on location, LOD changes act 
uniformly on all points on the Earth. The pole coordinates and UT1-UTC as well as LOD 
are nowadays provided by the IERS, cf. [2.4.3], [2.4.4]. More details on recent results of 
geodynamics research based on Earth rotation changes are given in [8.3.2]. 

2.4 International reference systems and reference frames 

Conventional celestial and terrestrial reference systems are nowadays defi ned by the 
International Astronomical Union (IAU) and the International Union of Geodesy and 
Geophysics (IUGG), they are realized by corresponding reference frames. Here again 
we distinguish between the International Celestial Reference System/Frame (ICRS/ICRF) 
[2.4.1] and the International Terrestrial Reference System/Frame (ITRS/ITRF) [2.4.2]. The 
transformation rules between the systems employ the Earth orientation parameters, with 
the Earth rotation parameters as subset [2.4.3]. Realization and maintenance of the 
reference frames is the duty of the International Earth Rotation and Reference Systems 
Service (IERS) [2.4.4]. We especially refer to the IERS Conventions (Petit and Luzum, 
2010) and to the detailed explanations given by Seidelmann (1992/2006), Seidelmann 
and Kovalevsky (2002) and Kaplan (2005). 

2.4.1 International Celestial Reference System and Frame

Celestial reference systems are based on the positions of a set of selected celestial bod-
ies. These spatial coordinate systems have the barycenter of the solar system as origin, 
and the directions of the system axis are defi ned either by the equatorial plane and 
the ecliptic (classical strategy: stellar system) or by the positions of extragalactic radio 
sources (IAU2000 radio source system). Measured right ascension and declination are 
related to the respective system, and refer to a specifi ed date (epoch), cf. [2.3.1] and 
below. 

Stellar reference systems have been provided by astronomy since antiquity, through the 
observation of fi xed stars. They were realized by star catalogues containing the star posi-
tions for a certain epoch. Temporal variations of the system as the precession were early 
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recognized and taken into account. We mention the (lost) star catalogue of the Greek 
astronomer Hipparcos (2nd century B.C.) which was used and extended by Ptolemaios (1st to 
2nd century), and the more recent catalogues of Tycho Brahe (16th century) and (now based 
on telescope observations) Flamsteed (17th century), Bessel (19th century), and many others. 
In the 1880s, a fi rst “Fundamental Catalogue” of selected stars was compiled, followed by a 
series of further catalogues providing a uniform celestial reference frame.

Special importance among the stellar reference frames obtained the Fundamental Cata-
logue FK5 (Fricke et al., 1988), which is considered as provisional realization of the In-
ternational Celestial Reference System ICRS (see below), and which was valid between 
1988 and 1997. This optical frame was provided by the mean positions (a,d ) and the 
proper motions (generally <1”/year) of 1535 bright stars (up to an apparent magnitude 
of 7.5) for the epoch J2000.0 (Julian epoch January 1, 2000, 12h TT), with a precision of 
0.01”...0.03” and 0.05”/century, respectively. A supplement to FK5 contained additional 
stars up to a magnitude of 9.5. The mean equator (and mean pole) and the mean vernal 
equinox for J2000.0 were defi ned by the FK5 star positions, with an accuracy of 0.05”. 
Due to refraction uncertainties, Earth-based astrometry can hardly improve this accuracy. 

Astronomic space missions meanwhile could signifi cantly improve the realization 
of a stellar reference system. The Hipparcos astrometry satellite (ESA, 1989–1993) 
was used to construct a network by measuring large angles between nearly 120 000 
stars (up to an apparent magnitude of 11) covering the entire sky. The reference frame 
(about 100 000 stars) thus established provides an accuracy of better than 0.001” 
(epoch 1991.25) and 0.0006”/year for proper motion (Hipparcos, 1995; Kovalevsky 
et al., 1997), which leads to a typical accuracy of 0.005” …0.01” for J2000.0. The 
Hipparcos catalogue is now regarded by IAU as the primary realization of ICRS at 
optical wavelengths.

From improved FK5 data and HIPPARCOS results, an FK6 catalogue has been developed 
for a small number of stars (340 “astrometrically excellent”), resulting in an improvement of 
proper motion (0.0003″) as compared to the HIPPARCOS catalogue (Wielen et al., 1999). 
Upcoming optical astrometry space missions such as GAIA (Global Astrometric Interferom-
eter for Astrophysics) and SIM Lite Astrometric Observatory (formerly Space Interferometer 
Mission) should signifi cantly increase the quality of the optical catalogues (Klioner, 2003). 
The ESA mission GAIA (launch scheduled for 2012) will employ two telescopes on a rotat-
ing spacecraft and survey about one billion stars down to 20mag, a positional accuracy of 20 
μas is expected at 15mag. The NASA space telescope mission SIM (launch planned for 2015) 
will use a 6 m-baseline Michelson interferometer and strive for μas-accuracy.

Starting in the 1990s, the IAU developed a new strategy for the defi nition and realiza-
tion of a four-dimensional celestial reference system, and for the relation between the 
celestial and the terrestrial reference system. This was due to the rapid development 
of VLBI and geodetic space methods, with a signifi cant increase of observational ac-
curacy and the availability of time series of high resolution. The International Celestial 
Reference System (ICRS) fi nally introduced in 2000 is based on the theory of general 
relativity (Klioner et al., 2010). It is a radio source system, being accessible by the 
equatorial coordinates of extragalactic radio sources determined from VLBI observa-
tions, see below (ICRF), Petit and Luzum (2010), also Kaplan (2005) and Seidelmann 
(1992/2006).
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ICRS is defi ned as a Barycentric Celestial Reference System (BCRS), with the origin 
located at the barycenter of the solar system; its time coordinate is the Barycentric Coor-
dinate Time (TCB), Soffel et al. (2003), cf. [2.2.1]. The orientation of ICRS is realized by 
the adopted coordinates of the defi ning radio sources. The system no longer depends 
on the epoch, the Earth’s pole of rotation and the pole of the ecliptic, as at the former 
equator/ecliptic system. For continuity with previous reference systems, the orienta-
tion has been chosen as close as possible to the mean equator and dynamic equinox 
at J2000.0, as given by the FK5. The system is kinematically non-rotating with respect 
to the defi ning extragalactic sources. This assumption is realistic, as the selected radio 
sources generally do not show a measurable proper motion, due to the large distances 
from the Earth (>1.5 billion light years). 

The link (parallelism of axes) between the (previous) stellar and the radio source system is given 
with an accuracy of 0.05...0.1” (epoch J2000.0), this is within the uncertainty of the FK5. This 
connection has been improved by the results of the astrometric space mission HIPPARCOS to 
0.001” or better for the epoch of observation, exploiting optical signals from a limited number 
of radio sources.

A Geocentric Celestial Reference System (GCRS) is introduced in order to realize the 
transformation between the celestial and the terrestrial (Earth-fi xed) reference system, 
its coordinate time is Geocentric Coordinate Time (TCG), cf. [2.2.1]. The transition from 
the barycentric to the geocentric system requires taking effects like annual aberration 
and annual parallax into account, cf. [5.3.3]. The relation between BCRS and GCRS is 
given by relativistic (post-Newtonian) transformations, which include position, velocity 
and acceleration of the Earth, as well as the gravitational potential at the geoid. GCRS 
moves with the geocenter and is non-rotating with respect to BCRS, its axes are parallel 
to those of the BCRS. 

The subsequent transformation from the celestial to the terrestrial reference system 
and vice versa includes a rotation around the polar axis, and has to take temporal varia-
tions of the reference pole into account, referring either to the space-fi xed reference 
system (precession/nutation, cf. [2.3.2]) or to the Earth-fi xed reference system (polar 
motion and Earth rotation, cf. [2.3.4]). The classical (equator/ecliptic-based) and the 
IAU2000 transformation procedure differ partly, this will be further discussed in [2.4.3]. 
With the IAU2000 resolution, an intermediate reference system has been introduced for 
this transformation, leading to a clear separation between precession/nutation and polar 
motion. The intermediate reference system is regarded either as space-fi xed (celestial) 
or as Earth-fi xed (terrestrial). 

The Celestial Intermediate Reference System (CIRS) is related to GCRS by a time-
dependent rotation taking precession and nutation into account (Capitaine and Wallace, 
2006; Capitaine, 2007). It is defi ned by the intermediate equator of the Celestial Inter-
mediate Pole (CIP) and the Celestial Intermediate Origin (CIO) on a specifi c date 
(Fig. 2.10). The position of celestial bodies in this system is now described by the inter-
mediate right ascension and declination at a specifi ed date, which corresponds to the 
“apparent” equinox right ascension and declination of the classical equator/ecliptic sys-
tem, cf. [2.3.2], [5.3.2]. 

The position of the Celestial Intermediate Pole (CIP) in the GCRS is defi ned by the 
part of the precession-nutation with periods greater than 2 days, and the retrograde 
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diurnal part of polar motion including free core nutation; the omitted nutation terms 
are included in the polar motion, cf. [2.4.3]. The motion of the CIP is primarily real-
ized by the IAU2000/2006 precession–nutation model, and described by the XP- and 
YP-components of the CIP unit vector (Fig. 2.10). Time-dependent corrections ΔX, ΔY 
(nutation or celestial pole offsets) are provided by the IERS. They are regularly derived 
from VLBI and LLR, and now also GPS observations (Rothacher et al., 1999). Corre-
sponding corrections are given for use with the IAU1976/1980 precession–nutation 
model, as offsets in nutation in obliquity and in ecliptic longitude. These small effects 
are mainly due to the fact that the free core nutation is not included into the IAU 
nutation model; other unpredictable geophysical processes in the Earth’s atmosphere, 
oceans and solid body also contribute, cf. [2.3.4].

The IAU2000/2006 Precession–Nutation Model is based on the P03 precession theory 
(Capitaine et al., 2003) and the IAU 2000A/2000B nutation model (Mathews et al., 2002), see 
IERS Conventions 2010 (Petit and Luzum, 2010; p. 61 ff.). It replaced the IAU (1976/1980) 
models for precession and nutation, which used the Celestial Ephemeris Pole (CEP) as the ref-
erence pole for the International Celestial Reference Frame, cf. [2.3.2]. The new precession 
model provides polynomial expressions up to the 5th degree in time, while the nutation series 
includes 678 lunisolar and 687 planetary terms of nutation in longitude and obliquity. Model 
parameters have been derived through a fi t of geophysical models to nutation–precession data 
derived from VLBI data sets. The underlying non-rigid Earth model takes mantle inelasticity and 
ocean tides into account, as well as electromagnetic couplings between the fl uid outer core and 
the mantle, and between the solid inner core and the outer core. The IAU2000A nutation model 
delivers a precision of 0.1 to 0.2 mas at a one day resolution, an abreviated version (IAU 2000B) 
is at the 1 mas accuracy level (Capitaine et al., 2009). The CIP coordinates (XP ,YP) are given as 
time-dependent polynomials, depending on the arguments of the precession-nutation model. 
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The Celestial Intermediate Origin (CIO) is the non-rotating origin for right ascension 
on the intermediate equator, it replaces the former equinox. The distance between 
the CIO and the equinox along the intermediate equator (i.e., the difference be-
tween the Earth Rotation Angle, see [2.4.2], and GAST) is called equation of the 
origins (Fig. 2.10).

The ICRS is realized through the International Celestial Reference Frame (ICRF), estab-
lished and maintained by IERS. There exist two main realizations of the frame, the ICRF1 
(1995 and later extensions, Ma et al., 1998; Fey et al., 2004) and the ICRF2 (Ma et al., 
2009). ICRF1 contains the coordinates (equatorial system, epoch J2000.0) of some 600 
radio sources. About 300 of them are well observed “defi ning sources” (high positional 
stability, no proper motion) establishing the orientation, and 100 more are used for den-
sifi cation and connection to the stellar-fi xed reference system The southern sky is not 
as well covered, as the radio telescopes are concentrated in the northern hemisphere. 
The coordinates of the radio sources are determined by radio astronomy (VLBI observa-
tions), with a precision of better than 1 mas on the average and 0.1 mas for the most 
precisely observed objects. ICRF2 utilizes more than 3400 compact radio astronomical 
sources, including 295 defi ning sources (Fig. 2.11). The corresponding observations 
stem from about 4550 VLBI sessions of 18 h or more duration, carried out between 
1979 and 2009. This data set is rather heterogeneous with respect to the number of 
participating stations and global distribution, about 1400 multi-session sources contrib-
ute to of at least two observing sessions. The average precision has improved to about 
0.05 mas, and is 0.02 mas at best.

Fig. 2.11: International Celestial Reference Frame (ICRF2), from Fey et al. (2009).
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2.4.2 International Terrestrial Reference System and Frame

The International Terrestrial Reference System (ITRS) is a geocentric terrestrial reference 
system (GTRS) co-rotating with the Earth in its diurnal motion in space, i.e., with the axis 
fi xed to the solid Earth. The ITRS origin is the Earth’s center of mass, including oceans and 
atmosphere. The unit of length is the meter (SI), which is consistent with the coordinate 
time TCG resp. TT, cf. [2.2.1]. The orientation of the axis is maintained in continuity with 
past international agreements (BIH orientation). Consequently, the pole of the ITRS (IERS 
Reference Pole) agrees within the accuracy of realization with the former Conventional 
International Origin, defi ned as the mean direction of the Earth’s rotation axis between 
1900 and 1905. This is also valid for the IERS Reference Meridian, which points to the 
zero longitude on the equator and coincides with the former BIH Greenwich Mean Ob-
servatory, cf. [2.3.4]. The time evolution of the ITRS orientation is ensured by a no-net-
rotation condition with regard to horizontal motions at the Earth’s surface, i.e., a global 
residual rotation is not allowed (Schuh et al., 2003; Petit and Luzum, 2010; p. 31 ff.).

The connection of the ITRS to the ICRS is given through the Terrestrial Intermediate 
Reference System (TIRS), as defi ned by the Celestial Intermediate Pole (CIP) resp. the inter-
mediate equator, and the Terrestrial Intermediate Origin (TIO), Fig. 2.12, cf. also [2.4.3].

TIRS is related to ITRS by polar motion (i.e., the motion of CIP with respect to the 
ITRS). The pole coordinates xP , yP are derived from observations. They are regularly 
published by the IERS, together with additional components due to ocean tides (diurnal 
and semi-diurnal variations) and to nutation (with periods less than 2 days in space, 
which are not included in the nutation model).

The relation of ITRS to the Geocentric Celestial Reference System (GCRS) is given by 
the CIP (which is identical in both systems), and by a rotation around the CIP-axis which 
takes the Earth rotation into account. The rotation angle is called Earth Rotation Angle 
(ERA), and its time derivative is the Earth’s angular velocity. ERA is measured along the 

Fig. 2.12: International Terrestrial Reference System (IERS-Reference System) and Terrestrial 
Intermediate Reference System (CIP/TIO system), with Earth Rotation Angle (ERA) and motion of 
CIP in the ITRS (polar motion).
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intermediate equator of the CIP between the Celestial Intermediate Origin (CIO) and the 
Terrestrial Intermediate Origin (TIO), positively in the retrograde direction. It substitutes 
Greenwich Apparent Sidereal Time (GAST) introduced in the classical equator/ecliptic 
system as rotation angle between the true vernal equinox and the Greenwich Meridian, 
cf. [2.2.2]. ERA is connected with UT1 by a simple linear relation, given by Capitaine 
et al. (2000). It can be calculated from the UT1 values published by the IERS, where 
similarly to polar motion (see above) small sub-daily ocean tides and nutation effects 
should be added as corrections. The TIO represents the origin of longitude in the Ter-
restrial Intermediate Reference System (TIRS), and remains within 0.1 mas of the ITRF 
zero meridian.

Realizations of ITRS are provided by the IERS, through the (regularly updated) Inter-
national Terrestrial Reference Frame (ITRF). An ITRF solution comprises a global set 
of space geodetic observing stations with their geocentric Cartesian coordinates and 
the horizontal velocities of the observing sites, where a site is defi ned as a cluster of 
neighboring stations. GPS-stations prevail in the ITRF, followed by other space tech-
niques; the corresponding networks as for example the IGS Global Tracking Network 
are described in [5.2], [5.3]. The high-precision (and expensive) VLBI and SLR stations 
are heterogeneously distributed over the Earth, while the GPS and DORIS networks 
cover the Earth’s surface rather homogeneously, with extension into remote and ocean 
areas (Fig. 2.13). The stations participating to the ITRF carry out observations either 
continuously or at certain time intervals. As the observation sites are distributed over a 
larger number of tectonic plates, the detection of station movements due to plate tec-
tonics becomes possible, see below and [8.2.3].

The combination of the networks observed with different techniques is carried 
out by local tie measurements (“mm”accuracy) at stations, where different tech-
niques are employed, see Fig. 2.13. These co-location sites are of special value 

Fig. 2.13: International Terrestrial Reference Frame 2008 (ITRF2008) sites, with highlighting of 
VLBI, SLR and Doris sites co-located with GPS, from Altamini et al. (2011).
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also for detecting systematic differences between the methods (Ray and Altamini, 
2005). Several time variable effects are also taken into account at the evaluation, 
including local station displacements due to the solid Earth tides (using the tide-free 
model), polar motion, ocean and atmospheric loading effects, postglacial rebound, 
and shifts of instrumental reference points (Petit and Luzum, 2010; pp. 99–122).

The input data used for the ITRF are weekly time series of station positions derived 
from the individual satellite techniques (GPS, SLR, DORIS), 24-hours VLBI-session solu-
tions, and daily Earth orientation parameters (now also directly included into the adjust-
ment), as provided by the IERS Technique Centers. After reprocessing the input data 
(now covering a time span between 12 and 29 years) with partly improved reduction 
models, the individual solutions are combined by least-squares adjustment. 

The ITRF-coordinates are given for a reference epoch (t0), and refer to the IERS Refer-
ence Pole and the IERS Reference Meridian, see above. The current position vector r 
(given in three-dimensional Cartesian Coordinates for the time t) of a point on the Earth’s 
surface is derived from its position at the reference epoch by

 r(t) =  r 0  + r
.

0(t −  t 0 ) + Δr(t). (2.14)

Here,  r 0  and r.0 are the position and velocity respectively at t0, and Δr ( t )  represents 
periodic and episodic station variations of geophysical origin for which conventional 
models are available, see above. 

New versions of the ITRF are published every few years by the IERS, with the ITRF2005 
and ITRF2008 as the most recent solutions obtained at the ITRS Combination Centres 
IGN and DGFI [2.4.4], cf. Altamini et al. (2007), Angermann et al. (2009), Altamini et al. 
(2011). The ITRF2008 is comprised of the geocentric positions (X, Y, Z) for 934 stations, 
located at 580 sites (including about 90 co-location sites) and the corresponding horizon-
tal velocities (Figs. 2.13, 2.14). The results refer to the epoch J2000.0, but in future, weekly 
solutions may provide a quasi-continuous monitoring of station movements.

Different computation strategies are applied at the combination centres. IGN is estimating 
similarity transformation parameters between epoch respectively per-technique solutions 
and the combined frame, along with the adjustment of station positions, velocities and 

Fig. 2.14: ITRF2008 horizontal station velocities, from DGFI Website (http://www.dgfi .badw.de).
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Earth Orientation Parameters. The epoch solution is based on seven transformation 
parameters (shift of origin, change of orientation, scale factor, cf. [6.2]), while the per-tech-
nique solution is extended by including linear parameter changes with time. DGFI, on the 
other hand, accumulates the normal equations of the different time series and techniques, 
without any transformation (Seitz et al., 2010). This method delivers corrections to the origi-
nal observations, while the combination of the individual solutions results in corrections 
to the adjustment unknowns. Recent computation strategies employ a common adjustment 
for the determination of station positions and velocities, together with the Earth orientation 
parameters, based on the original observation time series. This is connected with a unifi ca-
tion of standards, partly reprocessing of observations (GPS), and improvements in modelling 
(Angermann et al., 2010).

The accuracy of the ITRF solutions depends on the observation techniques and the qual-
ity and time span of the data. The accuracy of station positions and velocities is now 
at the order of a few mm and 0.1 to 0.5 mm/year, respectively. The ITRF origin (Earth’s 
mass center) is in principle accessible through all dynamical satellite techniques but 
realized primarily by the SLR network. The scale, with the SI meter as length unit, is 
provided by SLR and VLBI observations, and naturally depends on the speed of light. 
These techniques also secure the long-term stability of the ITRF, as the corresponding 
observation series already cover several decades.

Geocenter variations with respect to the monitoring stations have been found from the analysis 
of space geodetic data. Annual and seasonal variations of several mm are caused primarily by 
mass redistributions in the atmosphere and the oceans and by continental water variations (Dong 
et al., 1997; Feissel-Vernier et al., 2006). These geometrically derived movements of the geocenter 
should correspond to the results obtained from the variations of the degree—one spherical har-
monic coeffi cients of recent gravity models [3.3.4].

The no-net rotation condition of the ITRS (see above) is achieved by aligning the velocity-
fi eld to the horizontal movements of a plate tectonics model, vertical movements are not 
allowed at all.

Here, the IGN solution is based on the geological-geophysical plate tectonics model NNR-
NUVEL1A (DeMets et al., 1994, cf. [8.2.4]), which uses geological time scales. DGFI, on the 
other hand, utilizes the plate rotation and deformation model APKIM (Drewes, 2009a). This 
model comprises 17 rigid plates and fi ve plate boundary deformation zones, taken from the 
geophysical model PB2002 (Bird, 2003), and utilizes geodetically observed station velocities. 
Plate motion is modeled by one rotation vector per plate, and inter-plate deformations are com-
puted assuming a visco-elastic-plastic continuum.

ITRF practically agrees with the World Geodetic System WGS84, maintained by the U.S. 
National Imagery and Mapping Agency. The coincidence is within the one meter-level 
for the former WGS84-Doppler realization, and at the few cm-level or better for the GPS 
realizations of WGS84, transformation parameters between the systems are no longer 
signifi cant, cf. [5.2.5].

2.4.3  Transformation between terrestrial and celestial reference systems, 
Earth orientation parameters

The transformation between the terrestrial and the celestial reference systems (and 
vice versa) could, in principle, be carried out by rotations through three independent 
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(Eulerian) angles, under the assumption that the origin of the celestial system had 
been shifted to the geocenter (Richter, 1995). The latter requirement can easily be 
fulfi lled through the shift from the barycentric to the geocentric celestial reference 
system, cf. [2.4.1]. The rotation based on Eulerian angles would, on the other hand, 
lead to a series of time-consuming matrix-operations, and a rather unwieldy trans-
formation procedure. This is due to the rapid temporal change of the Eulerian angles 
which may reach large values. 

As a consequence, the terrestrial-to-celestial (and vice-versa) transformation – by 
convention – has been split into two parts, separating the motion of the pole in the 
celestial system (precession and nutation, cf. [2.3.2]) from its motion in the terrestrial 
system (polar motion, cf. [2.3.4]). An intermediate (celestial resp. terrestrial) reference 
system relates the two systems to each other, which are distorted by a spin (rotation 
angle GAST resp. ERA) around the common pole axis (Petit and Luzum, 2010; p. 43 ff.).

The transformation is performed through a sequence of rotation matrices, with 
precession-nutation, Earth rotation angle and polar motion as time-dependent argu-
ments, contingently supplemented by small correction angles. There exist two transfor-
mation strategies (the classical equinox-based and the CIO-based, as recommended by 
IAU2000 resolutions) which differ by the adopted origin on the CIP equator, and the 
transformation matrices for precession-nutation and Earth rotation. The transformation 
matrix for polar motion, on the other hand, is common to the two procedures. Using the 
same input data, both transformation models should deliver identical results. 

The equinox-based transformation from the Earth-fi xed terrestrial reference system 
ITRS to the space-fi xed geocentric reference system GCRS reads as

   r GCRS  = P(t) N(t)  R 3 (−q (t)) R 2  (x P (t))  R 1 ( y P (t))  r ITRS , (2.15)

where the Ri (i = 1, 2, 3) represent rotation matrices of the corresponding angle around 
the i-axis, and t is the observation time in Terrestrial Time TT. rGCRS and rITRS are the direc-
tion vectors in the space-fi xed and the Earth-fi xed system, respectively, i.e., the coordi-
nates for points on the celestial resp. terrestrial (unit) sphere. Polar motion is taken into 
account by the product R2(xp)R1(yp). It follows from rotations about the Y- and X-axis, 
computed as functions of the pole coordinates xP and yP (regarded as small rotation 
angles) of CIP within the ITRS, cf. [2.3.4]. This transformation step performs the transi-
tion from the ITRS to the Terrestrial Intermediate Reference System (TIRS). The Earth’s 
rotation is described by the matrix R3(−q ) containing the rotation angle q resp. GAST 
(Greenwich Apparent Sidereal Time), it transforms from the TIRS to the true equinox and 
equator of date system:

 
R1(yP(t)) R2(xP(t)) =

  ( 1 0 –xp

0 1 yp

xp –yp 1
 
) 

              
R3(−q ) =

  ( cosq –sinq 0

sinq cosq 0

0 0 1  )      

. (2.16a) }
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The nutation matrix N then transforms from the true equator and vernal equinox 
to the mean equator and equinox. It contains the obliquity of the ecliptic e and the 
nutation angles in obliquity Δe and in ecliptic longitude Δy, as modeled through 
series expansions with time (IAU1980 Nutation Theory): 

 N(t) =   R 1  (−e (t))R3(Δy (t))  R 1 (e (t) + Δe (t)). (2.16b)

Finally, the precession matrix P performs the transition to the reference epoch 
(J2000.0), the corresponding rotation angles again are given by series expansions, 
which depend on the lunisolar and planetary precession constants (Lieske et al., 1977; 
see also McCarthy and Petit, 2004; p. 45). By applying the rotations for precession and 
nutation, the transition from the intermediate reference system to the celestial reference 
system is completed. 

The CIO-based transformation (IAU 2000 Resolutions) reads as follows: 

  r GCRS  = Q(XP(t),YP(t)) R3(s(t))  R 3 (−ERA)  R 3 (− s′ (t))  R 2  (x P (t))  R 1 (yP(t)) rITRS. (2.17)

Again, t is the time of observation in TT. The classical polar motion rotation is now 
supplemented by a very small correction angle s′ (TIO locator, s′ = 0 for J2000.0, and 
changing about –50 mas/century). It provides the TIO position on the equator corre-
sponding to the defi nition of the “non-rotating” origin, taking polar motion and polar 
motion rate into account. The Earth rotation angle ERA is now defi ned as the angle 
measured along the CIP equator, between the Celestial and the Terrestrial Intermediate 
Origin (CIO resp. TIO), cf. [2.4.2]. Precession and nutation have been combined now, 
and are expressed by a common matrix Q, containing the CIP coordinates XP , YP in the 
geocentric celestial reference system, cf. [2.4.1]. Again there is a small correction term 
s (CIO locator), describing the CIO position on the CIP equator for a CIP moving due to 
precession and nutation. It can be calculated from the CIP coordinates and coordinate 
rates in the GCRS.

Summarizing the terrestrial-to-celestial (and vice-versa) transformation procedure, we 
recognize that there is a fundamental difference in our knowledge of the parameters 
required at the different steps of rotation. Precession and nutation can be modeled to a 
high degree, and only small corrections have to be determined by observations: Celes-
tial Pole Offsets. The Earth Rotation Angle has to be derived from observations of UT1, 
but can be expressed also by the small difference ΔUT = UT1 – UTC, cf. [2.2.2]. Polar 
motion, on the other hand, cannot be modeled, but the corresponding rotation angles 
are small a priori. Consequently, the time-dependent Earth Orientation Parameters 
(EOP) to be determined from observations and published as part of the IERS products 
[2.4.4] consist of the celestial pole offsets ΔXP, ΔYP, the pole coordinates xP and yP in the 
terrestrial system, and the Earth rotation angle, provided by UT1-UTC. In addition, the 
IERS also publishes the observed time rates (linear changes with time) of polar motion 
and UT1 (length of day excess ΔLOD). The subset of the pole coordinates and the 
Earth rotation angle is designated also as Earth Rotation Parameters. As discussed in this 
chapter, the Earth orientation parameters are of fundamental importance for metrology, 
geodesy and navigation. In addition, the observed EOP time series represent an impor-
tant source of information for geosciences and astronomy, as they contain a multitude of 
time-variable effects produced by gravitational and geodynamic processes in the Earth 
system (Schuh et al., 2003; Seitz and Schuh, 2010), cf. [8.3.2].
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As already mentioned in [2.4.2], the space geodetic techniques exploited at the IERS 
contribute in different ways to the determination of the Earth orientation parameters. 
The direct connection to quasars favors VLBI at deriving corrections for nutation, which 
is also the only technique for the determination of Universal Time. The long observa-
tion series available for Lunar Laser Ranging (LLR) contribute to the evaluation of the 
long-periodic precession and nutation part, while GPS as realization of a dynamic ref-
erence system can only detect short-periodic terms. Polar motion can be determined 
by VLBI and by all satellite techniques, where GPS and DORIS are preferred due to 
global station coverage and weather independence. Satellite-based techniques are not 
able to directly determine UT1 and nutation offsets, due to the necessity of estimating 
simultaneously the satellites’ orbital elements. On the other hand, GPS and SLR can be 
evaluated with respect to the time rate of UT1 (LOD) and of nutation (Rothacher et al., 
2001; Schmidt et al., 2010). Polar motion and UT1 are now determined with an accu-
racy of about 0.1 mas and better for polar motion, and 0.01 ms for UT1, with daily and 
even subdaily (down to one hour) resolution. Nutation offsets are available every 5 to 
7 days, with an accuracy of 0.3 mas and better.

Continuous observations with ring laser gyroscopes offer an additional opportunity to particu-
larly monitor short-periodic parts (from hours to days) of the Earth rotation variations, and thus 
contribute to the detection of regional crustal deformations, among others. This technique is 
based on two laser beams which propagate in opposite direction around a ring. The effective 
paths’ lengths of the two beams differ due to the co-rotating of the gyroscope with the Earth, 
which leads to an interference of the corresponding frequencies (Sagnac-effect). The observed 
beat frequency is proportional to the Earth’s rotation vector component normal to the plane of 
the ring, thus realizing an “absolute” rotation measurement; an external reference frame is not 
required. With a current sensitivity of 10–11 rad/s/√Hz and better promising results have been 
obtained with this technique, e.g., at the Geodetic Observatory Wettzell, Germany (Schreiber 
et al., 2009).

2.4.4 International Earth Rotation and Reference Systems Service

The International Earth Rotation and Reference Systems Service (IERS) is in charge of de-
fi ning conventional celestial and terrestrial reference systems as ICRS and ITRS, based 
on resolutions of the International Astronomical Union (IAU) and the International 
Union of Geodesy and Geophysics (IUGG). The IERS also provides and maintains the 
corresponding reference frames ICRF and ITRF as realization of the systems, and it is re-
sponsible for the determination of the Earth orientation parameters (EOP), which relate 
the two frames to each other and which are required to study Earth orientation varia-
tions. Finally, IERS collects and releases data related to global geophysical fl uids, for in-
terpretation and modeling of time/space variations in the ICRF, ITRF, and EOP. The IERS 
products are based on models, procedures and constants which follow the research 
developments and the recommendations of the international scientifi c unions. Conven-
tions and standards are updated from time to time, keeping continuity with previous 
rules. The current issue is called IERS Conventions (2010), Petit and Luzum (2010). 

Established by the IAU and IUGG, the IERS started operation on January 1, 1988. 
It replaced the International Polar Motion Service IPMS and the Earth rotation sec-
tion of BIH, cf. [2.3.4]. The IERS accomplishes its mission through a number of 
components, which partly are structurally independent but cooperate with IERS. 



46     2 Reference Systems and Reference Frames

We especially mention the technique centers, the product centers, and the ITRS 
combination centers. The technique centers comprise several IAG Services special-
ized on data collection, analyzing and modeling, using a dedicated space geodetic 
observation technique. The techniques involved include Very Long Baseline Inter-
ferometry, Satellite and Lunar Laser Ranging, Global Navigation Satellite Systems 
(GNSS, today primarily GPS) and DORIS, cf. [5.2] and [5.3]. Data are collected 
through technique-specifi c networks, with stations operating either permanently or 
for a certain time span, containing some hundred observation sites. The individual 
solutions (ICRF and ITRF coordinates, EOP) are analyzed and further processed by 
the product centers, responsible for the maintenance of the reference frames and 
for a continuous monitoring and publication of the EOP. The ITRS combination cen-
ters (Institut Géographique National, Deutsches Geodätisches Forschungsinstitut) 
combine the ITRF results of the individual technique centers by adjustment, and 
prepare an updated version of the International Terrestrial Reference Frame, which 
is released every few years (since 1988, more than ten versions of the ITRF have 
been published, the last one being ITRF, 2008). The EOP are regularly published by 
the IERS product center, located at the Observatoire de Paris, and by the U.S. Naval 
Observatory (Rapid Service with real-time results, Prediction Center); they result 
from a combination of the time series provided by the individual technique centers. 

The IERS Central Bureau is located (since 2001) at Bundesamt für Kartographie und 
Geodäsie BKG, Frankfurt a.M., Germany. The results of the IERS are regularly dissemi-
nated through bulletins, annual reports, and technical notes. They especially comprise 
the ICRF and ITRF solutions, which contain the positions of the extragalactic radio 
sources and the terrestrial stations with station velocities, respectively. Earth orientation 
data are provided from rapid service and predictions to monthly and long-term results, 
cf. [2.4.1] to [2.4.3]. Finally, IERS is also responsible for the announcement of UT1 − 
UTC and the introduction of leap seconds, cf. [2.2.2]. 

2.5 Local level systems

The majority of classical geodetic and astronomic observations (and naturally also grav-
ity measurements) on or close to the Earth’s surface refer to the Earth’s gravity fi eld, by 
orientation along the direction of the plumb line at the point of observation, i.e., the lo-
cal vertical. An exception is distance measurements (including satellite-based position-
ing) and very long baseline interferometry, which are independent of the gravity fi eld. 
Thus, most observations establish local level systems, and modeling requires the rela-
tions between these systems and the global geocentric system [2.3.3], Heck (2003a), 
Hofmann-Wellenhof and Moritz (2005, p. 208 ff.). 

The orientation of the local system with respect to the global geocentric reference 
system is given by two angles, defi ning the direction of the plumb line (Fig. 2.15). The 
astronomic (geographic) latitude Φ is the angle measured in the plane of the meridian 
between the equatorial plane and the local vertical through the point P. It is reckoned 
positive from the equator northward and negative to the south. The angle measured 
in the equatorial plane between the Greenwich meridian plane and the plane of the 
meridian passing through P is the astronomic (geographic) longitude Λ; it is reckoned 
positive toward the east. The gravity potential W locates P in the system of level surfaces 



2.5 Local level systems      47

W = const., cf. [3.2.1]. The local astronomic meridian plane is spanned by the local 
vertical at P and a line parallel to the rotational axis, cf. [2.3.1].

We introduce the outer surface normal n (unit vector), which is normal to the level 
surface W = WP and passes through P. It is directed to the zenith, which is opposite of 
the direction of the gravity vector g. From Fig. 2.15, we see that

 
n = −  

g
 __ g   = 

 
( 
cosΦ cosΛ

cosΦ sinΛ 

sinΦ  
)
 

. (2.18)

Latitude Φ and longitude Λ can be determined by the methods of geodetic astronomy, 
cf. [5.3]. Together with the potential W, they form a triple of three-dimensional coordi-
nates defi ned in the gravity fi eld, cf. [3.2.3]. 

We now establish a local three-dimensional Cartesian coordinate system with origin 
at the point of observation P. The z-axis coincides with the local vertical and points 
toward the zenith. The x-axis (north) and the y-axis (east) span the horizontal plane, 
which is tangent to the level surface W = WP: Local level system. As the orientation of 
this left-handed system is given by astronomic quantities (latitude and longitude provide 
the direction of the z-axis, and the azimuth realizes the x-axis, see below), this system 
is also called local astronomic system. 

The geometric quantities which can be observed within the frame of the local sys-
tem (representing three-dimensional polar coordinates) include astronomic azimuths, 
horizontal directions and angles, zenith angles, spatial distances, and leveled height 
differences. 

The astronomic azimuth A is the angle measured in the horizontal plane between the 
astronomic meridian of P and the vertical plane spanned by the vertical through P and 
the target point Pi. It is positive as measured from the x-axis in a clockwise direction. 
Horizontal directions and angles may be regarded as azimuths lacking orientation, or 
as azimuth differences. The zenith angle (also zenith distance) z is the angle measured 
in the vertical plane between the local vertical and the line joining P and Pi. It is positive 

Fig. 2.15: Astronomic latitude and longitude.
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as measured from the outer surface normal (the symbol z is used for the zenith angle 
and for the zenith-directed coordinate axis of the local level system, this should not 
lead to confusion). The spatial distance s is the length of the straight line joining P and 
Pi. Geometric leveling also refers to the local vertical, providing a height difference 
with respect to W = WP over a very short distance. It may be regarded as the boundary 
case for trigonometric heighting, with a zenith angle of 90°. Finally, we mention grav-
ity measurements and measurements of gravity gradients, which also refer to the local 
level system.

According to Fig. 2.16, the position vector between P and Pi is given by

 x =  (  x 
 
 y   

z
  )  = s (  cosA sinz

 
   

 sinA sinz     
cosz

   ) . (2.19)

This provides the transformation between the local polar and the local Cartesian 
coordinates. 

The local level system is the starting-point for modeling classical astronomic and 
geodetic observations.

In geodetic astronomy, only direction measurements (zenith angles and azimuths) to 
celestial bodies are performed. The local system is called the horizon system, and the ori-
gin is named topocenter. The points of intersection of the plumb-line direction with the 
celestial sphere are known as the zenithal point Z and the nadir point Z’. The intersection 
of the horizontal plane with the celestial sphere is the celestial horizon. The azimuth in 
astronomy is usually reckoned from the south point and is considered positive westward 
to the north. In the following, the azimuth A will be reckoned in the geodetic sense, i.e., 
positive from the north. The relation between the horizon system and the equatorial hour 
angle system, cf. [2.3.1], is given by the astronomic triangle (Fig. 2.17), see also Fig. 2.4. 
It is formed on the celestial sphere by the vertices PN (north pole), Z (zenithal point), 
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Fig. 2.16: Local level system.
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and S (celestial body). The triangle contains the complements to declination (90° − d ) 
and astronomic latitude (90° − Φ ), the hour angle h, the zenith angle z, the explement 
of the azimuth (360° − A), and the parallactic angle q. From spherical trigonometry we 
obtain 

    

 cos A sin z =  sind cos Φ − cosd cosh sin Φ
 sin A sin z =  − cosd sinh
 cos z =  sind sin Φ + cosd cosh cos Φ  } . (2.20)

The transition to the a,d-system (right ascension a) is given by the local apparent 
sidereal time LAST, see (2.12):

 a = LAST − h. (2.21)

Astronomic longitude Λ is obtained by comparing LAST with the Greenwich sidereal 
time (2.5):

 Λ = LAST – GAST. (2.22)

Equations (2.20) to (2.22) are the fundamental equations for determining Φ, Λ and 
A from measurements of z and GAST at given a, d, cf. [5.3.2]. Equation (2.20) also fol-
lows from (2.19) if we take (2.10) and (2.28) into account. Here again we remember the 
modifi ed defi nitions of the right ascension and the Earth rotation angle as introduced 
with the IAU2000 resolutions, cf. [2.4]. These modifi cations do not affect the transfor-
mation procedures described in this chapter. 

For geodetic applications, the observations carried out in the local level systems have 
to be transformed into the global geocentric system for further use in establishing geo-
detic control networks. Due to the non-parallelism of the plumb lines, the orientation 
of the local level systems depends on position and thus changes rapidly from place to 
place. Computations in one individual system are therefore admissible only in very 
limited areas when applying formulas of plane geometry.

As we have seen, the plumb line direction can be referred to the global geocentric 
system by means of the “orientation” parameters astronomic latitude Φ and longitude 
Λ (Fig. 2.18). After a parallel shift of the global system into the local one (Fig. 2.16), 
we transform the latter one to a right-handed system by applying the refl ection matrix

 
 S 2

 
 =

  ( 
1 0 0
0 −1 0
0 0 1  ) . (2.23)

Fig. 2.17: Astronomic triangle.
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We then rotate the local system by 90° − Φ around the (new) y-axis and by 180° − Λ 
around the z-axis with the rotation matrices

 
 R 2 (90° − Φ   ) =

  ( 
 sin Φ 0  −cos Φ
 0 1 0
 cosΦ 0  sin Φ  )  and

 
 R 3

 
(180° − Λ) =

  ( 
 −cos Λ  sin Λ 0
 −sin Λ  −cos Λ 0
 0 0 1  )  . (2.24)

Coordinate differences between Pi and P in the geocentric system are thus obtained 
by

 ΔX = Ax, (2.25)

with x given by (2.19) and

 ΔX =  (  ΔX
 

 
 ΔY   

ΔZ
  ) . (2.26)

The transformation matrix reads as 

 
A =  R 3 (180° − Λ) R 2 (90° − Φ )S 2  = 

 ( 
 −sin Φ cos Λ −sin Λ cos Φ cos Λ
 −sin Φ sin Λ cos Λ cos Φ sin Λ
 cos Φ 0  sin Φ  ) . (2.27)
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The inversion of (2.25) is performed easily considering that A is orthonormal:

  A −1  =  A T .

We obtain

 x =  A −1 ΔX, (2.28)

with

 
 A −1  =

  ( 
 −sin Φ cos Λ −sin Φ sin Λ cos Φ
 −sin Λ cos Λ 0
 cos Φ cos Λ cosΦ sin Λ sin Φ  )  . (2.29)

Equations (2.25) to (2.29) are the basic equations for the evaluation of local geodetic 
measurements within the three-dimensional reference frame, cf. [6.2.1].

Fig. 2.19: Transformation between the local level and the global geocentric system.
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3 The Gravity Field of the Earth

The external gravity fi eld plays a fundamental role in geodesy. The fi gure of the Earth has 
evolved primarily under the effect of gravity, and most geodetic observations refer to the 
gravity fi eld. Geodetic modeling thus requires consideration of gravity, this includes sat-
ellite orbit calculations and geoid determination. In addition, the analysis of the (time-
variable) external gravity fi eld yields information on the distribution and movement of 
the Earth’s masses; in this way geodesy signifi cantly contributes not only to solid Earth 
physics and oceanography, but also to atmospheric sciences and hydrology. 

The fundamental quantities gravitation and gravity, together with their correspond-
ing potentials, are introduced in [3.1], where the main properties of the gravity fi eld 
are also described. The geometry of the gravity fi eld is especially important for local 
applications [3.2], while the spherical harmonic expansion provides a powerful tool 
for a global gravity-fi eld representation [3.3]. The geoid, as a physically defi ned fi gure 
of the Earth and reference surface for heights, is of basic interest in geosciences and 
engineering [3.4]. Gravity variations with time can be modeled in part (e.g., tidal 
effects), but to a large degree monitoring and modeling of these effects is still in the 
research stage [3.5]. 

The theory of the gravity fi eld is extensively treated in geodetic and geophysical lit-
erature, e.g., Heiskanen and Moritz (1967), Jeffreys (1970), Hofmann-Wellenhof and 
Moritz (2005), Lowrie (2007), also Jekeli (2009).

3.1 Fundamentals of gravity fi eld theory

A body on the Earth’s surface experiences the gravitational force of the masses of the 
Earth, [3.1.1] to [3.1.3], and other celestial bodies as well as the centrifugal force due 
to the Earth’s rotation [3.1.4]. The resultant is the force of gravity [3.1.5]. In the case of 
artifi cial satellites, it is noted that a satellite does not rotate with the Earth; hence, only 
gravitation acts on the satellite, neglecting non-gravitational forces as atmospheric air 
drag for the moment. 

3.1.1 Gravitation, gravitational potential 

According to Newton’s Law of Gravitation (1687), two point masses m1 and m2 attract 
each other with the gravitational force (attractive force)

 K = −G   
 m 1  m 2  _____ 

 l   2 
     I _ 

l
   , (3.1)

where G is the gravitational constant, cf. [2.1],

 G = 6.674 × 1 0 −11  m 3  k g –1   s –2 , (3.2)
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(G-value according to the IERS Conventions, Petit and Luzum, 2010), and l is the 
distance between the masses. The vectors K and l point in opposing directions. The SI 
unit of K is m kg  s −1 . 

By setting the mass at the attracted point P to unity, (3.1) transforms into the gravita-
tional acceleration (henceforth also termed gravitation):

 b = −G   m __ 
 I   2 

     I _ 
l
  . (3.3)

b originates at P and is directed towards the source point P’ with mass m. The distance 
vector l may be expressed by the position vectors r and r’ (Fig. 3.1), e.g., in the global 
Cartesian X, Y, Z system:

 l = r − r′,  r T  = (X, Y, Z    ), and  r′ T  =  ( X ′, Y ′, Z ′ ) , (3.4a)

with

 l = |l| =  √ 
___________________________

    (X − X ′ ) 2  + (Y − Y ′ ) 2  + (Z − Z ′ ) 2   . (3.4b)

The unit of the acceleration b is m  s –2 .
According to (3.3), gravitation depends only on the distance between the attracting 

mass and the attracted point, it does not depend on the coordinate system! While global 
applications require a geocentric coordinate system, local coordinate systems are useful 
for solving problems of limited spatial extent.

The Earth is composed of an infi nite number of differential mass elements dm. The 
gravitation on the unit mass at P results from the integral over the individual contribu-
tions. Equation (3.3) correspondingly transforms to

 b = b(r) = −G   ∫ 
   Earth

  

 

   ∫∫  r – r′ ______ 
|r – r′ | 3 

   dm.  (3.5)

The mass element dm can also be expressed by the volume density r = r (r’ ) and the 
volume element dv:

 dm = r dv, (3.6)

where r is expressed in kg m–3.
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Fig. 3.1: Gravitation.
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The representation of gravitational acceleration, the gravity fi eld, and related computations 
are simplifi ed if the scalar quantity “potential” is used instead of the vector quantity “accelera-
tion”. Because the gravitational fi eld is invariant to rotations:

 curl b = 0, (3.7)

the vector b may be represented as the gradient of a potential V (e.g., Kellog, 1929; Sigl, 
1985):

 b = grad V. (3.8)

For a point mass m, see (3.3), we have

 V =   Gm ____ 
l
  , with   lim    

r → ∞
 V = 0. (3.9)

For the Earth, see (3.5) and (3.6), we obtain

 V = V(r) = G  ∫ 
   Earth

  
 

   ∫∫  dm
 ___
 l    = G  ∫ 

   Earth

  
 

    ∫∫   
r 

 __
  l    dv ,   lim    

r → ∞
 V = 0. (3.10)

The potential at P indicates the work that must be done by gravitation in order to 
move the unit mass from infi nity  ( V = 0 )  to P. The unit of potential is m2 s–2.

If the density function r = r (r’   ) were known for the Earth, (3.5) resp. (3.10) would permit 
calculation of the gravitation as a function of position. In reality, more detailed density 
information is available merely for the upper layers of the Earth, while global models generally 
consider radial density changes only, cf. [3.1.2], [8.1]. Consequently, gravity fi eld observations 
have to be used in order to model the exterior gravity fi eld.

3.1.2 Gravitation of a spherically symmetric Earth

To a fi rst approximation, the Earth can be viewed as a sphere with a centrally symmetric 
density structure, i.e., composed of spherical shells with constant density, cf. [8.1]. We 
calculate the gravitation in the interior and exterior of such a shell using the system of 
spherical coordinates r, J, l introduced in (2.14). For this purpose, the orientation of 
the system is changed such that the J-axis coincides with the line joining the coordinate 
origin O and the calculation point P (Fig. 3.2).

The potential of a homogeneous spherical shell of radius r’ with infi nitesimal thick-
ness dr’, density r and surface mass element dm (surface or single layer potential) is 
now given in analogy to (3.10) by

   V S  = Gμ ∫ 
S

   
 

  ∫  dS ___ 
l
   . (3.11a)

with the constant surface density 

  μ =   dm ___ 
dS

   = r dr ′. (3.11b)

Here, integration is over the surface of the shell S and 

 dS =  r ′ 2  sin J ′dJ ′dl′ (3.12)

is the surface element. Inserting (3.12) into (3.11) gives

  V S  = Gμ r ′ 2   ∫ 
 l′=0

  
2p

       ∫ 
J ′=0

  
p

    sin J ′ _____ 
l
   dJ ′ dl′.  (3.13)
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At integrating (3.13), a distinction has to be made as to whether the attracted point P 
is exterior or interior to the spherical shell (Fig 3.3). In order to simplify the integration, 
the variable l is introduced instead of J ′, using the triangle POP’ (e.g., Sigl, 1985). For 
an attracted point lying in the exterior (r > r ′), the potential is then given by

  V Se  = 4p Gμ    r ′ 
2  ___ r   = G   m __ r  . (3.14)

Here, 

 m = 4p μ r ′ 2   (3.15)
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Fig. 3.2: Surface element of a spherical shell.

Fig. 3.3: Gravitation exterior and interior of a spherical shell.
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represents the mass of the spherical shell. By comparing with (3.9) we recognize that 
the result is equal to the potential of the mass concentrated in the center of the sphere. 
The potential of the spherical Earth composed of concentric homogeneous shells con-
sequently is

  V e  = G  ∫ 
   Earth

  
 

   ∫∫    dm ___ r   =   GM ____ r   . (3.16)

It is equal to the potential of the entire mass M of the Earth concentrated at the center 
of mass. The gravitation follows from

  b e  = −   
∂ V e  ____ 
∂r

   =   GM ____ 
 r  2 

  . (3.17)

With GM = 398.6 × 1012  m 3   s −2  and the radius of the Earth R = 6371 km, the potential 
at the surface of the Earth (r = R) amounts to V = 6.26 × 1 0 7   m 2   s −2 , and the gravitation 
is b = 9.82 m  s −2 .

For a point in the interior (r < r ′), we easily obtain from (3.13) for the potential of the 
spherical shell:

  V Si  = 4p Gμr ′ =   Gm ____ 
r ′

  . (3.18)

Here,  V Si  is constant; therefore, the gravitation is zero:

  b Si  = −   
∂ V Si  ____ 
∂r

   = 0. (3.19)

The potential inside an Earth constructed of homogeneous shells includes the con-
tribution of the masses interior to the sphere r = const. (3.14), and the contribution of 
the spherical shell having thickness R – r (3.18). After substituting the surface density μ 
through the volume density r, we obtain

  V i  =   4p G ____ r    ∫ 
0

   
r

   r r ′ 2 dr ′  + 4pG ∫ 
r

   
R

  rr ′dr ′ . (3.20)

For a homogeneous Earth (r = const.) we have

  V i  =   4 __ 
3
  p Gr r  2  + 2p Gr  (  R 2  −  r 2  )  = 2p Gr  (  R 2  −    r 

    2  __ 
3
   ) . (3.21)

From (3.20) we obtain the gravitation of an Earth composed of spherical shells:

  b i  = −   
∂ V i  ___ 
∂r

   = G   
 M i  ___ 
 r  2 

   (3.22)

with

  M i  = 4p  ∫ 
0

   
r

   r r ′ 2 dr ′  (3.23)

according to (3.15), which represents the mass inside the sphere r = const. The mass-
es outside this sphere have no effect on the gravitation. For a homogeneous sphere 
(r = const.), (3.22) can be written as

  b i  =   4 __ 
3
  p Grr. (3.24)

3.1.3 Properties of the gravitational potential

We now investigate the fundamental properties of the gravitational potential and its fi rst 
and second derivatives.
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Starting from the Earth’s potential (3.10)

 V = G   ∫ 
   Earth

  

 

   ∫∫   dm
 ___
 l  , (3.25)

gravitation is given by the gradient (3.8). In the X, Y, Z system, it has the components, 
see (3.5),

   ∂V ___ 
∂X

   =  V X  = −G  ∫ 
   Earth

  
 

   ∫∫   X − X′ ______ 
 l 3 

    dm, etc. (3.26)

The second derivatives read as

    ∂ 2 V ____ 
∂ X 2 

   =  V XX  = −G  ∫ 
   Earth

  
 

   ∫∫   dm ___ 
 l 3 

    + 3G  ∫ 
   Earth

  
 

   ∫∫     ( X − X ′ )  2  ________ 
 l  5 

   dm , etc. (3.27)

We now again have to distinguish between the cases where the attracted point P lies 
exterior or interior to the Earth’s masses, cf. [3.1.2]. Here, we neglect the mass of the 
atmosphere (about 1 0 −6  of the total mass) and the variations of gravitation with time 
(maximum relative effect about 1 0 −7 ). The Earth’s surface S then constitutes a boundary 
surface between the mass-free exterior space and the Earth’s interior. 

If P lies exterior to the surface S, we have l > 0 always. Then according to (3.25)–
(3.27), the potential and its fi rst and second derivatives are single-valued, fi nite and 
continuous functions, vanishing at infi nity.

We now apply the Laplacian differential operator Δ = div grad to V. In the X, Y, 
Z-system, this reads as

 ΔV =  V XX  +  V YY  +  V ZZ . (3.28)

When introducing (3.27) into (3.28), the fi rst and second terms cancel each other. 
This leads to Laplace’s differential equation of second order, which governs the exterior 
gravitational fi eld:

 ΔV = 0. (3.29)

Continuous functions, having continuous fi rst and second order derivatives and ful-
fi lling (3.29), are called harmonic functions.

If the attracted point lies inside the body of the Earth, then the case l = 0 is possible. 
This requires special attention because of the discontinuity of 1/l.

To this end, we consider P enclosed by a sphere K (center at P0, radius p), where p is 
chosen suffi ciently small so that the density r = const. inside K (Fig. 3.4). The potential 
at P is composed of the contributions from masses lying interior and exterior to K. From 
(3.10) and (3.21) and using

 R = p, r = q =  √ 
___________________________

      ( X −  X 0  )  2  +   ( Y −  Y 0  )  2  +   ( Z −  Z 0  )  2   ,
we fi nd

 V = G  ∫ 
   Earth-K

  
 

   ∫∫  dm ___ 
l
   + 2p G r  (  p 2  −   

 q 2 
 __ 

3
   ) . 

In the limits p →0 and q →0, agreement is obtained with the expression for the exte-
rior potential (3.10). Differentiation yields

  V X  = −G  ∫ 
   Earth-K

  
 

   ∫∫  X − X ′
 ______
 

 l  3 
  dm −   4 __ 

3
  pGr  ( X −  X 0  ) , etc .
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As q→0, we also have X −  X 0 →0, Y −  Y 0 →0, Z −  Z 0 →0, so that once again we obtain 
agreement with the exterior case (3.26). The second derivatives are given by

  V XX  = −G  ∫ 
   Earth-K

  
 

    ∫∫  1 __ 
 l  3 

   dm  + 3G  ∫ 
   Earth-K

  
 

    ∫∫     ( X − X′ )  2  ________ 
 l  5 

  dm −   4 __ 
3
  p Gr, etc. 

For q→0, the last term does not vanish, and we obtain:

  V XX  = −  4 __ 
3
  p Gr, etc. (3.30)

The gravitational potential and its fi rst derivatives are thus single-valued, fi nite, and 
continuous in the interior as well. According to (3.30), the second derivatives exhibit 
discontinuities at abrupt changes in density. Inserting (3.30) into (3.28), we get Poisson’s 
differential equation:

 ΔV = −4p Gr. (3.31)

Hence, V is not a harmonic function in the interior of the Earth. 
Finally, we mention Gauss’ integral formula, which connects the normal derivatives 

∂V/∂ n 
S
 on any boundary surface S (which in general is not an equipotential surface) and 

the second derivatives contained in the Laplace operator (3.28):

 ∫ ∫ 
S

   
 

      ∂V ___ 
∂ n S 

  dS  = ∫ ∫ 
v

   
 

   ∫ΔVdv.  (3.32)

Here, v is the volume of the body of surface S (Fig. 3.5). The left-hand term may be 
interpreted as “gravitational fl ux” through S. As shown in potential theory, it is propor-
tional to the total mass

 M = ∫ ∫ 
v

   
 

   ∫dm  = ∫ ∫ 
v

   
 

   ∫r (r’)dv  (3.33)

according to

 ∫ ∫ 
S

   
 

      ∂V ___ 
∂ n S 

  dS  = −4p G M. (3.34)

INTERIOR
MASSES

DENSITY
= const.r

p

P(x, y, z)

P0(x0, y0, z0 )

SPHERE K

EXTERIOR
MASSES

VARIABLE DENSITY r

q

dm
l

Fig. 3.4: Gravitational potential inside the Earth.
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Taking the limit at the source point P’ in (3.34), equation (3.32) reduces to Poisson’s 
differential equation (3.31) and to Laplace’s differential equation for the exterior space 
(r = 0). Based on Gauss’ formula, basic relationships can be established between obser-
vations in the gravity fi eld and parameters describing the surface S, cf. [6.5.1].

3.1.4 Centrifugal acceleration, centrifugal potential 

The centrifugal force acts on any object of mass of the Earth. It arises as a result of the ro-
tation of the Earth about its axis. We assume here a rotation of constant angular velocity 
w about the rotation (or spin) axis, with the axis assumed fi xed with the Earth. The small 
effects of time variations of the rotation vector can be taken into account by reductions, 
cf. [2.3.4]. The centrifugal acceleration

 z =  ( v × r )  × v =  w  2 p (3.35a)

acting on a unit mass is directed outward and is perpendicular to the spin axis (Fig. 3.6). 
With the geocentric latitude   

_
 j , we have the distance to the rotation axis

 p = r cos   
_
 j 

and the magnitude of the centrifugal acceleration

 z = |z| =  w   2 r cos   
_
 j . (3.35b)
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Fig. 3.5: Outer surface normal on the bounding surface and on the equipotential surface.

Fig. 3.6: Gravitation, centrifugal acceleration, and gravity.
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The angular velocity

 w = 7.292  115 × 1 0 −5  rad  s –1  (3.36)

is known with high accuracy from astronomy, cf. [2.2.2]. Consequently, the centrifugal 
acceleration z = |z| can be calculated if the position of P is known. 

As the Z-axis of the Earth-fi xed X, Y, Z-system coincides with the axis of rotation, cf. 
[2.4.2], we have

 p =  (  X 
 

 Y   
0
   ) , p = |p| =  √ 

_______
   X  2  +  Y  2   .

With

 z = grad Z, (3.37)

we introduce the centrifugal potential

 Z = Z(p) =    w  2  ___ 
2
   p 2 ,   lim     

p→0
  Z = 0. (3.38)

Remark: Here, the symbols z and Z are used for the centrifugal acceleration and potential, 
respectively. They were introduced earlier for local and global coordinates and will be employed 
again as such in later sections. 

Differentiating twice and applying the Laplacian operator yields

 ΔZ = 2 w 2. (3.39)

Therefore, the analytic function Z, as opposed to V (3.29), is not harmonic. 
For points on the equator of the Earth, the centrifugal potential has a value of 1.1 × 

1 0 5   m 2   s –2 , and the centrifugal acceleration is 0.03 m s–2 (≈ 0.3% of gravitation). At the 
poles, we have Z = 0 and z = 0.

3.1.5 Gravity acceleration, gravity potential

The gravity acceleration, or gravity g (Latin: gravitas), is the resultant of gravitation b and 
centrifugal acceleration z (Fig. 3.6):

 g = b + z. (3.40)

By multiplying with the mass m of the attracted point, we obtain the force of gravity

 F = mg. (3.41)

The direction of g is referred to as the direction of the plumb line (vertical); the mag-
nitude g is called gravity intensity (generally just gravity). With (3.10) and (3.38), the 
gravity potential of the Earth becomes

 W = W(r) = V + Z = G ∫ ∫ 
 Earth

  
 

   ∫  
r

 __ 
l
   dv +    w   2  ___ 

2
   p 2 .  (3.42)

It is related to the gravity acceleration by

 g = gradW. (3.43)
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In the X, Y, Z-system, we have

  g T  =   ( gradW )  T  = ( W X , W Y , W Z ). (3.44)

Taking (2.18) into account, we obtain the components of gravity expressed by the 
plumb line parameters astronomical latitude and longitude Φ, Λ:

 g = −gn = −g  (  cos Φ cos Λ
 

    
 cos Φ sinΛ      

sin Φ 
   ) . (3.45)

The property

 curl g = curl gradW = 0 (3.46)

follows from the corresponding properties of gravitation and centrifugal acceleration 
and can also be expressed by the conditions

  W XY  =  W YX ,  W XZ  =  W ZX ,  W YZ  =  W ZY . (3.47)

W and its fi rst derivatives are single-valued, fi nite, and continuous in the whole space 
as a consequence of the characteristics of V and Z. Exceptions are the uninteresting 
cases r→∞ (then also Z→∞) and g = 0 (direction of the plumb line is not unique). Due 
to the behavior of V, the second derivatives of W are discontinuous inside the Earth 
at abrupt density changes. For geodesy, the most important surface of discontinuity is 
the physical surface of the Earth, with a density jump from 1.3 kg  m –3  (density of air) to 
2700 kg  m –3  (mean density of the upper crust).

From (3.31) and (3.39), we obtain the generalized Poisson differential equation

 ΔW = −4p G r + 2 w   2 . (3.48)

In outer space (r = 0), it becomes the generalized Laplace differential equation

 ΔW = 2 w  2 . (3.49)

With the conditions (3.47) and (3.48) resp. (3.49), the gravity potential W possesses 
only fi ve (out of nine) mutually independent second derivatives. They are closely related 
to the curvature of the level surfaces and the plumb lines, cf. [3.2.2].

Because of the fl attening at the Earth’s poles and the centrifugal acceleration, g 
depends on the latitude. As found in [3.1.2], the gravitation for a spherical model is 
9.82 m  s –2 , this value decreases at the equator and increases at the poles of an ellip-
soidal model. The centrifugal acceleration further diminishes the equatorial value, 
while gravitation at the poles is not affected by centrifugal acceleration, cf. [3.1.4]. 
As a result, gravity varies between 9.78 m  s –2  (equator) and 9.83 m  s –2  (poles), see 
also [4.3].

3.2 Geometry of the gravity fi eld

A geometrical representation of the gravity fi eld is given by the level surfaces and the 
plumb lines [3.2.1]. Local fi eld properties are described by the curvatures of level sur-
faces and plumb lines [3.2.2], and a system of “natural” coordinates can be based on 
these properties [3.2.3].
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3.2.1 Level surfaces and plumb lines

The surfaces of constant gravity potential

 W = W(r) = const. (3.50)

are designated as equipotential or level surfaces (also geopotential surfaces) of gravity. 
As a result of an infi nitesimal displacement ds, and in view of (3.43), the potential dif-
ference of differentially separated level surfaces (Fig. 3.7) is given by 

 dW = g ⋅ ds = g ds  cos (g,ds). (3.51)

This means that the derivative of the gravity potential in a certain direction is equal 
to the component of gravity along this direction. Since only the projection of ds along 
the plumb line enters into (3.51), dW is independent of the path. Hence, no work is 
necessary for a displacement along the level surface W = const.: the level surfaces are 
equilibrium surfaces.

If ds is taken along the level surface W = WP, then it follows from dW = 0 that 
cos(g,ds) = cos 90° = 0: gravity is normal to W = WP or, in other words, the level surfaces 
are intersected at right angles by the plumb lines. The tangent to the plumb line is called 
the direction of the plumb line and has been defi ned already in [3.1.5]. If ds is directed 
along the outer surface normal n, then, because cos(g, n) = cos180° =  −1, the following 
important differential relationship exists:

 dW = −g dn. (3.52)

It provides the link between the potential difference (a physical quantity) and the dif-
ference in height (a geometric quantity) of neighboring level surfaces. According to this 
relation, a combination of gravity measurements and (quasi) differential height deter-
minations, as provided by geometric leveling, delivers gravity potential differences, cf. 
[5.5.4].

If g varies on a level surface, then, according to (3.52), the distance dn to a neigh-
boring level surface also changes. Therefore, the level surfaces are not parallel, and the 
plumb lines are space curves. As a consequence of the gravity increase of 0.05 m  s –2  from 
the equator to the poles, the level surfaces of the Earth converge toward the poles by 
0.05 m  s −2 /9.8 m  s −2 , or 5 × 1 0 −3 , in a relative sense. For example, two level surfaces that 
are 100.0 m apart at the equator are separated by only 99.5 m at the poles (Fig. 3.8).

n

g

P
W = WP

W = W + dWP

ds

PLUMB LINE

LEVEL
SURFACES

Fig. 3.7: Neighboring level surfaces and plumb line.
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The level surfaces inside the Earth and in the exterior space are closed spheroidal surfaces. 
The geoid is the level surface that approximates mean sea level. Because of its importance as a 
reference surface for heights, it will be treated separately in [3.4]. As an outer limit in the realm 
of the defi nition of gravity, one may consider the level surface for which the gravitation and 
centrifugal acceleration in the equatorial plane cancel each other. The equatorial radius of this 
surface would be 42 200 km.

The concept of the level surface was introduced by MacLaurin (1742), whereas Clairaut (1743) 
thoroughly discussed level surfaces and plumb lines as a whole. Bruns (1878) included the 
determination of the exterior level surfaces in their entirety in the fundamental problem of 
geodesy.

3.2.2 Local gravity fi eld representation

From the properties of the potential function W = W(r), it follows that the level surfaces 
which lie entirely in the exterior space are analytical surfaces; that is, they have no sa-
lient or singular points, cf. [3.1.5], and can be expanded in Taylor series. Level surfaces 
extending partially or completely inside the Earth exhibit discontinuities in the second 
derivatives where density jumps occur. These surfaces can thus be constructed from 
pieces of different analytical surfaces only. Local gravity fi eld observables are obtained 
with gravity meters and gravity gradiometers, they play an important role at high resolu-
tion gravity fi eld modeling (Baeschlin, 1948; Hofmann-Wellenhof and Moritz, 2005). 

Using the local astronomic x, y, z-system introduced in [2.5], we develop the poten-
tial W in the vicinity of the origin P into a series. This local representation reads as

 W =  W P  +  W x x +  W y y +  W z z +   1 __ 
2
    (   W xx  x  2  +  W yy   y  2  +  W zz   z  2  ) 

         +  W xy xy +  W xz xz +  W yz  yz + … (3.53)

Here,  W 
x
  = ∂W/∂x,  W 

xx
  =  ∂ 2 W/∂ x 2 ,  W 

xy
  =  ∂ 2 W/∂x∂y, etc. represent the fi rst and second 

order partial derivatives at P in the local system. If the calculation point is located on the 
level surface through P, we have

 W =  W P ,  W x  =  W y  = 0,  W z  = −g.

By solving for z, we get the equation of the level surface in the neighborhood of P :

 z =   1 ___ 
2g 

   (  W xx  x  2  + 2 W xy xy +  W yy   y  2  )  + … (3.54)

0

EQUIPOTENTIAL
SURFACES W = const.

PLUMB
LINES

GEOID

Fig. 3.8: Equipotential surfaces and plumb lines close to the Earth.
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Here, we have neglected terms of third and higher order, taking into account that z is 
of second order compared to x and y, due to the small curvature of the level surfaces.

The curvature of the level surface at P along an azimuth A is described by the cur-
vature of the normal section (intersection of the vertical plane with the surface), which 
is called normal curvature. We now apply the well-known formula for the depression 
of a sphere (local approximation to the level surface) with respect to the horizontal 
x, y-plane 

 z = −    s 2  ____ 
2 R A 

  , (3.55)

with distance s from P, and radius of curvature RA in the azimuth A (Fig. 3.9). By intro-
ducing (3.55) into (3.54), and substituting x, y with the local polar coordinates s, A

 x = s cos A, y = s sin A,

we obtain the normal curvature 

 k =   1 ___ 
 R A 

   = −   1 __ g    (  W xx co s 2 A + 2 W xy sin A cos A +  W yy si n 2 A ) . (3.56)

For the x- and y-directions (A = 0° and A = 90°), we obtain the curvatures

  k x  =   1 __ 
 R x 

   = −   
 W xx  ____ g  ,  k y  =   1 __ 

 R y 
   = −   

 W yy 
 ____ g  , (3.57)

where Rx and Ry are the corresponding curvature radii. Analogously, the geodetic tor-
sion in the direction of the meridian (expressing the change of direction normal to the 
meridian) is given by

  t x  = −   
 W xy 

 ____ g  . (3.58)

The normal curvature assumes its extreme values in the mutually perpendicular direc-
tions of principal curvature A1 and A2 = A1 ± 90°. By considering the extrema, we fi nd

 tan 2 A 1,2  = 2  
 W xy 
 _________ 

 W xx  −  W yy 
  . (3.59)
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Fig. 3.9: Curvature of level surfaces and plumb lines.
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Introducing (3.59) into (3.56) yields the corresponding principal curvatures

   1 ___ 
 R  A 1 

 
   = −  1 __ g   (W xx  +  W xy tan  A 1 ),   1 ___ 

 R  A 2 
 
   = −  1 __ g   (W yy  +  W xy  cot  A 2 ). (3.60)

With  A 
2
  =  A 

1
  + 90°, the mean curvature of the level surface is given by

 J =   1 __ 
2
    (  k x  +  k y  )  = −  1 ___ 

2g
   (  W xx  +  W yy  ) . (3.61)

Outside the masses of the Earth, the plumb lines can also be described analytically. In 
the local astronomic system, the equation of the plumb line is given by

 x = x(s), y = y(s), z = z(s), (3.62)

where s now is the arc length reckoned in the direction of gravity (Fig. 3.9). The line 
element along s thus differs from gravity only by the “scale factor” g:

 g (  x ′
 
 

 y ′   
z ′

  )  =  (   W x 
 
 

  W y    
 W z 

   ) , (3.63)

with x ′ = dx/ds, etc. The curvature vector of the plumb line lies in the principal normal 
through P and thus in the horizontal plane. It reads as

  (  x ″
 

 
 y ″   

z ″
  )  = k  (  cos A

    sin A    
0
   ) , (3.64)

where k is the total curvature, and A is the azimuth of the principal normal. Differentiat-
ing (3.63) with respect to s, and considering that at P: x’ = y’ = 0, z’ = −1, the substitu-
tion into (3.64) yields

 k = −   
 W xz  ______ 

g cos A
   = −   

 W yz 
 ______ 

g sin A
   (3.65)

and

 A = arctan   
 W yz 

 ____ 
 W xz 

  . (3.66)

The curvatures of the projections of the plumb line on the x, z-plane (A = 0°) and y, 
z-plane (A = 90°) follow from (3.65):

  k x  = −   
 W xz  ____ g  ,  k y  = −   

 W yz 
 ____ g  , (3.67) 

where

 k =  √ 
_______

   k   x  
2  +  k    y  

2    .

From (3.56) to (3.67), we recognize that the curvatures of the level surfaces and the 
plumb lines depend on the second derivatives of the gravity potential. Consequently, 
they experience discontinuities at abrupt density changes, as discussed for the potential 
function, cf. [3.1.5]. 

The gravity gradient tensor (Eötvös tensor, also Marussi tensor) is comprised of the 
second derivatives of W as follows: 

 grad g = grad (grad W) =  (   W xx 
 

  
  W yx     

 W zx 
    

 W xy 

 
  

  W yy     
 W zy 

   
 W xz 

 
  

  W yz     
 W zz 

  ) . (3.68)
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With (3.57), (3.58), (3.67), and  W 
z
  = −g, it can be transformed into the tensor

  −   1 __ g   grad g =  (   k x 
 
 

  t x    
 k 

x
 
     

 t x 

 
 

  k y    
 k y 

     
 k x 
 

  
  k y     

  1 __ g     
∂g

 __ ∂z
  

  ) , (3.69)

which completely describes the geometry of the gravity fi eld (Grafarend, 1986; Moritz 
and Hofmann-Wellenhof, 2005). As already stated in [3.1.5], (3.68) resp. (3.69) only 
contain fi ve independent elements.

The Eötvös tensor (3.68) includes the gravity gradient 

 grad g = −  (   W xz 

 
 

  W 
yz

    
 W 

zz
 
  )  =  (  ∂g/∂x

 
  

 ∂g/∂y    
∂g/∂z

  ) , (3.70)

which describes the variation of gravity in the horizontal plane and in the vertical direc-
tion. The horizontal gradient is formed by the components ∂g/∂x and ∂g/∂y, and points in 
the direction of maximum gravity increase in the horizontal plane. The vertical compo-
nent (often called vertical gradient) ∂g/∂z describes the gravity change with height. If we 
combine the generalized Poisson equation (3.48) with the mean curvature (3.61), we get 

 ΔW =  W xx  +  W yy  +  W zz  = −2gJ −   
∂g

 ___ 
∂z

   = −4p G r + 2 w  2 

or

   
∂g

 ___ 
∂z

   = −2g J + 4p G r − 2 w  2 . (3.71)

This relation was found by Bruns (1878). It connects the vertical gradient with the 
mean curvature of the level surface and offers a possibility to determine this curvature 
from gravity measurements, cf. [5.4.5].

3.2.3 Natural coordinates

We introduce a system of non-linear “natural” coordinates Φ, Λ, W defi ned in the grav-
ity fi eld. Astronomical latitude Φ and astronomical longitude Λ describe the direction of 
the plumb line at the point P. They have been introduced already in [2.5] as orientation 
parameters of the local gravity fi eld system with respect to the global geocentric system. 
The gravity potential W locates P in the system of level surfaces W = const. (Fig. 2.12). 
Hence, P is determined by the non-orthogonal intersection of the coordinate surfaces 
Φ = const., Λ = const., and W = const. The coordinate lines (spatial curves) are called 
astronomic meridian curve (Λ, W = const.), astronomic parallel curve (Φ, W = const.), 
and isozenithal line (Φ, Λ = const.).

The natural coordinates can be determined by measurements. Astronomic positioning 
provides latitude and longitude, cf. [5.3.2]. Although W cannot be measured directly, 
potential differences can be derived from leveling and gravity measurements and then 
referred to a selected level surface, e.g., the geoid, cf. [5.5.4].

The relationship between the global X, Y, Z-system and the Φ, Λ, W-system is obtained 
from (3.45):

 g = grad W = −g  (  cos Φ cos Λ
 

    
 cos Φ sin Λ      

sin Φ
   ) . (3.72)
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Solving for the natural coordinates yields the non-linear relations:

    

   Φ = arctan     
 –W Z   __________ 

 √ 
_________

   W   X  
2   +  W    Y  

2    
  

    Λ = arctan  
  W Y  ___ 
 W X 

  

W = W (X, Y, Z )  
}
  

. (3.73)

Differential relations between the local Cartesian coordinates x, y, z (local astro-
nomic system) and the global Φ, Λ, W-system are given by

 dΦ =   ∂Φ ___ 
∂x

  dx +   ∂Φ ___ 
∂y

  dy +   ∂Φ ___ 
∂z

  dz, etc.,

where dx, dy, and dz can be derived from local measurements, cf. [2.5].
The partial derivatives of Φ and Λ describe the change of the plumb line direction 

when moving in the gravity fi eld. This corresponds to the curvature of the level surface 
(when moving in the horizontal plane) and of the plumb line (when moving vertically). 
We have the following relations:

 

  ∂Φ ___ ∂x
   = kx,   

∂Φ ___ ∂y
   =   cos Φ ∂Λ ________ ∂x

   = tx,   
∂Φ ___ ∂z

   = kx},  cos Φ ∂Λ ________ ∂y
   = ky,   

cos Φ ∂Λ ________ ∂z
   = ky

  ∂W ____ 
∂x

   = 0,   ∂W ____ ∂y
   = 0,   ∂W ____ ∂z

   = −g,
 

(3.74)

where the curvature and torsion parameters are given by (3.57), (3.58), and (3.67). Intro-
ducing (3.74) into the differential relations leads to the transformation

  (   dΦ
 

   
 cos Φ dΛ     

dW
   )  =  (   k x 

 
 

  t x    
0
     

 t x 

 
 

  k y    
0
     
 k x 

 
 

  k y    
−g

  )   (  dx
 

 
 dy   

dz
  ) , (3.75)

which again contains the elements of the Eötvös tensor (3.69), see Grafarend (1975), 
Moritz and Hofmann-Wellenhof (1993).

As the orientation of the local systems changes from point to point, the differentials 
dx, dy, dz are imperfect ones (i.e., they are not the differential of a function of position 
only), with loop closures differing from zero:

 ∫ dx ≠ 0, ∫ dy ≠ 0, ∫ dz ≠ 0. (3.76)

Φ, Λ, W, on the other hand, possess perfect differentials with

 ∫ dΦ = 0, ∫ dΛ = 0, ∫ dW = 0. (3.77)

Equation (3.75) offers the possibility to transform local observable quantities (azi-
muths, horizontal directions and angles, zenith angles, distances, potential differences 
from leveling and gravity) to the global system of “natural” coordinates, where the astro-
nomic latitude and longitude coordinates are also observables.

A theory of “intrinsic geodesy” based on the differential geometry of the gravity fi eld has been 
developed by Marussi (1949, 1985), see also Hotine (1969). Using only observable quantities, 
reductions to conventional reference systems are completely avoided. On the other hand, in 
order to practically evaluate (3.75), a detailed knowledge of the curvature of the gravity fi eld 
would be necessary. This would require a dense survey of the second derivatives of the gravity 
potential, as the curvature close to the Earth’s surface is rather irregular. Present gravity models 
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already provide this information for the long- and medium-wave part of the gravity fi eld, but 
a high- resolution would require costly and time consuming terrestrial techniques, cf. [5.2.8], 
[5.4.5]. Yet even with a better knowledge of the curvature of the gravity fi eld, the transfer of 
coordinates would hardly be made in the system of natural coordinates, due to the complex 
structure of the gravity fi eld, and the success of Cartesian coordinate systems based on space 
geodetic methods, cf. [2.4].

3.3 Spherical harmonic expansion of the gravitational potential

Because the density function r = r (r′) of the Earth is not suffi ciently known, the gravi-
tational potential V = V(r) cannot be computed by Newton’s law of gravitation using 
(3.10). However, a convergent series expansion of V is possible in the exterior space 
of the Earth as a special solution of Laplace’s differential equation (3.29). It can be 
easily derived from an expansion of the reciprocal distance appearing in Newton’s 
law [3.3.1], [3.3.2], e.g., Hobson (1965), Sigl (1985), Blakeley (1996). This solution 
corresponds to a spectral decomposition of the gravitational fi eld [3.3.3]. The coef-
fi cients of the series expansion provide the amplitudes of the respective spectral parts 
[3.3.4]. Any observable functional of V can be evaluated for the determination of 
these coeffi cients, thus allowing a global analytical representation of the gravitational 
fi eld, cf. [6.6.1].

3.3.1 Expansion of the reciprocal distance 

Applying the law of cosines to the triangle OP’P (Fig. 3.1), we obtain

   1 __ 
l
   =   (  r 2  +  r  ′2  − 2rr ′ cos y   )  −   1 __ 

2
    =   1 __ 

r
    ( 1 +  (    r ′ __ 

r
   )  2  − 2  r ′ __ 

r
   cos  y  )  −   1 __ 

2
  
  (3.78)

for the reciprocal distance 1/l appearing in (3.10), between the attracted point P and the 
attracting point P’. Here, y is the central angle between the directions from O to P and 
O to P’, respectively. If 1/l is expanded in a series converging for r’ < r, and if the terms 
are arranged according to increasing powers of r ’/r, then it follows 

   1 __ 
l
   =   1 __ 

r
   ∑ 

l=0
   

∞

      (   r   ′ __ 
r
   )  l  P l  (cos y ). (3.79)

The Pl(cos y ) terms represent polynomials of l th degree in cosy. They are known 
as Legendre polynomials (zonal harmonics), and they are computed for the argument 
t = cosy by means of

  P l (t) =   1 ___ 
 2 l l!

      d  l  ___ 
d t  l 

     (  t 2  − 1 )  l . (3.80a)

A rapid calculation is possible with the recurrence formula (Wenzel, 1985)

  P l (t) =   2l − 1 ______ 
l
  t  P l−1 (t) −   l − 1 _____ 

l
   P l−2 (t), l ≥ 2, (3.80b)

with  P 0  = 1,  P 1  = t.
We now introduce the unit sphere s around the origin of the coordinates O 

(Fig. 3.10). The projections of OP and OP’ on s, together with the north pole 
projection N, form a spherical triangle. It contains the spherical coordinates J, l 
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and J′, l′, and the central angle y appears as a spherical distance on s, see also 
[2.3.3]. Spherical trigonometry provides the following relationship

 cos y = cos J cos J′ + sin J sin J′ cos( l′ − l).

The corresponding decomposition of Pl(cos y   ) leads to

  P l  (cos y ) =  P l   ( cos J )  P l   ( cos J′ ) 

 + 2 ∑ 
 m=1

  

  l

        
( l − m ) ! ________ 
 ( l + m ) !

   ( P lm   ( cos J )  cos ml  P lm   ( cos J′ )  cos ml′ 

 +  P lm  (cos J ) sin ml  P lm   ( cos J′ )  sin ml′). (3.81)

Again, the Pl(t) are the Legendre polynomials with the argument t = cos J or t = cos J′. 
The associated Legendre functions of the fi rst kind, Plm(t) (degree l and order m), are 
obtained by differentiating Pl(t) m times with respect to t :

  P lm (t) =  (1 −  t  2  )  m __ 
2
       d  m  ___ 
d t   m 

   P l (t). (3.82)

Up to degree 3, the Legendre polynomials and the associated Legendre functions are 
given as follows:

  P 0  = 1,  P 1  = cos J,  P 2  =   3 __ 
2
  co s 2 J −   1 __ 

2
  ,  P 3  =   5 __ 

2
  co s 3 J −   3 __ 

2
   cos J (3.83a)

and

  

 

  
 P 1,1  = sin J,  P 2,1  = 3 sin J cos J,  P 2,2  = 3si n 2 J

                              
 P 3,1  = sin J  (   15 ___ 

2
   co s 2 J −   3 __ 

2
   ) ,  P 3,2  = 15si n 2 J cos J,  P 3,3  = 15si n 3 J

  } . (3.83b)

A series development for the calculation of Plm(t) is given in Hofmann-Wellenhof and 
Moritz (2005, p. 17). By substituting (3.81) into (3.79), the expansion of 1/l into spheri-
cal harmonics is completed.

O

S

N

UNIT SPHERE s
(r = 1 )

P(r,J, l)

r

r ′

P′(r ′,J ′, l ′)

ya

l ′ – lJ J ′

Fig. 3.10: Spherical polar triangle on the unit sphere, spherical coordinates.
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The functions

  
 
  
 Y  lm  c   ( J, l )  =  P lm   ( cos J )  cos ml

                
 Y  lm  s   ( J, l )  =  P lm   ( cos J )  sin ml

   } , (3.84)

contained in (3.81), are called Laplace’s surface spherical harmonics. They character-
ize the behavior of the developed function (here 1/l) on the unit sphere, cf. [3.3.3]. The 
orthogonality relations are valid for these functions, i.e., the integral over the unit sphere 
of the product of any two different functions is zero:

  ∫ 
s

  
 

  ∫ Y  lm  i   Y  nq  
k  ds  = 0 (3.85)

for n ≠ l, q ≠ m, or k ≠ i. For the product of two equal functions  Y  lm  c  or  Y  lm  s  , we have

 ∫ ∫ 
s 

   
 

     Y   lm  2  ds  =  {    4p ______ 
2l + 1

   for m = 0
         

  2p   ( l + m ) !  ____________  
(2l + 1) ( l – m ) !

  
   

 

  
for m ≠ 0,

 (3.86)

see Hofmann-Wellenhof and Moritz (2005, p. 21).

3.3.2 Expansion of the gravitational potential

We substitute the spherical harmonic expansion of 1/l, (3.79) and (3.81), into the vol-
ume integral (3.10):

 V =   G __ 
r
   ∑ 

l=0
   

∞

      ∑ 
m=0

  
l

    k   
( l − m ) ! _______ 
 ( l + m ) !

    

       ×   1 __ 
 r  l 

    (   Plm (cos J ) cos ml  ∫ 
   Earth

  

 

   ∫∫  r ′ l  P lm  (cos J ′) cos ml′ dm
                    

+  P lm  (cos J )sin ml  ∫ 
   Earth

  

 

   ∫∫ r′l P lm  (cos J ′) sin ml′ dm

   ) , (3.87)

 k =  {  1 for m = 0      
2 for m ≠ 0

   
 
 .

In abbreviated form this development can be expressed as

 V =  ∑ 
l = 0

  
∞

  V l  =  ∑ 
l = 0

  
∞

     
 Y l   ( J, l ) 

 _______ 
 r   l+1 

   , (3.88)

where the Vl are called solid spherical harmonics, they are linear combinations of the 
surface spherical harmonics (3.84). 

For l = 0, the integration yields the potential of the Earth’s mass M concentrated at the 
center of mass (3.16). We extract this term, introduce the semi-major axis a of the Earth 
ellipsoid as a constant “scale factor”, and denote the mass integrals by Clm, Slm (spheri-
cal harmonic coeffi cients). The gravitational potential expanded in spherical harmonics 
can then be written as

 V =   GM ____ r    ( 1 +  ∑ 
l=1

   
∞

     ∑ 
m=0

  
l

      (   a __ r   )  l   (  C lm cos ml +  S lm  sin ml )  P lm   ( cos J )  ) . (3.89)
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The harmonic coeffi cients (also Stokes’ coeffi cients) are given by

    

 C l0  =  C  l  =   1 __ 
M

     ∫ 
  Earth

  
 

   ∫∫  (   r ′ __
 a   )  l  P l   (cos J′) dm for m = 0 and

 {    C lm 
  

 S lm 
   }  =   2 __ 

M
      
( l − m ) ! _______ 
 ( l + m ) !

    ∫ ∫ 
 Earth

  
 

   ∫  (   r ′ __
 a   )  l  P lm   ( cos J′ )   {   cos ml′     

sin ml′
   }  dm for m ≠ 0  }  . (3.90)

The following denotations are also used, particularly in satellite geodesy:

  J l  = −  C l ,  J lm  = −  C lm ,  K lm  = −  S lm . (3.91)

Calculations in the gravitational fi eld become more convenient with the (fully) nor-
malized spherical harmonic functions   

__
 P  lm   ( cos J ) . They are computed from the conven-

tional harmonics, (3.80) and (3.82), according to

    
_
 P  lm (t) =  √

_______________

  k ( 2l + 1 )    
( l − m ) ! _______ 
 ( l + m ) !

      P lm (t), k =  {  1 for m = 0      
2 for m ≠ 0

   
 
 , (3.92)

with t = cos J, etc. Recursive formulas are also available for the calculation of the nor-
malized harmonics and its derivatives (Paul, 1978; Tscherning et al., 1983; Wenzel, 
1985):

   
__

 P  lm (t) =   [    ( 2l + 1 )   ( 2l – 1 )   ______________  
 ( l + m )   ( l – m ) 

   ]    1 __ 
2
  
 t    

_
 P  l − 1,m (t) − 

               [    ( 2l + 1 )   ( l + m –1 )   ( l – m – 1 )    __________________________   
 ( 2l − 3 )   ( l + m )   ( l – m ) 

   ]    1 __ 
2
  
     
_
 P  l − 2,m (t) (3.93a)

          for l > m + 1
with

    
_
 P  0  = 1,    

_
 P  1  =  √ 

__
  3  cos J,    

_
 P  2  =   1 __ 

2
    √ 

__
  5   ( 3co s 2 J − 1 ) ,

    
_
 P  1,1  =  √ 

__
  3  sin J,    

_
 P  2,1  =  √ 

___
  15  sin J cos J,    

_
 P  2,2  =   1 __ 

2
    √ 

___
  15   si n 2 J

 (3.93b)

and the control formula

  ∑ 
m=0

  

l

      
_
 P lm(t ) 2  = 2l + 1. (3.93c)

In addition to the orthogonality relations (3.85), (3.86) for the surface harmonics, we 
now also have

   1 ___ 
4p   ∫ 

σ

   
 

   ∫   (    _ P  lm   {  cos ml     
sin mλ   }  )  2 ds = 1 (3.94)

over the unit sphere s. According to (3.92), for an expansion of the gravitational poten-
tial analogous to (3.89), the harmonic coeffi cients are now given by

  {     
__

 C  lm 
   

   
_
 S  lm 

   }  =  √ 
______________

     
(l + m)!
 ______________  

k(2l + 1)(l – m)!
      {   C lm 

    S lm    } , k =  {  1 for m = 0      
2 for m ≠ 0

   
 
 . (3.95)

Equation (3.89), or the corresponding equations employing fully normalized har-
monics (3.92) and (3.95), represent spherical solutions of Laplace’s differential equa-
tion (3.29). These solutions can also be derived straightforwardly by the method of 
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variable separation, after substituting the Cartesian coordinates with spherical coordinates 
(Hofmann-Wellenhof and Moritz, 2005, p. 9 ff.).

The expansion converges outside a sphere of radius r = a, which just encloses the Earth (Brillouin 
sphere). After the theorem of Runge-Krarup, an expansion of V into converging spherical 
harmonics can also be used in the interior of the Earth, down to a sphere completely inside 
the Earth and close to its surface (Bjerhammar sphere ), Krarup (1969), Moritz (1980, p. 69). 
Such an expansion represents an analytical continuation of the outer gravitational fi eld model 
into the Earth’s interior, with arbitrarily good approximation to the outer fi eld. Naturally, this 
extension does not satisfy the Poisson equation (3.31) which governs the actual gravitational 
fi eld in the Earth’s interior.

With present accuracies of the determination of the Earth’s gravity fi eld, the gravitation of 
the atmosphere cannot be neglected. As the density of the atmosphere primarily depends 
on height, corresponding models can be used to calculate the potential and the gravitation 
of the atmosphere as a function of height. These calculations are based on the relations 
derived for the potential inside an Earth constructed of homogeneous spherical shells, 
cf. [3.1.2]. With an atmospheric mass of about 5.32 × 1018 kg, we get a potential value of 
55.6  m 2   s –2  for h = 0, and 54.8  m 2   s –2  for h = 100 km. This effect is taken into account by 
corresponding reductions, cf. [4.3].

The extension of the spherical harmonic expansion for V to the gravity potential W 
is performed easily by adding the centrifugal potential Z (3.38). If we express the dis-
tance p to the rotational axis by spherical coordinates (2.14), the centrifugal potential 
reads as

 Z =    w   2  ___ 
2
   r   2 si n 2 J (3.96a)

or, after introducing the Legendre polynomial P2 according to (3.83a), as

 Z =    w   2  ___ 
3
   r   2  ( 1 −  P 2   ( cos J )  ) . (3.96b)

By adding (3.96) to (3.89) we get the expansion for the gravity potential.

3.3.3 Geometrical interpretation of the surface spherical harmonics

We now discuss the properties of the surface spherical harmonics (3.84), which de-
scribe the behavior of the gravitational potential on the unit sphere. The zero points 
of these functions divide the surface into regions with alternating signs, bounded by 
meridians and parallels. 

For the order m = 0, we obtain the Legendre polynomials  P 
l
   ( cos J ) . Because of 

their independence of the geographical longitude l, they divide the surface into 
zones of positive and negative signs: zonal harmonics. These harmonics possess l 
real zeros in the interval 0 ≤ J ≤ p. For even l, the sphere is divided symmetrically 
with respect to the equator J = 90°, and the case for odd l results in an asymmet-
ric division. The  P 

lm
   ( cos J )  for m ≠ 0 have  ( l − m )  zeros in the interval 0 < J < p. 

Because of the multiplication by  cos ml or  sin ml, the surface harmonics are lon-
gitude dependent, furnishing 2m zeros in the interval 0 ≤ l ≤ p: tesseral harmonics 
(tessera means a square or rectangle). Finally, for m = l, the dependence on J disap-
pears, and the sphere is divided into sectors of alternating signs: sectorial harmonics 
(Fig. 3.11).
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The amplitudes of the individual terms given by the surface harmonics are deter-
mined by the harmonic coeffi cients. For example, the series has only zonal harmon-
ics for an Earth rotationally symmetric with respect to the Z-axis; the coeffi cients 
with m ≠ 0 must all vanish. For a mass distribution symmetric with respect to the 
equator, the zonal harmonic coeffi cients with odd l must be absent.

Summarizing, we state that the spherical harmonic expansion of the gravitational 
potential represents a spectral decomposition of the gravitational fi eld. The fi eld is sep-
arated into structures of wavelength 360°/l, corresponding to a spatial resolution of 
180°/l. With increasing height, the fi eld is smoothed by the factor   ( a / r )  l , see (3.89) and 
the examples in [6.7.3].

3.3.4 Physical interpretation of the spherical harmonic coeffi cients 

The spherical harmonic expansion has transformed the single volume integral over the 
Earth’s masses (3.10) into an infi nite series. The harmonic coeffi cients now carry mass 
integrals for the individual contribution of the corresponding wavelength to the total 
potential. The lower degree harmonics have a simple physical interpretation.

As already stated above, the zero degree term (l = 0) represents the potential of a 
homogeneous or radially layered spherical Earth, see (3.16):

  V 0  =   GM ____ r  . (3.97)

= 0°

= 180°

ZONAL HARMONICS

SECTORIAL HARMONICSTESSERAL HARMONICS
P (cos ) sin 69,6 P (cos ) sin 77,7

= 0°

= 180°

P (cos )7

= 0°

= 125.3°

= 180°

P (cos )2

= 180°

= 0°

=
0°

Fig. 3.11: Spherical harmonics on the unit sphere, with alternating positive (gray) and negative 
(white) sign.
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The terms of degree one and two (l = 1,2) can be calculated from (3.90) by introducing 
the harmonic functions  P 

lm 
 (3.83) and subsequently transforming the spherical coordi-

nates to Cartesian coordinates using (2.14). For l = 1, this yields

  C 1  =   1 ___ 
aM

      ∫ 
   Earth

  
 

   ∫∫Z ′dm,   C 1,1  =   1 ___ 
aM

   ∫ ∫ 
  Earth

  
 

   ∫X ′dm , and  S 1,1  =   1 _____ 
aM  

   ∫ ∫ 
  Earth

  
 

   ∫Y ′dm.   (3.98)

As known from mechanics, the integrals divided by the mass M are the coordinates of 
the center of mass of the Earth. Since we have placed the origin of the coordinate system 
at the center of mass, we have

  C 1  =  C 1,1  =  S 1,1  = 0. (3.99)

For l = 2, we obtain

  C 2  =   1 ____ 
 a 2 M

     ∫ 
   Earth

  
 

   ∫∫ (  Z′ 2  −    X′ 2  +  Y′ 2  ________ 
2
    ) dm, 

  C 2,1  =   1 ____ 
 a 2 M

     ∫ 
   Earth

  
 

   ∫∫X′Z′ dm, 

  S 2,1  =   1 ____ 
 a 2 M

    ∫ ∫ 
 Earth

  
 

   ∫Y′Z′ dm,   (3.100)

  C 2,2  =   1 _____ 
4 a 2 M

    ∫ ∫ 
 Earth

  
 

   ∫ (X′ 2  −  Y′ 2 )dm, 

  S 2,2  =   1 _____ 
2 a 2 M

     ∫ 
   Earth

  
 

   ∫∫ X′Y′ dm . 

These expressions are functions of the moments of inertia

 A = ∫∫∫ (  Y′ 2  +  Z ′ 2  ) dm, B = ∫∫∫ (  X′ 2  +  Z′ 2  ) dm,

 C = ∫∫∫ (  X′ 2  +  Y′ 2  ) dm 
(3.101a)

and of the products of inertia

 D = ∫∫∫Y′Z′dm, E = ∫∫∫X′Z′ dm, F = ∫∫∫X′Y′ dm (3.101b)

with respect to the axes of the global X, Y, Z-system. If we neglect polar motion, the 
Z-axis coincides with one principal axis of inertia (maximum moment of inertia). Con-
sequently, we have 

 D = E = 0.

F, on the other hand, would only become zero if the X-axis coincided with one of 
the equatorial principal axes of inertia. Due to the conventional defi nition of the X-axis 
(Greenwich meridian), F therefore does not vanish. 

Using the above expressions for A, B, C, and F, the harmonic coeffi cients of second 
degree may also be formulated as follows:

  C 2  =   1 ____ 
 a 2 M

   (    A + B _____ 
2
   − C ) ,  C 2,1  =  S 2,1  = 0,

  C 2,2  =   B − A _____ 
4 a 2 M

  ,  S 2,2  =   F _____ 
2 a 2 M

  . (3.102)
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 J 
2
  = − C 

2
  is also known as dynamical form factor. It characterizes the polar fl attening of 

the Earth’s body by the difference between the mean equatorial moment of inertia (with 
A ≈ B) and the polar moment of inertia. As this is the largest deviation from a spheri-
cal Earth model, the numerical value for C2 is three orders of magnitude larger than 
the values of the successive coeffi cients. Slight contributions to the ellipsoidal form of 
the Earth also come from the even zonal harmonics of higher degree, mainly l = 4 and 
l = 6. The coeffi cients C2,2 and S2,2 describe the asymmetry of the equatorial mass distri-
bution in relation to the rotational axis (ellipticity or fl attening of the equator) and the 
torsion of the corresponding principal axes of inertia with respect to the conventional 
X- and Y-directions. The values obtained for these coeffi cients have been used for the 
computation of three-axial ellipsoids, cf. [4.2.1]. If the odd zonal harmonic-coeffi cients 
differ from zero, the corresponding terms in the expansion of V represent an asymmetric 
mass distribution with respect to the equatorial plane, cf. [3.3.3]. The main contribution 
comes from C3, and may be geometrically interpreted as a difference in the fl attening for 
the northern and the southern hemisphere (a “pear-shaped” Earth’s fi gure). Numerical 
values for the coeffi cients are given in [6.6.2], and actual values for the derived physical 
quantities of the Earth will be found in [8.1]. 

By introducing the coeffi cients C1,0, C1,1, S1,1, and C2,1, S2,1 as unknowns into the adjustment 
of satellite orbit observations, (small) deviations of the Earth’s center of mass (geocenter 
variations) and the polar axis of inertia from the geocentric coordinate system (polar motion) 
can be detected. This is of importance for the investigation of temporal variations of the 
Earth’s body. 

3.4 The geoid

The geoid is of fundamental importance for geodesy, oceanography, and physics of the 
solid Earth. Due to the present-day demands on accuracy and resolution, the classical 
defi nition of the geoid must be reconsidered [3.4.1]. In geodesy and oceanography, the 
geoid serves as a height reference surface for describing continental and sea surface 
topography [3.4.2], [3.4.3]. Solid Earth physics exploits the geoid as a gravity fi eld rep-
resentation revealing the distribution of deeper located masses, cf. [8.2.4].

3.4.1 Defi nition 

The geoid has already been introduced in [1.2] as a refi ned model of the fi gure of the 
Earth. Defi ned in 1828 by Gauss as the “equipotential surface of the Earth’s gravity fi eld 
coinciding with the mean sea level of the oceans”, the name “geoid” was only given in 
1873 by Listing.

This physical defi nition considers the waters of the oceans as freely-moving homo-
geneous matter, subject only to the force of gravity and free from variations with time 
(as ocean tides and time-variable ocean currents). Upon attaining a state of equilib-
rium, the surface of such idealized oceans would assume a level surface of the gravity 
fi eld. This ocean surface may be regarded as being extended under the continents, 
e.g., by a system of conducting tubes, and will then represent a global realization of 
the geoid.
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With the gravity potential value W0, the equation of the geoid reads as

 W = W(r) =  W 0 . (3.103)

It follows from the properties of the gravity potential W, that the geoid is a closed and 
continuous surface, cf. [3.1.3]. As it extends partially inside the solid Earth (under the 
continents), its curvature will display discontinuities at abrupt density changes. Never-
theless, although not being an analytical surface in a global sense, it may be suffi ciently 
well approximated by a spherical harmonic development, cf. [3.3.2]. With respect to a 
best-fi tting reference ellipsoid, cf. [4.3], the geoid r.m.s. deviation amounts to ±30 m; 
maximum deviations (geoid heights, also geoid undulations) reach about ±100 m. The 
large-scale structures (resolution of about 500 km) of the geoid (geoid heights above a 
geocentric reference ellipsoid) are shown in Fig. 3.12, for more detailed information 
see [6.6.3]. 

The problem of downward continuation of the gravity fi eld into the Earth’s masses presupposes 
knowledge about the density distribution of the atmospheric and topographic masses. 
Geoid calculations consequently depend on the corresponding assumptions (Strykowski, 
1998), cf. [6.5.3].

As is well known from oceanography, mean sea level is not an equilibrium surface in 
the Earth’s gravity fi eld, due to ocean currents and other quasi-stationary effects. In ad-
dition, sea level experiences a variety of temporal variations, which cover a wide spec-
trum. They can be only partially reduced by averaging over time or by modeling. Hence, 
mean sea level still varies over longer time spans, and a geoid defi nition has to refer to 
a certain epoch of mean sea level, cf. [3.4.2], [8.3.3], Bosch (2001b). 

The geoid as gravity fi eld quantity naturally also is affected by variations with time, 
and has to be regarded as a time-dependent quantity. We distinguish between the gravi-
metric tidal effects [3.5.2], and the gravity changes which result from displacements of 
terrestrial masses [3.5.3], [8.3.5]. The corresponding geoid changes remain at the order 

Fig. 3.12: Large scale geoid structures: EGM96 spherical harmonic expansion truncated at 
degree and order 36, contour line interval 5 m (after Lemoine et al., 1998).
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of mm/year, but may reach the centimeter order of magnitude over several years. The 
defi nition of a “cm-geoid” has to take this time-dependence into account. 

The gravimetric tides require special consideration. While the periodic part can be 
modeled to a high degree of accuracy, the treatment of the permanent tidal deforma-
tion enters into the defi nition of the geoid. This effect results from the fact that the 
mean value (time average) of the zonal tide of degree two is not zero, cf. (3.122). There 
are three different defi nitions possible. The mean geoid includes the direct effect of 
attraction and the indirect effect of deformation caused by extraterrestrial bodies (mean 
tidal system). It would coincide with an “undisturbed” mean ocean surface; hence it 
is of interest for oceanography. For the non-tidal geoid, the total tidal-effect would be 
eliminated (tide-free system). This would agree with the theoretical demand of geod-
esy to have no masses outside the boundary surface “geoid”, cf. [6.5.3], but would 
signifi cantly change the shape of the Earth, and consequently the tide-free system is 
not acceptable from the geophysical point of view. As the response of the Earth to the 
permanent tidal part (the indirect effect) is not known, the zero-tide-geoid is preferred 
in geodesy (zero tidal system). Here, the attraction part is eliminated but the perma-
nent deformation retained. This defi nition takes into account the fact that positioning 
also refers to a tidal-deformed Earth (IAG resolution, General Assembly Hamburg 1983; 
Rapp, 1983; Ekman, 1989).

In practice, geodetic products may refer to different tidal reductions. The zero tidal 
system is well established in gravimetry, while three-dimensional reference coordinates 
generally are given in a conventional tide-free system, and an interdisciplinary approach 
with oceanography would require the mean tidal system. Careful studies and reductions 
to a common standard are therefore required at combination solutions (Mäkinen and 
Ihde, 2009).

Consequently, a refi ned geoid defi nition is needed at the “cm” accuracy level (Rizos, 
1982). By applying a minimum condition on the differences between (global) mean 
sea level and the geoid (mean sea surface topography, cf. [3.4.2]), the geoid could be 
defi ned as the equipotential surface which best fi ts mean sea level at a certain epoch 
(Rapp, 1995a), cf. [3.4.3]. 

Another choice would be to defi ne the geoid as the level surface which optimally fi ts 
mean sea level at a selected set of tide gauges used for defi ning the vertical datum of 
national or continental height systems (Burša et al., 2002), cf. [7.2]. Such a defi nition 
would lead to only small corrections for the existing height systems but not result in a 
best fi t over the open oceans. From the relativistic point of view, another approach 
would be to defi ne the geoid as the surface where clocks have the same proper time 
(Müller et al., 2008). As discussed in [2.2.1], the defi nition of Terrestrial Time TT 
requires the geopotential value of the geoid, and a corresponding value is provided 
by the IERS Conventions. As a consequence, optical atomic clocks with a frequency 
stability of 10–17–10–18 would allow a potential transfer for geoid determination with 
dm- to cm-accuracy (Burša et al., 2007), cf. also [2.2.1]. 

3.4.2 Mean sea level

The ocean surface does not coincide with a level surface (e.g., the geoid) of the Earth’s 
gravity fi eld; the deviations are called sea surface topography SST (also ocean surface 
topography or dynamic ocean topography DOT). Instantaneous SST is affected by 
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temporal variations of long-term, annual, seasonal, and short-term character, occurring 
at different scales. Averaging the ocean surface over time (at least over one year) and/
or modeling ocean tides provides Mean Sea Level (MSL) for the corresponding time 
interval. But, even after reducing all time-dependent parts, a (smooth) quasi-stationary 
SST would remain (mean sea surface or mean dynamic ocean topography). It is caused 
by nearly constant oceanographic and meteorological effects, which generate ocean 
currents and ocean surface slopes. The r.m.s. variation of this mean dynamic ocean 
topography is ±0.6 to ±0.7 m, and the maximum deviation from the geoid is about 
±1 m or more (Bosch et al., 2010). 

Short term variations of the sea surface (waves) are averaged out in the mean value over 
time (e.g., at tide gauge observations over one hour) or by the smoothing effect of the 
“footprints” in satellite altimetry, with spatial extension of several kilometers, cf. [5.2.7]. 

Ocean tides contribute about 70% to the variability of the sea surface, with maximum 
partial tides at daily and half-daily periods (Le Provost, 2001). The tidal effects can deviate 
considerably between the open ocean and shelf areas, adjacent seas, and coastal zones. This 
is due to unequal water depths and to the fact that the continents impede the free movement 
of water. On the open sea, the tidal amplitude is less than one meter (r.m.s. variation ±0.3 
m), while it can amount to several meters in coastal areas (Bay of Fundy, Nova Scotia: more 
than 15 m). Oceanic tidal models are based on Laplace’s tidal equations, taking ocean 
boundaries, bathymetry and tidal friction into account. Early models were constrained to 
fi t tide gauge observations (Schwiderski, 1980, 1983). The results of ocean-wide satellite 
altimetry (Chambers, 2009) allowed the development of empirical tidal models (Andersen and 
Knudsen, 1997; Bosch et al., 2009), and the assimilation of altimetric data into hydrodynamic 
models (Le Provost et al., 1998). The models solve for about 10 to 15 and more partial tides 
(annual, semi-annual, monthly, fortnightly, diurnal, semi-diurnal, quarter-diurnal). They are 
provided either in grid form (from 1° × 1° to 0.25° × 0.25° and 0.125º × 0.125º) or as a 
spherical harmonic expansion. Ocean tide models have also been derived by including tidal 
parameters into global gravity modeling (Lyard et al., 2006). The accuracy of the oceanic tidal 
models amounts to ±1 to 2 cm on the open oceans but is less at shelf areas and close to the 
coast (Shum et al., 1997). 

Sea level fl uctuations of annual, semi-annual, and seasonal character are of meteorological 
origin (atmospheric pressure, winds, heat exchange between water masses, atmosphere and 
land), and of oceanographic nature (ocean currents, differences in water density as a function 
of temperature, salinity and pressure), and are also due to a variable water budget (changing 
water infl ux, e.g. as a result of polar ice melting, strong precipitation, e.g. through monsoon 
rains, etc.). The amplitude of these variations is on the order of 0.1 to 1 m, and scales are of 
a few 100 to 1000 km, e.g. at meandering ocean streams and eddies (Nerem, 1995; Bosch, 
2004). We especially mention the annual oscillation (0.1 to 0.2 m) between the water masses 
of the northern and the southern hemisphere, which is due to different solar heating, and the 
interannual El Niño phenomenon, cf. [8.3.3]. An interaction between the ocean tides and 
the ocean circulation has also been found, which is induced by internal tides generated at 
topographic features as islands or ocean trenches (Garrett, 2003). In addition, a global secular 
rise of about 1 to 2 mm/a has been observed over the last 100 years (e.g., Douglas, 1997). 
This trend is expected to increase, reaching eventually 0.6 m (or even more?) over the 21st 
century, due to climate changes producing a thermal expansion of the water masses, a melting 
of the polar ice caps and the glaciers, changing continental hydrology, and isostatic movements 
(Church et al., 2008). The current rate of a global sea level rise as derived from satellite altimetry 
is between 3 and 4 mm/year, but this trend is superimposed by strong regional variations of 



80     3 The Gravity Field of the Earth

different sign, reaching the cm-order of magnitude (Bosch et al., 2010, Cazenave and Llovel, 
2010), cf. also [8.3.3].).

Mean sea level can be derived from tide gauge records, satellite altimetry, and 
oceanographic methods.

Tide gauges (mareographs) continuously record the height of the water level with 
respect to a height reference surface close to the geoid, cf. [3.4.3]. Averaging the results 
over long time intervals (month, year) eliminates most variations with time. In order to 
fully remove the tidal period of a complete lunar cycle (nutation), the record should 
extend over 18.6 years, cf. [2.3.2]. The precision of the mean monthly and annual val-
ues is generally better than ±1 cm. These results may be systematically disturbed if the 
tide gauge location is not directly linked to the open ocean and data is thereby affected 
by local sea level anomalies (swell in shallow waters, estuary effects at river mouths). 
In addition, local or regional vertical crustal movements (land sinking due to water or 
oil pumping, sedimentary subsidence, postglacial uplift, etc.) may act at the tide gauge 
location and systematically affect (bias) the sea level registration. These movements 
may reach a few mm/year (Mitchum, 1994). They are now generally observed by means 
of geodetic space techniques, especially continuous GPS observations (e.g., Becker 
et al., 2002), cf. [8.3.3]. 

Tide gauge data are available for almost 2000 stations worldwide, but only a few stations cover 
a time span of a few centuries (at Amsterdam registrations go back to 1700). The Global Sea 
Level Observing System (GLOSS) of the International Oceanographic Commission (IOC) defi nes 
a worldwide Core Network of approximately 300 stations, which is densifi ed by regional and 
national networks (Woodworth and Player, 2003). In the open oceans, pressure tide gauges 
contribute in monitoring sea surface variability by exploiting the hydrostatic equation (8.5), but 
lack connection to continental height systems, e.g., Tolkatchev (1996). Tide gauges along the 
continental coasts generally have been connected to the local geodetic height control system, 
thus permitting to determine the deviation of MSL from a zero height reference close to the 
geoid. Sea level slopes up to several 0.1 m/1000 km and more have been detected by this 
method, cf. [3.4.3].

Satellite altimetry directly delivers sea surface heights with respect to an ellipsoidal 
reference surface, by regular surveys of the oceans, cf. [5.2.7]. With the exception 
of the polar regions, satellite altimeters cover the marine areas with repeated tracks 
(e.g., with a 10 days repetition rate at TOPEX/Poseidon) and permit derivation of mean 
sea surface heights to an accuracy of 1 to 2 cm. Preprocessed sea surface heights for 
the individual missions are provided by the responsible space agencies like NASA 
and ESA. Refi ned solutions are derived over a certain time period (e.g., one month 
or one year) and given in grids of a few minutes of arc; they differ with respect to the 
used data sets, the evaluated time span, and the evaluation method (Tapley and Kim, 
2001). Sea surface topography is obtained by referring these results to a geoid model. 
If the altimetric solutions for different epochs are compared, sea surface variations 
with time can be determined which are due to redistribution of oceanic water masses 
(e.g., Minster et al., 1995), see above and [8.3.3]. 

Oceanographic methods derive sea surface topography from measurements at sea 
(Rummel and Ilk, 1995). Steric leveling assumes that equipotential and isobaric surfaces 
coincide at a certain depth (e.g., 2000 m): “level of no motion”. Using water density 
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values derived from salinity, temperature, and pressure data along vertical profi les, the 
integration of the hydrostatic equation yields the gravity potential difference (or the 
dynamic height, also geopotential height, cf. [3.4.3]) between two pressure levels, 
the ocean surface and the reference “level of no motion”. This method is applicable 
in the deep oceans and was used to compute mean monthly and annual dynamic 
heights. Geostrophic leveling (dynamic leveling) is based on the hydrodynamic 
equations and uses observed ocean current velocities. It can also be applied in shelf 
areas (Sturges, 1974).

Sea surface topography models have been developed by oceanographic and alti-
metric methods. Oceanic models correspond to a spherical harmonic expansion up to 
degree 36 (or a minimum wavelength of 10°) with an accuracy of a few cm to 0.1 m 
(Levitus et al., 1994). Satellite altimetry solutions are based on subtracting geoid heights 
from altimetric sea surface heights. This can be done straightforward, comparing the 
sea surface height data with a global geoid model, or by inclusion of the sea surface 
topography into a common adjustment, together with gravity fi eld and satellite orbit 
parameters (e.g., Lemoine et al., 1998; Tapley et al., 2003; Savcenko and Bosch, 2008). 
In the latter case, the separation of the geoid and the ocean topography poses a special 
problem, and spherical harmonic developments of the sea surface topography remain 
signifi cantly below the spatial resolution of (satellite-only) gravity fi eld developments 
(1° to 2° resolution and cm-accuracy). Fig. 3.13 shows the quasi-stationary sea surface 
topography as derived for a limited time span, which clearly reveals the main ocean 
currents, and an equatorial bulge of roughly a half meter with respect to mid-latitudes 
(Bosch et al., 2010). 

3.4.3 The geoid as height reference surface

The geoid is used in geodesy, cartography and geomatics, as well as in geophysics and 
especially in oceanography as a reference surface for heights and depths (continental 
and ocean bottom topography, as well as sea surface topography). A point P can be 

Fig. 3.13: Mean sea surface topography (meter above the geoid) for the period 1993–2008, 
resolution about 500 km, after Bosch et al. (2010).
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attributed to a specifi ed level surface by its gravity potential W (Fig. 3.14). With respect 
to the geoid potential W0, the “height” of P is given by the negative potential difference 
to the geoid, which is called the geopotential number C. We get from (3.52)

 C =  W 0  −  W P  = −  ∫ 
 P 0 

   
P

  dW  =  ∫ 
 P 0 

   
P

  g dn . (3.104)

The integral is independent of the path. Hence, P0 is an arbitrary point on the geoid. 
C can be determined from geometric leveling and gravity measurements along any path 
between P0 and P, cf. [5.5.4].

The geopotential number is an ideal measure for describing the behavior of masses (e.g., 
water masses) in the gravity fi eld, it satisfi es the fundamental hydrostatic equation, see [8.1]. 
It could be used as a “height” in several applications, as in hydraulic engineering, oceanog-
raphy and meteorology. A more general use is limited by the potential unit  m 2   s −2 , which is 
in contradiction to the obvious demand for a metric height system that employs the “meter” 
unit.

In order to achieve a certain agreement with the numerical value of the height in meters, 
the geopotential unit 10  m 2   s −2 , or kGal m, is also used for the geopotential number. With 
g ≈ 9.8 m  s −2 , the values of C are about 2% smaller than the corresponding height values.

The dynamic height H dyn is obtained by dividing the geopotential number through a 
constant gravity value. Usually the normal gravity  g    

 0
   45  calculated for the surface of the 

level ellipsoid at 45° latitude is used:  g    0  
 45  = 9.806 199  m  s -2 , cf. [4.3]:

  H  dyn  =   C ___ 
 g      0  

45 
  . (3.105)

The surfaces H dyn = const. remain equilibrium surfaces. Hence, points located on the 
same level surface have the same dynamic height. Unfortunately, a geometric interpreta-
tion of the dynamic heights is not possible, and larger corrections are necessary in order 
to convert leveling results into dynamic height differences, cf. [6.4.1]. Because of this, 
dynamic heights have not been widely used in geodesy but are used in oceanography, 
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Fig. 3.14: Geoid, mean sea level, continental and sea surface topography.
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under the assumption of a hydrostatic equilibrium of the water masses, and also in 
meteorology, with a standard gravity value at sea level  g  

0
   
   = 9.806 65 m  s –2 , cf. [3.4.2].

National or continental height systems, and terrain-data based on them (topographic 
maps, digital terrain models), use either orthometric or normal heights.

The orthometric height H is defi ned as the linear distance between the surface point 
and the geoid, reckoned along the curved plumb line (Fig. 3.14). This defi nition cor-
responds to the common understanding of “heights above sea level”. Expanding the 
right-hand side of (3.104) in H and integrating along the plumb line from P0 (H = 0) to 
P (H) we obtain

 H =   C __ 
 
_

 g 
  ,  

_
 g  =   1 __ 

H
    ∫ 
0

   
H

  g dH.  (3.106)

 
_
 g  is the mean gravity along the plumb line, with the consequence that gravity values in-

side the Earth are required for its calculation. This is performed by introducing a model 
of the density distribution of the topographic masses, see [6.4.1] for corresponding esti-
mates of  

_
 g . As the density distribution is known only imperfectly, the accuracy of com-

puted orthometric heights depends on the accuracy of the density model. In addition, 
points of equal orthometric height deviate slightly from a level surface, which is due to 
the non-parallelism of the level surfaces, cf. [3.2.1]. These drawbacks are compensated 
by the fact that orthometric heights represent the geometry of the topographic masses. 
In addition, the results of geometric leveling, as the most precise height determination 
method on land, only need small corrections for the transformation into orthometric 
height differences, cf. [6.4.1].

In order to avoid any hypothesis on the distribution of the topographic masses, nor-
mal heights HN have been introduced and are used in a number of countries. The mean 
gravity  

_
 g  in (3.106) is now replaced by the mean normal gravity  

_
 g  along the normal 

plumb line, which is only slightly curved, cf. [4.2.3]:

  H N  =   C __ 
 
__

 g      ,   
__

 g    =   1 ___ 
 H N 

    ∫ 
0

   
 H  N 

    g d H N .  (3.107)

  
__

 g    can be calculated in the normal gravity fi eld of an ellipsoidal Earth model, cf. 
[4.2.2]. The reference surface for the normal heights is the quasigeoid. It is obtained 
pointwise by drawing the normal heights from the Earth’s surface to the interior. The qua-
sigeoid thus constructed is close to the geoid but not a level surface. It deviates from the 
geoid on the mm-to-cm order at low elevations and may reach 1 m deviation in the high 
mountains. On the oceans, geoid and quasigeoid practically coincide, cf. [6.1.1].

A global vertical reference surface “geoid” could be based on the determination of a 
geoid potential value W0 derived from sea surface topography SST, cf. [3.4.2]. Accord-
ing to Bruns’ formula (6.97b), SST is proportional to the difference between the gravity 
potential values on the geoid W0 and on the ocean surface WP , i. e., the geopotential 
number (3.104): SST = (W0 – WP)/g  P , with normal gravity g. A minimum condition 
applied on SST then serves for estimating W0. The “vertical coordinates” in this system 
are given by the potential values W (calculated in the zero-tidal system, cf. [3.4.1]) or 
the geopotential numbers. As the result would be derived from data collected over a 
limited (although as long as possible!) time interval, it should refer to a defi ned epoch. 
Using the results of dedicated satellite gravity fi eld missions, cf. [5.2.8], and recent (and 
future) satellite altimetry, cf. [5.2.7], such a global vertical reference surface could be 
realized with cm-accuracy.
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The realization of the vertical reference system on the continents requires special 
consideration. Presently, the zero height surface (vertical datum) of national height sys-
tems is defi ned by the mean sea level derived from tide gauge records over a certain 
time interval (the International Hydrographic Organization defi nes MSL as the average 
height of the sea surface over a 18.6-year period), and realized through the zero-points 
of tide gauges. By transferring potential differences (or height differences in the national 
height system) from the zero-point to the benchmarks of the vertical control network, 
the vertical datum fi nally is realized by the set of benchmark heights, cf. [7.2]. These 
local reference surfaces only approximate the geoid or the quasigeoid, due to the effect 
of sea surface topography and local sea level anomalies, with deviations up to 1 m and 
more, cf. [3.4.2]. 

As a consequence, a global vertical reference system is actually defi ned and realized 
only at the accuracy level of a few decimeters, through the W0-values of different SST 
evaluations (the IERS Conventions 2010 give the value W0 = 62 636 856.0 ± 0.5 m 2   s –2 , as 
a recent standard). On the continents, the present realization of a global vertical system 
is even worse. This accuracy is signifi cantly less than that of the global geometric refer-
ence system, cf. [4.3], and does no longer satisfy the needs of geodesy and oceanography. 
Basic strategies for the defi nition and realization of a world height system follow the ideas 
explained above (Rummel and Teunissen, 1988; Rapp, 1995b). These strategies include 
the determination of the potential offsets of local vertical height systems from a global sys-
tem (defi ned through the geoid potential), exploiting GNSS positioning at bench marks, 
and provide fi rst results (Ihde and Sánchez, 2005; Sánchez, 2009).

The adjustment of a continental-wide leveling network connected to MSL of one tide gauge, 
provides potential differences or heights that refer to one common level surface. By comparing 
with the mean sea level obtained at different tide gauges, sea level slopes that partially agree with 
oceanic leveling results have been found. For example, MSL at the Pacifi c coast of the U.S.A. is 
about 1 m higher than at the Atlantic coast (Zilkoski et al., 1995), and the mean Baltic Sea level 
is estimated to be about 0.5 m above MSL of the Mediterranean Sea (Sacher et al., 1999). On the 
other hand, there are also larger discrepancies of a few 0.1 m between the results of geometric 
and oceanic leveling. These can be traced back to differently defi ned reference surfaces, to the 
particular behaviour of MSL along the coastlines, and to systematic errors in geometric leveling 
over long distances (Fischer, 1977). It should also be mentioned that older leveling networks have 
often been adjusted without any gravity reduction, or by substituting actual gravity with normal 
gravity, thus producing larger systematic errors, cf. [7.2]. A unifi cation of the different vertical 
datum systems to a world-wide standard thus would also require a uniform treatment of the height 
measurements, in addition to the vertical shifts to a common global reference surface (see above). 

3.5 Temporal gravity variations

Gravity changes with time may be divided into effects due to an eventual time depen-
dent gravitational constant and variations of the Earth’s rotation [3.5.1], tidal accel-
erations [3.5.2], and variations caused by terrestrial mass displacements [3.5.3]. These 
changes are of global, regional, or local character and occur either at well-known fre-
quencies (tides) or at time scales ranging from secular to episodic (Lambeck, 1988; 
Mueller and Zerbini, 1989; Timmen, 2010).
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3.5.1 Gravitational constant, Earth rotation

Based on cosmological considerations, Dirac (1938) postulated a secular decrease of the 
gravitational constant G, with relative changes of G

.
/G = −1 0 −10  to −1 0 −11 /a (G

.
 = dG/dt). 

But even to this day, laboratory experiments and the analysis of long-term observations to 
artifi cial satellites and the moon have not supported the assumption G

.
  ≠ 0 (Gillies, 1987). 

A powerful tool for detecting a secular variation of G is lunar laser ranging, as such a variation 
would change the Earth-moon distance. Recently, the analysis of 40 years of lunar laser ranging 
data yielded a relative change of (–1 ± 4)×10–13/a for the gravitational constant, which is not 
signifi cant (Hofmann et al., 2010).

The Earth’s rotational vector v is subject to secular, periodic, and irregular variations, 
leading to changes of the centrifugal acceleration z, cf. [2.3.4]. In a spherical approxi-
mation, the radial component of z enters into gravity, cf. [3.1.4]. By multiplying (3.35b) 
with cos  

__
 j  ( 

__
 j  = geocentric latitude), we obtain 

  z r  = − w  2 r co s 2  
__

 j . (3.108) 

Differentiation yields the effect of changes in latitude (polar motion) and angular 
velocity (length of day) on gravity:

 d z r  =  w  2 r sin 2  
_
 j  d  

_
 j  − 2w r cos2  

_
 j  dw. (3.109)

Polar motion does not exceed a few 0.1”/a, and rotation changes are at the order 
of a few ms. Hence, corresponding gravity variations on the Earth’s surface (r = 6371 
km) remain less than 0.1 μm  s −2  and 0.01 μm  s −2 , respectively. They can be taken into 
account easily by corresponding models, cf. [5.3.3], [5.4.1].

3.5.2 Tidal acceleration, tidal potential

Tidal acceleration is caused by the difference between lunisolar gravitation (and to a far 
lesser extent planetary gravitation) and orbital accelerations due to the motion of the 
Earth around the barycenter of the respective two-body system (Earth-moon, Earth-sun, 
etc.). The periods of these orbital motions are about 28 days for the moon and 365 days 
for the sun, and the gravimetric tidal effect is at the order of 1 0 −7 g (Melchior, 1983; Zürn 
and Wilhelm, 1984; Wenzel, 1997a).

For a rigid Earth, the tidal acceleration at a given point can be determined from 
Newton’s law of gravitation and the ephemerides (coordinates) of the celestial bodies 
(moon, sun, planets). The computations are carried out separately for the individ-
ual two-body systems (Earth-moon, Earth-sun, etc.), and the results are subsequently 
added, with the celestial bodies regarded as point masses.

We consider the geocentric coordinate system to be moving in space with the Earth 
but not rotating with it (revolution without rotation). All points on the Earth experience 
the same orbital acceleration in the geocentric coordinate system (see Fig. 3.15 for the 
Earth-moon system). In order to obtain equilibrium, orbital acceleration and gravitation 
of the celestial bodies have to cancel in the Earth’s center of mass. Tidal acceleration 
occurs at all other points of the Earth. The acceleration is defi ned as the difference 
between the gravitation b, which depends on the position of the point, and the constant 
part  b 

0
 , referring to the Earth’s center:

  b t  = b −  b 0 . (3.110)
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The tidal acceleration deforms the Earth’s gravity fi eld symmetrically with respect 
to three orthogonal axes with origin at the Earth’s center. This tidal acceleration fi eld 
experiences diurnal and semi-diurnal variations, which are due to the rotation of the 
Earth about its axis.

If we apply the law of gravitation to (3.110), we obtain for the moon (m)

  b t  =   
G M m 

 _____ 
 l  m  2

  
     

 l m 
 ___ 

 l m  
   −   

 GM m 
 _____ 

 r  m  2  
     

 r m 
 __  r m
   . (3.111)

Here, Mm is the mass of the moon, and  l 
m
  and  r 

m
  are the distances to the moon as 

reckoned from the calculation point P and the Earth’s center of mass O, respectively. We 
have  b 

t
  = 0 for  l 

m
  =  r 

m
 . Corresponding relations hold for the Earth-sun and Earth-planet 

systems. 
We now make the transition from the tidal acceleration to the tidal potential:

  b t  = grad  V t  = grad  ( V −  V 0  ) . (3.112)

In the geocentric system, using spherical coordinates  r 
m
 , y 

m
 (functions of time!), the 

law of gravitation yields the potential of a point mass according to (3.9):

 V =   
 GM m 

 _____ 
 l m 

   (3.113a)

with

  l m  =   (  r  2  +  r   m  2   − 2 rr m  cos  y m  )    
1 __ 
2
   . (3.113b)

The potential of the homogeneous  b 0 -fi eld is given by multiplying  b 0  with r cos  y m :

  V 0  =   
 GM m 

 _____ 
 r  m  2  

   r cos  y m . (3.114)

Inserting (3.113) and (3.114) into (3.112), and adding an integration constant, so that  
V t  = 0 for r = 0 and  l m  =  r m , we get for the tidal potential

  V t  =  GM m   (   1 __ 
 l m 

   −   1 __  r m
    −   

r cos  y m 
 _______ 

 r  m  2  
   ) . (3.115)

The tidal potential, and functionals thereof, can be calculated either from the eph-
emerides of the celestial bodies or from a spherical harmonic expansion. Tidal potential 
catalogues are based primarily on the latter method, as the series expansions converge 
rapidly close to the Earth’s surface (r = R), with r/ r m  = 1/60 for the moon and a corre-
sponding relation of 1/23 600 for the sun. The results from calculations employing the 
ephemerides may serve as a control for the tidal potential cataloges. 
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Fig. 3.15: Lunar gravitation, orbital acceleration, and tidal acceleration.
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We develop (3.113b) into a series according to (3.79). When inserting into (3.115), 
the terms of degree zero and one cancel and we obtain

  V t  =   
G M m 

 _____  r m     ∑ 
l=2

   
∞

      (   r __  r m    )  l   P l   ( cos  y m  ) , (3.116)

where  P l   ( cos  y m  )  are the Legendre polynomials of degree l. The development converges 
rapidly due to the factor r/rm, with the largest contribution  ( ≈98% )  originating from de-
gree two. Restricting ourselves now to l = 2, and inserting  P 2  (3.83) in the form

 co s 2  y m  =   1 __ 
2
    ( cos 2 y m  + 1 ) ,

we get the main term of the tidal potential series

  V t  =   3 __ 
4
  G M m     r 

2  __ 
 r  m  3  

    ( cos 2 y m  +   1 __ 
3
   ) . (3.117)

For r = R, and neglecting the slight variation of  r m , the expression before the parenthe-
ses is called Doodson’s tidal constant. It is 2.628   m 2   s −2  for the moon and 1.208  m 2   s −2  
for the sun. Hence, the solar tides amount to 46% of the lunar tides.

Differentiating (3.117) generates the tidal acceleration. The radial component (posi-
tive outward) is found to be

  b r  =   
∂ V t  ___ 
∂r

   =   3 __ 
2
   G M m    r __ 

 r  m  3  
   ( cos 2 y m  +   1 __ 

3
   ) . (3.118)

The tangential component (positive in the direction toward the moon) is

  b  y m   = −   
∂ V t  _____ 

r∂ y m 
   =   3 __ 

2
   GM m    

r __ 
 r  m  3  

  sin 2 y m . (3.119)

Equations (3.117) to (3.119) permit calculation of the tidal effects on the level sur-
faces, on gravity, and on the plumb line direction for a rigid Earth. 

Taking the relation (3.52) between a potential change and the vertical shift of a level 
surface into account, (3.117) delivers the tidal-induced increase of a level surface. This 
amounts to 0.36 m for the moon and 0.16 m for the sun at y = 0° and 180°, respectively. 
At y = 90° and 270°, we have a decrease of 0.18  m and 0.08  m, respectively. For station-
ary systems, the level surfaces would experience a corresponding deformation, and freely 
moving masses of water would assume the form of one of these surfaces (equilibrium 
tide), Fig. 3.16.

Fig. 3.16: Tidal acceleration and equilibrium tide.
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According to (3.118), gravity changes (opposite sign!) would vary between −1.1  μm  s −2  
(moon) and −0.5  μm  s −2  (sun) for y = 0° (zenithal position); and + 0.5  μm  s −2  (moon) and + 
0.3  μm  s −2  (sun) for y = 90° and 135°. Changes in the direction of the plumb line are given 
by by   /g, see (3.119). There is no tidal effect at y = 0° and 90°. Maximum values occur at 
y = 45° and 135°, with fl uctuations of ±0.017” (moon) and ±0.008” (sun).

Equation (3.117) provides the dependence of the tidal potential on the zenith angle 
(and the distance) to the celestial body. The temporal variation of the tidal potential 
and acceleration is more easily recognized if we change to the Earth-fi xed coordinate 
system  (  

__
 ϕ , l )  for the point of calculation and to the equatorial system of astronomy (d, 

h) for the celestial body, cf. [2.3.1]. Following (2.21), we have for the moon the relation

 cos  y m  = sin   
_
 j  sin  d m  + cos  

_
 j  cos  d m  cos  h m  (3.120)

with the hour angle given by (2.22) and (2.23):

  h m  = LAST −  a m  = l + GAST −  a m . (3.121)

Substituting into (3.117) yields Laplace’s tidal equation for the moon (a corresponding 
equation is valid for the sun): 

  V t  =   3 __ 
4
    GM m     r 

  2  __ 
 r  m  3  

    {   (   1 __ 
3
   − si n 2   

_
 j  )  (1 − 3si n 2  d m ) +

                     
sin 2  

_
 j  sin 2 d m  cos   h m  + co s 2   

_
 j  co s 2  d m  cos 2 h m 

  } . (3.122)

The quantities  r m ,  d m , and  h m vary with time, having different periods. The fi rst term, 
which is independent of the Earth’s rotation, exhibits long-periodic variations (14 days 
for the moon, half a year for the sun). It also contains a non-periodic part, which only 
depends on latitude, causing a permanent deformation of the level surfaces includ-
ing the geoid, cf. [3.4.1]. Using (3.52), and taking the inclination of the ecliptic into 
account, the geoid is thus lowered by 0.19 m at the poles and raised by 0.10 m at the 
equator (Ekman, 1989). The second term oscillates with diurnal periods because of the 
daily rotation of the Earth as expressed by the hour angle h, and the third term intro-
duces semi-diurnal periods. Long-periodic terms enter through the declination d and 
the right ascension a. 

As seen from (3.122), long-periodic and semi-diurnal tides are symmetric about the 
equator, while the diurnal tides are antisymmetric. The diurnal tide has its maximum at 
j  = ± 45° and vanishes at the equator and the poles, while the semi-diurnal tide reaches 
its maximum at the equator and is zero at the poles. The long-periodic tides have a 
maximum at the poles.

Each of the three tidal constituents in (3.122) varies in a complicated way, since 
they contain products of different time varying functions. However, the ephemerides 
of the moon and the sun can be expressed as harmonic functions of fi ve fundamen-
tal astronomic quantities, considering that these quantities essentially change uni-
formly with time (Melchior, 1983). Introducing these harmonic series into (3.122) 
yields a spectral analysis of the tidal potential, and with (3.118) and (3.119), we 
get a corresponding spectral analysis of the tidal acceleration. Thus, potential and 
acceleration are represented by the sum of time-dependent cosine functions hav-
ing constant periods and amplitudes and phases that depend on latitude and height 
(partial tides). Tab. 3.1 gives the periods and amplitudes of the main gravimetric 
partial tides for j = 45°.
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A fi rst expansion for the moon and the sun was carried out by Doodson (1921). The development 
by Cartwright and Tayler (1971) and Cartwright and Edden (1973) contains 505 partial tides 
(uncertainty less than 1 nm  s −2 ) and was recommended by IAG for the computation of the tides 
of the rigid Earth (Rapp, 1983). Among the more recent tidal cataloges is the development by 
Hartmann and Wenzel (1995). It is based on a spherical harmonic development to degree 6 
(moon) and degree 3 (sun) and includes the effects of Venus, Mars, and Jupiter (four orders of 
magnitude smaller than the tidal effects of moon and sun). It also takes the fl attening of the Earth 
into account. This catalogue provides 12 935 partial tides, with an accuracy of 0.001 nm  s −2  for 
the gravimetric tidal effect (Wenzel, 1996).

As the Earth is not a rigid body, it reacts in a different way to the tidal force. The solid Earth 
behaves mainly as an elastic body: Earth’s body tides (Earth tides). In the oceans, tidal os-
cillations depend on the ocean-bottom topography, with large differences occurring at the 
coastlines and at the shelf areas: ocean tides (Zahel, 1997; LeProvost, 2001), cf. [3.4.2]. 
While the measurement of gravimetric tidal effects will be discussed in [5.4.6], the theory 
of Earth tides and results of Earth-tide observations are given in [8.3.6].

3.5.3 Non-tidal temporal gravity variations

The terrestrial gravity fi eld is affected by a number of variations with time due to mass 
redistributions in the atmosphere, the hydrosphere, the cryosphere, and the solid Earth’s 
surface, crust, mantle and core (e.g., Ekman, 1989; Dickey, 2002). These processes take 
place at different time scales and are of global, regional, and local character. The magnitude 

Tab. 3.1: Principal gravimetric partial tides for   
_
 j  = 45°, h = 0

Symbol Name Period
(solar days/hours)

Amplitude
 ( nm  s −2  ) 

Long-periodic waves
M0 Const. m tide ∞ 102.9
S0 Const. s tide ∞ 47.7
Ssa Declin. tide to S0 182.62 d 14.8
Mm Ellipt. tide to M0 27.55 d 16.8
Mf Declin. tide to M0 13.66 d 31.9

Diurnal waves
O1 Main diurnal m tide 25.82 h 310.6
P1 Main diurnal s tide 24.07 h 144.6
Q1 Ellipt. tide to O1 26.87 h 59.5
K1 Main diurnalls decl. tide 23.93 h 436.9

Semi-diurnal waves
M2 Main m tide 12.42 h 375.6
S2 Main s tide 12.00 h 174.8
N2 Ellipt. tide to M2 12.66 h 71.9
K2 Declin. tide to M2, S2 11.97 h 47.5

Ter-diurnal waves

M3 Ter-diurn. m tide 8.28 h 5.2
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of these non-tidal gravity variations depends on the amount of mass shifts and is related to 
them by the law of gravitation. Generally, gravity variations produced by mass redistribu-
tions do not exceed the order of 1 0 −9  to 1 0 −8  g. Of special interest for geodesy are temporal 
changes of the geoid. They generally remain less than 1 mm/year, but may reach regionally 
one centimetre and more within a few years (e.g., Kuhn, 2002). 

Long-term global effects include postglacial rebound, melting of the ice caps and 
glaciers, as well as sea level changes induced by global warming; slow motions of the 
Earth’s core and mantle convection also contribute. Subsidence in sedimentary basins 
and tectonic uplift are examples of regional effects. Groundwater and soil moisture 
variations are primarily of seasonal character but may affect larger regions, while vol-
canic and Earthquake activities are short-term processes of more local extent. Human 
activities as large building projects, irrigation or the withdrawal of water, oil and gas 
may also cause gravity changes, but are of a more local character. 

Observation and modeling of non-tidal temporal gravity variations started with 
advanced relative and absolute gravimetry, in the second half of the twentieth century. 
Repeated satellite orbit analyses early allowed the determination of global gravity fi eld 
changes, e.g., expressed as a change of the Earth’s oblateness. Dedicated gravity fi eld 
satellite missions are now able to monitor large- and medium-scale variations, of sea-
sonal and long-term character. Small-scale effects still can be detected only by repeated 
terrestrial gravity measurements (e.g., Torge, 1993; Wahr, 2009). The continuous regis-
tration of gravity allows to monitor a multitude of geodynamic phenomena, from the 
seconds to decades time scale. More details about the measurement and the evaluation 
of gravity variations with time will be found in the chapters on gravity measurements 
[5.2.8], [5.4.1], [5.4.6], and on the results obtained by repeated gravity fi eld determina-
tion, especially through dedicated satellite missions [8.3.5].



4 The Geodetic Earth Model

A geodetic Earth model is used as a reference for the actual surface and external gravity 
fi eld of the Earth. It should provide a good fi t to the geoid and to the gravity fi eld, and 
thus allow the linearization of non-linear geodetic problems. On the other hand, the 
mathematical formation of the model should be simple and possibly permit calculations 
by closed formulas. The model should serve as a standard for applications not only in 
geodesy, surveying, navigation, geoinformation and cartography, but also in astronomy 
and geophysics.

Based on these considerations, the level ellipsoid has been introduced as geodetic 
Earth model. It possesses a simple geometry, and coordinate systems that refer to it 
approximate the gravity fi eld related “natural” coordinates suffi ciently well [4.1]. The 
ellipsoid’s mass and rotation provide a “normal” gravity fi eld exterior to the ellipsoid, 
which can be rigorously calculated if the ellipsoid surface is defi ned to be in  equilibrium 
[4.2]. State of the art Earth models are recommended from time to time as a  standard 
and are given the name Geodetic Reference System [4.3].

4.1 The rotational ellipsoid

The rotational ellipsoid was introduced as a geometrical fi gure of the Earth in the 
 eighteenth century, cf. [1.3.2]. By fi tting its dimension and orientation to the geoid, 
it approximates this level surface within about ±100 m. The geometry of the ellipsoid 
can be described in a simple manner, together with ellipsoidal surface coordinates 
and  curvature [4.1.1], [4.1.2]. The use of global and local three-dimensional ellipsoidal 
 systems provides an approximation to the corresponding systems of the actual Earth and 
permits the separation between horizontal position and height [4.1.3].

Geometry and coordinate systems of the ellipsoid are well documented in geodetic 
literature, e.g., Grossmann (1976), Bomford (1980), Heitz (1988), Heck (2003a).

4.1.1 Parameters and coordinate systems 

The rotational ellipsoid is generated by rotating the meridian ellipse about its minor 
axis. Size and shape of the ellipsoid are described by two geometric parameters, the 
semi-major axis a and the semi-minor axis b (Fig. 4.1). Generally, b is replaced by a 
smaller quantity, describing the (small) polar fl attening of the ellipsoid, which is more 
suitable for series expansions. We especially have the (geometrical) fl attening

 f =   a − b _____ a  , (4.1a)

the fi rst numerical eccentricity

 e =    √ 
______

     a 2  −  b 2    ________ a  , (4.1b)
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and the second numerical eccentricity

 e′ =    √ 
_______

      a 2  −  b 2    ________ 
b
  . (4.1c)

The following relations hold among those quantities:

   b __ 
a
   = 1 − f =  √ 

______
  1 −  e 2    =   1 _______ 

 √ 
______

  1 +  e′ 2   
   =   e __ 

e′
  . (4.2)

From the geometric defi nition of the ellipse as the curve having a constant value for 
the sum of the distances r1 and r2 to the focal points F (Fig. 4.1)

  r 1  +  r 2  = 2a,

we obtain the linear eccentricity as another quantity describing the fl attening:

 e =  √ 
______

   a 2  −  b 2   . (4.3)

We now introduce a spatial Cartesian  
__

 X ,  
__

 Y ,  
__

 Z -coordinate system (Fig. 4.2). The 
origin of the system is situated at the center of the ellipsoid O. The   

__
 Z -axis coincides 

with the minor axis of the ellipsoid. The equation of the surface of the ellipsoid is 
then given by

      
_
 X   2  +    

_
 Y    2  _______ 

 a 2 
   +      

_
 Z   2  ___ 

 b 2 
   − 1 = 0. (4.4)
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Fig. 4.1: Meridian ellipse.
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Fig. 4.2: Geodetic coordinates latitude and longitude.
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The system of geodetic surface coordinates is defi ned by the ellipsoidal latitude j 
and longitude l (also geodetic latitude and longitude). j is the angle measured in the 
meridian plane between the equatorial plane (  

_
 X ,  
_
 Y -plane) of the ellipsoid and the surface 

normal at P. Longitude l is the angle measured in the equatorial plane between the zero 
meridian (  

_
 X -axis) and the meridian plane of P. Here, j is positive northwards and nega-

tive southwards, and l is positive as reckoned towards the east. The ellipsoidal merid-
ian plane is formed by the surface normal and the   

_
 Z -axis. j and l are defi ned to have 

angular values, but they may also be considered as curvilinear surface coordinates. The 
coordinate lines of this orthogonal system are the meridians (l = const.) and the paral-
lels, or circles of latitude, (j = const.). With 

   
_
 X  = pcos l,   

_
 Y  = psinl, (4.5)

we introduce the radius of the circle of latitude

 p =  √ 
_______

      
_
 X   2  +    

_
 Y   2    (4.6) 

as a new variable (Fig. 4.2). Substituting p into (4.4) and differentiating yields the slope 
of the ellipsoidal tangent at P (Fig. 4.3):

   d  
_
 Z  ___ 

dp
   = −  (   b __ 

a
   )  2   p __ 

  
_
 Z 
   = −cot j. (4.7)

By combining (4.4) and (4.7), and substituting p with (4.5), the parametric representa-
tion of the meridian ellipse follows:

   
_
 X  =     

  a 2 cosj cos l 
  __________________  

( a 2 co s 2 j +  b 2 si n 2 j )   
1 __ 
2
  
 
   ,   

_
 Y  =   

    a 2 cos j sin λ 
  _________________  

  (  a 2 co s 2 j +  b 2 si n 2 j )    
1 __ 
2
   
   ,

   
_
 Z  =    

 b 2 sinj 
  __________________  

  (  a 2 co s 2 j +  b 2 si n 2 j )    
1 __ 
2
   
    . (4.8)

Instead of j, other latitude parameters are used for special applications. The geocen-
tric latitude  

__
 j  has already been introduced together with the longitude l and the geo-

centric distance r as spherical coordinate, cf. [2.5.1]. From Fig. 4.3, the corresponding 
equation of the ellipse is given by

 p = r cos 
__

 j ,  
__

 Z  = r sin 
__

 j , (4.9)

where p follows from (4.5), (4.6). 

Fig. 4.3: Geodetic, reduced, and geocentric latitude.
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The reduced latitude b is obtained by projecting (parallel to the   
_
 Z -axis) from the 

ellipse to the concentric circle of radius a (Fig. 4.3). Since the ratio of the elliptical to 

the circular coordinates is   b __ a   (ellipse as the affi ne image of the circle), we have

 p = acos b,   
_
 Z  =   b __ a   a sinb = b sin b. (4.10)

Using b instead of j formally transforms ellipsoidal into spherical formulas, see also 
[6.3.3].

Comparing (4.9) and (4.10) with (4.7) provides the transformation between j,  
__

 j , and b : 

 tan  
__

 j  =   (   b __ a   )  2 tan j =  ( 1 −  e  2  )  tan j,

 tan b =   b __ a   tan j =  √ 
______

 1 −  e  2    tan j. 
(4.11a)

A series expansion yields the differences in the angles:

 j −  
__

 j =    e  2  __ 
2
   sin 2j + … = 2(j − b ). (4.11b)

The maximum difference occurs at j = 45°, with (j −  
__

 j ) = 690”.

4.1.2 Curvature 

The meridians and parallels are the lines of curvature of the rotational ellipsoid. The 
principal radii of curvature are therefore in the plane of the meridian and in the plane 
of the prime vertical perpendicular to the meridian plane (Fig. 4.4).

The curvature of the meridian (curvature radius M)   
_
 Z  =   

_
 Z  (p) in the   

_
 Z , p-plane is given by

   1 __ 
M

   = −   
   d  2   

_
 Z  ___ 

d p 2 
  
 __________ 

  ( 1 +   (   d  
_
 Z  __ 

dp
   )  2  )    3 __ 2  

 
  . (4.12)
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Fig. 4.4: Curvature of the rotational ellipsoid.
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With (4.7) and its derivative, and taking (4.2) into account, we obtain the meridian 
radius of curvature

 M =   a  ( 1 −  e  2  )  ____________  
  ( 1 −  e  2 sin2j  )    3 __ 2   

  . (4.13)

The plane of a parallel circle (oblique section of the rotational ellipsoid) and the 
vertical plane in the same tangential direction intersect at point P with the angle j. 
The theorem of Meusnier (regarding surface curvatures, see, e.g., Stoker, 1969) provides 
the radius of curvature in the prime vertical:

 N =   
p
 _____ cosj . (4.14)

Because of rotational symmetry, the origin of N is on the spin axis. Inserting (4.6) and 
(4.8) into (4.14), one obtains 

 N =   a ____________  
  ( 1 −  e  2 sin2j  )    1 __ 2   

  . (4.15)

A comparison of (4.13) and (4.15) shows that N ≥ M. At the poles (j = ±90°), the polar 
radius of curvature becomes

 c =  M 90  =  N 90  =    a  2  __ 
b
  . (4.16)

At the equator (j = 0°) the values are

  M 0  =    b 2  __ a  ,  N 0  = a. (4.17)

The curvature of the ellipsoidal normal section with the geodetic azimuth a is com-
puted according to Euler’s formula by

   1 ___ 
 R α 

   =   co s 2 a  ______ 
M

   +   si n 2 a  ______ 
N

  . (4.18)

Here, Ra is the radius of curvature. The geodetic azimuth a is defi ned as the angle 
measured in the horizontal plane between the ellipsoidal meridian plane of P and the 
vertical plane containing the normal to P and the target point; a is reckoned from north 
in the clockwise direction. The mean curvature  

_
 J  is given by

  
_
 J  =   1 __ 

2
    (   1 __ 

M
   +   1 __ 

N
   ) . (4.19)

The arc lengths of the coordinate lines of the j, l-system are computed using M 
and N. For the arc elements of the meridian and the parallel, respectively, we obtain 
(Fig. 4.4)

 dG = M dj, dL = N cos j dl. (4.20)

With (4.13), the length of the meridian arc (starting at the equator) becomes

 G =  ∫ 
0

   

j

   M dj  = a ( 1 −  e  2  )  ∫ 
0

   

j

     
dj 
 ____________  

 (1 −  e  2 si n 2 j  )  3 __ 2   
   . (4.21a)

Equation (4.21a) can be reduced to an elliptic integral of the second kind, which 
cannot be evaluated in a closed form (Kutterer, 1998). Practical computations may be 
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based on numerical integration (e.g., by Simpson’s rule) or on a binomial expansion of 
the denominator. Subsequent term-by-term integration then yields

 G = a ( 1 −  e  2  )  (  ( 1 +   3 __ 
4
    e  2  + … )  j −  (   3 __ 

8
    e  2  + … )  sin 2j + … ) . (4.21b)

Short arcs  ( Δj =  j 
2
  −  j 

1
  < 1° )  can be calculated by a rapidly converging Taylor 

expansion. Expanding about the middle latitude  j 
M
  =   

 (  j 
1
  +  j 

2
  ) 
 _______ 2   yields

 Δ G 1,2  =  G 2  −  G 1  =   (   dG ___ 
dj

  )  
 j 

M
 
 Δj +…. (4.21c)

According to (4.20), the arc length of a circle of latitude between the geodetic longi-
tudes l1 and l2 is given by

 ΔL =  ∫ 
 l 

1
 

   

 l 
2
 

    N cos j dl = N cos j  (  l 2  −  l 
1
  ) . (4.22)

With a = 6 378 137 m, b = 6 356 752 m, and e2 = 0.006 694 380 (for numerical 
 values see [4.3]), we get for the radii of curvature at the poles and at the equator

 c = 6 399 594 m, M0 = 6 335 439 m, N0 = a.

The arc lengths along the meridian and the parallel for j = 50° are

 ΔG ( Δj = 1° )  = 111  229 m,  ΔL ( Δl = 1° )  = 71  696 m,

 ΔG ( Δj = 1’ )  = 1853.8 m,    ΔL ( Δl = 1’ )  = 1194.9 m, 

 ΔG ( Δj = 1” )  = 30.90 m,      ΔL ( Δl = 1” )  = 19.92 m.

Local approximations to the ellipsoid use the Gaussian osculating sphere of radius

  R G  =  √ 
_________

  M ( j ) N ( j )   . (4.23)

At the latitude j, it has the same Gaussian curvature as the ellipsoid.
Global approximations can be based on a sphere with the mean radius

  R m  =   1 __ 
3
   ( 2a + b ) , (4.24a)

the radius derived from equality of volumes (i.e., volume of sphere equals volume of 
ellipsoid)

  R V  = 
3
 √ 

___
   a 2 b  , (4.24b)

or the radius for a sphere having a surface area equal to that of the ellipsoid. The latter 
one results from an integration over the ellipsoidal surface elements dG and dL (4.20), 
which after a series expansion yields

  R S  = b  ( 1 +   2 __ 
3
   e  2  +   3 __ 

5
   e 4  + … )  1/2

 . (4.24c)

The numerical values for these three approaches agree within a few meters, which 
leads to a mean global value of R = 6371 km.

4.1.3 Spatial geodetic coordinates

The ellipsoidal surface coordinate system (j, l) can be extended to a spatial system by 
introducing the height h of the point P above the ellipsoid measured along the surface 
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normal (Fig. 4.5). The point Q on the ellipsoid thus is obtained by projecting the point 
P along the ellipsoidal normal: Helmert projection (Grafarend, 2000, 2001). The spatial 
coordinates j, l, h are designated as geodetic coordinates. 

The coordinate surfaces (j = const., l = const., h = const.) of this system are ortho-
gonal. The coordinate lines (j-line = geodetic meridian, l-line = geodetic parallel, 
h-line = ellipsoidal normal) represent planar curves.

In (4.8) we substitute the fi rst eccentricity e 2 for the semi-minor axis b, taking (4.15) into 
account; the coordinate vector for the point Q on the ellipsoid (4.8) then transforms into

   
_
 r  Q  =  (    

__
 X   Q 

 
 

   
__

 Y   Q    

  
__

 Z   Q 

  )  = N
  (       cos j cos l  

      
cos j sin l  

        

(1 − e2)sin j   

   ) . (4.25)

For the point P, we get according to Fig. 4.5

  
_
 r  =   

_
 r  Q  + h  

__
 n , (4.26a)

with the surface normal

  
__

 n  =  (  cos j cos l  
 

    
 cos j sin l         

sin j 
   ) ,  (4.26b)

or 

  
_
 r  =  (   

__
 X  
 

 
  

__
 Y     

 
__

 Z  
  )  =  (    ( N + h )  cos j cos l 

  
      

    ( N + h )  cos j sin l           
 ((1 −  e  2 )N + h)sin j 

  ) . (4.27)

The inverse problem can be solved for j and h only by iterative methods. From (4.27) 
we get (e.g., Heiskanen and Moritz, 1967, p. 183)

 h =    √ 
_______

      
_
 X    2  +    

__
 Y   2    _________ cos j    − N , j = arctan      

_
 Z  _________ 

 √ 
_______

      
_
 X   2  +    

_
 Y   2   
     ( 1 −  e  2   N ______ 

N + h
   )  −1

 

 l = arctan      
_
 Y  __ 

  
_
 X 
  . (4.28)
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Fig. 4.5: Spatial geodetic coordinates.
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The iteration process may start with h = 0, which results in a fi rst approximation for 
j , and so on. Close to the Earth’s surface  ( h << N )  the process converges quickly. Closed 
formulas, with negligible residual errors on the Earth’s surface, are given by Bowring 
(1985). Effi cient methods have also been developed for large heights (Borkowski, 1989; 
Sjöberg, 1999). The transformation (4.28) is a standard problem in satellite geodesy, cf. 
[6.2.1].

Local ellipsoidal (geodetic) systems are introduced in analogy to the local astronomic 
systems, cf. [2.5], and represent an approximation to them (Fig. 4.6). With the ori-
gin at the point P, the local system is connected to the ellipsoidal vertical (outer sur-
face normal  

__
 n  to the ellipsoid) through the geodetic latitude and longitude (4.26b). The 

  
_
 z -axis is directed towards the ellipsoidal zenith, with the   

_
 x ,   

_
 y -plane being perpendicular 

to it. The   
_
 x -axis points to the ellipsoidal north (direction of the ellipsoidal meridian), and 

the   
_
 y -axis points towards east (left-handed system).

A target point Pi is described with respect to P by the geodetic (ellipsoidal) azimuth a, 
introduced in [4.1.2], the ellipsoidal zenith angle z, and the straight distance s between 
P and Pi. The zenith angle is measured in the vertical plane between the ellipsoidal 
vertical and the connecting line and reckoned positively from the zenith. These polar 
coordinates can be transformed into the local   

_
 x ,   

_
 y ,   

_
 z -system by a relation corresponding 

to (2.20):

  
_

 x  =  (       
_ 
 x 
 
 

   
_
 y    

  
__
  z  
   )  = s  (  cos a sin ζ  

 
    

 sin a sin ζ         
cos ζ 

   ) . (4.29)
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Fig. 4.6: Global and local ellipsoidal system.
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After applying the refl ection matrix  S 
2
  (2.23), the local system is transformed to the 

global   
_
 X ,   

_
 Y ,   

_
 Z -system by the rotation matrices  R 

2
  ( 90° − j )  and  R 

3
  ( 180° − l ) , which cor-

respond to (2.24) and (2.25):

 Δ  
_
 X  =  

__
 A  
_

 x , (4.30)

with

 Δ  
_
 X  =   ( Δ  

_
 X , Δ  

_
 Y , Δ  

_
 Z  )  T  (4.31)

and

  
__

 A  =  R 3  ( 180° − l )  R 2  ( 90° − j )  S 2  

    
=

  ( −sin j cos l −sin l cos j cos l )    −sin j sin l   cos l cos j sin l
     cos j    0       sin j. (4.32)

The inversion of (4.32) gives 

  
_

 x  =   
__

 A  −1 Δ 
__

 X , (4.33)

with

 
  
__

 A  −1  =   
__

 A  T  =
  ( −sin j cos l −sin j sin l cos j  )  ,−sin l    cos l    0

cos j cos l  cos j sin l sin j (4.34)

which corresponds to (2.28) and (2.29).

4.2 The normal gravity fi eld

A “normal” gravity fi eld may be referenced to the rotational ellipsoid by considering 
the latter to be a “level” ellipsoid, with mass and rotational velocity. This Earth model is 
now generally accepted as a geodetic reference system; higher order models generally 
do not offer any advantage [4.2.1]. The external gravity fi eld of the level ellipsoid can be 
determined unambiguously from the parameters defi ning it [4.2.2]. The geometry of the 
normal gravity fi eld is of special interest for geodetic applications [4.2.3]. 

4.2.1 The level ellipsoid, level spheroids

We introduce an ellipsoidal gravity fi eld composed of gravitation and centrifugal accel-
eration: normal gravity fi eld. It is based upon four parameters: total mass M and angular 
velocity w, and the geometric parameters a and f of the rotational ellipsoid. In addition, 
we require the surface of this ellipsoid to be a level surface of its own gravity fi eld. 
 According to the theorem of Stokes-Poincaré, the gravity fi eld then is uniquely defi ned 
in the space exterior to the ellipsoid.

Theorem of Stokes-Poincaré: If a body of total mass M rotates with constant angular velocity w 
about a fi xed axis, and if S is a level surface of its gravity fi eld enclosing the entire mass, then the 
gravity potential in the exterior space of S is uniquely determined by M, w, and the parameters 
defi ning S. 
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The Earth model defi ned in that way is called a level (or equipotential) ellipsoid. Instead 
of a, f, M and w, other sets of four independent parameters can be used for its defi nition. 
If the parameters are given values which correspond to the real Earth, then an optimum 
approximation to the geometry of the geoid and to the external gravity fi eld is achieved: 
mean Earth ellipsoid, cf. [4.3]. From the physical point of view, an Earth model would 
be required which is in hydrostatic equilibrium. All its level surfaces then coincide with 
the surfaces of equal density and equal pressure. Deviations from this model would 
indicate stress in the Earth’s body, cf. [8.1]. 

The theory of the level ellipsoid has been developed by P. Pizetti (1894), C. Somigliana 
(1929), and others (Heiskanen and Moritz, 1967, p. 64). Equilibrium fi gures have been 
discussed as physical Earth models since the days of Newton and Clairaut, cf. [1.3.2], 
see  Ledersteger (1956/1969), Moritz (1990).

In the above defi nition of the level ellipsoid, nothing has been stated regarding the in-
terior mass distribution. But from the theory of equilibrium fi gures, it follows that only 
the homogeneous ellipsoids of MacLaurin exist in equilibrium. On the other hand, the 
surface of an equilibrium fi gure constructed of shells of equal density, and thus cor-
responding more to the real structure of the Earth, is not an ellipsoid. Nevertheless, a 
layered structure of the interior mass of the level ellipsoid that approximates the actual 
situation, and reproduces suffi ciently well the gravity fi eld of the level ellipsoid, can 
be found (Moritz, 1968a). The maximum deviation between the level surfaces and the 
surfaces of equal density are at the order of  f    2 only, and the differences in stress remain 
considerably smaller for the model than for the real Earth. The level ellipsoid thus can 
also serve as a bounding surface for a geophysical Earth model (Marussi et al., 1974).

There have been several attempts to construct Earth models with a better fi t to the 
geoid and the external gravity fi eld than that provided by the level ellipsoid. A physical 
approximation consists of reference fi gures derived from truncated spherical harmonic 
expansions of the gravity potential of the Earth: level spheroids, cf. [3.3.2]. By assuming 
symmetry about the equator and truncating at degree l = 2 (Bruns’ spheroid) and l = 4 
(Helmert’s spheroid), we obtain surfaces of fourteenth and twenty-second order, respec-
tively. The deviations from the rotational ellipsoid having the same length of the axis 
are on the order of  f   2  for l = 2, and  f   3  for l = 4. From the tesseral harmonics of second 
degree and order, with the harmonic coeffi cients  C 

2,2
  and  S 

2,2
 , the equatorial principal 

moments of inertia and their directions can be calculated. The results can be used to 
derive a triaxial ellipsoid, as another geometrical approximation to the geoid. 

First attempts in this direction were made by Helmert (1915) and Heiskanen (1924). They were 
based on the sparse gravity data available at that time, and spherical harmonic expansions 
of normal gravity derived from them. Recent results stem from Earth gravitational models 
obtained from satellite methods. They deliver a difference of about 70 m between the radii 
of the equatorial principal axes of inertia (corresponding to an equatorial fl attening of about 
1/91 000), where the larger radius is directed to 14.9° W longitude (Burša, 1995a; Marchenko, 
2009).

These higher order Earth models do not signifi cantly reduce the deviations to the geoid, 
as compared to the level ellipsoid. In addition, computations related to these surfaces 
and their gravity fi elds become more complicated. Finally, they are generally not suit-
able as physical normal fi gures. Although, for instance, triaxial rotational ellipsoids exist 



4.2 The normal gravity fi eld      101

as equilibrium fi gures (homogeneous ellipsoids of Jacobi), such ellipsoids would yield 
a completely unnatural form when using the actual values for the angular velocity and 
mass of the Earth.

4.2.2 The normal gravity fi eld of the level ellipsoid 

The external gravity fi eld of the level ellipsoid (normal gravity fi eld) can be modeled by 
closed formulas in the system of ellipsoidal coordinates b, l, u. The reduced latitude 
b and the geodetic longitude l have been already introduced in [4.1.1]. The third coor-
dinate u is the semi-minor axis of the ellipsoid with constant linear eccentricity e, see 
(4.3), which passes through the point P (Fig. 4.7). From (4.8) and (4.10), and putting  
√ 

_______
   u  2  +  e   2    for the semi-major axis, the transformation from the ellipsoidal coordinates to 

the Cartesian ones is given by

  (    
_

 
X 

 
 

  
_
 Y    

 __ Z 
  )  = u  (   √ 

_______

  1 +   (   e  __ u   )  2    cos b cos l 

  
       

   √ 
_______

  1 +   (   e  __ u   )  2    cos b sin l   
       

  

 sin b 

   ) . (4.35)

For e = 0, the b, l, u-system with b = 90° − J and u = r reduces into the system of 
spherical coordinates (2.13).

We denote the vector of normal gravity by g  and the normal gravity potential by U. 
In analogy to (3.43), we have 

 f = grad U. (4.36a)

With respect to the surface normal, f  is given in analogy to (3.72) by

 f = −g  (   cos j cos l 
 

    
  cos j sin l       

 sin j  
   ) . (4.36b)

Corresponding to (3.42), U is composed of the gravitational potential VE and the 
potential of the centrifugal acceleration ZE :

 U =  V 
E
  +  Z 

E
 . (4.37)
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Fig. 4.7: Level ellipsoid and ellipsoidal coordinates.
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The gravitational potential satisfi es Laplace’s differential equation (3.29) in the space 
exterior to the ellipsoid that contains the total mass.

By expressing Laplace’s equation in ellipsoidal coordinates b, l, u, we get a solution 
for the potential U, based on ellipsoidal harmonics. Adding the centrifugal potential 
(3.38), and taking both rotational symmetry and the condition of the ellipsoid surface 
as a level surface into account, we obtain a closed expression for the normal gravity 
potential (Heiskanen and Moritz, 1967, p. 64):

 U =   GM ____ 
e
   arctan   e __ 

u
   +    w   2  ___ 

2
   a 2   

q
 ___  q 
0
     ( si n 2 b −   1 __ 

3
    )  +    w   2  ___ 

2
     (  u  2  +  e   2  ) co s 2 b. (4.38)

Here, q is an auxiliary quantity depending only on the geometric parameters e and u. 
On the ellipsoid surface (u = b), it is denoted q0:

 q =     1 __ 
2
   ( ( 1 + 3   u  2  ___ 

 e   2 
   )  arctan   e __ 

u
   − 3  u __ 
e
   )  ,  q 

0
  =  q 

u = b
 . (4.39)

Hence, in agreement with the Stokes-Poincaré theorem, cf. [4.2.1], the normal gravity 
potential is determined by the four parameters a, b, M, w. It does not depend on the geodetic 
longitude. If one puts u = b and q = q0 in (4.38), the potential of the level ellipsoid reads

  U 0  =   GM ____ 
e
   arctan   e __ 

b
   +   w  2 ___ 

3
    a  2 . (4.40)

The normal gravity f  is perpendicular to the level ellipsoid, so that in accordance 
with (4.36), only the orthogonal component appears in the derivative of U (4.38). If the 
geodetic latitude j is used instead of the reduced latitude b, we obtain the formula of 
Somigliana (1929) for the normal gravity on the ellipsoid

  g  
0
  =   

aga  cos 2 j + bgb sin
2j  
  ___________________  

   √ 
_______________

   a 2cos2j + b2sin2j 
   . (4.41a)

For numerical computations, the form

  g 
0
  =  g  

a
   

1 + ks in 2 j
 ____________  

  ( 1 −  e 2 si n 2 j )    1 __ 2   
   with k =   

b γ 
b
 
 ___ a γ 

a
    − 1 (4.41b)

is more convenient (Moritz, 2000).
Here, the normal gravity, which depends on latitude only, is represented by the four 

parameters a, b,  g 
a
  (normal gravity at the equator), and  g 

b
  (normal gravity at the pole). 

The ellipsoidal parameters a, b, M, w,  g 
a
 ,  g 

b
  appearing in (4.38) and (4.41) are inter-

related according to the theorem of Pizetti 

 2  
 g 

a
 
 __ 

a
   +   

 g 
b
 
 __ 

b
   =   3GM _____ 

 a 2 b
   − 2 w  2  (4.42)

and the theorem of Clairaut

 f + b =    w   2 a ____  g a 
     ( 1 +  e′ 2  )  −   1 __ 2      ( 1 + e′  

3 ( 1 +   1 ___ 
 e′ 2 

   )  ( 1 −   1 __ 
e′

   arctan e′ )  − 1
   __________________________   

 ( 1 +   3 ___ 
 e′ 2 

   )  arctan e′ −   3 __ 
e′

  
   ) . (4.43)

Thus, again only four independent parameters remain. In (4.43), besides the second 
eccentricity e’ and the geometric fl attening f, there is also the gravity fl attening

 b =   
 g 

b
  −  g 

a
 
 ______  g 

a
   . (4.44)
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Remark: The abbreviation b is used for both the reduced latitude and the gravity 
fl attening; confusion is not to be anticipated. 

The normal gravity in the exterior space is obtained by partial differentiation of 
(4.38). Near the ellipsoid, a Taylor series expansion with respect to the ellipsoidal 
height is suffi cient, see below.

Application of normal gravity fi eld formulas, (4.38) to (4.43), is often facilitated by 
series expansions with respect to f, or some other quantity that describes the polar fl at-
tening.

We start with the spherical harmonic expansion of the gravitational potential. Due to 
the symmetry with respect to the rotational axis (tesseral terms are zero) and the equato-
rial plane (odd zonal terms are zero), we obtain, upon adding the centrifugal potential 
(3.96a) expressed in spherical coordinates, the potential of normal gravity in terms of 
Legendre polynomials, cf. [3.3.2], 

 U =   GM ____ 
r
     ( 1 −  ∑ 

n = 1
   

∞

    (   a __ 
r
   )  2n

    J 2n  P 2n  ( cos J )  )  +    w   2  ___ 
2
   r  2 si n 2 J. (4.45)

If P2 is substituted from (3.83a), the expansion up to n = 1 (corresponding to the 
spherical harmonic degree l = 2) yields an approximation linear in f :

 U =   GM ____ 
r
     ( 1 −   (   a __ 

r
   )  2 J2 (   3 __ 

2
  cos2J −   1 __ 

2
   )  +    w 2 _____ 

2GM
  r 3sin2 ϑ )  . (4.46)

Solving for r and setting U = U0 gives the radius vector to the level ellipsoid, where 
we have put r = a on the right-hand side:

 r =   GM ____ 
 U 0 

     ( 1 − J2 (   3 __ 
2
  cos2J −   1 __ 

2
   )  +    w 2a3

 _____ 
2GM

  sin2J ) . (4.47)

The normal gravity g  follows from the derivative of (4.46) with respect to r :

 g =   GM ____ 
 r 2 

     ( 1 − 3   (   a __ 
r
   )  2 J 2   (   3 __ 

2
  co s 2 J −   1 __ 

2
   )  −    w   2  ____ 

GM
    r  3 si n 2 J  ) . (4.48)

If we substitute either J = 90° (equator) or 0° (pole) in (4.47) and (4.48), then we 
obtain either the semi-major axis a and the equatorial gravity or the semi-minor axis 
b and the polar gravity of the ellipsoid. Using these values, the geometric fl attening f 
(4.1a) and the gravity fl attening b (4.44) may be computed according to

 f =   3 __ 
2
   J 2  +   m __ 

2
  , b = −   3 __ 

2
    J 2  + 2m. (4.49)

Here,

 m =    w   2 a ____  g 
a
    (4.50)

is the ratio of the centrifugal acceleration to the normal gravity at the equator, a rigorous 
formula is given by (4.56). 

From (4.48) and (4.49), we arrive at an approximation to the theorem of Pizetti (4.42)

 GM =  a 2  g 
a
   ( 1 − f +   3 __ 

2
  m )  (4.51)

and an approximation to Clairaut’s theorem (4.43)

 f + b =   5 __ 
2
  m. (4.52)
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Substituting (4.49) and (4.50) into (4.48), we obtain Newton’s gravity formula, cf. 
[1.3.2]:

  g 
0
  =  g 

a
  ( 1 + b  si n 2 j ) . (4.53)

If two  g 
0
  gravity values are known on the ellipsoid (gravity reduction problem!) at 

different geographic latitudes j, then  g 
a
  and b may be computed from (4.53). With 

known values for the semi-major axis a and the angular velocity w, (4.50) supplies the 
quantity m. Finally, Clairaut’s theorem (4.52) yields the geometric fl attening f, which 
thus can be determined from gravity values. Application of this principle to the real 
Earth – that is, deriving geometric form parameters from physical quantities – leads to 
the gravimetric method of physical geodesy, cf. [6.5.1].

The relations above (linear in f, b, and m) may also be derived by series expansions of 
the closed formulas. They had already been found by Clairaut (“Théorie de la Figure de 
la Terre” 1743). The expansion up to terms of the order  f   2  yields (IAG, 1971) 

 f =   3 __ 
2
   J 2  +   m __ 

2
   +   9 __ 

8
   J  2  

2  +   15 ___ 
28

   J 2 m +   3 ___ 
56

   m  2 , (4.54)

 b = −f +   5 __ 
2
  m −   17 ___ 

14
  fm +   15 ___ 

4
   m  2 , (4.55)

 m =    w   2  a 2 b ______ 
GM

  , (4.56)

  g 
0
  =  g 

a
  ( 1 + b si n 2 j +  b 

1
 si n 2 2j  ) ,  b 1  =   1 __ 

8
   f    2  −   5 __ 

8
  fm. (4.57)

One of the fi rst applications of Clairaut’s theorem was made by Helmert (1901). An adjustment 
of about 1400 free-air reduced gravity values to the gravity formula (4.57) yielded the parameters  
g 

a
  = 9.7803 m  s −2  and b = 0.005 302, with a fl attening of f = 1/298.3.

The harmonic coeffi cients of second and fourth degree may be computed from f and m 
as follows:

  J 2  =   2 __ 
3
  f −   m __ 

3
   −   1 __ 

3
   f   2  +   2 ___ 

21
  fm,  J 4  = −   4 __ 

5
   f    2  +   4 __ 

7
  fm. (4.58)

For today’s accuracy requirements, an expansion up to n = 3 (corresponding to l = 
6) is generally adequate. That is, the expansion has to include the terms of the order  f   3  

(Cook, 1959). Developments up to the order  f   5  have been given by Chen (1982).
Near the Earth’s surface, a Taylor series expansion with respect to the ellipsoidal 

height h is suffi cient for the derivation of the normal gravity in the exterior space:

 g  =  g 
0
  +   (   ∂g ___ 

∂h
   )  

0

 h +   1 __ 
2
     (    ∂ 2 g

 ____ 
∂ h 2 

   )  
0

  h 2  +   1 __ 
6
     (    ∂ 3 g

 ____ 
∂ h 3 

   )  
0

  h 3  + …. (4.59)

The partial derivative   
∂g  

 ___ 
  ∂h

   is obtained by applying Bruns’ equation (3.71) to the exte-
rior space:

   
∂g

 ___ 
∂h

   = −2g   
_
 J  − 2 w   2 , (4.60)

where   
_
 J  is the mean curvature of the ellipsoid (4.19). A series expansion up to the order 

of f leads to the vertical component of the normal gravity gradient

   
∂g

 ___ 
∂h

   = −2  
g
 __ a    ( 1 + f + m − 2f si n 2 j  ) . (4.61)
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The second and the third derivative can be derived from a spherical approximation of 
g, where ∂g / ∂h = ∂g /∂r etc., see (3.17). With 

 g  =   GM ____ 
 r  2 

  ,   
∂g

 ___ 
∂r

   = −2  GM ____ 
 r  3 

   = −2  
g
 __ 

r
  

we obtain

   
 ∂ 2 g 

 ____ 
 ∂ r   2 

   =   6GM _____ 
 r  4 

   = 6  
g 
 __ 

 r  2 
  ,   

 ∂ 3 g 
 ___ 

∂ r   3 
   = −24  GM ____ 

 r  5 
   = −24  

g 
 __ 

 r   3 
  . (4.62)

Inserting the above into (4.59), with r = a and g =  g 
0
 , leads to the normal gravity as a 

function of latitude and height:

 g  =  g 
0
  ( 1 −   2 __ 

a
  (1 + f + m − 2fsi n 2 j )h +   3 __ 

 a 2 
   h 2  ) +…, (4.63)

where the h 3-term has to be added for higher altitudes. Airborne and satellite appli-
cations require rigorous formulas, at which g is derived by differentiating the normal 
gravity potential (4.38). The results are given in the b, l, u-system, and can be easily 
transformed into a three-dimensional Cartesian coordinate system (4.35), cf. Hofmann-
Wellenhof and Moritz (2005, p. 240 ff.).

With g  = 9.81 m  s −2  and a = 6378 km, we get   
∂g 

 ___ ∂h
   = −3.086 μm  s -2 /m and   

 ∂ 2 g 
 ___ 

∂ h 2 
   = 

1.5 × 1 0 −6  μm  s –2 / m 2 . More detailed numerical values are given in [4.3]. In gravity reduc-
tions the value −3.086 μm  s −2 /m is used conventionally. 

4.2.3 Geometry of the normal gravity fi eld 

The geometry of the normal gravity fi eld is represented by the spheropotential surfaces 
and the normal plumb lines.

The spheropotential surfaces are surfaces of constant normal gravity potential

 U = U ( r )  = const. (4.64)

With the exception of the surface of the level ellipsoid (U = U0), spheropotential sur-
faces deviate from ellipsoids and are not parallel to each other. The normal plumb lines 
intersect the spheropotential surfaces orthogonally. Due to the non-parallelism of the 
level surfaces, they are slightly curved in the plane of the meridian (Fig. 4.8).

In order to describe the geometry of the normal gravity fi eld, “normal” geodetic 
coordinates  j   N ,  l N , U are introduced. They are defi ned in analogy to the “natural” 
coordinates J, Λ, W of the actual gravity fi eld, cf. [3.2.3]. The normal geodetic coor-
dinates refer to the point Q, which is related to the surface point P  ( Φ, Λ, W )  by the 
conditions:

  j 
Q
  N  =  Φ 

P
  ,  l  

Q
  N
   =  Λ 

P
  ,  U Q  =  W P  . (4.65)

The surface thus defi ned in a point-wise manner approximates the physical surface of 
the Earth, with deviations less than 100 m and less than one arcmin, respectively. This 
surface is called the telluroid (Hirvonen, 1960). It is not a level surface of the normal 
gravity fi eld, but it resembles the Earth’s surface.

The normal geodetic latitude  j  N  is the angle measured in the meridian plane between 
the equatorial plane of the ellipsoid and the direction of the normal plumb line. It differs 
from the geodetic latitude j, introduced in [4.1.1], by the small angle δ j  N . This differ-
ence is a result of the normal plumb line curvature, see below. The normal geodetic 
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longitude  l N  is equal to the geodetic longitude l. The normal gravity potential U relates 
the point Q to the level surface U =  U 

Q
 .

Instead of U, the potential difference  U 
0
  −  U 

Q
  to the level ellipsoid may be used for 

that purpose. With  U 
Q
  =  W 

P 
 , and the condition  U 

0
  =  W 

0
 , cf. [6.5.4], we obtain the nor-

mal height  H  N  already introduced in [3.4.3]: 

  H N  =   
 U 0  −  U Q 

 ________ 
  
_
 g     =   

 W 0  −  W P  ________ 
  
_

 g   . (4.66)

Hence,  H N  is defi ned as the distance between Q and the level ellipsoid measured 
along the normal plumb line. To a good approximation,  H N may be measured along the 
ellipsoidal normal passing through the surface point. According to (3.107),  

_
 g   is the mean 

normal gravity between the ellipsoid and Q. Substituting g  from (4.63) into (3.107) and 
integrating yields

  
_

 g   =  g 
0
   ( 1 −   1 __ a    ( 1 + f + m − 2f  sin 2 j  )   H N  ) . (4.67)

Hence,  
_

 f   may be computed rigorously in an iterative manner. Since C can be derived 
from measurements, the normal height can be determined without any hypothesis. 
Extending the normal heights downward from the Earth’s surface yields the quasigeoid, 
which is used as a reference surface for heights, cf. [3.4.3].

The normal geodetic coordinates  j  N ,  l N ,  H  N  have gained special importance for the 
direct determination of the physical surface of the Earth according to the theory of 
Molodensky, cf. [6.5.1], [6.7.2]. Normal heights have been introduced for a number of 
national height systems, cf. [7.2].

The curvature of the spheropotential surfaces is described by the second deriva-
tives of U, in analogy to the actual gravity fi eld, see (3.57), (3.58). In the local 

ϕN

Q0

Qn

U = U
Q

U = U
P

HN

EQUATORIAL PLANE

NORMAL
PLUMB LINE

LEVEL ELLIPSOID U = U
0

Q

b

a
0

P

Fig. 4.8: Spheropotential surfaces, normal plumb line, normal height.
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ellipsoidal system, the curvatures in the direction of the meridian and the parallel 
are given by

  k   _ x   
N  = −   

 U  __
 xx   ___ g   ,  k    _ y   

N  = −   
 U  __

 yy  
 ___ g   . (4.68)

The geodetic torsion is zero due to the rotational symmetry of the level ellipsoid:

  t   _ x   
N  = −   

 U  __
 xy  
 ___ g     = 0. (4.69)

On the ellipsoid, the curvature is given by the principal radii of curvature M and N, 
see (4.13), (4.14):

  k   _ x (0)  
N   =   1 __ 

M
  ,  k   _ y (0)  

N   =   1 __ 
N

  . (4.70)

Following (3.67), and taking the rotational symmetry into account, we get for the 
curvature of the projections of the normal plumb line onto the  

_
 x ,  

_
 z - and the  

_
 y ,  

_
 z -plane, 

respectively:

  k   
 
_

 x 
  N  = −   

 U  __
 xz   ___ g   ,  k  

 
_

 y 
  N  = −   

 U  __
 yz  
 ___ g    = 0. (4.71)

On the level ellipsoid, we have with (4.20)

  U  __
 xz (0)  = −   (   ∂g ___ 

∂ 
_

 x 
   )  

0

  = −   (   ∂g
 _____ 

M∂j
   )  

0

 . (4.72)

Introducing the derivative   
∂g 

 ___ ∂j 
   from (4.53) and inserting into (4.71) yields with 

suffi cient approximation

  k  
 
_

 x (0)
  N

   =   
  b  

 ___ 
M

   sin 2j (4.72a)

with gravity fl attening b (4.44). For the change of the normal gravity along the meridian, 
we thus get 

  (   ∂g  ___ 
∂   

_
 x  
0
 
   )  =  g 

0
   
  b   

 ___ 
M

  sin 2j = 8.2 × 1 0 −9  sin 2j m  s –2 /m (4.72b)

which corresponds to 8.2 nm  s −2 /m at j = 45°. Together with the relation  U  __
 zz   = −  

∂g 
 ___ 

∂  
_
 z 

   , 

(4.68) to (4.72) completely defi ne the Eötvös tensor (3.69) for the normal gravity fi eld. 
According to (3.75), the differential transformation from the local to the global geodetic 
system is also provided by the curvature parameters. 

Finally, we derive the differences between the geodetic coordinates j, l and the 
normal geodetic coordinates  j  N ,  l N :

 j =  j  N  + δ j  N , l =  l N . (4.73)

From (4.71) and (4.72) we obtain 

 d j  N  = −  ∫ 
0

   
 HN   

   k    _ x   
N d H N   = −   

  b  
 ___ 

M
   sin 2j  H N .

And with b = 0.0053 and M ≈ a = 6371 km we get

 d j  N  = −0.000  17” sin 2j  H N , (4.74)

where  H N  is in meters.



108     4 The Geodetic Earth Model

4.3 Geodetic reference systems, optimum Earth model

Geodetic reference systems provide numerical values for the parameters of a geodetic 
Earth model. The systems are recommended by the International Union of Geodesy and 
Geophysics (IUGG) and represent the best parameter values for a designated epoch. The 
systems generally serve as a standard over a longer time span for geodesy and related 
disciplines such as astronomy, cartography, geophysics, engineering, and navigation. 

All reference systems are supposed to be geocentric, with the Z-axis coinciding with the 
Earth’s axis of rotation and the direction of the X-axis pointing to the Greenwich meridian. 
While the earlier reference systems may have large deviations from the geocentric system, 
recent reference systems agree at the “cm”-level. The orientation of geodetic systems with 
respect to the Earth is described by the “Geodetic Datum”, cf. [6.2.2].

In the nineteenth and early twentieth century, the geometric parameters of reference ellipsoids 
were derived from various terrestrial data sets and then introduced as a reference for national 
geodetic surveys, cf. [1.3.3]. Normal gravity formulae referred to these ellipsoids have been 
derived since about 1900 and used for national gravimetric surveys. These regional or local 
reference systems may be regarded as precursors of the present global systems, which are based 
on the theory of the level ellipsoid.

Geodetic reference systems based on the theory of the level ellipsoid were fi rst intro-
duced in 1924/1930. At the IUGG General Assembly in Madrid 1924, Hayford’s ellip-
soid was introduced as the International Ellipsoid, with the parameters

 a = 6 378 388 m, f = 1/297.0.  (4.75a)

The General Assembly in Stockholm (1930) adopted the gravity formula established 
by G. Cassinis for Hayford’s ellipsoid:

  g 
0
  = 9.780  49 ( 1 + 0.005  2884si n 2 j − 0.000  0059si n 2 2j  )  m  s −2 . (4.75b)

This corresponds to the normal gravity formula (4.57), assuming a level ellipsoid.

The geometric parameters a and f were calculated by J. F. Hayford (1909) from astrogeodetic 
observations in the U.S.A. In 1928, W. A. Heiskanen determined the equatorial gravity from 
an adjustment of isostatically reduced gravity values. The international reference system of 
1924/1930 is thus defi ned by the four parameters a, f,  g 

a
 , w. The corresponding ellipsoid 

has been applied in numerous geodetic surveys; also, the normal gravity formula has found 
broad acceptance.

At the General Assembly of the IUGG in Luzern (1967), the 1924/1930 reference system 
was replaced by the Geodetic Reference System 1967 (GRS67), see IAG (1971). It was 
defi ned by the following parameters:

 a = 6 378 160  m, GM = 398 603 × 1 0 9   m 3   s –2 ,  J 2  = 1082.7 × 1 0 −6 . (4.76a)

The angular velocity of the Earth’s rotation

 w = 7.292  115  146 7 × 1 0 −5  rad  s −1 , (4.76b)

not mentioned in the IUGG resolution, was adopted as the fourth parameter. The reference 
ellipsoid corresponding to this defi nition was declared a level ellipsoid.

The calculation of the semi-major axis was based on astrogeodetic observations collected 
over the continents, which were transformed into a uniform system by gravimetric methods. 
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Observations of space probes yielded the geocentric gravitational constant, which includes 
the mass of the atmosphere. The dynamic form factor was derived from the orbit perturbations 
of artifi cial satellites, and the angular velocity of the Earth’s rotation was adopted from 
astronomy. The GRS67 has been used especially for scientifi c problems and for a few geodetic 
networks.

At the IUGG General Assembly in Canberra (1979), the Geodetic Reference System 
1980 (GRS80) was introduced. It is also based on the theory of the geocentric equipo-
tential ellipsoid, with the defi ning parameters (Moritz, 2000): 

 

a = 6 378 137 m equatorial radius of the Earth
GM = 398 600.5 × 1 0 9   m 3   s −2 geocentric gravitational 

constant of the Earth
(including the atmosphere)

 J 2  = 1082.63 × 1 0 −6 dynamical form factor of the 
Earth (excluding the permanent 
tidal deformation)

w = 7.292 115 × 1 0 −5  rad  s –1 angular velocity of the Earth.

} (4.77a)

With  M atm  = 0.88 × 1 0 −6 M, we have G M atm  = 0.35 × 1 0 9   m 3   s –2 .
With respect to the orientation, it is stated that the minor axis of the reference ellip-

soid be parallel to the direction defi ned by the Conventional International Origin and 
that the primary meridian be parallel to the zero meridian of the BIH adopted longi-
tudes, cf. [2.3].

The system is consistent with the IAU system of astronomical constants, cf. [2.3.1], 
[2.3.2]. It is now widely used as a reference for geodetic work, in theory as well as in 
practice. 

The equatorial radius of the GRS80 ellipsoid has been derived from laser distance 
measurements to satellites, satellite altimetry, and Doppler positioning, with an 
uncertainty of 0.5 m. The calculation of the geocentric gravitational constant was based 
on space probes and lunar and satellite laser data  ( ±0.05 × 1 0 9   m 3   s −2  ) , while the value 
for the dynamic form factor was taken from global gravity models  ( ±5 × 1 0 −9  ) . Again, 
the angular velocity of the Earth is a value derived from annual means over the 
last decades; velocity variations with time do not affect this rounded value (Burša, 1995a). 

Numerical values for derived parameters include (Moritz, 2000):
Geometric constants, cf. [4.1.1], [4.1.2]:

 

b = 6 356 752.3141 m semi-minor axis
e = 521 854.0097 m linear eccentricity (4.3)
c = 6 399 593.6259 m polar radius of curvature (4.16) 
 e 2  = 0.006 694 380 022 90 fi rst eccentricity (e) (4.1b)
e ́ 2  = 0.006 739 496 775 48 second eccentricity (e) (4.1c)
f = 0.003 352 810 681 18 fl attening (4.1a)
1/f = 298.257 222 101 reciprocal fl attening
G = 10 001 965.7293 m meridian quadrant (4.21a) 

}
 

(4.77b)
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Physical constants, cf. [4.2.2]:

 

 U 
0
  = 62 636 860.850  m 2  s –2 normal potential at ellipsoid (4.40)

 J 
4
  = −0.000 002 370 912 22 spherical harmonic coeffi cient (4.45)

 J 
6
  = 0.000 000 006 083 47 spherical harmonic coeffi cient (4.45)

 J 
8
  = −0.000 000 000 014 27 spherical harmonic coeffi cient (4.45)

m = 0.003 449 786 003 08 (4.50)
 g 

a
  = 9.780 326 771 5 m  s –2 normal gravity at equator (4.41)

 g 
b
  = 9.832 186 368 5 m  s –2 normal gravity at pole (4.41)
b = 0.005 302 440 112 (4.44)
k = 0.001 931 851 353 (4.41b)

}
 

(4.77c)

Normal gravity can be computed by the closed formula (4.41) or the series expansion 

  g 
0
  =  g 

a
   (   1 + 0.005 279 0414si n 2 j + 0.000 023 2718si n 4 j 

                        
    + 0.000 000 1262si n 6 j + 0.000 000 0007si n 8 j,

   )  (4.78a)

which is accurate to 1 0 −3  μm  s −2 . The conventional series (4.57) has an accuracy of 
1  μm   −2 :

  g 
0
  = 9.780 327 ( 1 + 0.005 3024si n 2 j − 0.000 0058si n 2 2j  )  m  s −2 . (4.78b)

Inserting the values for the GRS80 into (4.63) yields the change of normal gravity with 
height:

 g =  g 
0
  −  ( 3.0877 × 10−3 − 4.3 × 10−6 sin 2 j )  h + 0.72 × 1 0 −6  h 2  m  s –2  (4.79)

with h in km. A development accurate to 10 nm  s −2  for heights up to 10 km is given by 
Wenzel (1989).

According to the defi nition of GM,  g 
0
  refers to the total mass of the Earth including the 

atmosphere. If normal gravity values are required on the ellipsoid, or within the range 
of the atmosphere, the effect of the air masses above the calculation point must be sub-
tracted from  g 

0
 . The corresponding reduction amounts to −8.7 μm  s −2 (h = 0), −4.7 μm  s −2  

( h = 5 km ) , and −0.1 μm  s −2 (h = 30 km), cf. Ecker and Mittermayer (1969).

There is a lasting discussion to replace the semi-major axis a as one of the defi ning (or 
primary) parameters of the Geodetic Reference System by the normal potential U0 on the 
level ellipsoid, set equal to the geoid potential value W0 (Burša, 1992). As W0 has a physical 
meaning (contrary to a), the whole set of defi ning parameters would be physically well-
defi ned. In addition, W0 is a relevant quantity at recent problems, as the defi nition of a world 
height system and as a reference for time defi nition and precise time keeping, under the 
aspect of General Relativity, cf. [3.4.3] and [2.2.1], respectively. Finally, W0 does not depend 
on the permanent tidal effect, cf. [3.4.1], Burša (1995b). A “geopotential scale factor” R0 = 
GM/W0 can be derived from W0 , and used instead of it. The semi-major axis of a best-fi tting 
ellipsoid can be calculated on the basis of (4.40) and corresponding series developments 
(Burša et al., 1998). The geopotential value on the geoid is now well determined from long-
term satellite altimetry data, cf. [3.4.3]. 

Optimum values for the Earth model parameters are determined at shorter time inter-
vals and published by the International Association of Geodesy and the International 
Astronomical Union. The values are derived from least-squares adjustments employ-
ing satellite tracking, satellite gravity gradiometry, satellite altimetry, and terrestrial 
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gravi metry, and refer to a level ellipsoid which fi ts best to the geoid. Of special 
importance are the IERS numerical standards, given in the IERS Conventions (Groten, 
2004; Petit and Luzum, 2010). According to these standards, the currently best esti-
mates for the defi ning parameters of a level ellipsoid are as follows:

• The geocentric gravitational constant GM=  ( 398 600.442 ± 0.001 )  × 1 0 9   m 3   s –2  
including the mass of the atmosphere. This value is derived from orbit analyses 
of satellites and space probes. A variation of GM with time has not been found. 

• The equatorial radius of the Earth a = 6 378 136.6 ± 0.1 m. The radius is derived from 
an optimum fi t between ellipsoidal heights, as obtained for satellite tracking stations, 

and from satellite altimetry, applying the minimum condition ∫ ∫N 
2
 dσ = min. on the 

geoid heights. It is valid for the zero-frequency as well as for the tide-free system, cf. 
[3.4.1], and assumed to be constant with time. 

• The second-degree zonal harmonic coeffi cient (dynamical form factor) 
 J 
2
 =  ( 1082.6267 ± 0.0001 )  × 1 0 −6  in the tide-free system, and  J 

2
 =  

( 1082.6359 ± 0.0001 )  × 1 0 −6  in the zero-tide system. J2 is obtained from global 
gravitational fi eld models. Temporal variations of the dynamical form factor 
have been signifi cantly determined, cf. [8.3.5]. 

• The mean angular velocity of the Earth’s rotation w = 7.292 115 × 1 0 –5  rad s –1  is 
provided by the IERS, cf. [2.2.2]. For long-term variations see [8.3.2].

Among the quantities derived from the defi ning parametrs we have

• The geoid potential  W 0 = 62 636 856.0 ± 0.5  m 2   s −2 . As discussed above, the po-
tential may also be introduced instead of a as defi ning parameter, and it is also 
constant with time.

• The reciprocal fl attening 1/f = 298.256 42 ± 0.000 01

• The normal gravity at the equator  g 
a
  = 9.780 328 ± 0.000 002 m  s −2 , both given in 

the zero-tide system.





5 Methods of Measurement

Modeling of geodetically relevant quantities (especially coordinates, gravity fi eld 
quantities, and Earth rotation parameters) is based on observations taken on the 
Earth’s surface and in its exterior space. Different measurement methods are avail-
able, delivering geometric or physical quantities. Geometric methods rely primarily 
on electromagnetic waves and thus are affected by atmospheric refraction [5.1]. The 
measurement methods may be divided into

• observations employing artifi cial satellites as targets (including the moon), sensors 
or carriers of sensors: satellite observations [5.2],

• observations to fi xed stars and extragalactic radio sources: geodetic astronomy 
[5.3],

• terrestrial gravity and gravity gradient measurements: gravimetry [5.4], and
• determination of coordinate differences between points on the surface of the 

Earth: terrestrial geodetic measurements [5.5].

The measurement methods depend on available technology, where electronics gov-
erns data collection and online data-processing (Kahmen, 1978; Schlemmer, 1996). 
Space techniques now dominate global and regional surveys, while terrestrial meth-
ods are mainly used for interpolation in space and time, and at solving more local 
problems. Accuracy and resolution (spatial and temporal) of the results depend on the 
state of the art of the respective technique. Limiting factors include calibration errors 
and instrumental drift, and the elimination or reduction of effects directly disturbing 
the sensor and the measurement process. We especially mention variations of air 
temperature, atmospheric pressure, groundwater table, and magnetic fi eld, as well as 
atmospheric refraction, microseismicity, and local site instabilities. Thus the inherent 
precision of the respective technique may deteriorate by a factor of two to three or 
more, when considering the accuracy obtained. For the physical fundamentals of geo-
detic measurement methods we refer to Heitz and Stöcker-Meier (1998), while Plag 
and Pearlman (2009) review the present state and the future directions of geodetic 
observation techniques.

5.1 Atmospheric refraction

In practically all geodetic measurements, electromagnetic waves serve as signal carriers; 
this includes the methods of satellite and terrestrial geodesy as well as geodetic astrono-
my. From the broad spectrum of electromagnetic waves, the visible light (380 to 780 nm, 
corresponding to 7.9 and 3.8 × 1 0 14  Hz, respectively), the near infrared (up to 1 μm), and 
the microwave parts (1 mm to 1 m, corresponding to 300 GHz resp. 300 MHz) are used. 
When propagating through the atmosphere, the signals experience changes in velocity 
and curvature of the path (refraction), depending on the physical state of the atmospheric 
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gas masses [5.1.1]. Signal propagation is different in the troposphere and the ionosphere 
and has to be treated separately [5.1.2], [5.1.3].

Different methods have been developed in order to eliminate or reduce the effects 
of atmospheric refraction on geodetic measurements. These include instrument design, 
observation methodology, and the use of atmospheric models based on data collected 
on the Earth’s surface and in space. The individual strategies will be discussed in the 
chapters that pertain to measurement methods, see also Brunner (1984a), De Munck 
and Spoelstra (1992), Dettmering et al. (2010).

5.1.1 Fundamentals

According to Fermat’s principle, the path s of an electromagnetic wave is determined by 
the condition of a minimum travel time Δt of the wave (Moritz and Hofmann-Wellenhof, 
1993, p. 158):

 Δt  =  ∫ 
path

  
 

   dt  =  ∫ 
path

  
 

     ds ___ v    = min. (5.1)

The velocity v differs from the velocity in vacuum c (2.2) by the index of refraction n 
(also called refractive index):

 n =   c __ v  . (5.2)

For a gaseous medium, n > 1 is proportional to the density of the gas. If the medium 
is dispersive for a certain spectral domain, n also depends on the wavelength: dis-
persion. An average value for n near the Earth’s surface is 1.0003. Instead of n, the 
refractivity

 N =  ( n − 1 )  ×  10 6  (5.3)

is frequently used. 
Inserting (5.2) into (5.1) yields

 Δt  =   1 __ c    ∫ 
path

  
 

   n ds = min. (5.4)

By setting

 nds = d   
_
 s , 

(5.4) can also be expressed as a minimum condition for the “electromagnetic” path 
length (Fig. 5.1):

   
_
 s  =  ∫ 

path

  
 

   d  
_
 s   =  ∫ 

path

  
 

   n ds = min . (5.5)

Solving the variational problem (5.5) yields the path  
_
 s , but requires the knowledge of 

n along the path.
The effect of refraction on the distance is given by the difference between the actual 

path length  
_
 s  and the straight-line s (chord):

   
_
 s  − s =  ∫ 

path

  
 

   n ds −  ∫ 
0

   
s

   ds  =  ∫ 
0

   
s

   (n − 1) ds +  (   ∫ 
path

  
 

   n ds −  ∫ 
0

   
s

   n ds ) . (5.6)
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The fi rst term on the right side accounts for the difference in length due to the longer 
travel time in the atmosphere, while the second term represents the effect of the bending 
of the ray (Janes et al., 1991).

The refraction effect on curvature can be estimated by assuming that the air density is 
stratifi ed horizontally. Snell’s law describes the bending of the ray as it passes through 
layers of varying refractive index, which corresponds to Fermat’s principle:

 nsin z = const. (5.7a)

Or for two points  P 
1
  and  P 

2
 :

  n 1 sin  z 1  =  n 2 sin  z 2 . (5.7b)

Under the above assumption, the angle between the normal to the surface n = const. 
and the tangent to the ray with curvature 1/r (the curvature radius r should not be con-
fused with the corresponding spherical coordinate!) is the zenith angle z. Differentia-
tion of (5.7a) yields

 sin z dn + ncos z dz = 0. (5.7c)

With

 dn =  ( grad n )  ⋅ d s = |grad n| cos z ds,  (5.8) 

we obtain the curvature

   1 __ 
r
   =   dz ___ 

ds
   = −   

 | grad n | 
 _______ 

n
   sin z. (5.9)

By separating the horizontal and the vertical component of grad n, we get the curva-
tures of the ray projected into the horizontal and the vertical planes. The correspond-
ing effects on horizontal and vertical angles are called horizontal (lateral) and vertical 
refraction, respectively.

Horizontal refraction is about one to two orders of magnitude less than vertical refraction. 
Neglecting the latter yields a simplifi ed formula for the curvature of vertical refraction:

   1 __ 
r
   = −   1 __ 

n
     dn ___ 
dh

   sin z, (5.10a)

where h is the geodetic height, cf. [4.1.3].

grad n

ds
ds

n = const.

n + dn = const.

dz

z

r

r

Fig. 5.1: Ray bending in the atmosphere.
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In terrestrial geodetic measurements, we have n ≈ 1 and z ≈ 90°, which leads to

   1 __ 
r
   = −   dn ___ 

dh
  . (5.10b)

Instead of 1/r, the coeffi cient of refraction k is often used. It is defi ned as the ratio 
between the radius of the Earth R and the curvature radius r :

 k =   R __ 
r
   = −R   dn ___ 

dh
  . (5.11)

The vertical refraction angle d is the effect of refraction on observed zenith angles 
(Fig. 5.2). It results from integrating 1/r resp. dn/dh along the path:

 d  =   1 __ 
s
   ∫ 
0

   
s

    ( s −  s i  )    
dn ___ 
dh

    ds. (5.12a)

Here, the local vertical gradient of n is weighted according to the distance from the 
observer; values from closer distances receive a larger weight. For a spherical arc (r = const.), 
and taking (5.11) into account, (5.12a) reduces to

 d  =   k ___ 
2R

   s. (5.12b)

In most geodetic applications, the signal is transferred by a modulation of the car-
rier wave. This can be regarded as a superposition of a group of waves with different 
frequencies. While phase velocity  v 

ph
 , introduced in (5.2), refers to the monochromatic 

carrier wave, the center of a short wave group (signal energy) propagates with the group 
velocity

  v gr  =  v ph  − l 
dv ph 

 ____ 
dl 

  . (5.13)

In a dispersive medium, we have n = n(l) and the velocity dispersion dvph/dl ≠ 0 
(Leick, 2004). Taking (5.2) into account delivers the corresponding group refractive 
index

  n gr  =  n ph  − l 
dnph

 ____ 
dl 

   =  n ph  + f   
 dn ph 

 ____ 
df

  , (5.14)

with frequency f, cf. [5.1.2], [5.1.3].

LOCAL HORIZONTAL PLANE
OBSERVER

LOCAL
VERTICAL

TARGET

s

Pi

z

d

si s

Fig. 5.2: Vertical refraction.
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For a standard atmosphere with air temperature 273.15 K, air pressure 1013.25 hPa, 
humidity 0.0 hPa and CO2 content 0.0375%, the phase refractivity may be calculated 
as follows (IAG resolution, General Assembly Birmingham, 1999; also CODATA, 2006):

  N ph  =  (  n ph  − 1 )  10 6  = 287.6155 +   1.628 87 ________ 
l2

   +   0.013 60 ________ 
l4

  , (5.15)

where l is the carrier wave length in μm, and  n 
ph

  is the corresponding phase refractive 
index. The group refractivity is given by

  N gr  =  (  n gr  − 1 )  10 6  = 287.6155 +   4.886 60 ________ 
 l 2 

   +   0.068 00 ________ 
 l 4 

   , (5.16)

with the group refractive index ngr.
According to (5.6) and (5.12), the refraction effect on distances and angles depends 

on the index of refraction and its gradient along the path of the ray, which behave dif-
ferently in the troposphere than in the ionosphere.

5.1.2 Tropospheric refraction

The troposphere is the lower layer of the atmosphere. It extends to a height of about 
9 km at the poles and 16 km at the equator. All weather processes take place in this 
region, where nearly 90% of the atmospheric masses are concentrated. The tropopause 
as a boundary layer separates the troposphere from the stratosphere, which extends to 
about 50 to 60 km. The troposphere, tropopause, and stratosphere are electronically 
neutral. The index of refraction n depends on temperature T, pressure p and humidity e. 
For visible light, the troposphere behaves as a dispersive medium, cf. [5.1.1]. The refrac-
tive index decreases with height and becomes nearly 1 at about 40 km. Tropospheric 
refraction is the combined effect from the ground to this “effective” height. Above 70 to 
80 km the atmosphere is ionized, cf. [5.1.3].

The meteorological parameters T, p, e not only depend strongly on height but also on 
latitude, land/ocean distribution, topography, vegetation, and local conditions. These 
variables produce large- to small-scale anomalies of n. Additionally, these parameters 
experience variations with time which are of long-term, seasonal, daily, and turbulent 
character. Rapid fl uctuations are especially pronounced close to the Earth’s surface, up 
to 10 to 30 m above the ground (e.g., Bomford, 1980; p. 49 ff.). 

Temperature T decreases in the troposphere almost linearly with height h according to 
dT/dh ≈ – 0.0055°C/m, followed by a slight increase in the stratosphere. Horizontal 
temperature gradients may reach a few °C/100 km. Within the fi rst few hundred meters 
above the Earth’s surface and especially close to the ground, temperature variations are 
pronounced, including temperature inversion during night time and convection at noon. 
Air pressure p decreases exponentially with height. Assuming hydrostatic equilibrium, the 
vertical pressure gradient depends on density r and gravity g. Near the surface of the Earth, 
this leads to dp/dh = –r g = – 0.034 p/ T = –0.12 hPa / m at standard conditions (T = 288 K, 
p = 1013 hPa). Humidity is rather irregularly distributed and concentrated in a layer of a few 
km above ground, where strong variations also occur with time. It is measured by the water 
vapour pressure e, which is about 10 to 20 hPa at mid-latitudes close to the surface. It tends to 
decrease with height, with de/dh ≈ – 0.004 … 0.008 hPa/m at the lower layers, where we also 
fi nd pronounced differences between dry and damp air regions.

Global tropospheric models generally assume concentric spherical layers and azimuthal 
symmetry and neglect variations with time. They are provided by standard atmospheres 
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in the form of vertical profi les for temperature, pressure, and density. The U.S. standard 
atmosphere (1976) approximates mean mid-latitude conditions for dry air, latitudinal 
and seasonal departures are given by supplements, NOAA (1966, 1976). Widely used is 
the COSPAR International Reference Atmosphere (CIRA), Rees et al. (1990).

Empirical relations have been derived between the index of refraction and the meteo-
rological parameters for both light and microwaves (Bomford, 1980, p. 42 ff.). 

With atmospheric conditions different from the standard air, cf. [5.1.1], the group 
refractivity of visible light and near infrared waves in ambient moist air is (IAG resolu-
tion, General Assembly Birmingham, 1999):

  N l  =  (  n l  − 1 )  10 6  =   273.15 ________ 
1013.25

    
  p

 __ 
T
     N gr  − 11.27  e __ 

T
   , (5.17a)

with T in Kelvin, p and e in hPa. Equation (5.17a) is also valid for unmodulated light 
with the corresponding phase refractivity (5.14).

The refractivity of microwaves (independent of the wavelength) is given by the for-
mula of Thayer (1974)

  N m  =  (  n m  − 1 )  10 6  = 77.60    
p
 __ 

T
   − 13  e __ 

T
   + 3.78 ×  10 5   e __ 

 T  2 
   , (5.17b)

which is practically identical with the formula of Essen and Froome (IAG resolution, 
General Assembly Berkeley, 1963).

The fi rst term on the right side of (5.17a,b) represents a “dry” component of the refractivity. 
It contributes about 90% to the total tropospheric refraction in the lower 15 km and can be 
modeled from surface pressure values, assuming hydrostatic equilibrium; these values may be 
derived from in situ measurements or from numerical weather models. The “wet” component, as 
expressed by the terms depending on e (especially the last one), is highly variable in space and 
time and extremely diffi cult to model, it approaches zero at around a height of 10 km. In order to 
keep the error in the index of refraction less than 10–6, the meteorological parameters in (5.17a,b) 
have to be determined to about ±1°C for temperature, ± 3.5 hPa for pressure, and ± 25 hPa (light) 
resp. ± 0.2 hPa (microwaves) for humidity. 

Refraction formulas as (5.17a,b) have been developed originally for the reduction of ter-
restrial measurements, carried out close to the surface of the Earth and characterized by 
small elevation angles. With the advent of geodetic space techniques, large elevations 
(up to zenith directions) had to be considered, and the signal path now passed through 
the complete troposphere (and the ionosphere, cf. [5.1.3]), Gruber et al. (2009), Dettmer-
ing et al. (2010). A number of corresponding tropospheric refraction models has been 
developed since the 1960s (e.g., Hopfi eld, 1969; Saastamoinen, 1972/1973), employing 
actual weather data or numerical models as input. Starting from the refraction effect on 
a measured distance, these models concentrate on the fi rst term of (5.6), and distinguish 
between a “dry” and a “wet” component for the signal delay (see above). The small ray 
bending effect inherent in (5.6) can easily be taken into account by a “bending function”, 
see (5.111). As the dry component approximately follows hydrostatic equilibrium, it can 
be modeled as a function of hydrostatic pressure; this “hydrostatic” component is nearly 
identical for visible light and radio frequencies. As an example, the IERS conventions (Petit 
and Luzum, 2010, p. 135) provide the following formula (according to Saastamoinen, 
1972/1973) for the zenith hydrostatic delay of radio waves (in meters):

 Δs  ( zenith )  hydr.  =   
0.002 277p

  ______________________________   
(1 − 0.002 7 cos 2j − 0.000 28 H )

   , (5.18a)
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with p (hPa) atmospheric pressure at the observation site, j latitude and H (km) height 
above the geoid. This results in a maximum effect of 2.3 m, and requires the pressure to 
be determined with ±0.4 hPa for a reduction accuracy of 1 mm. The zenithal delay con-
tribution of the wet component amounts to 0.07 ns for white light, and varies between 0 
and 2 ns (about 10% of the dry component) for radio waves. Due to its high variability in 
space and time, this part is diffi cult to model, and generally estimated at the evaluation 
process. Finally, the tropospheric path delay increases strongly with decreasing eleva-
tion angles, reaching about 20 to 30 m at an elevation below 5° elevation; this depen-
dence can be modeled by a tropospheric “mapping function”. A simple relation is given 
by 1/cos z for elevation angles that are not too small. Again, the “Saastamoinen-model” 
offers a good approximation, where the wet component is included now (Hofmann-
Wellenhof et al., 2008, p. 135): 

 Δ s trop  =   0.002 277 __________  cos z
    ( p +  (   1255 _____ 

T
   + 0.05 )  e −  tan 2 z )  . (5.18b) 

With z zenith angle, p (hPa) pressure, T (°K) temperature, e (hPa) partial pressure 
of water vapor, the result is given in meters. Improved mapping functions have been 
developed and are available for optical (laser ranging; Mendes and Pavlis, 2004) and for 
radio techniques (GPS, VLBI; Niell, 1996; Böhm et al., 2006). The refi nements include 
the separate treatment of the dry and the wet component, and the consideration of hori-
zontal asymmetry of the refraction fi eld. 

Differentiating (5.17a,b) with respect to the height h yields the dependence of the 
rays’ curvature on the meteorological parameters. Neglecting minor terms and taking 
(5.16b) into account, we obtain for the surface near layers

   
 dN l  ____ 
dh

   = −78   
p
 __ 

 T   2 
    ( 0.034 +   dT ___ 

dh
   )  −   11 ___ 

T
     de ___ 
dh

   (5.19a)

for light. For microwaves, the last term on the right side (“wet component”) changes to 

 +   3.7 ×  10 5  ________ 
 T  2 

     de ___ 
dh

  . (5.19b)

In the layers close to the ground, the strong variations of the meteorological parameters 
in space and time lead to corresponding changes in the coeffi cient of refraction, with 
pronounced seasonal and day/night variations (Höpcke, 1966). Under average daytime 
conditions with a clear sky, and for heights between 40 m and 100 m above the ground, 
we have for light

  k l  = 0.13 or  r l  = 8R, (5.20a)

and for microwaves

  k m  = 0.25 or  r m  = 4R, (5.20b)

with rl and rm being the curvature radii of light and microwaves, respectively, and R the 
mean Earth’s radius. 

According to (5.11), the coeffi cient of refraction k has to be determined for light with an 
accuracy of 2°C in temperature, 6 hPa in air pressure, and 0.0002°C/m in the temperature 
gradient in order to achieve a relative accuracy of 1%. For microwaves, the admissible errors 
may be two times larger. The gradient of the water vapor pressure should be determined with 
0.005 hPa / m for light and 0.0001 hPa / m for microwaves. Hence, the most critical parameters 
are the vertical gradients of temperature and, especially for microwaves, of the water vapor 
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pressure. According to (5.12b), an error of 1% in k would produce an error in the refraction 
angle of 0.2” over a distance of 10 km and 0.4” over 25 km.

The evaluation of space geodetic data (especially VLBI, GPS, DORIS) increasingly 
contributes to the determination of atmospheric parameters, and the improvement 
of weather models (including latitude and azimuth dependence, MacMillan and Ma, 
1997) and weather forecasting (Gendt et al., 2004). The exploitation of GPS signals 
(carrier phase observations) is of particular importance. Ground-based GPS tech-
niques are based on the path delays that the signals experience when passing through 
the atmosphere (Davis et al., 1996). By separating the “dry” component from the 
tropospheric signal delay, the integrated precipitable water vapor content above the 
observer’s site can be estimated from the “wet” component (Bevis et al., 1992). Per-
manent GPS networks, cf. [5.2.5], [7.3], supply this meteorological information on 
global and regional scales, with high temporal resolution and nearly on-line (Poli et 
al., 2007; Heise et al., 2009). The water vapor content can be determined also from 
ground-based water vapor radiometers, and the results used for calibrating the space-
derived “wet” component (Dodson et al., 1996).

Spaceborne GPS receivers allow atmospheric sounding by radio occultation 
(Yunck and Melbourne, 1996). This method became possible through the installa-
tion of GPS receivers on board Low Earth Orbiters (LEOs), as CHAllenging Mini-
satellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE)  
cf. [5.2.8], and the six satellites of the FORMOSAT-3/COSMIC mission (launched 
2006), and is now used operationally by several agencies. Here, the GPS signal is 
tracked after rising or before setting of the GPS satellite (Fig. 5.3). In connection 
with a network of ground-based receivers, the observed Doppler shift induced by 
the relative motion between the LEO and the GPS satellite is used for constructing 
vertical profi les of atmospheric parameters (from the high atmosphere down to the 
Earth’s surface) on a global scale, including refractivity, bending angles, temperature 
and water vapor (Wickert et al., 2010).

EARTH

GPS SATELLITES

ATMOSPHERE

LEO

Fig. 5.3: Principle of GPS radio occultation technique.
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5.1.3 Ionospheric refraction

As part of the higher atmosphere, the ionosphere is characterized by the presence of 
free, negatively-charged electrons and positive ions. Ionization is caused primarily by 
the impact of solar ultraviolet radiation and consequently depends on the density of the 
atmospheric gas and the intensity of the radiation. The ionosphere covers the region 
between about 60 km and 1500 km above the Earth, with a maximum electron density 
at a height of 200 to 300 km.

The ionosphere acts like a mirror at frequencies below 30 MHz. Radio waves of 
higher frequencies pass through the ionosphere but experience frequency-dependent 
effects (dispersive medium). Measurements to targets above the ionosphere are also 
affected by the electron concentration in the plasmasphere, which extends up to a height 
of several Earth radii above the equator and does not exist at the poles (Wanninger, 1995; 
Klobuchar, 1996).

The index of refraction depends primarily on the number  N 
e
  of electrons per m3: 

electron density. As a fi rst order approximation, the phase refractive index is given by 

  n ph  = 1 − K  
  N e  ___ 
 f    2 

  , (5.21)

with the constant K = 40.28  m 3  s –2   and frequency f. Higher terms of the order 1/f  3 and 
1/f 4 also depend on the intensity of the Earth’s magnetic fi eld and the direction of the 
signal propagation. In daytime,  N e  (el/ m 3 ) varies between about 1 0 8 …1 0 10  (heights 
from 60 to 90 km) over 1 0 11  (105 to 160 km) to 1 0 11 …1 0 12  (160 to 180 km) and 1 0 12  
(300 to 400 km). 

As seen from (5.2) and (5.21), the phase velocity is larger than the velocity of light in 
vacuum, which corresponds to a larger wavelength of the signal compared to vacuum. 
Since signal propagation follows the group velocity, we insert (5.21) into (5.14) and 
obtain the group refractive index

  n gr  = 1 + K    
 N e  ___ 
 f    2 

  . (5.22)

Inserting (5.21) resp. (5.22) into (5.6) delivers the difference between the electromag-
netic path length   

_
 s  and the straight-line connection s. This yields for carrier phase  (  n 

ph
  )  

and for range  (  n 
gr
  )  observations, respectively: 

   (   
_
 s  − s )  ph  = −  (   

_
 s  − s )  gr  = −   K __ 

 f   2 
    ∫ 
0

   
s

     N e   ds, (5.23)

where the small effect of the path’s bending has been neglected. The signal delay may 
result in distance errors between a few meters and about 100 meters (Langley, 1998).

The integral of the electron density along the path is called total electron content 
(TEC):

 TEC =  ∫ 
0

   
s

    N e   ( s )  ds. (5.24)

It gives the number of electrons along the signal path between the receiver and the 
satellite, as measured in a cylindrical column with a cross section of 1  m 2 ; its unit is 
1 TECU = 1 0 16  electrons/ m 2 . TEC values vary between 1 and 103 TECU along the radio 
wave path. For a spherically-layered ionosphere, we may introduce the electron content 
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along a vertical column of height h and relate it to the TEC along the path by an oblique 
factor F (“mapping function”):

 TEC = F  ∫ 
0

   
h

   N e   ( h )  dh. (5.25)

For z < 70°, we have F ≈ 1/cos zi , with zenith angle  z i  at the subionospheric point  P i  
(Fig. 5.4).  P i  is located at the “mean height”  h i  of the ionosphere (single-layer model), 
with, e.g.,  h i  = 350 km.  z i  can be calculated from  h i  and the zenith angle z measured 
from the ground: 

 sin  z i  =   R _____ 
R +  h i 

   sin z, (5.26)

R radius of the Earth.

The electron content in the ionosphere depends on the geographical location (with highest 
values around the Earth’s magnetic equator) and varies strongly with time. There are pronounced 
variations of daily, seasonal, and about an 11-year (solar activity cycle) period. Superimposed on 
these more regular variations are irregular disturbances. Short-term scintillations occur primarily 
in the equatorial zones but also in the polar and auroral regions (magnetic storms). Traveling 
ionospheric disturbances of wavelike structure proceed with horizontal speeds between 100 
and 1000 m/s at scales of some 10 to 1000 km and at periods from several minutes to a few 
hours. The high spatial and temporal variability of the electron content make modeling and 
prediction of the ionospheric state diffi cult.

Ionospheric models describe the distribution of  N e  in space and time. They are based 
on the dependency of the ionospheric state on the position of the sun, and derived 
from satellite and rocket probes. Assuming a spherical shell distribution, they provide, 
among others, a smoothly varying TEC along vertical profi les and a mapping function for 
inclined signal propagation. Among these models are the regularly updated International 
Reference Ionosphere (IRI) of COSPAR and the MSIS Thermosphere Model of the Naval 
Research Laboratory (Hedin, 1987, 1991; Bilitza and Reinisch, 2008; Bilitza et al., 2011). 
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Fig. 5.4: Ionospheric refraction.
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Refi ned models include actual data from satellites and terrestrial stations, as well as 
sunspot numbers (e.g., Kleusberg, 1998). These models may deviate from reality by some 
10%, due to the ionospheric disturbances.

Ionospheric models are of special importance if only one frequency is used for radio signal 
propagation. By employing two frequencies most of the ionospheric refraction effects are 
eliminated, due to the dispersion effect, cf. [5.2.4], [5.2.5], [5.2.7]. Ionospheric models 
developed for positioning and navigation with GPS and Galileo will be discussed in [5.2.5].

As with the troposphere, the GPS (and other GNSS) signals may be exploited for 
ionospheric remote sensing, as the signal delay provides information on the structure 
and temporal behavior of the ionosphere. By analyzing the two carrier waves used to 
eliminate ionospheric refraction, cf. [5.2.5], the total electron content (TEC) along the 
line of sight from the receiver to the GPS satellite can be measured. The abundance 
of GPS ground networks (e.g., IGS) and the increasing number of space-based receiv-
ers nowadays allows to generate nearly real-time global maps of TEC (Yunck and 
Melbourne, 1996; Fedrizzi et al., 2001; Schmidt, 2011). The electron content of the 
upper ionosphere and the plasmasphere can be derived from GPS-signals received by 
satellite-mounted antennas directed upwards.

5.2 Satellite observations

Satellite geodesy utilizes artifi cial satellites and the moon as extraterrestrial targets 
and/or sensors. For a point-mass Earth model, the orbital motion of a satellite is de-
scribed by Kepler’s laws [5.2.1]. The deviations of the actual gravitational fi eld from 
this model and non-gravitational forces create orbital “perturbations” [5.2.2]. Satel-
lites used for geodetic applications differ in design, equipment, and orbital parameters 
according to the mission purpose and the respective observation techniques [5.2.3]. 
Classical measurement methods, introduced and employed from the 1960s to the 
1980s, demonstrated the effi ciency of satellite geodesy for establishing large-scale 
geodetic control networks, and for the determination of the long-wave part of the 
gravitational fi eld. Some of these techniques are still employed at present-day geodet-
ic satellite systems [5.2.4]. Today, the Global Positioning System (GPS) governs three-
dimensional positioning at all scales, and further Global Navigation Satellite Systems 
(GNSS) have been developed or are under construction [5.2.5]. Laser distance-mea-
surements to artifi cial satellites and to the moon primarily contribute to the establish-
ment and maintenance of global reference systems, but also to the determination of 
Earth orientation and, with respect to lunar laser ranging, also to lunar sciences and 
the theory of gravitation [5.2.6]. By monitoring the ocean surface, satellite altimetry is 
a powerful tool for the survey of the marine gravity fi eld and for geoid determination 
[5.2.7], while a high-resolution global gravity fi eld recovery including temporal fi eld 
variations has been obtained by satellite-to-satellite tracking and gravity gradiometry 
missions [5.2.8]. 

The theory of satellite orbits and satellite measurement methods are treated in text-
books and monographs on celestial mechanics (Schneider, 1992/1993/1996; Beutler, 
2005), orbital theory (Montenbruck and Gill, 2000; Milani and Gronchi, 2009), and 
satellite geodesy, e.g., Kaula (1966), Schneider (1988), Seeber (2003).
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5.2.1 Undisturbed satellite motion

After the satellite has separated from the carrier, it begins its unrestrained revolution 
about the Earth. We assume the gravitational point mass model (central mass), cf. 
[3.1.2], and neglect the mass of the satellite with respect to the Earth’s mass. If we also 
neglect perturbations of non-gravitational type and the effect of other celestial bodies 
(thus restricting ourselves to a two-body problem), Newton’s second law of motion pro-
vides the equation of motion in the gravitational fi eld:

 r̈ = grad V = −   GM ____ 
 r  2 

     r _ 
r
  . (5.27)

r is the geocentric position vector of the satellite and r̈ = d 2r/dt 2 its acceleration, 
M and V are the mass and the gravitational potential of the Earth, respectively, cf. (3.16). 
The integration of this vectorial second-order differential equation introduces six 
integration constants, e.g., position and velocity at a given epoch.

The fundamental theory of the two-body problem is given by celestial mechanics (e.g., 
Kovalevsky, 1989, for further references see the introduction to this chapter). Such works 
also address the fundamentals of orbit perturbations, orbit computation, and the treatment of 
three- and multi-body problems. 

Johannes Kepler (1571–1630) derived three laws of planetary motion from the astro-
nomic observations collected by Tycho de Brahe (1546–1601), e.g., Schneider and 
Müller (2009). When applied to an artifi cial satellite, these laws provide a geometric 
description of the satellite’s undisturbed central motion around the Earth.

According to Kepler’s laws, the satellite moves in an elliptical orbit. One focal point 
of the ellipse, with semi-major axis a and fi rst numerical eccentricity e (the abbrevia-
tions should not be confused with the corresponding parameters of the Earth ellipsoid), 
coincides with the center of mass of the Earth. In the orbital system (Fig. 5.5), the posi-
tion of the satellite is described by the distance r from the center of mass and the true 
anomaly n. The true anomaly is the geocentric angle between the directions to the satel-
lite and perigee. Instead of n, the eccentric anomaly E can be used, with the relations

 r = a ( 1 − e cos E ) , tan n =    √ 
______

 1 −  e  2    sin E  ___________ 
cos E − e

  .  (5.28)

With Kepler’s third law, the mean (angular) velocity 

   
_
 n  =  √ 

____
   GM ____ 

 a 3 
     (5.29)

b a

E
e = ae EARTH

√(t)

SATELLITE (t)

PERIGEE

r(t)

Fig. 5.5: Satellite orbital system.
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is introduced, describing a mean orbital motion. The mean anomaly

   
__

 M  =   
_
 n   ( t − T )  (5.30)

represents yet another parameter for describing the satellite’s position in the orbit. It is 
generally preferred because it increases linearly with time t. T is the epoch of the pas-
sage through the perigee, the closest approach to the Earth. From  

__
 M , E can be computed 

iteratively using Kepler’s equation: 

   
__

 M  = E − e sin E. (5.31)

The orbital system is transformed into the space-fi xed equatorial system, cf. [2.3.1], 
by three rotations (Fig. 5.6). The right ascension of the ascending node W and the incli-
nation i provide the orientation of the orbital plane in space. The argument of perigee w 
orients the ellipse in the orbital plane. From the result of this transformation, we obtain 
the geocentric position vector (2.10) as a function of the six Keplerian elements a, e, W, 
i, w, and n (or equivalently E,   

__
 M , or T): 

 r = r  (     cos d cos a 
     cos d sin a        

sin d  
   )  = r  (     cos (w  + n )cos W − sin (w  + n)sin W cos i                  

 cos (w  + n )sin W + sin (w  + n)cos W cos i
  
                  

sin (w  + n )sin i
   )  , (5.32a)

with

 r =   a ( 1 −  e  2  )  __________ 
1 + e cos n 

   . (5.32b)

The six Keplerian parameters completely describe the orbital motion of the undis-
turbed satellite. They correspond to the integration constants of the equation of motion 
(5.27) and are used for the approximation of satellite orbits.

Z

0

r

EQUATORIAL
PLANE

SATELLITE

√

i
VERNAL

EQUINOX

ORBITAL
ELLIPSE (a,e)

PERIGEE

ASCENDING
NODE

dw

a
W

Fig. 5.6: Orbital and equatorial system.
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5.2.2 Perturbed satellite motion

The actual orbit of a satellite departs from the Keplerian orbit due to the effects of vari-
ous “disturbing” forces. This includes the non-spherical parts of the Earth’s gravitation, 
the gravitational effects of moon and sun, atmospheric air drag, and solar radiation pres-
sure, among others. These disturbing forces cause variations in time in the orbital ele-
ments (orbital perturbations) of secular, long- and short-periodic nature. The actual orbit 
can be viewed as the envelope of Keplerian ellipses, which are given at each instant by 
the actual orbital elements (osculating ellipses). 

In order to account for the complete gravitation of the Earth, the gravitational poten-
tial of a spherically symmetric Earth must be amended by the perturbing potential R (not 
to be confused with the disturbing potential introduced in [6.1.1]):

 V =   GM ____ r   + R. (5.33)

According to equations (3.89) to (3.91), R can be expressed by a spherical harmonic 
expansion of the gravitational potential V through the harmonic coeffi cients  J lm   ,  K lm   
( l ≥ 2 ) . By substituting (5.33) into (5.27), the equation of motion now reads

 r̈ = −   GM ____ 
 r   2 

     r _ r   + grad R. (5.34a)

The spherical coordinates r, J, l (2.13) used in the expansion of V can be replaced by 
the orbital elements according to (5.28) and (5.32), see also Fig. 5.5. R then is described 
by the time-variable Keplerian orbital parameters and the harmonic coeffi cients:

 R = R  ( a, e, W, i, w,   
__

 M ,  J lm ,  K lm  ) . (5.34b)

The second-order differential equation (5.34) can be transformed into a system of 
fi rst-order differential equations. They represent the time rates of the orbital parameters 
as a function of partial derivatives of the perturbing potential (i.e., of the harmonic 
coeffi cients) with respect to them. These fi rst-order differential equations are known as 
Lagrange’s perturbation equations (Kaula, 1966, p. 29; Seeber, 2003, p. 85 ff.):
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(5.35)

The infl uence of the gravitation of moon and sun on a satellite can be calculated 
by corresponding extension of (5.27), which leads to the equation of motion for a 
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four-body problem. As a result, a satellite orbit experiences secular and long-periodic 
perturbations, which may reach 100 m and more. In addition, solid Earth and ocean 
tides, cf. [8.3.6], especially affect low-orbiting satellites. Corresponding corrections are 
based on the ephemeris of the moon and sun and on Earth and ocean tide models.

Air drag is caused by friction of the satellite with atmospheric particles. It is propor-
tional to the velocity of the satellite and depends on atmospheric density and the effec-
tive cross-sectional area to mass ratio. With increasing altitude, the air drag decreases 
rapidly and approaches zero at about 1000 km. Air drag effects are corrected using 
high-altitude atmospheric models such as the COSPAR International Reference Atmo-
sphere, or from on-board accelerometer measurements, cf. [5.1.2], [5.2.8].

High-altitude satellites are especially affected by solar radiation pressure due to inci-
dent photons. The resulting perturbations depend on the solar fl ux and the attitude 
of the satellite with respect to the sun, the area to mass ratio, and the refl ectivity. The 
Earth-refl ected solar radiation pressure (albedo) remains signifi cantly smaller than the 
direct effect. Modeling of the radiation pressure effects is diffi cult, especially for satel-
lites of complex structure. Electromagnetic interactions with the magnetic fi eld of the 
Earth occur in the ionosphere; however, they are small and can be considered by cor-
rections. At the now reached level of accuracy, relativistic effects also have to be taken 
into account (Ries et al., 1991).

Orbit determinations are based on analytical or numerical methods (Boccaletti and 
Pucacco, 1996/1999; Milani and Gronchi, 2009). For analytical solutions, all acting 
forces are expressed by rigorous relations and integrated in closed form. A fi rst order 
approximation is already provided by the solution of (5.35). The position vector at any 
epoch t is given by the orbital elements at an initial epoch  t 

0
 , the parameters of the 

gravitational fi eld, and other models of disturbing forces:

 r = r (a 0 ,  e 0 ,  Ω 0 ,  i 0 ,  w 0 ,    
__

 M  0 ; GM,  J lm ,  K lm ;…; t ). (5.36)

For numerical methods, all forces are calculated for a particular position of the satel-
lite and used as a starting condition for a stepwise integration of the equation of motion 
(5.34a). Classical astronomic methods for orbit determination are used, as developed by 
Cowell (integration of the total force) or Encke (integration of the difference to an oscu-
lating Kepler ellipse). The numerical integration itself is carried out with conventional 
methods, fi tting a polynomial to a series of consecutive points. The Runge-Kutta method 
as a single-step solution uses a Taylor series for extrapolation, while multi-step methods 
iteratively improve the prediction results, e.g., through Kalman fi lter techniques (Mon-
tenbruck and Gill, 2000).

The analytical method is rather laborious, and diffi culties arise at applying it to non-
gravitational forces. It is well suited for estimating the effects of perturbing forces on the 
satellite’s orbit and for the planning of satellite missions and projects. Numerical meth-
ods are simple and generally applicable. They are used nearly exclusively today. The arc 
lengths for orbit modeling (parameter estimation by adjustment) vary from a few days at 
low orbiting satellites to some weeks at high fl ying satellites. 

Orbit determination is now also directly possible by spaceborne packages of satellite 
navigation and positioning systems as GPS or DORIS (Yunck and Melbourne, 1996), 
this strategy is applied especially at low Earth orbiters, where modeling of perturbations 
is diffi cult. In contrast to the dynamic approach explained above this kinematic orbit 
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determination does not require any information on the acting forces (gravitation, air 
drag, solar radiation etc.). 

Precise orbit determinations are especially important for positioning and satel-
lite altimetry, but also for satellite gravity missions. With good satellite tracking 
(within the frame of dedicated networks), and (for the dynamic orbit determina-
tion) using precise models of both the gravitational fi eld and the non-gravitational 
forces, the ephemeris of geodetic relevant satellites can be determined by orbital 
post-processing with cm-accuracy. By applying adequate models for the perturbing 
forces, orbit predictions can be carried out and extended from several revolutions 
of the satellite to days and months, with prediction accuracies varying from some 
centimeters to some meters. Predicted orbits for individual satellites are published 
by the responsible agencies, while navigation satellites also transmit their own 
orbital data, cf. [5.2.4], [5.2.5].

An orbital accuracy of better than one mm can be achieved for high-altitude satellites used 
for positioning, by truncated versions of existing gravitational fi eld models. For the EGM2008 
model, cf. [6.6.3], suggested truncation levels are at degree and order 90 for Starlette (orbital 
radius about 7300 km), 20 for Lageos (12300 km), and 12 for GPS (26600 km), Petit and 
Luzum (2010).

5.2.3 Artifi cial Earth satellites

Since the launch of Sputnik I (1957), artifi cial Earth satellites have been used for geo-
detic purposes such as positioning and the determination of the Earth’s gravity fi eld and 
rotation parameters. Only a limited number of satellite missions have been designed 
exclusively for geodetic applications. However, a large number of satellites developed 
for navigation, remote sensing, and geophysics were and are used extensively also in 
geodesy.

A satellite can be regarded as a moving target at high altitude and then used 
for positioning. Because the satellite’s orbit is affected by the gravitational field 
of the Earth, the satellite may also serve as a sensor for gravitation. Time series of 
satellite observations finally allow to monitor the time-variable Earth orientation. 
Satellites may reflect incident light only (passive satellites), or they may carry sub-
systems on board such as transmitters/receivers, different type sensors, clocks, and 
computers (active satellites). In the latter case, an energy supply is required, and 
lifetime is rather limited. Passive satellites have played and play an important role 
in geodesy, but active satellite missions nowadays support the majority of geodetic 
applications.

The mean orbital velocity of a satellite moving in an approximately circular orbit (r = a) 
is given from (5.29) by

   
_
 v  = a  

_
 n  =   (   GM ____ r   )    1 __ 

2
   . (5.37)

For a satellite close to the Earth (h = 800 km), we obtain, with r = R + h = 7170 km, 
a velocity of 7.5 km/s. Kepler’s third law yields the period of revolution U = 2p  r/   

_
 v  = 101 

min. For a high-orbiting satellite (h = 20 000 km) we have 3.9 km/s for velocity and 12 
h for the period of revolution. The intersection of the orbital plane with a non-rotating 
Earth represents a great circle on the Earth’s surface: subsatellite track. The rotation of 
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the Earth causes a western displacement of subsequent satellite orbits (Fig. 5.7), with a 
shift on the equator given by

 Δl  = 360°  U ___________  
sidereal day

   = 15° U [ h ]  = 0.25° U [ min ] . (5.38)

The latitude range of the subsatellite tracks is determined by the inclination of the 
satellite.

The following aspects have to be considered during the design (choice of orbital 
parameters) of satellite missions for geodetic applications:

For positioning and determination of Earth rotation, the network geometry of the 
ground stations and the satellites plays a primary role. Simultaneous direction measure-
ments from two ground stations to a satellite form a plane, and the intersection of planes 
provides relative positions within a geometric network (satellite triangulation). Range 
measurements utilize the intersection of spheres (satellite trilateration), whereas range 
differences, derived from Doppler-frequency shifts, use the intersection of hyperboloids. 
If the satellite’s orbit is known with high accuracy, the absolute position of the ground 
stations can be derived from these relative measurements. Satellites at high altitudes are 
preferred for positioning and navigation, as they are less infl uenced by gravitational and 
air drag perturbations. 

Exact simultaneous measurements of directions or distances were performed from the 1960s 
to the 1970s, and led to purely geometric satellite networks, without precise knowledge 
of the satellite orbits. When simultaneousness could be achieved only approximately, a short-
arc orbital fi tting served for interpolation and improvement of the results, cf. [5.2.4]. 

The orbital analysis of satellites has been early used for the determination of the 
Earth’s gravitational fi eld. As high-orbiting satellites only sense the long-wave parts of 
the gravity fi eld, low altitude satellites are required for determining the gravitational 
fi eld at a higher spatial resolution. This is mainly due to the attenuation factor (ae/r)

l in 
the spherical harmonic expansion of the gravitational potential (semimajor axis of 

1234

Fig. 5.7: Subsatellite tracks (inclination 60°).
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the Earth ellipsoid  a e  ), cf. [3.3.2], [6.7.3]. Consequently, the relative errors of the har-
monic coeffi cients increase rapidly at higher degrees l. For l = 20, the amplitude of 
the corresponding structure of wavelength 2000 km is only 5% at a satellite altitude 
of 1000 km, as compared to the Earth’s surface. This attenuation is increased by the 
fact that the harmonic coeffi cients become smaller with increasing degree and order, 
cf. [6.6.2]. In order to resolve the gravitational fi eld from an orbital analysis with a 
certain degree l at the equator, it follows from (5.38) that the satellite has to perform 
2l revolutions/day, or a longer observation time is required. As seen from (5.35), the 
recovery of the harmonic coeffi cients also strongly depends on the satellite’s inclina-
tion. Corresponding satellite coverage is needed in order to avoid ill conditioning; too 
small inclinations and eccentricities should be avoided. An improved resolution of the 
gravitational fi eld has been achieved by range and range-rate measurements between 
satellites (low- and high-orbiting) and ground stations, while an even higher resolu-
tion can be obtained by gravity gradiometers carried on board low-orbiting satellites. 
Satellite altimetry fi nally delivers the distance between the satellite and the ocean 
surface, and thus a high-resolution approximation to the geoid, cf. [3.4.2]. Dedicated 
gravity fi eld and satellite altimetry missions require a precise orbit determination and 
an orientation with respect to the vertical.

Non-gravitational perturbing effects on the satellite can be reduced by a small cross-
sectional surface and large mass; a spherical shape offers special advantages. Atmo-
spheric drag and solar radiation pressure may also be compensated by a drag-free sys-
tem. In such a system, a proof mass is shielded by a shell attached to the satellite. The 
mass is affected only by gravitation, while surface forces act in addition on the shell. By 
continuously measuring the position changes between proof mass and shell, a feedback 
system keeps the satellite centered on the proof mass. In order to detect variations with 
time, in position (station velocities) of observation sites and in the gravitational fi eld, 
adequate temporal observations series have to be carried out, preferably by the same 
satellite system.

Satellites used in geodesy may be equipped with the following techniques, of which 
combinations are used in many missions: 

• Direction measurements have been made available by a sun-light refl ecting skin 
(early balloon satellites), by fl ashing light devices, and by mirror arrays, cf. [5.2.4], 

• transmitters/receivers serve for the continuous emission/reception of modulated 
radio waves which are used for range and range rate (Doppler) measurements 
between the ground station and the satellite or between satellites, cf. [5.2.4], 
[5.2.5], [5.2.8],

• retrorefl ector arrays of fused silica corner cubes refl ect laser light pulses and are 
employed for laser distance measurements, cf. [5.2.6], 

• vertical distance measurements to the ocean surface are performed by radar alti-
meters, cf. [5.2.7],

• gravity gradiometers measure gravitational gradients within the body of the satel-
lite, cf. [5.2.8].

High demands are placed on the determination of time. At orbital velocities of sev-
eral km/s, the time epoch has to be determined to ±1 μs in order to keep orbital errors 
less than 1 cm. Distance measurements to satellites require time interval measurements 
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to ±0.1 ns in order to obtain cm-accuracy. Rubidium or cesium frequency standards, 
which are tied to UTC by time signals, are capable of reaching this level of accuracy. 
Quartz oscillators can be used in satellite receivers if an external control is provided, 
e.g., through the satellite system, cf. [5.2.5].

More details on satellites employed in geodesy are given in the following chapters.

5.2.4 Direction, range and range rate (Doppler, DORIS) measurements 

Satellite observations began in 1957. They were based partly on methods developed 
for the observation of the moon and of high-fl ying balloons. While some of the clas-
sical techniques applied up to the 1980s are no longer of importance, other methods 
have been developed further and are used extensively today. Some results of the early 
satellite missions are still of relevance for the strengthening and orientation of geodetic 
networks and for the calculation of Earth models (e.g., Seeber, 2003, p. 158 ff.).

Direction measurements to satellites prevailed until about 1970 and led for the fi rst 
time to global and regional three-dimensional networks. Orbital analysis also provided 
the low-degree harmonic coeffi cients of the gravitational potential development.

For optical direction measurements, an illuminated satellite is photographed on fi lm 
or glass plates together with the fi xed stars.

Balloon satellites refl ecting sunlight (e.g., Pageos, 1966 –1972, diameter of 30 m, i = 87°, h = 2800 
to 5600 km) and light fl ashes from active satellites were used. Ballistic cameras (e.g., Wild BC4) 
mounted azimuthally were easy to operate and had a large fi eld of view. Equatorially-mounted 
astronomic cameras could follow the motion of the stars. Using a large focal length, even faint 
stars could thus be detected and observed with high precision. Orbital cameras were designed 
so that they could also follow the motion of a satellite. Upon developing the photographs and 
identifying the stars, the satellite and star image points were measured on a precision comparator 
(±1 μm). The plate coordinates of the satellite were then transformed to the spatial directions 
right ascension and declination, whereby the transformation parameters were derived from the 
known directions to the stars, cf. [2.4.1]. Since the satellite travels in the atmosphere, astronomic 
refraction reduction as applied to the stars, cf. [5.3.3], had to be reduced by the satellite refraction 
(Fig. 5.43), with

 Δ z 
sat

  = 0.48”  tan z ___________  
h  [ 1000 km ] 

  . (5.39)

The accuracy of the direction measurements was 0.2” to 2”. An increase in accuracy was not 
possible mainly due to scintillation effects and comparator measuring errors. An outstanding 
example of a geometric satellite network established by stellar triangulation is the global net 
(45 stations) of the U.S. National Geodetic Survey (1966–1970). It was constructed by direction 
measurements with Wild BC4 cameras to the Pageos satellite, and the scale was derived from 
long traverses measured with electronic distance meters; an accuracy of 4 to 5 m was achieved 
(Schmid, 1974).

The Japanese satellite EGS (Experimental Geodetic Satellite), also Ajisai (h = 1500 km, 
i = 500, nearly circular orbit) is a more recent example of direction measurements. 
The spherical-shaped (diameter 2.14 m) satellite was launched in 1986. Its surface 
is equipped with both mirror and laser refl ector assemblies. By rotation of the sat-
ellite about its axis, incident sunlight is refl ected periodically with two fl ashes per 
second. The satellite has been used for laser range and for photographic direction 
measurements, in order to improve the Japanese horizontal control network and to 
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connect remote islands. Precise orbit determination is also exploited for gravity fi eld 
improvement. 

Microwave distance-measurements started in the 1960s and still play a fundamental 
role today.

The Secor (Sequential Collation of Range) system used modulated microwaves (two frequencies) 
emitted from ground stations and re-transmitted from transponders on board the satellites. 
Distances were derived from signal’s travel time, using the phase comparison method, cf. 
[5.5.2]. Using this method and employing spatial trilateration, isolated geodetic networks 
were connected to a global reference system. The precision obtained was a few m, although 
systematic errors up to several 10 m also occurred. 

Starting in the 1970s, Doppler positioning (named after the Austrian Christian Doppler, 
1803–1853) soon became an effi cient tool for establishing 3D-networks, or for improv-
ing classical geodetic horizontal control. By orbital analysis, it also delivered improved 
geopotential models and Earth rotation parameters (Seeber, 2003, p. 181 ff.).

With Doppler measurements, a transmitter on-board a satellite S continuously emits a 
stable frequency  f s  (Fig. 5.8). A signal is received at the ground station (distance s to the 
satellite) with the frequency  f g  and a time shift Δt with respect to the transmission time t.  
f g  is shifted against  f 

s
  due to the relative velocity s

.
 = d s/dt between the satellite and the 

observer (Doppler effect). Neglecting higher order terms, the Doppler frequency shift for 
satellites with velocities much smaller than c is given by

  f g  −  f s  = −   
 f s  __ c   s

.
. (5.40)

The Doppler shift is proportional to s
. 
; a reversal in sign occurs at the time of the clos-

est approach of the satellite to the observer (s
.
 = 0). In principle, a range difference (range 

rate) can be determined from (5.40) by integration over time. In practice,  f g  is compared 
with a stable reference frequency  f 0  generated within the Doppler receiver, with  f 

0
  ≈  f s . 

Integration over a time interval yields the Doppler count

  N ij  =  ∫ 
    t i  + Δ t i 

  

 t j  + Δtj

    ( f0 −  f g  ) dt . (5.41)
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Fig. 5.8: Satellite Doppler positioning.
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With (5.40), we obtain the observation equation

  N ij  =  (  f 0  −  f s  )   (  t j  −  t i  )  +   
 f 0  __ c    (  s j  −  s i  ) , (5.42)

which provides the range rate  s 
j
 − s 

i
  from the Doppler counts.

As with any microwave technique, Doppler measurements do not depend on weather 
conditions, and they allow large amounts of data to be accumulated within short time 
intervals. Today, Doppler measurements are used with several satellite missions and with 
the DORIS positioning system, see below. Range rate measurements also represent the 
basic technique for satellite-to-satellite tracking, which is employed for high-resolution 
gravity fi eld determination, cf. [5.2.8].

The Navy Navigation Satellite System (NNSS) or Transit System was an important 
application of Doppler measurements (Anderle, 1986). Developed as a navigation 
system for the U.S. Navy, it was opened to civil use early on and operated successfully 
between 1964 and 1996. Positioning was based on four to seven Transit satellites in orbit 
(h ≈ 1100 km, i ≈ 90°), which continuously transmitted frequencies of 150 and 400 MHz. 
With the orbital planes of the satellites evenly distributed in longitude, and due to Earth 
rotation, a satellite became visible at least every two hours along the equator. The satellite 
orbits were determined by Doppler measurements from four tracking stations located in 
the U.S.A. Initially they referred to the World Geodetic System 1972 (WGS72) and later 
to WGS84, cf. [5.2.5]. The satellites transmitted their “broadcast ephemeris” at two-
minute intervals, together with UTC time signals, with an accuracy of 10 to 20 m. “Precise 
ephemeris” (±1 to 2 m) were later made available to authorized users. A number of portable 
Doppler navigation receivers were commercially produced for geodetic purposes. These 
contained a reference oscillator, a microprocessor, a data-recording unit, the antenna, and 
an energy supply. The infl uence of ionospheric refraction was practically eliminated by 
the use of two frequencies, cf. [5.1.3], and tropospheric refraction was computed using 
atmospheric models and observed meteorological data, cf. [5.1.2]. A positional error of 
10 to 30 m was obtained at the observation of a single satellite pass. This error could be 
reduced to 2 to 5 m (broadcast ephemeris) with 30 to 50 passes and to 5 to 1 m using 
precise ephemeris, the latter being derived from a network of about 20 globally distributed 
stations. Relative positioning employed simultaneous observations on two or more stations, 
which strongly reduced orbital and refraction errors and led to baseline accuracies of 
0.2 to 0.5 m (Seeber et al., 1982). With GPS becoming operational, the NNSS was no longer 
maintained. 

Another successful application of the Doppler method started in the 1990s with the 
French DORIS (Doppler Orbitography and Radio Positioning Integrated by Satellite) 
system (Fagard, 2006). In contrast to the Transit system, the radio signals (2.03 and 
0.40 GHz) are emitted here continuously by ground beacons, and received and pro-
cessed as Doppler frequency shifts (integration, e.g., over 10 s) onboard of satellites 
which also carry an ultra-stable crystal oscillator for time-tagging. The system was 
originally developed by the French Space Agency CNES, in cooperation with the In-
stitut Géographique National and the Groupe de Recherches de Géodésique Spatiale, 
in order to support precise orbit determination for altimeter and remote sensing mis-
sions. DORIS receivers are fl own on a number of satellites, including the altimeter 
satellites Topex/Poseidon, Jason-2 and Envisat, and remote sensing SPOT satellites 
(DORIS, 2006). 

Meanwhile, a global network of 50 to 60 permanently emitting DORIS ground stations 
has been built up, containing dual-frequency receiver, oscillator, microprocessor, power 
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supply and antenna. The stations are well monumented, for example by concrete pillars 
or rigid towers (Fig. 5.9), and through co-location well tied to other IERS techniques 
and to tide gauges. They are evenly distributed around the globe, including oceanic 
areas (Fig. 5.10), which is an advantage when compared with global networks based on 
other space techniques. The precise orbit determination also allows the calculation of the 

Fig. 5.9: DORIS antenna (standard layout 2 m tower), from Fagard (2006).

Fig. 5.10: Stations of the DORIS network (status 2006), Tavernier et al. (2006).
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coordinates and the velocities of the DORIS global network ground stations, as well as 
the positioning of dedicated location beacons. Precise orbit determination is now pos-
sible with cm-accuracy in post-processing, and the International DORIS Service (IDS) of 
IAG provides coordinates and velocities of the tracking stations with an accuracy of bet-
ter than 1 cm resp. 2 mm/year, and also UT1 time rates, polar motion and polar motion 
rates as well as geocenter and scale information of the International Terrestrial Reference 
Frame (Tavernier et al., 2006).

We fi nally mention that range rate measurements represent the basic technique for 
satellite-to-satellite tracking, which is employed for high-resolution gravity fi eld deter-
mination, cf. [5.2.8].

5.2.5  Global Navigation Satellite Systems GNSS (GPS, GLONASS, Galileo 
and others)

Global navigation satellite systems have been built up since the 1960s, for world-wide 
navigation and positioning. Using radio waves as carriers of signals, these systems uti-
lize observed signal travel times in order to derive distances between satellites and 
ground-based receivers. With the satellites’ orbits and time being known, the positions 
(coordinates) of the terrestrial stations then can be computed within a well-defi ned ter-
restrial reference system. Main driver for the development and establishment of these 
systems came (and to a large part still comes) from military agencies, but the benefi t for 
civilian use was early recognized and proved to become a strong impetus for further 
development and improvement of the systems. 

While ground-based radio navigation systems of regional and global range like DECCA, LORAN 
and Omega became in use since the 1940s, the U.S. TRANSIT Navy Navigation Satellite System 
based on Doppler-measurements was the fi rst satellite-based system, and was available for 
civilian users since the 1960s, cf. [5.2.4]. The development of satellite navigation systems using 
one-way microwave distance measurement between satellites and ground stations started in 
the 1970s, with the U.S. GPS and the Russian GLONASS systems, both being fully operational 
now. The European Galileo- and the Chinese COMPASS-system are built up since a couple 
of years, and will in future enable the joint use of several global satellite navigation systems, 
with eventual augmentation by regional systems as developed, e.g., in Japan and India. In the 
following, we concentrate on the description of GPS being the most effi cient navigation and 
positioning system since the 1990s, with widespread application reaching far beyond classical 
geodetic problems, but also regard the other systems mentioned above. 

The NAVSTAR (Navigation System with Time and Range) Global Positioning System 
GPS was the fi rst spaceborne radio navigation system based on timing and ranging, 
which became operational worldwide. It is under the responsibility of the U.S. Depart-
ment of Defense (DOD), which started development of the system in 1973. The fi rst 
GPS satellites were launched in 1978, and the system became fully operational in 1993. 
GPS provides real time navigation and positioning by one-way microwave distance 
measurements between the satellites and the GPS receivers. The system was developed 
and is maintained in order to satisfy the requirements of the U.S. military forces, but 
early on its use for geodetic applications was investigated (Bossler et al., 1980). Since 
the 1990s, the U.S. GPS policy strongly encouraged the civilian use of the system, and 
today GPS positioning is extensively employed in geodesy (and in a multitude of other 
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geo-referenced applications) at all spatial scales, and also for kinematic positioning and 
the determination of crustal movements (Evans et al., 2002; Blewitt, 2009). 

A large number of textbooks and monographs on GPS (and other global navigation systems) are 
available. Among the textbooks we have Teunissen and Kleusberg (1998a), Leick (2004), Misra 
and Enge (2006) and Hofmann-Wellenhof et al. (2008), see also Seeber (2003). A standard 
reference is given by Parkinson and Spilker (1996), while Kaplan and Hegarty (2006) “provide 
the reader with a systems engineering treatment”, and Xu (2007) concentrates on theory and 
algorithms. New developments and results are given, among others, in the proceedings of the 
meetings of the Satellite Division/Institute of Navigation (ION), and in the journals “Navigation”, 
“GPS World” and “GPS Solutions”. 

The basic idea of GPS is to have at least four satellites above the horizon available 24 h 
everywhere on the Earth. In principle, the position of the receiver’s antenna could be de-
rived already from three observed distances, with the computation of three-dimensional 
coordinates being based on the known ephemerides of the satellites and the intersection 
of spherical shells. As the clocks of the satellite and the receiver are not synchronized, a 
fourth distance measurement is necessary in order to determine the clock synchroniza-
tion error. Therefore, the original distances derived from the travel time of a signal are 
called pseudoranges (Fig. 5.11). 

We distinguish between the space, the control, and the user segment of GPS.
The space segment consists of 21 active satellites (plus three additional spares) 

arranged in six nearly circular orbits (i = 55°, 12 h period of revolution) at an altitude of 
about 20 200 km (Fig. 5.12, Fig. 5.13). The full satellite constellation provides a global 
24-h coverage with four to eight satellites visible above 15° elevation. Due to the lim-
ited lifetime of a satellite (10 years on average), some additional active spare satellites 
are usually in space. In addition, a regular replacement in blocks is taking place which 
results in a regular constellation of more than 30 satellites. This updating also takes 
improvements in satellite technology and refi ned mission strategies into account, as the 
inclusion of laser retrorefl ectors for orbit determination (block IIA satellites since 1990), 
the possibility of distance measurements between satellites (cross links), the on-board 
computation of ephemeris, and the introduction of new carrier frequencies and ranging 
codes for military and civilian services. 
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Fig. 5.11: GPS positioning (principle).
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Fig. 5.12: GPS IIR-M (Global Positioning System) satellite, from http://www.gps.gov.

Fig. 5.13: GPS orbit constellation, from http://www.gps.gov.

Atomic clocks (two rubidium and two cesium clocks per satellite) provide a high-
precision frequency standard, with a few 10−13 to 10−14 frequency stability over 1 day, 
and the future hydrogen masers will even reach a stability of 10–14 to 10–15, cf. [2.2.1]. 
These clocks produce the fundamental frequency of 10.23 MHz. By multiplication, 
the L1 (1575.42 MHz corresponding to 19.0 cm wavelength) and the L2 (1227.60 
MHz corresponding to 24.4 cm) carrier frequencies have been initially derived and 
continuously emitted. L1 and L2 serve as carriers for two code modulations and for 
a data signal (navigation message). The codes are given as binary signals (+1 and −1 
sequence) in a pseudo-random noise (PRN) form (Fig. 5.14). The C/A-code (coarse/
acquisition code) is modulated on L1 only, with a frequency of 1.023 MHz (cor-
responding to 293 m wavelength) and a repetition rate of 1 ms. The P-code (precise 
code, now available only as encrypted Y-code, see below) is modulated on L1 and 
L2 and has a frequency of 10.23 MHz (corresponding to 29.3 m wavelength) and a 
repetition sequence of 266 days. Within the frame of modernization of GPS, the block 
IIR-M satellites (since 2005) carry a further freely accessible code on L2, and a third 



138     5 Methods of Measurement

carrier frequency L5 (1176.45 MHz corresponding to 25.5 cm) is introduced with the 
block IIF satellites (since 2009).

The GPS control segment is responsible for maintaining the operation of the GPS 
satellites, the determination of GPS time, and the calculation and storage of the navi-
gation data. It consists of the master control station (Schriever AFB, Colorado Springs, 
Colorado) and a number of globally distributed monitoring stations (originally fi ve 
stations, with additional 11 stations at the GPS modernization in 2005/2006). The 
stations are equipped with cesium standards and GPS receivers. They continuously 
measure pseudoranges to all GPS-satellites in view and transfer the results to the 
master station. After computation of the satellite orbits and the clock corrections, 
the (extrapolated) broadcast ephemeris and GPS time are transmitted to the satellites 
for storage and retransmission by four dedicated ground antennas co-located with 
monitoring stations. This operational control system is supplemented by the monitor 
station network of the National Geospatial-Intelligence Agency (NGA), resulting in an 
accuracy increase of satellite orbits and clock information.

The GPS ephemerides refer to an Earth-fi xed system, realized by the coordinates of 
the monitoring stations: World Geodetic System (WGS). WGS has been used by the 
U.S. Department of Defense since the end of the 1950s, and it has been fi rst realized 
through the versions WGS60, WGS72 and WGS84 (DMA, 1987). The system was origi-
nally derived from Doppler observations from the Transit satellite system, cf. [5.2.4], 
while the refi ned versions (since the 1990s) of WGS84 are based on GPS. Defi ned by 
NGA, the system is now upgraded at shorter intervals, under the name of WGS84 (Gxxx), 
where xxx (e.g., 1400) indicates the GPS week number of implementation. The system 
is intended to serve for mapping, charting, positioning and navigation, following inter-
national standards for geodetic reference systems. The defi ning parameters of the 
WGS84-ellipsoid (tide-free system) are as follows (Slater and Malys, 1998; NIMA, 2000):

• semi-major axis a = 6 378 137 m,
• reciprocal fl attening 1/f = 298.257 223 563,
• geocentric gravitational constant GM = 398 600.4418 × 1 0 9   m 3  s –2  , which includes 

the atmospheric part G M 
atm

  = 0.35 × 1 0 9   m 3  s –2  ,
• angular velocity of the Earth’s rotation w = 7.292 115 × 1 0 −5  rad  s –1  .

The WGS84-ellipsoid thus practically coincides with the parameters of the Geodetic Ref-
erence System 1980, cf. [4.3]. The associated gravity fi eld is given by the global geopotential 
model EGM96 resp. EGM2008, cf. [6.6.3]. The coordinates of the monitoring stations are 
given for the epoch 1997.0, taking Earth tides (tide-free system), cf. [3.4.1], and plate tec-
tonic motions into account. The accuracy of the recent WGS84 (G1400)-coordinates is at 
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Fig. 5.14: GPS signals (principle).
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the cm-order of magnitude, which is also the level of agreement between WGS84 and the 
International Terrestrial Reference Frame (ITRF, 2008), cf. [2.4.2].

GPS-time (unit SI-second) as a continuous time scale is defi ned by the cesium clocks 
of the control segment stations and the satellites. Its initial epoch is January 5, 1980 at 0 h 
UTC, and since then it differs from UTC because of the UTC “leap seconds”, cf. [2.2.2], 
and the drift in the GPS clocks. The actual difference between GPS-time and UTC (some 
10 s) is part of the GPS navigation message (±5 ns). GPS thus is also a very effi cient system 
of time transfer. An accuracy of some 10 ns can be obtained already with automatically 
operating single-frequency receivers, while multi-station and multi-satellite constellations 
allow the time transfer with ±1 to 0.1 ns (Larson and Levine, 1999).

The user segment is composed of the many different type GPS receivers operating 
in navigation, geodesy, and surveying. The main components of a receiver include the 
antenna, the receiver electronics, the microprocessor, the oscillator, the memory, the 
user interface, and a power supply. An additional telemetry unit can be used for data 
transfer between different receivers (differential mode, see below). 

The signals transmitted from the satellites are received and amplifi ed by the antenna. 
After identifi cation (comparison with the receiver’s code copy) the signals are processed 
to pseudoranges in the channels of the receiver electronics. One channel is gener-
ally responsible for the tracking of one satellite. Hence, a minimum of four channels 
is necessary to determine position and time. Dual-frequency receivers contain 12 or 
more channels for each frequency (multi-channel technique), which results in a total of 
72, 120 or even 220 channels, and enables the simultaneous tracking of a large set of 
GPS, GLONASS and Galileo satellites. The microprocessor controls the operation of the 
receiver and calculates the three-dimensional position of the antenna in WGS 84, as 
well as the velocity and azimuth of moving objects. A quartz oscillator is used for gen-
erating the reference frequency, which is approximately synchronized with GPS-time. 
All data (pseudoranges, phases, time, navigation message) are stored in receiver mem-
ory for post-processing, which is typical for multi-station observation sessions often 
employed in geodesy, cf. [6.2.1]. The user interface includes a keyboard and a display, 
which provides a communication link between the user and receiver. Power is provided 
by internal, rechargeable nickel-cadmium batteries.

While GPS code-signals (see below) generally are suffi cient for navigation, geodetic 
GPS receivers use the carrier phases as observables which leads to higher accuracies, 
in the static as well as in the kinematic mode (e.g., Langley, 1997; Seeber, 2003, p. 234 
ff.). This is achieved by dual-frequency (L1 and L2) multi-channel instruments and the 
full carrier wave information available on L1 and L2. Other characteristics include low 
receiver-noise in code and carrier phase, a high data rate (>1 Hz, and up to a 50 Hz 
sampling rate), and a large memory capacity. The antenna phase center should be stable 
and protected against multipath effects (see below). 

The Macrometer (1982) was the fi rst GPS receiver for geodetic applications (code-free, single 
frequency, 6 parallel channels), Counselman and Shapiro (1979). The Texas Instruments TI4100 
(1984) provided all geodetically relevant observables (P- and C/A-code pseudo ranges, carrier 
phases on L1 and L2) in a multiplex channel technique (Seeber et al., 1985). Today, a large 
number of geodetic receivers is available (see the relevant journals as “GPS Solutions”), and 
their effi ciency is discussed in the geodetic literature. Figs. 5.15 to 5.19 show some examples of 
actual GNSS-receivers. These instruments are generally able to track any combination of GPS, 
GLONASS and Galileo satellites, where 20 to 30 satellites will be visible with fully deployed 
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systems. This will improve the satellites-receiver geometry as well as the integrity of the solution, 
and lead to a higher accuracy for absolute positioning.

Fig. 5.15: GPS continuously operating 
reference station (CORS) with receiver 
(Trimble 5700 GPS and GNSS Choke 
Ring Antenna, courtesy Trimble 
Navigation Ltd., Sunnyvale, CA, U.S.A.).

Fig. 5.16: Geodetic GNSS two-frequency 
receiver (Leica Viva GS15), with controller 
(Leica Viva Controller CS15), courtesy Leica 
Geosystems AG, Heerbrugg, Switzerland.

Fig. 5.17: JAVAD-TRIUMPH-1 Integrated 
GNSS receiver with fully integrated GNSS 
antenna, courtesy JAVAD GNSS, Inc., San 
Jose, CA, U.S.A.

Fig. 5.18: GPS/GLONASS rover 
TOPCON HiPer II, courtesy 
TOPCON Europe B.V., Capelle 
a/d IJssel, Netherlands.

Fig. 5.19: Septentrio AsteRx3 HDC GPS/Galileo/GLONASS and COMPASS receiver and PolaNt 
G antenna, courtesy Septentrio Satellite Navigation NV, Leuven, Belgium.
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We now discuss in more detail code and carrier phase measurements employed for GPS 
navigation and positioning.

Code measurements use the travel time Δt of a signal between the satellite and the 
antenna of the receiver. The time difference is determined by cross-correlating an arriv-
ing code sequence with a code copy generated in the receiver. Multiplication of Δt 
with the velocity of light c gives the distance between the satellite and the antenna, cf. 
[5.1.1]. Considering the receiver clock synchronization error d t, the observation equa-
tion for the pseudoranges R reads as

 R = cΔt = s + cd t  (5.43a) 

The distance is given by

 s =   (   (  X s  −  X p  )  2  +   (  Y s  −  Y p  )  2  +   (  Z s  −  Z p  )  2  )    1 __ 2   , (5.43b)

where  X s  ,  Y s  ,  Z s  and  X p  ,  Y p  ,  Z p  are the geocentric coordinates of the satellite and 
the ground stations, respectively. The navigation message needed for the evaluation 
of (5.43) is transmitted on L1 and L2. It contains the satellite’s ephemeris (broadcast 
ephemeris, accuracy now about ±1 m) in the form of Keplerian elements and certain 
time derivatives and orbital corrections, the satellite’s clock correction with respect to 
GPS time, ionospheric correction parameters, and information on the status of the GPS 
system. Equations (5.43) then provide the coordinates of the ground station and the re-
ceiver clock correction from simultaneous measurements to at least four satellites. This 
presupposes that atmospheric refraction effects are taken into account by proper reduc-
tions (see below). The accuracy limit of this method is given by the random noise of the 
code measurement noise where the noise level may be estimated by 1% of the signal’s 
wavelength. This leads to ±3 m for the C/A-code and ±0.3 m for the P-code, and has in 
geodesy generally led to the use of carrier phase measurements (see below). 

GPS provides two different services for navigation (positioning and timing). The Standard 
Positioning Service (SPS) only delivers the C/A-code, and is available for all kind of users. An 
average positioning accuracy (24 h measurement interval, 95% probality level) of about ±10 
m (horizontal) and ±20 m (vertical) or better can be achieved, but may be worse by a factor 
of two or more under unfavourable atmospheric and site conditions. The Precise Positioning 
Service (PPS) uses the P-code (Y-code). It provides all GPS signals and thus the full accuracy 
of the system, but is reserved to authorized users (U.S. military, U.S. federal agencies, selected 
allied armed forces). Real-time positional accuracies of better than ±10 m are attainable 
with dual-frequency receivers. With GPS being fully operational, an accuracy deterioration 
for civil users had been introduced by DOD consisting of “selective availability” and “Anti-
Spoofi ng”. 

Under Selective Availability (SA), the fundamental frequency of the satellite clocks was 
destabilized, and the ephemeris data were manipulated. This degraded the absolute 
accuracy to about 100 m in horizontal position and 150 m in height. SA was applied 
only between 1990 and 2000, and after suspension the accuracy of positioning and time transfer 
reached the previous standard. A more rigorous measure was the introduction of Anti-Spoofi ng 
(AS) in the middle of the 1990s. Since that time, the P-code has been replaced by the encrypted 
Y-code, which is non-accessible for civilian users. 

Pseudorange differences can be derived from integrated Doppler frequency shifts (Doppler 
counts) of the carrier frequency according to (5.41) and (5.42). These differences are 
used for the determination of velocity in navigation. Doppler solutions also play a 
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role in the removal of ambiguities, which occur with carrier phase measurements (see 
below). The method is not suitable for real-time positioning due to the long observa-
tion time required. 

Geodesy and surveying require accuracies of at least two orders of magnitude better 
than that required for navigation. This is achieved by carrier phase measurements. Due 
to the shorter wavelength of carrier phases, the random measurement noise is now only 
about 2 mm or even less (Beutler et al., 1987; Langley, 1997). 

The carrier phase is detected by comparing the received carrier signal with the ref-
erence frequency generated in the receiver after subtraction of the code. In order to 
reconstruct L2 under AS conditions (P-code encryption), different techniques have been 
developed, such as squaring of L2 (eliminates the code signal) and cross-correlation of 
L1 and L2. The measured phase difference

 Δj =  j c  −  j 0  (5.44)

( j 
c
  ,  j 

0
  are phase of the carrier and reference waves, respectively) is related to the dis-

tance s by the observation equation

 Δj =   2p  ___ 
l 

    ( s − Nl + cd t ) , (5.45)

which is well known also from terrestrial distance measurements, cf. [5.5.2]. N is an in-
teger number of complete carrier cycles within the range s, and d t is the receiver clock 
synchronization error. The ambiguity introduced by N poses a primary problem for the 
evaluation of (5.45). Among the algorithms available for ambiguity determination, we 
have the inclusion of ambiguity-free Doppler solutions, the combination of code and 
carrier phases, and statistical search methods applied to combinations of L1 and L2. 
Diffi culties arise when the phase lock is lost due to signal obstruction. Such sudden 
jumps of the carrier phase by an integer number of cycles are called cycle slips. They 
are either removed during pre-processing or taken into account by introducing an ad-
ditional ambiguity for the affected pseudorange. 

The error budget of GPS pseudorange measurements (as that of other GNSS position-
ing) contains satellite-specifi c, signal propagation-specifi c and user-specifi c effects, in 
addition to the random noise. The satellite part contains the satellite’s orbit and clock 
errors, and the signal propagation is affected by ionospheric and tropospheric refrac-
tion. Among the user-specifi c effects are the receiver clock errors and signal propa-
gation delays, antenna phase center variations, multipath effects, and diffraction and 
signal interference (Seeber, 2003, p. 297 ff.). 

Orbital errors are at the order of a few meters for the Standard Positioning Service, 
while the International GNSS Service (IGS) is able to provide the precise rapid or fi nal 
(post-processing!) orbits with cm-accuracy (see below). The broadcast clock error cor-
responds to an orbital error of about 1 m, and with the IGS products this error is reduced 
to the cm-level.

Atmospheric refraction strongly affects the electromagnetic waves while traveling 
through the atmosphere. Ionospheric refraction acts in a different way on the code 
signal and the carrier phase, causing a code group delay (pseudorange too long) and 
a phase advance (pseudorange too short). The effect depends on the (strongly variable) 
electron content along the signal path and may cause range errors of some meters, 
reaching eventually some 10 or even 100 m. When only a single-frequency receiver is 
available, a corresponding reduction has to be based on models of the electron density, 
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cf. [5.1.3]. Among the ionospheric correction models is the development by Klobuchar 
(1996), which provides the vertical time delay at GPS measurements by exploiting the 
GPS ionospheric coeffi cients broadcast message. Global (IGS) and regional GPS ser-
vices also offer ionospheric reduction models, containing TEC information with high 
time resolution and nearly real-time. 

The most effi cient way to eliminate the largest part of the ionospheric refraction effect 
is the use of two-frequency receivers. The application of (5.23) to the frequencies  f 

1
  and  

f 
2
  leads to the reduced distance (for code measurements)

 s =   
 s 1  f   1  

2  −  s 2  f   2  
2 
 _________ 

 f    1  
2  −  f   2  

2 
  . (5.46)

Here, the ionospheric refraction is eliminated, and  s 
1
  and  s 

2
  are the observed dis-

tances on L1 and L2 respectively; the residual errors do not exceed the cm-order of 
magnitude. A corresponding equation can be derived for carrier phase observations. 

Tropospheric refraction may cause propagation delays of 2.3 m (zenith direction) to 
about 25 m (at 5° elevation). It is accounted for by tropospheric models and observed 
surface weather data, cf. [5.1.2]. The “wet” component remains a critical part of these 
reductions, which may be accurate to a few cm under ideal conditions and large eleva-
tion angles, but could reach a meter uncertainty and more at elevations less than 5°. 
Other strategies for reducing the effect of tropospheric refraction include the estimation 
of a station dependent “zenith scale factor” for each satellite pass and real-time moni-
toring in active multiple reference station networks (Bevis et al., 1992), cf. [7.3]. 

Multipath effects result from signal refl ection (at streets, buildings, waterways, etc.) 
near the antenna. They affect code and carrier phase measurements and can produce 
errors of a few meters and more at the C/A-code, and of a few cm to dm at carrier phase 
measurements. Signal diffraction at obstacles and interference with other radiowave 
sources may also occur. A reduction of these effects is possible by a proper design of the 
antenna (e.g., at the low-multipath choke-ring antenna used at the IGS stations) and by 
careful site selection. As the antenna’s electrical phase center does not coincide with 
the geometric center, a phase center offset occurs (a few mm), which is usually pro-
vided by the manufacturer. More critical are the phase center variations, which depend 
on the satellite’s elevation and azimuth and amount to a few mm to cm (up to 10 cm 
in the vertical). Relative (with respect to a reference antenna) and absolute (using a 
robot’s rotation and tilting) fi eld calibration methods have been developed in order to 
model this effect (Görres et al., 2006). These effects also become visible when anten-
nas are changed at continuously operating reference stations, and have to be taken into 
account accordingly (Wanninger, 2009). Corresponding considerations regarding phase 
center offsets and variations also have to be made with respect to the satellites’ antennas 
(Schmid et al., 2005).

The accuracy of GPS positioning depends, in addition to the accuracy of the pseu-
dorange, on the geometric confi guration of the satellites with respect to the receivers 
and on the duration of the observation time. A longer observation time increases the 
accuracy, especially for long baselines and for the height component. The accuracy at 
the kinematic mode (moving GPS antenna) generally is slightly lower than that of the 
static mode.

The accuracy of an observed pseudorange can be expressed by its standard deviation (also user 
equivalent range error). The strength of the satellite geometry is characterized by a quantity called 
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“Positional Dilution of Precision” (PDOP). It is defi ned as the ratio between the standard deviation 
of a position sp derived from a certain satellite constellation and the standard deviation of an 
observed pseudorange sr according to sp = PDOP × sr (Langley, 1999). The numerator of this 
quotient follows from the trace of the coordinates covariance matrix, which depends on the 
design of the network. PDOP values can be calculated in advance, and then serve for the planning 
of observations and for rapid information on expected positioning quality. For instance, a PDOP 
value of 2 (this value is now seldom exceeded) means that the accuracy of positioning is two 
times worse than the accuracy of the pseudorange observation. If separated into the horizontal 
and the vertical components, it turns out that the determination of heights is less accurate than 
horizontal positioning by a factor of about 2. This results from the fact that all observed satellites 
are above the receiver but azimuthally distributed over the total horizon, and that the receiver 
clock corrections are strongly correlated with height (Rothacher, 2002).

With respect to the GPS positioning strategy and the accuracy obtained, we may (like 
in other geodetic space techniques) distinguish between the absolute and the relative 
mode. 

Absolute positioning employs a single receiver and uses the Standard Positioning 
Service for determining the station coordinates (see above). The accuracy thus remains 
restricted and does not signifi cantly increase with the observation time. With the use of 
precise ephemerides and satellite clock corrections provided by IGS (see below) and 
exploiting code and carrier phase observations this situation is changing, leading to cm-
accuracy at post-processing of longer observation series, cf. [7.3]. 

For orbital errors, a (pessimistic) rule of thumb allows an estimate of the error to be expected in 
a baseline b from the orbital error dr :

   db ___ 
b
   =   dr __ 

s
  , (5.47)

where s is the distance between the satellite and the receiver (maximum 25 000 km). Hence, 
if an accuracy of 1 cm is required for the baseline, the orbital error should not exceed 2.5 m at 
b = 100 km and 0.25 m at b = 1000 km. When the precise ephemerides from the IGS are used, 
orbital errors no longer play a major role.

Relative positioning is accomplished by simultaneous observations (code and/or phase 
measurements) on two or more stations, including at least one with known coordinates 
(reference station). This strategy signifi cantly reduces the distance-dependent effects 
that occur in the absolute mode (orbital errors as well as ionospheric and tropospheric 
refraction), due to the high error correlation at neighboring stations.

This strategy has been extended by combining observations of different satellites and 
at different epochs, and code with carrier phase observations. As a consequence, satel-
lite and receiver clock errors can be eliminated, and rapid ambiguity solutions become 
possible. Station specifi c effects, on the other hand, are uncorrelated and cannot be 
reduced by differencing, they must be kept small by proper selection of the station and 
corresponding calibration procedures. At post-processing, this relative GPS solution 
delivers differences of coordinates (“baseline vectors”) with high accuracy. 

Differential GPS (DGPS) has been developed in order to improve the position of 
a roving station by applying corrections transmitted from a permanently operating 
reference station to the user in real-time. Corrections may be derived from code 
observations at the reference station and refer to position or the observed pseudo-
range. If code-range and (the more precise) carrier phase data are transmitted to the 
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user station (“rover”), the procedure is called precise DGPS or Real-Time Kinematic 
(RTK) GPS. It delivers the baseline vector in real-time (cm-accuracy over shorter dis-
tances) and includes the simultaneous resolution of ambiguities at the rover station. 
The method can be extended to a network of reference stations (Seeber, 2003, p. 325 
ff.; Schön, 2010), cf. [7.3]. For code measurements, the accuracy obtained at relative 
positioning with good PDOP conditions is 0.25 m + 1 ppm/horizontal, and 0.5 m + 
1 ppm/vertical. Carrier phase measurements in the static mode can deliver 5 mm + 0.5 
ppm/horizontal and 10 mm + 0.5 ppm/vertical in real-time, and could be improved 
by a factor of about two through post-processing. In the kinematic mode, the accuracy 
decreases by a factor of about 2. Here and in the following, the distance dependent 
error part ppm is relative to the baseline length. More details on three-dimensional 
positioning are given in [6.2.1] and [7.3].

The Global Positioning System (and other GNSS) has drastically changed surveying 
methods in geodesy, navigation, and other applications. This is mainly due to the high 
accuracy achieved with static and kinematic positioning, real-time evaluation, and 
operational fl exibility. Direct visibility between the ground stations is not necessary any 
more, only visibility to the satellites is required. The system is weather independent and 
usable day and night. The use of GPS and other GNSS is still increasing and is strongly 
supported by global and regional services, cf. [7.3].

High-quality GNSS data and products are available through the International GNSS 
Service (IGS), which operates under the auspices of IAG (Beutler et al., 1999; Dow et 
al., 2005). Starting as International GPS Service in 1994, more than 200 institutions and 
agencies now cooperate within this enterprise, with a Central Bureau located at the U.S. 
Jet Propulsion Laboratory. IGS operates a global network of (today nearly 400) GNSS 
tracking stations, Fig. 5.20, and some data and data analysis centers, in order to supply 
observed data and derived products for Earth science research, positioning, navigation 

Fig. 5.20: Network stations of the International GNSS Service IGS (status 2010), courtesy IGS 
(http://igscb.jpl.nasa.gov/  ).
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and timing. The sites have been carefully selected and monumented (Combrinck and 
Chin, 2001), and use high performance antennas (Fig. 5.21). 

The stations are equipped with geodetic two-frequency GPS (GNSS) receivers and 
generally operate permanently; raw tracking data (phase and pseudorange observations) 
are provided on hourly basis or even real-time. The IGS products include GPS satellite 
ephemerides, satellite and station clock parameters, Earth rotation parameters, station 
coordinates, and ionospheric and tropospheric information. GPS orbits and satellite 
clock offsets are given on a daily basis, in an ultra rapid (real-time and 3 h delay), rapid 
and fi nal version. The fi nal “precise” ephemeris (from post-processing) has a precision 
of about 2 cm, the “rapid” ephemeris is only slightly less precise. Satellite and station 
clock parameters are precise to 0.05 ns, and the quality of derived Earth orientation 
parameters (polar motion and LOD) is given by 0.05 mas and 0.02 ms/day, respec-
tively. Weekly solutions for the station coordinates are characterized by a precision of 
2 mm (horizontal) resp. 4 mm (vertical), and by 2 resp. 4 mm/year for station velocities 
(Kouba, 2009). By co-location with other geodetic space techniques, the IGS network 
is connected to the International Terrestrial Reference Frame (ITRF) and contributes sig-
nifi cantly to it; IGS stations also play an important role at densifying ITRF on continental 
scale, cf. [2.4.2], [7.3].

In addition to GPS, there are a number of other Global Navigation Satellite Systems 
(GNSS) already operating or in the state of development, at global and regional scale 
(Feairheller and Clark, 2006; Becker, 2009).

A global navigation satellite system similar to GPS has been developed in the former 
Soviet Union since the 1970s: GLONASS (Global’naya Navigatsionnaya Sputnikovaya 
Sistema), Hegarty and Chatre (2008). Like GPS, GLONASS is a military system, but 
it has been stepwise opened to civilian users since the end of the 1980s. The system 
became fully operational in 1996, and after some drawbacks (lack of satellites) again in 
2010. GLONASS operates as a one-way ranging system, with a space segment compris-
ing 24 (including three spares) satellites, Fig. 5.22.

Fig. 5.21: IGS sites HOFN in Höfn, Iceland (left side) and BUCU in Bucharest, Romania 
(right side), Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt a.M., Germany 
(http://www.fs.wettzell.de).
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The satellites are arranged at a regular spacing of 45° in three nearly circular orbits sepa-
rated 120° apart from each other (i = 64.8°, h = 19 100 km, revolution time 11 h 15 min). 
This confi guration assures the simultaneous visibility of six to 11 (minimum fi ve) satel-
lites all over the Earth. The satellites transmit on two carrier frequency bands (G1 around 
1602 MHz and G2 around 1246 MHz), but contrary to GPS with different frequen-
cies for each satellite. The standard-accuracy C/A-code and the high-accuracy P-code 
modulated onto the carrier frequencies are the same for all satellites. The GLONASS-K 
generation (since 2010) provides a third carrier frequency (G3: 1205 MHz) with an 
additional civil and military ranging code. There is no degradation of the GLONASS 
signals, but the P-code has not been offi cially released and may be changed without 
prior notice. All GLONASS satellites are equipped with laser retrorefl ectors for laser 
tracking, and timing is provided by three atomic clocks (cesium standards). The control 
segment consists of a master control station near Moscow and a large number of sec-
ondary tracking stations distributed over the territory of the former Soviet Union. The 
satellite’s navigation message contains the broadcast ephemerides (positions and veloc-
ities) and the satellite clock corrections, among others. The accuracy of the predicted 
orbits and velocities varies between 20 m resp. 0.05 cm/s (along-track) and 5 m resp. 
0.3 cm/s (radially), and will increase by a factor of two to three with the GLONASS-M 
satellites. The GLONASS results refer to the reference system PZ-90, which is based on 
the former Soviet Geodetic Reference System 1985 (SGS85), Misra and Abbot (1994). 
The recent realization (2007) agrees within a few decimeters with the World Geodetic 
System 1984 (WGS84) and with ITRF. GLONASS uses its own time system (UTC + 3 h) 
which is synchronized to UTC within 1 μs by the use of leap-seconds.

By combination of GLONASS with GPS, about 12 to 16 satellites are visible at any 
place of the Earth, which leads to a better coverage of the sky and an improved (with 
respect to accuracy and surveying of “shadow areas”) positioning. Consequently, GNSS 

Fig. 5.22: GLONASS-M satellite, courtesy Russian Federal Space Agency ROSCOSMOS 
(http://www.federalspace.ru).
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receivers with GPS and GLONASS (and also Galileo and other satellite navigation 
systems) capability are commercially produced now, where 20 dual frequency channels 
are required for a GPS/GLONASS combination (Fig. 5.19). 

An European navigation satellite system called Galileo started with a defi nition phase, 
between 1999 and 2001 (Deisting and Hein, 2006; Hofmann-Wellenhof et al., 2008, 
p. 341 ff.). The fundamental intention of this enterprise, which is under the supervision 
of the European Commission and the European Space Agency (ESA), is to establish a 
global civilian navigation and positioning system especially for Europe and surround-
ings, serving different demands and providing different levels of accuracy and availabil-
ity. The system shall be independent from GPS and GLONASS, although it should be 
inter-operable with those systems. In 2007, the European Union took direct control of 
the Galileo project (Schüler et al., 2009).

The space segment of Galileo shall consist of 27+3 satellites (Fig. 5.23) distributed at 
40° distance over three circular Earth orbits which are separated by 120° (i = 56°, h = 
23 260 km, revolution time 14 h 04 min), Fig. 5.24. Satellite-borne timing is provided 

Fig. 5.24: Galileo satellite constellation, courtesy ESA.

Fig. 5.23: Galileo satellite GIOVE B (Galileo In-Orbit Validation Element), courtesy ESA.
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by two rubidium frequency standards and two hydrogen masers, with time stability of 
10 and 1 ns/day, respectively. All satellites carry laser refl ectors in order to support the 
microwave-based orbit determination.

The following three L-band carrier frequencies bands will be used for navigation and 
positioning: 1176/1207 and 1192 MHz (E5a, E5b; E5), 1278 MHz (E6), 1575 MHz (E1); 
the overlay on GPS L1 and L5 and GLONASS G3 frequencies should strengthen the 
interoperability between the systems. There is an individual code modulation for each 
satellite (like GPS), and ranging codes and navigation messages will differ according to 
the application requirements (see below). The system will be operated by three ground 
control centers, providing orbital data and time synchronization, and supported by 
about 30 to 40 globally distributed monitoring stations. The “Galileo Terrestrial Refer-
ence System” will refer to the actual ITRF. The Galileo system time (GST) is a coordinate 
time scale, with only small offsets from TAI.

The navigation message, as generated by the ground segment and uploaded to the 
satellites, will, among others, contain the satellites ephemerides (modifi ed osculating 
Keplerian elements) and the satellite clock offset GST-TAI. From a total of ten naviga-
tion signals, six will be accessible on E5a, E5b and E1 for all users of the Open Ser-
vice, while two signals on E6 with encrypted ranging codes and correction data are 
dedicated to users of the Commercial Service. Authorized users of the Public Regu-
lated Service will have access to another two encrypted ranging codes, on E6 and E1. 
Depending on the carrier frequency, the noise-level of the code-distances is expected 
to be at the few centimeter to decimeter level, with multipath effects ranging from a 
few decimeter (open area) to a few meter (urban environment). An accuracy (95% 
level) of 4 m (8 m) is envisaged for the horizontal (vertical) position, and 50 ns for the 
time offset. 

The Galileo system has been successfully tested by the GIOVE-A /B satellites (Galileo 
In-Orbit Validation Element) launched in 2005 and 2008. Further satellites followed in 
2011, while the full operational capability is expected not before 2020. As with the GPS/
GLONASS combination, a joint use of Galileo with these systems will result in an increased 
accuracy and extended application of satellite navigation and positioning. For instance, fully 
operational GPS and Galileo would allow simultaneous visibility to 15 or more satellites, 
resulting in improved geometric confi gurations (PDOP < 1.6), better ambiguity fi xing, and 
an improvement of position accuracy by a factor of 2 to 3. For the reduction of ionospheric 
refraction effects at single-frequency positioning, the Nequick model has been proposed. It 
will employ ionospheric information from the satellite navigation message together with data 
from a global sensor network, and thus deliver the time-dependent state of electron density 
(Leitinger et al., 2005). 

Regional satellite navigation systems have been developed or are under development also 
in other parts of the world, and will partly be extended to global systems (Feairheller and 
Clark, 2006; Hofmann-Wellenhof et al., 2008, p. 406 ff.). As with the European Galileo 
system, a main impetus for building up these systems is the desire to become independent 
from the military-managed systems of the U.S.A. and Russia, with a system completely 
under national control. 

China started the development of a regional satellite navigation system under the name 
of Beidou-1 in the 1970s. Since the 1990s, the system is upgraded to a global one, with 
one-way distance measurements similar to GPS and GLONASS: Beidou-2/COMPASS. 
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The system is operated by the China National Space Administration, and designed as a 
combination of 24+3 satellites in medium height (around 21 500 km), which are evenly 
arranged in three orbital planes (i=56°), with additional fi ve geostationary satellites and three 
satellites in inclined geosynchronous orbits (36 000 km), Bian et al. (2005). Carrier signals 
will be emitted in three frequency bands (1575, 1192, 1268 MHz), with satellite-specifi c 
codes. The fi rst COMPASS-M1 experimental satellite started in 2007, and further satellites 
followed in 2009/2010, an operational service is expected for 2020. The accuracy of the 
system’s broadcast information available for civilian use is expected to be at the order of 10 
m, 0.2 m/s, and 50 ns for position (geocentric Earth-fi xed reference system compatible with 
ITRF), velocity and time, respectively (Huang and Tsai, 2008). 

Further regional navigation satellite systems are under development in Japan and India. The 
Japanese Quasi-Zenith Satellite System (QZSS) is a proposed satellite system (fi rst satellite 
launch in 2010), consisting of at least three satellites in orbital planes (i = 45°, a = 42 160 km, 
e = 0.1) with geosynchronous periods. The system shall complement GPS, but also serve as an 
autonomous positioning system for eastern Asia and Oceanica, if necessary. The Indian regional 
navigation satellite system (fi rst satellite launch planned for 2011, system implementation by 
2014) is scheduled for a constellation of seven satellites, three of them in geostationary orbit, 
and the other four operating in geosynchronous orbits (i = 29°). With continuous radio visibility 
to the Indian control stations, dual-frequency operation should provide a position accuracy of 
better than 20 m for India and the surrounding areas. 

5.2.6 Laser distance measurements

Laser distance measurements are made from ground stations to satellites equipped with 
corner cube refl ectors: Satellite Laser Ranging (SLR). This method provides high accu-
racy due to the favorable propagation of laser light in the atmosphere, and it offers a 
low-cost, long-lifetime space segment. On the other hand, laser measurements depend 
on weather conditions and require a considerable operational effort at the ground seg-
ment (Combrinck, 2010). 

At the ground station, ultra-short laser pulses are emitted at epoch t, refl ected at the 
satellite, and received again at epoch t + Δt. If refraction effects are suffi ciently taken 
into account by corresponding reductions, the distance is obtained by

 s =   c __ 
2
   Δt, (5.48)

it refers to the satellite’s position at the time of refl ection.
We distinguish between the space and the ground segment of SLR. The space segment 

consists of a laser refl ector array arranged on the satellite’s surface. Since the 1970s, 
a large number of satellites have been equipped with such arrays, and employed for 
geodetic positioning and crustal deformation monitoring, determination of Earth rota-
tion parameters, gravity fi eld modeling, and precise orbit determination of dedicated 
satellite missions. 

Dedicated SLR missions for positioning and geodynamic research include the satellites 
Starlette (France, 1975, h = 800 to 1100 km, i = 50°), the Laser Geodynamics Satellites 
Lageos 1 and 2 (U.S.A., 1976/1992, h ≈ 5900 km, i = 110°/52°, Cohen et al., 1985; 
Tapley et al., 1993), Ajisai (Japan, 1986, h ≈ 1500 km, i = 50°), and Etalon 1 and 2 
(USSR, 1989, each of the two satellites occupying one of the orbital planes used 
by GLONASS, Appleby, 1998). These satellites are spherical in shape (diameter 0.2 to 
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2 m) and heavy, and they possess a favorable surface-to-mass ratio (Fig. 5.25). Satellites 
employed for altimetry and gravity field missions also carry laser retroreflectors on board 
as well as the GLONASS and a few GPS satellites, and the future Galileo satellites shall 
also be equipped correspondingly. 

The SLR ground segment is represented by the Laser distance measuring system. It 
consists of the laser unit (Nd:Yag-laser = Yttrium-aluminum garnet crystal doped with 
neodymium ions), the transmitting and receiving optics (telescopes), and the receiver 
electronics (secondary-electron photomultiplier). The mechanical mounting provides 
an automatic tracking (required pointing accuracy 1″ and better) of the satellite’s pre-
calculated orbit, with proper on-line corrections. The travel time is measured by a time-
interval counter, controlled by an atomic clock, which is regularly compared to UTC. 
A process computer controls the complete measurement, registration and evaluation 
process. 

The accuracy of laser distance measurements depends on the pulse length, the sta-
bility of the photomultiplier, and the time resolution. Atmospheric delay is corrected 
with standard atmospheric models, cf. [5.1.2]. A dual-color laser development aims 
at the improvement of the refraction correction by exploiting the dispersion of light. 
Depending on the satellite’s altitude and the constraints of the observation program, 
some 100 to 1000 distances can be measured during one passage. Third generation 
lasers operate with pulse lengths of 0.1 to 0.2 ns which corresponds to an accuracy of 
1 to 3 cm; and the single-shot precision is now 5 to 10 mm. The amount of photons per 
pulse reduces signifi cantly on the way from the emission (about 1015 per pulse) to the 
receiver, by about 12 or more orders of magnitude, which led to the use of pulse trains 
(3 to 10 pulses) at a fi xed interval, and the development of single photon detectors. By 
compressing the data to “normal points” (e.g., at Lageos as the average over 30 s to 

Fig. 5.25: Laser satellite LAGEOS, courtesy National Aeronautics and Space Administration 
(NASA).
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120 s), sub-cm precision is achieved. Fourth generation lasers will be characterized by 
repetition rates of 102 to 103 Hz (“kHz-laser”).

About 40 laser-satellite systems are nowadays operating worldwide, either in the stationary 
(and partly permanent) or in the mobile mode. As an example, the actual Wettzell laser 
ranging system employs a Nd:Yag laser (532 nm) and a 75 cm telescope. It operates with 
high-energy short pulses (pulse length 180 ps, pulse energy 100 mJ) at a pulse repetition 
rate of 1 to 10 Hz in the single-shot mode. Visible and/or infrared light is used, allowing 
a day-and-night operation to satellites at altitudes between a few 100 and 40 000 km, 
Fig. 5.26. Further developments are directed to reduce the pulse length to some 10 ps 
and to reduce the pulse energy. 

Mobile systems have been developed in the U.S.A. and in Germany/Netherlands, among 
others (Silverberg, 1978). Operating with low energy and single-photon detection, these 
systems are employed mainly for the investigation of recent crustal movements, cf. [8.3.4]. 
The NASA SLR-network consists of a number of mobile laser ranging systems distributed 
worldwide. A transportable, integrated geodetic-observatory (TIGO) is operated by BKG 
(Bundesamt für Kartographie und Geodäsie, Germany). In addition to the laser unit, it 
includes a VLBI module and a GPS unit. TIGO is employed for strengthening fundamental 
reference networks, especially in the southern hemisphere, and is now operating near 
Concepcion/Chile.

Laser retrorefl ector arrays have been placed on the moon by the U.S. Apollo 11 (1969), 
14, and 15 (1971) missions, and the French refl ectors Luna 17 (return signals obtained 
only in 2010) and Luna 21 were deployed 1970/1973 by the Soviet automatic lunar 

Fig. 5.26: 75 cm telescope, Wettzell Laser Ranging System (WLRS), Geodetic Observatory 
Wettzell, Germany, courtesy Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt a.M., 
Germany (http://www.fs.wettzell.de).
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missions Lunokhod 1 and Lunokhod 2. These refl ectors provide targets for lunar laser 
ranging (LLR), Shelus (2001) (Fig. 5.27). Pulsed lasers with a tightly bundled beam and 
a powerful telescope are necessary in order to recapture the weak returning signal. A 
single photon technique has to be applied as eventually only one photon out of an 
emitted amount of 1019 has to be detected. The tracking system must provide a 2″ point-
ing accuracy. The accuracy of these measurements is about 1 cm, and will probably be 
improved to a few mm.

Observations to the moon have been carried out regularly since 1969 by the McDonald 
Observatory, University of Texas, and since the 1980s also at the Observatoire de la Côte d’Azur, 
Grasse/France. At the beginning of the twenty fi rst century a new laser ranging station (APOLLO) 
with lunar capability was established at Apache Point Observatory, New Mexico, U.S.A. It is 
equipped with a 3.5 m-telescope, designed for mm-accuracy. Actual plans for joining the LLR 
tracking network include the laser ranging systems in Wettzell/Germany and Matera/Italy.

Due to the high accuracy and the long-term stability, LLR results especially con-
tribute to investigations of the dynamics of the Earth-moon system including lunar 
ephemerides and lunar libration, testing of the theory of relativity, connection of 
celestial and terrestrial reference frames, and research on terrestrial geodynamic 
processes and the lunar interior (Müller, 1991; Müller et al., 2007, 2009; Williams 
et al., 2009).

Fig. 5.27: Lunar Laser Refl ector, courtesy Lunar and Planetary Institute, Houston, TX, U.S.A. 
(http://www.lpi.usra.edu).
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The International Laser Ranging Service (ILRS) of IAG collects, analyzes and distributes 
the SLR and LLR data sets of presently about 40 stations, heterogeneously distributed 
over the globe (Fig. 5.28), Pearlman et al. (2007), Pavlis and Müller (2011). In addition 
to the ephemerides of the observed satellites (cm-accuracy), the service products include 
weekly solutions of the station coordinates and velocities with an accuracy of 6 mm and 
2 mm/year, respectively; in contrast to other space methods the height accuracy is here 
better than the accuracy of the horizontal coordinates. The data also contribute to the 
determination of polar motion and length of day, and they are of special importance for 
the defi nition of the scale and the origin of the terrestrial reference frame (together with 
VLBI), and for monitoring the movement of the Earth’s center of mass with respect to the 
ground stations. SLR observations fi nally are an important data set for the computation 
of gravity fi eld coeffi cients, providing the long-wavelength part of the fi eld including its 
variations with time. 

5.2.7 Satellite altimetry

Satellite altimetry is based on a satellite-borne radar altimeter that transmits short pulses 
in the vertical direction to the Earth’s surface (Chelton et al., 2001; Chambers, 2009). 
The ocean surface (and also ice and open water on land) partly refl ects the pulses 

Fig. 5.28: Network stations of the International Laser Ranging Service ILRS (status 2011), 
courtesy ILRS (http://ilrs.gsfc.nasa.gov/  ).
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perpendicularly, and the measurement of the travel time Δt furnishes the height of the 
satellite above the instantaneous sea surface (Fig. 5.29):

 a =   c __ 
2
   Δt. (5.49a)

(The denotation a should not be confused with the abbreviation for the semi-major 
axes of the satellite’s orbit and of the Earth ellipsoid.) 

In spherical approximation, the altimetric result can be expressed as 

 a =  r s  −  r p  −  ( N + SST ) , (5.49b)

where  r s  and  r p  are the geocentric distances to the satellite and to the subsatellite point 
P on the ellipsoid, and  r s  −  r p  is the satellite’s height above the ellipsoid; N is the geoid 
height and SST the height of the sea surface topography. A proper reduction of atmo-
spheric refraction effects and ocean tides is presupposed in (5.49b). Tracking provides 
the satellite’s orbit and thus  r s  , and geodetic positioning gives  r p . According to (5.49b), 
altimetry thus delivers information on the geoid and on sea surface topography. An el-
lipsoidal development of (5.49b) is given by Gopalapillai (1974).

Radar altimeters operate in the 14 GHz frequency range (corresponding to a wave-
length of 2.2 cm) with short (a few ns) pulses and a high-pulse frequency (e.g., 100 
pulses/s). The effects of beam divergence and fi nite pulse length result in measurements 
that refer to a “mean” sea surface within a circular “footprint” (few km diameter); short-
wavelength features of the ocean (waves) are thereby smoothed out. For example, by 
averaging the measurements over one second, the along-track resolution is about 7 km. 

Satellite altimetry missions are designed to provide either an exact repetition of 
ground tracks (days to weeks) or a dense pattern of profi les. The different modes are 
achieved by orbital maneuvers (Knudsen, 1993). The latter is for determination of the 
altimetric geoid according to (5.49b), and the former for investigation of ocean vari-
ability (Fig. 5.30).

The fi rst global survey with a radar altimeter was accomplished by the GEOS-3 satellite (U.S.A., 
1975–1978). The oceanographic satellites SEASAT (1978) and GEOSAT (U.S. Navy, 1985–
1990) carried improved altimeter systems and operated in heights close to 800 km with 108° 
inclination and repetition rates of 3 and 17 days (McAdoo and Sandwell, 1988). The European 
Remote Sensing Satellites ERS-1 (1991–1996) and ERS-2 (1995–2007) operated at similar heights 
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Fig. 5.29: Satellite altimetry principle.
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Fig. 5.30: TOPEX/Poseidon subsatellite tracks covered within the 9.9 days repeat cycle, Bosch 
(2001a).

Fig. 5.31: European Remote Sensing (altimeter) Satellite ERS, courtesy ESA.

with 98° inclination (Fig. 5.31). Repetition rates were 35 and 168 days, respectively, and ground 
track distances at the equator 80 km and 8 km for geodetic missions (JGR, 1998). The NASA/
CNES (French space agency) TOPEX/Poseidon satellite (1992–2005, 5.3 and 13.6 GHz) was 
placed in a circular orbit at an altitude of 1340 km and an inclination of 66°. Repetition time 
was 10 days, and the equatorial ground track interval 316 km (Fu et al., 1994; Cheney, 1995), 
see Fig. 5.32. GEOSAT follow-on (GFO, launch 1998), JASON-1 (2001–2008) and JASON-2 
(since 2009), and the Environmental Satellite ENVISAT (since 2002) are successor missions 
of GEOSAT, TOPEX/Poseidon and ERS-1/-2, with similar orbital parameters. GPS and DORIS 
as well as laser retro-refl ector arrays serve for orbit determination at these recent altimetry 
missions.
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Dedicated altimetry missions deal with the repeated survey of the polar ice caps and the 
sea ice, in order to get more insight into the ice sheet mass balance. The NASA ICESat (Ice, 
Cloud, and land Elevation Satellite) operated from 2003 to 2009 in a near-polar orbit (altitude 
600 km, i = 94°). The satellite carried, among others, a laser altimeter (pulse length 5 ns, 40 
Hz shot repetition rate) and a dual-frequency GPS receiver. The laser range precision (0.1 
m) decreased with increasing ice slope, and the vertical orbit error was 0.05 m. An ICESat-2 
mission is scheduled for 2015. Determination of ice topography and monitoring of ice height 
changes is also pursued by the ESA CryoSat-2 mission (altitude 720 km, i = 92°) which was 
launched again in 2010, after the launch failure of CryoSat-1 in 2005. Height measurements 
are performed with a radar altimeter (few cm precision, horizontal resolution about 300 m), 
and for orbit determination the satellite is equipped with a DORIS receiver and laser retro -
r efl ectors (Wingham et al., 2006). 

The error budget of satellite altimetry is composed of orbit errors, instrumental errors, 
and signal propagation errors.

In order to achieve high radial-orbit accuracy, the satellites are equipped with laser 
retrorefl ectors for SLR, and additionally with microwave-based positioning systems such 
as Doppler, GPS, and DORIS (Andersen et al., 1998), cf. [5.2.3]. Further orbital improve-
ments have been achieved by “tailored” gravitational fi eld models developed for each 
dedicated altimeter mission (Tapley et al., 1996). The orbital error thus has been reduced 
from about 0.5 m for the GEOS-3 mission to a few cm for TOPEX/Poseidon and other 
more recent altimeter missions. 

The precision (instrumental noise) of a one-second-mean altimeter observation is 
now better than 2 cm. Systematic instrumental effects (altimeter bias and drift) can be 
determined by calibration over ground-truth test areas, while the correction of sea state 
effects requires a careful signal analysis. The atmospheric propagation delay is taken 
into account by appropriate models, improved by simultaneous radiometer measure-
ments of the water vapor for tropospheric refraction, and by the use of two frequencies 
for modeling the ionospheric refraction, cf. [5.1.3]. After reduction of the ocean tides 
and large-scale air pressure effects, the altimetric results refer to the quasi-stationary 
sea surface and yield its height with an accuracy of a few cm. For the evaluation of a 
region sampled multiple times with high spatial-resolution altimeter profi les, the track 
crossover discrepancies can be adjusted by minimum conditions modeling the errors 

Fig. 5.32: TOPEX/Poseidon (altimeter) satellite, courtesy JPL/NASA, Pasadena, CA, U.S.A.
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by time-dependent functions as low-degree polynomials (e.g., shift and inclination), 
splines or Fourier series (Van Gysen and Coleman, 1997). A multi-mission discrete 
crossover analysis of nearly simultaneous tracks has proved to be a powerful tool for 
cross calibration and detection of relative range biases (Bosch and Savcenko, 2007).

Monitoring of the sea surface by means of refl ected GPS signals is still in the experimental stage. 
This method could possibly supplement satellite altimetry especially with respect to real-time 
determination of sea level and wave heights.

5.2.8 Satellite-to-satellite tracking, satellite gravity gradiometry

High-resolution gravity-fi eld determination from space requires low-orbiting satellites 
and highly sensitive sensors, cf. [5.2.3]. This can be achieved by satellite-to-satellite 
tracking and satellite gravity gradiometry (Balmino et al., 1999; Rummel et al., 2002; 
Ilk et al., 2005a).

Satellite-to-satellite tracking (SST) employs microwave systems (laser distance meas-
urements are under investigation) for measuring range and range rates between two 
satellites. High-low (several high and one low-fl ying satellite) and low-low (two low-
fl ying satellites at the same altitude) confi gurations have been designed, a combination 
of both confi gurations is possible, Fig. 5.33. The basic observables are the range rates 
and the changes of the range rates along the line of sight between the satellites, these 
variations are due to gravitational and non-gravitational “disturbing” forces, cf. [5.2.2]. 
The gravitational fi eld parameters (harmonic coeffi cients) can be derived after proper 
reduction of the effects of surface forces derived from dedicated accelerometer meas-
urements, cf. (5.35). In order to achieve a gravity fi eld resolution of 100 km, the orbital 
altitude of the lower satellite must not exceed a few 100 km (Jekeli, 2001b). The relative 
velocity between the satellites has to be determined with an accuracy of 1 to 10 μm/s, 
and precise orbit determination should be guaranteed by on-board satellite systems 
(GPS), supported by ground tracking stations.

Fig. 5.33: Satellite-to-satellite tracking principle: a) high-low mode and b) low-low mode for the 
determination of range and range rate.
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SST experiments started in the 1970s, e.g., between GEOS-3 and the geostationary satellite 
ATS-6 (nearly circular equatorial orbit, h ≈ 36000 km). The CHAMP satellite (GFZ and DLR/
Germany, 2000–2010) started a series of dedicated gravity fi eld missions (Reigber et al., 2006; 
Flechtner, 2010). It was launched into a decaying orbit starting at an altitude of 450 km, which 
was raised several times in order to extend the satellite’s lifetime. CHAMP (dimensions 4 m × 1 
m × 1.6 m) moved in a nearly circular polar-orbit (i = 87°), Fig. 5.34. It carried a special (NASA) 
GPS receiver for continuous tracking (high-low mode) and a laser refl ector array for ground 
support, cm-accuracy was thus achieved for the satellite’s orbit. A three-axis accelerometer was 
used for measuring (precision1 0 −8  m s –2  ) non-conservative forces as air drag and solar radiation, 
for later correction in post-processing. As this instrument was located in the satellite’s center 
of mass, where gravity is compensated by the centrifugal force, it measured only the non-
gravitational accelerations. A star imager provided attitude information and spatial orientation 
with respect to the inertial system. A magnetometer and a digital ion drift meter augmented the 
instrumentation. Gravity fi eld recovery up to degree and order 120 was achieved, and the long-
wavelength part of the geoid (until degree and order 30) could be derived with “cm-accuracy”. 
Atmospheric sounding by GPS radio occultation was another result of the mission (Wickert 
et al., 2010). 

The GRACE mission (NASA/German Aerospace Center DLR) started in 2002, and is now expected 
to continue until 2015. Primary mission objectives are the determination of the global high-
resolution gravity fi eld and especially its temporal variations. The mission employs two satellites 
of the CHAMP type orbiting at the same altitude (initially about 490 km) and in a nearly circular 
orbit (i = 89.5°), with a varying (around 220 km) along-track separation (Fig. 5.35), Tapley et al. 
(2004). The intersatellite tracking (low-low mode) delivers range and range rate measurements 
(K-band microwave measurements with two frequencies (24 GHz, 32 GHz, μm-accuracy, 

Fig. 5.34: CHAMP satellite, courtesy GFZ German Research Centre for Geosciences, Potsdam, 
Germany.

Fig. 5.35: GRACE satellites, courtesy NASA.
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10 Hz sampling rate) between the satellites. Kinematic orbit determination is based on GPS-
tracking (high-low mode) supported by laser distance measurement from ground stations to 
the satellites’ nadir-directed laser retrorefl ector. Based on 5-minutes position series, an orbital 
accuracy of 1 to 2 cm is achieved. Attitude control is provided by star sensors, in connection 
with a GPS navigation solution. As at the CHAMP mission, a three-axis accelerometer is 
located in each satellite’s center of mass and measures the non-conservative forces. 

As a result from the GRACE mission, the static gravity fi eld could be signifi cantly improved in 
the long- and medium-part, and modeled up to spherical degree and order 150 to 180, with 
accuracies of 10 to 30 μm s –2   for the gravity anomalies and 0.1 m for the geoid (“cm-accuracy” 
for the geoid part until degree 100), cf. [6.6.3]. Temporal variations of different origin have been 
found from monthly resp. weekly solutions, which are complete to degree and order 120,120 
and 30, 30 respectively, cf. [8.3.5]. 

In satellite gravity gradiometry, the second derivatives of the gravitational potential V 
are used for gravity fi eld determination, and derived from the output of a gravity gradio-
meter (Fig. 5.36, Fig. 5.37), Rummel (1986), Esa (1999). The individual derivatives are 
generally combined in the gravitational gradient tensor (Marussi tensor)

 V″ =  (   V xx 
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with the x-axis pointing in fl ight direction, the y-axis in cross-track direction, and the 
z-axis in the outward radial direction, cf. [3.2.2]. From the nine elements in (5.50) only 
fi ve are mutually independent, due to the tensor’s symmetry and Laplace’s equation, as 
demostrated by (3.46) and (3.49) for the gravity fi eld. By different orientation of the sen-
sors, different components of the gravity gradient can be determined.

On the Earth’s surface, gravity gradiometry has been employed since about 1900 with sensor pairs 
(accelerometers) sensitive to local changes of the gravity fi eld in a certain direction, advanced 
gradiometric airborne techniques are used today in geophysics, cf. [5.4.5]. 

Fig. 5.36: Satellite gravity gradiometry principle, modifi ed after Rummel et al. (2002).
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For space-borne applications, the attenuation of the gravity fi eld with height (the second 
derivatives of the potential diminish with the third order of the radial distance!) requires 
a high measurement accuracy for the second derivatives. In the frequencies of interest 
(medium- and short-wavelengths’ parts of the gravity fi eld), the signals to be detected 
are of the order of 10–9 s–2/ √ 

____
  Hz   only, at heights of a few 100 km. This requires a measure-

ment accuracy at the order of 1 0 −11  to 1 0 −13  s –2   (Rummel, 1997). In addition to the gravity 
gradient tensor, the gradiometer output contains two terms which describe the orienta-
tion of the satellite with respect to an inertial system, and the effect of non-gravitational 
forces. The latter effects can be derived from the sum of the accelerometer pair outputs, 
and they cancel partly (linear parts) when differencing them (Moritz, 1968b). They can 
be compensated by a drag control system using thrusters (“drag-free” system). After 
proper compensation, the observation equation of satellite gravity gradiometry then 
reads as (Müller, 2001; Rummel et al., 2011)

  G = V″+ W W + W
.
.  (5.51) 

The skew-symmetric matrices W and W
.
  contain the components of the angular veloc-

ity around the x-, y- and z-axes and the corresponding angular acceleration, the tensor 
W W is symmetric:
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This rotational part of the observation equations can be derived from combinations 
of the gradiometer observation equations, supported by orientation data from star 
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Fig. 5.37: GOCE Gravity gradiometer, courtesy ESA, modifi ed after Rummel et al. (2009).
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trackers. Special emphasis has to be laid on the accelerometers’ calibration (scale, 
orientation, misalignments) realized in space and through comparison with ground 
truth. High requirements are posed on the satellite’s orbit, which by orbital analy-
sis also delivers the long-term parts of the gravitational fi eld. Orbit determination is 
nowadays usually based on GNSS-tracking, with support through ground-based laser 
measurements (Jarecki and Müller, 2009). 

ESA has started (launch 2009) the fi rst dedicated gravity gradiometry mission called GOCE 
(Gravity Field and Steady-State Ocean Circulation Explorer, Fig. 5.38.), with a drag-free satellite 
in a sun-synchronous near circular orbit (h = 265 km, i = 97°), Drinkwater and Haagmans (2007), 
Rummel et al. (2009), Rummel and Gruber (2010), also Rummel, 2011). Orbit determination 
is performed by satellite-to-satellite tracking, from the on-board dual-frequency GPS receiver 
(high-low mode positioning), and the satellite is also equipped with laser retrorefl ectors. Three 
accelerometer pairs (precision of a few 1 0 −12   s –2  / √ 

___
 Hz  , sampling rate 1 s) are arranged over three 

mutually orthogonal directions, with baselines of 50 cm, and Earth-pointing orientation (attitude 
control) is provided by star trackers and gradiometer data. While the diagonal element of the 
gradient tensor and the horizontal gravity gradient’s component in fl ight direction (Vxz ,Vzx) can 
be determined with high accuracy, the off-diagonal elements are less accurate due to specifi c 
constraints at ground-based pre-calibration. At modeling, the low-degree potential terms (up 
to about degree and order 50) will be determined primarily through orbital analysis from GPS 
tracking, while the higher degrees will be derived from the gradiometer measurements. Based on 
orbital data and gradiometer results, a fi rst gravity model could be derived complete to degree 
and order 224, with an accuracy of better than 0.1 m (geoid) and 30 μm s –2   (gravity anomalies). 
Accuracies around 2 cm and 10 μm s –2  , respectively, are expected for the full mission period 
originally planned for about 1.5 years (Pail et al., 2010a). 

5.3 Geodetic astronomy

Classical geodetic astronomy is concerned with the determination of astronomic latitude, 
longitude, and azimuth from ground-based optical direction measurements to fi xed stars, 
which also requires time determination (Mueller, 1969; Schödlbauer, 2000). Several types 
of observational instruments are available for this purpose [5.3.1], and different methods 
of observation have been developed [5.3.2]. A number of reductions are necessary in 

Fig. 5.38: GOCE satellite, courtesy ESA.
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order to refer the observations to the celestial reference frame [5.3.3].Geodetic astronomy 
is based on astrometric methods and spherical astronomy (Eichhorn, 1974; Kovalevsky, 
2002; Kovalevsky and Seidelmann, 2004). 

The importance of optical astrometry has decreased since the development of effi -
cient satellite positioning and gravity fi eld determination methods, and is now restricted 
to more local applications of gravity fi eld (plumb line direction, geoid) and azimuth 
determinations. On the other hand, radio waves emitted from extragalactic sources are 
used extensively in order to derive base-line vectors between fundamental terrestrial 
stations and to determine Earth orientation parameters: Very Long Base Line Interfero-
metry [5.3.4].

5.3.1 Optical observation instruments

Optical observations to fi xed stars are carried out in the local level (horizon) system. 
The direction to a star is determined by the astronomic azimuth A and the zenith angle 
z (sometimes the altitude or elevation angle 90°–z is used), cf. [2.5]. Due to the relative 
movement of the observer with respect to the stars, simultaneous time measurements 
are required.

Time determination in optical geodetic astronomy requires an accuracy of 1 ms. This 
is provided by quartz clocks, which are based on quartz crystal oscillators (frequency 
stability 10–8 to 10–9 over a few hours) and synchronized by time signals. Nowadays 
a simple time measurement is possible with a GNSS receiver, cf. [5.2.5]. In order to 
record the time of a star transit through the horizontal or vertical thread of a telescope, 
a registration device has to be implemented in the measurement system. 

Astronomic instruments are either permanently installed in observatories or con-
structed as transportable devices for fi eld operation.

Until the 1980s, observations of highest precision with stationary instruments have been 
utilized by the former International Time Service and International Polar Motion Service. 
Among other instruments, the photographic zenit tube has been employed. In this case, 
stars near the zenith are photographed symmetrically with respect to the meridian, and the 
direction of the vertical was established by a mercury pool. By employing CCD-techniques, 
this method is still of signifi cance for astronomy. Comparable precision  ( 0.05” )  was achieved 
by the Danjon prism astrolabe, measuring the transit time of stars crossing a defi ned 
almucantar (see also below under “prism astrolab”). These observatory measurements, in 
connection with satellite-based astrometry, still contribute to the realization of an optical 
celestial reference frame, cf. [2.4.1].

The universal instrument was employed for fi eld measurements of fi rst-order precision 
(0.1” to 0.3”). It consists of a high-precision theodolite, cf. [5.5.1], of very stable design 
with a few attachments for astronomic observations (Fig. 5.39). 

An angled telescope permits observations near the zenith. The movable thread of the registering 
micrometer is driven to follow the star so that impulses are generated and recorded at uniform 
intervals. The suspension level serves to measure the tilt of the horizontal axis. The Horrebow level, 
mounted at right angles to the horizontal axis, registers any changes in the tilt of the telescope. The 
Kern DKM3-A and the Wild T4 universal theodolites were used widely. 

The prism astrolab is used for the simultaneous observation of astronomic latitude and 
longitude. With this device, one measures the transit times of those stars that cross the 
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same small-circle parallel to the horizon (almucantar). The constant zenith distance 
(usually ≈ 30°) is realized by a prism placed in front of the telescope, and the direction 
of the vertical is defi ned by the surface of a pool of mercury or by a compensator pendu-
lum. Astrolabe attachments were particularly common. They have been mounted either 
on a theodolite (e.g., the Wild T3 astrolabe with a mercury pool) or on an automatic 
level (Zeiss Ni2 astrolabe, Fig. 5.40).

Fig. 5.39: Universal instrument Kern DKM3-A, Kern/Leica Geosystems AG, Heerbrugg, 
Switzerland.

Fig. 5.40: ZEISS Ni2 level with prism astrolab, Carl Zeiss, Oberkochen, Germany.
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Transportable zenith cameras have been developed for the rapid determination of 
astronomic latitude and longitude, and have proved to be very effi cient (Seeber and 
Torge, 1985; Kovalevsky, 2002). The development started with photographic instru-
ments, consisting of a camera oriented in the direction of the plumb line (focal length 
300 to 1000 mm, relative aperture ≈ 1:5), which could be rotated around the plumb-
line axis in any azimuth. The photography of the zenith-near fi eld of stars with the 
subsequent (tedious) comparator measurement of the photographic plate coordinates 
has been substituted now by an electronic image procedure using CCD-technique, fol-
lowed by the transformation into the astronomical system.

The principle of CCD (charge-coupled device) is based on the photoelectric effect produced 
on a semiconductor plate. The number of collected photoelectrons is proportional to the light 
received. A CCD-matrix is composed of a number of linear arrays and may contain several 1000 
× 1000 pixels, of 10 μm or less size, with a resolution of 0.1 pixels. 

In addition to the camera-system and a timing device, a digital zenith camera system 
contains two electronic tilt meters that are arranged at right angles to each other, and 
serve for the automatic alignment of the camera to the plumb line. A single observa-
tion comprises two images of zenithal stars, exposed in opposite camera directions, 
and the exposure epochs and tilt measurements. Using an image processing unit and 
a PC, an automatic on-line evaluation of the star observations is achieved, which in-
cludes the transformation of the CCD-coordinates into the a, d-system, and results in 
the astronomic latitude and longitude of the observation site. Digital zenith camera 
systems have been developed over the past decades at a few institutions, and are now 
employed for the determination of vertical defl ections along profi les or in areas of 
limited extension, cf. [6.7.4], Fig. 5.41. These systems include a GPS receiver which 
is used for time tagging of the exposure epochs and for determining geodetic latitude 

Fig. 5.41: Digital Astronomical Defl ection Measuring System (DIADEM), Geodesy and 
Geodynamics Laboratory, ETH Zürich and Digital Transportable Zenith Camera, TZK2-D System, 
Institut für Erdmessung, Universität Hannover (Hirt and Bürki, 2006).
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and longitude. Main error sources are of astrometric type (image centering, catalogue 
positions, scintillation), followed by tilt corrections, while errors of time tagging and 
geodetic coordinates play a minor role (Hirt and Bürki, 2003; Hirt and Seeber, 2008).

With the Hannover Digital Zenith Camera System a single observation takes approximately 30s, 
and the image usually contains 20 to 50 stars. The evaluation results in an accuracy of about 
0.2″ to 0.3″, which can be improved by multiple observations. With a one-hour observation 
time (100 observations) an accuracy of 0.05″ to 0.1″ is obtained.

5.3.2 Astronomic positioning and azimuth determination

The determination of astronomic latitude, longitude and azimuth is based on the rela-
tions given in [2.5], where the star positions (a, d  ) are provided by star catalogues. 

Star catalogues have been compiled since ancient times, cf. [2.4.1], and in a more regular 
manner since the nineteenth century. Derived from Earth-based astrometry, the number of 
stars observed and their positional accuracy had reached a certain limit in the second half 
of the twentieth century, examples are the AGK-catalogues (northern hemisphere) of the 
“Astronomische Gesellschaft” and the SAO (Smithsonian Astrophysical Observatory) Catalogue 
of 1966. These rather heterogeneous compilations fi nally included a few 100 000 stars, with 
accuracies not exceeding 0.1″…0.2″. The HIPPARCOS space mission (since 1989) and the 
introduction of CCD-techniques signifi cantly improved quantity and quality of star catalogues. 
The TYCHO catalogue (2000) is based on star-mapper data from the HIPPARCOS satellite, 
it contains about 2.5 million stars with an accuracy of 0.01″…0.02″ (Høg et al., 2000). We 
further mention the UCAC Astrograph Catalogues of the U.S.Naval Observatory which provide 
positions with an accuracy between 0.02″ and 0.1″, for stars down to a magnitude of 16m, and 
about 2000 stars per square degree (Zacharias et al., 2004). For future space missions as GAIA 
see [2.4.1].

As the relevance of astrometry in geodesy has decreased during the last decades, we 
mention here only a few of the many methods developed in geodetic astronomy.

In determining the astronomic latitude Φ, it is required, according to (2.20), to ascer-
tain the zenith angle z and the hour angle h. The zenith angle can be directly observed, 
while the hour angle has to be derived from the rectascension a and the measured time, 
see (2.21).

By total differentiation of (2.20) we obtain differential formulas for estimating the 
effect of observational errors on the results and for fi nding optimum confi gurations for 
the observations, e.g., Schödlbauer (2000, pp. 34 and 505 ff.). For the latitude we obtain

  d Φ = −   1 _____ 
 cos A

   dz − cos Φ tan A dh, (5.53)

where we have neglected the (small) declination error. The accuracy of Φ hence 
strongly depends on the azimuth, with minimum effects of errors in z and h at A = 0° 
and A = 180°, i. e., at meridian transits of the star.

For an upper culmination (the smaller zenith angle) of a northern star (A = 0°) or a 
southern star (A = 180°), the latitude is given by (see also Fig. 2.4)

 Φ =  d N  −  z N  and Φ =   d S   +  z S  , (5.54)

respectively. Measuring the meridian zenith angle (e.g., to Polaris) is therefore most suit-
able for the determination of the latitude.
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If one observes a pair of stars consisting of both a northern and a southern star having 
approximately the same zenith angle, averaging (5.54) signifi cantly reduces the uncertainties 
in z due to refraction (Sterneck method):

 Φ =   1 __ 
2
    (  d N  +  d 

S
  )  +   1 __ 

2
   (  z 

S
  −  z 

N
  ) . (5.55)

In the Horrebow-Talcott method, the small difference between the meridian zenith angle of the 
northern and southern stars in a star pair is measured by a registering micrometer. The optical axis 
in each case is adjusted to the same zenith angle using the Horrebow level that is mounted on the 
horizontal axis. Since accurate circle and time readings are not required, this method provides 
precise results, with an accuracy of 0.1” when about 20 star pairs are observed.

The astronomic longitude Λ is given by the difference between the local sidereal time 
LAST and the Greenwich sidereal time GAST (2.22):

 Λ = LAST − GAST, (5.56)

where 1 s corresponds to 15″. According to (2.21), LAST is related to the hour angle h:

 LAST = h + a. (5.57)

If the latitude is known, h can be computed from the zenith angle according to (2.20):

 cos  h =   cos z − sin Φ sin d   _______________  
 cos Φ cos d 

  . (5.58)

Converting measured universal time UT to GAST then allows the determination of Λ 
according to (5.56).

By differentiating (2.20), we get the differential relation for the hour angle:

 dh = −   dz __________ 
 sin A cos Φ

   −   cot A ______ 
 cos Φ   d Φ. (5.59)

The effect due to errors in z is minimum when observations are made on the prime vertical 
(A = 90°), while the effect is zero for errors in Φ. The infl uence of refraction is largely 
eliminated when observing east and west stars of the same altitude that are symmetric 
with respect to the meridian. On the other hand, by observing the time of transit across 
the meridian (h = 0) we get LAST = a. An accuracy of 0.01 to 0.02 s is obtained from 
approximately 30 transits. 

The accuracy of the determination of longitude primarily depends on the systematic errors of 
the observer, the instrument, and the time comparison. If the determinations are made by the 
same observer, using the same instrument and the same time signal transmitting station as well 
as the same stars, then longitude differences are essentially free from these errors. Longitude 
determinations of high accuracy have thus been carried out as measurements of differences 
with respect to a reference station.

An economical method to determine the latitude and longitude simultaneously is 
known as the method of position lines.

The zenith angles z1,z2 of two stars  S 
1
  (  a 

1
 ,  d 

1
  ) ,  S 2  (  a 

2
 ,  d 

2
  )  are observed at sidereal 

times LAS T 
1
 , LAS T 

2
  and at azimuths  A 

1
 ,  A 

2
 . If  S 

1
 ,  S 

2
  are projected on the Earth’s sur-

face, then the intersections of the circles centered at the projections  S ′ 
1
 ,  S ′ 

2
  having 

radii  z 
1
 ,  z 

2
  represent two geometric positions P and (P ) for the point of observation 

(Fig. 5.42). Near P, the circles can be replaced by their tangent lines (position lines), 
while the point (P ) can be excluded from the solution if approximate coordinates 
are known. The intersection of the position lines then yields an approximation to P. 
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Computationally, one obtains the corrections ΔΦ = Φ −  Φ 
0
  and ΔΛ = Λ −  Λ 

0
  upon 

introducing an approximate position P0(Φ0,  Λ 
0
 ). When observations are made with 

the prism astrolabe, cf. [5.3.1], the zenith angle predetermined by the prism is treated 
as an additional unknown. One obtains accuracies of a few 0.1” from about 20 stars 
evenly distributed above the horizon. 

As explained in [5.3.1], a transportable zenith camera also permits the rapid and 
accurate simultaneous determination of latitude and longitude. From the coordinates  
a 

z
  , d 

z
  of the zenith, derived from the observations, we obtain

 Φ =  d z   , Λ =  a z  − GAST, (5.60)

see also Figs. 2.2, 2.4. Repeated observations with a digital camera system deliver an 
accuracy of better than 0.1″, with further improvements at longer observation times.

If the latitude is known, then the azimuth A can be obtained, according to (2.20), 
from the hour angle h derived from the sidereal time and the rectascension (5.57):

 tan A =   sin  h  ______________________   
 sin Φ cos  h − cos Φ tan d

 . (5.61)

Differentiation of (2.20) yields

 dA =   
cos q cos d 

 __________ 
sin z

   dh + cot z sin A d Φ, (5.62)

where q is the parallactic angle, cf. [2.5]. An error in h has a minimum effect for d ≈ 90° 
(stars near the pole). For some 10 observations, we get an accuracy of 0.3” to 0.5”. The 
azimuth of a terrestrial station is obtained by additionally measuring the angle between 
the directions to the star and the target on the Earth’s surface. 

5.3.3 Reductions

In order to refer the “observed” positions (epoch t) of fi xed stars to the system of the star 
catalogue (mean positions at the reference epoch  t 

0
 ), several reductions have to be ap-

plied on the observed (topocentric) directions:

• Astronomic refraction causes an apparent increase in the star’s altitude (Fig. 5.43). 
The true zenith angle z is obtained from the observed quantity z′ by adding the 
astronomic refraction angle Δ z 

∞
 :

 z = z ′ + Δ z ∞ . (5.63)
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Fig. 5.42: Method of position lines.
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According to (5.10) and (5.11), the refraction angle depends on the vertical gradient of 
the refractive index along the path of the ray. For a standard atmosphere (temperature 
288.15 K, atmospheric pressure 1013.25 hPa), we obtain from Snell’s law, and with a 
layered standard atmosphere for z′ < 70°:

 Δ z 0  = 57.08″ tan z ′ − 0.067″ ta n 3 z ′. (5.64)

For actual conditions (temperature T, pressure p), we have the transformation

 Δ z ∞  = Δ z 0   
p
 _____ 

1013
     288 ____ 

T
  , (5.65)

(Kovalevsky, 2002). The uncertainty of Δ z ∞  varies between a few 0.01” and a few 0.1” 
and depends strongly on systematic deviations from the atmospheric model (turbu-
lences, slope of the atmospheric layers). 

• The diurnal aberration is an apparent displacement in direction resulting from the 
fi nite velocity of light and the relative velocity of the observer with respect to the 
stars, due to the Earth’s rotation. The corresponding latitude dependent reduction 
reaches a maximum of 0.3” at the equator.

• The geocentric (or diurnal) parallax represents the difference between the topo-
centric and the geocentric direction; it can be neglected for star observations.

Through these reductions, the “observed” position is transformed to the “apparent” 
position (apparent place) at epoch t. The reduction of the star coordinates from the 
“mean” position (epoch  t 

0
 ) to the apparent position (epoch t) involves the following 

steps:

• Applying precession and proper motion (generally <0.1″/year, maximum 10″/
year) for the time interval t −  t 

0
  transforms the mean position ( t  

0
 ) to the mean posi-

tion at epoch t, cf. [2.3.2], [2.4.3].
• Accounting for nutation transforms the mean position (t) to the true position (t). 

The origin of the system is still at the barycenter of the solar system.
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Fig. 5.43: Astronomic and satellite refraction.
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According to the IAU2000 precession-nutation model, these two effects have been combined, 
but the separate treatment may continue for a certain time. The combined reduction now leads 
to the Intermediate Reference System, cf. [2.4.3], and the difference between “mean” and 
“true” coordinates disappears.

The transition to the (geocentric) apparent position (t) is performed by applying the fol-
lowing reductions:

• Annual aberration, resulting from the revolution of the Earth about the sun. It may 
reach values up to 20″, and is calculated from the ephemerides of the sun and 
the Earth.

• Annual parallax, arising from the difference between the heliocentric and the 
geocentric directions. Its maximum value as obtained for a close star remains less 
than 0.8″.

• The relativistic light defl ection remains small and can be easily taken into ac-
count. For light rays passing the edge of the sun, it reaches the extreme value 
of 1.75″.

Instead of reducing from the mean position ( t 0 ) to the apparent position (t), the appar-
ent places of fundamental stars for a particular year can be used. They can be drawn 
from astronomic almanacs, as the “Apparent Places of Fundamental Stars”, Astrono-
misches Recheninstitut Heidelberg. 

Finally, we must consider that the results (astronomic latitude, longitude and azimuth) 
refer to the instantaneous spin-axis of the Earth. They are transformed into the IERS ref-
erence pole by applying reductions for polar motion, cf. [2.4.2]. Multiplying the polar 
motion rotation matrix (2.16b) with the unit vector of the local vertical (2.18) gives the 
corresponding polar motion reductions (Mueller, 1969, p. 86 ff ):

  ΔΦ P  =  Φ ITRS  − Φ = −  (  x p  cos Λ −  y p  sin Λ ) 
  ΔΛ P  =  Λ ITRS  − Λ = −  (  x p  sin Λ +  y p  cos Λ )  tan Φ, (5.66)

  ΔA P  =  A ITRS  − A = −  (  x p  sin Λ +  y p  cos Λ )  sec Φ

where  x p ,  y p  are the pole coordinates with respect to ITRS.

5.3.4 Very Long Baseline Interferometry

Extragalactic radio sources (quasars: quasi-stellar radio sources, radio galaxies) emit 
waves in the cm to dm range, which can be detected by large antennas (radio tele-
scopes) used in radio astronomy. The approximate angular resolution of such a tele-
scope is given by the wavelength/diameter ratio, and thus it is limited to a few arcmin 
for telescope diameters less than 100 m. By employing a receiving system of two widely 
(a few 1000 to 10 000 km) separated radio telescopes (baseline), the resolution can be 
increased to 0.001” and better: Very Long Baseline Interferometry VLBI (Moritz and 
Mueller, 1987, p. 381 ff.; Seeber, 2003, p. 485 ff.).

The wave train from an extragalactic radio source arrives at the telescope  P 
2
  with a 

phase difference Φ with respect to the telescope  P 
1
 . Φ is related to the time delay t, the 

time the wave requires to travel the path difference ct (c velocity of light in vacuum), 



5.3 Geodetic astronomy      171

Fig. 5.44. Due to the Earth’s rotation, Φ and t depend on time t. The following relation 
is valid:

 Φ(t) = 2p c __ 
l
t (t) = 2pnt (t), (5.67)

where l and n are the respective wavelength and the frequency of the received radio 
wave. We introduce the baseline vector

  b ITRS  =  r 2  −  r 1  =  [   X 2  −  X 1 
 

   
  Y 2  −  Y 1      

 Z 2  −  Z 1 
   ] , (5.68)

described in the terrestrial geocentric system ITRS (2.13) and the unit vector to the 
quasar:

  s ICRS  =  [  cos a cos d 
 

    
 sin a cosd       

sin d 
    ]  , (5.69)

given in the celestial reference system ICRS (2.10). After transformation of s to the ter-
restrial system, performed by means of the Earth orientation parameters according to 
(2.16), we obtain the time delay (see Fig. 5.44),

 t(t) = −   1 __ c   b ⋅ s(t). (5.70)

The negative sign takes the direction of s into account, which is opposite to the direc-
tion of wave propagation. By comparing the two wave trains received at  P 

1
  and  P 

2
 , inter-

ferences are obtained. The frequency of the interference fringes (maxima and minima) 
changes due to the Earth’s rotation:

 f(t) =   1 ___ 
2p    

d Φ(t)
 _____ 

dt
  . (5.71)
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Fig. 5.44: Very long baseline interferometry.
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With (5.67) and (5.70), the fringe frequency can be expressed as 

 f(t) = n  dt (t) _____ 
dt 

   = −    n  __ 
c
   b ⋅ s.(t), (5.72)

s
.
 = d s/dt. Equations (5.70) and (5.72) represent the VLBI observation equations. The 

complete observation equation will be found in the IERS Conventions 2010 (Petit and 
Luzum, 2010, p. 159 ff.). 

The VLBI observables are the time delay t (or the phase delay, respectively) which is 
regarded as the primary observation quantity, and the delay rate dt /dt. They are derived 
by a comparison of the digital signals received at each telescope. These signals are digi-
tized, time-tagged and recorded on magnetic tapes or hard disks, the precise time being 
provided by hydrogen maser frequency standards. The transportation of the data to the 
few correlators available worldwide is mostly done still by courier service, but elec-
tronic data transfer is rapidly supporting and replacing this costly procedure. The cor-
relation process consists of a relative shifting of the signals until a correlation maximum 
is found. The correlation function then furnishes the time delay and the delay rate for 
the two stations involved. The observable t represents a group delay, while Φ is a phase 
delay, cf. [5.1.1], which involves the problem of ambiguity resolution, cf. [5.2.5]. The 
fringe frequency (delay rate) observation is free of this problem but of less importance 
due to its lower accuracy as compared to the delay observation, and since it allows 
only the determination of a reduced set of parameters. A VLBI observing session usu-
ally comprises between fi ve to nine radio telescopes (Fig.5.45), which form geometrical 
networks between the baselines. Typically, about 50 radio sources are tracked several 
times over periods of 3–6 min, at the usual 24-h observation session. 

Reductions are applied for the daily aberration, cf. [5.3.3], for systematic clock differ-
ences (clock synchronization), for the effects of the tropospheric refraction, cf. [5.1.2], 

Fig. 5.45: 20m-radio telescope, Geodetic Observatory Wettzell, courtesy Bundesamt für 
Kartographie und Geodäsie (BKG), Frankfurt a.M., Germany (http://www.fs.wettzell.de).
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and for relativistic effects. The effect of the ionosphere is compensated for by observing 
in two frequency-bands, namely 2.3 GHz (S-band) and 8.4 GHz (X-band), cf. [5.1.3]. 
Main error sources result from timing (±1 ps) and frequency instabilities ( ±1 0 −15  over a 
few days) as well as from tropospheric models (MacMillan and Ma, 1997). The deter-
mination of the “wet” component plays a major part in this aspect. Attempts have been 
made to measure the water vapor content along the signal path by water vapor radio-
meters in order to estimate the wet component with cm-accuracy, cf. [5.1.2]. The verti-
cal baseline component is mainly affected by the uncertainty of the wet component, 
and by atmospheric pressure loading. Special care is required with respect to the defi -
nition of the telescope’s reference point, its connection to a ground marker, and the 
control of the antenna’s thermal deformation (Nothnagel, 2008). 

Among the parameters to be estimated from (5.70) and (5.72) are the components 
of the baseline vector in the terrestrial reference system (few mm-precision at a 24 h 
session). Global solutions for a given epoch deliver a corresponding accuracy for the 
station coordinates, and a mm/year and better accuracy for station velocities; they also 
contribute to the determination of the scale of the terrestrial system. Another VLBI prod-
uct are the Earth orientation parameters, entering through the transformation between 
the terrestrial and the celestial system, cf. [2.4.3]. From a 24 h-session, the pole coordi-
nates and Universal Time UT1 can be determined with an accuracy of better than 30 to 
100 μas and 5 to 10 μs, respectively; corrections to the precession and nutation models 
can be derived with comparable accuracy (Vennebusch et al., 2007). Solutions derived 
from a few hours observation time are less accurate by a factor of two or three.

VLBI for geodetic and astrometric purposes started in the 1970s (Shapiro, 1978; Camp-
bell and Witte, 1978). Today, about 40 radio telescopes (some of mobile type) with antenna 
diameters from 3 m to 100 m) cooperate within the framework of the International VLBI 
Service for Geodesy and Astrometry (IVS), and six correlators are available for process-
ing the raw VLBI data (Schlüter and Behrend, 2007), Fig. 5.46. This network provides 
the celestial reference frame ICRF, and contributes to the maintenance of the terrestrial 
reference frame ITRF, including the determination of the Earth orientation parameters, cf. 
[2.4.1] to [2.4.3]. The stations are mainly located in North America, Europe, and Japan, 
but the global coverage has been strengthened in the last time (Fig. 5.46). As an example, 
the U.S. Very Long Baseline Array VLBA (National Radio Astronomy Observatory/National 
Science Foundation) consists of ten 25 m-antennas spread over the US territory, and is 
operating since 1994. The results obtained include seasonal signals at the mm-order and 
a number of co-seismic deformations, occurring at tectonic plate boundaries (Petrov 
et al., 2009). 

Mobile radio telescopes have been developed for rapid surveying of regions with recent 
crustal movements, such as California or the Eastern Mediterranean, and to fi ll gaps of the 
terrestrial reference frame in the southern hemisphere. We mention the antenna, incor-
porated in the Transportable Integrated Geodetic Observatory (TIGO), Fig 5.47, operating 
since 2002 within a German-Chilenean cooperation project at Conception/Chile (Noth-
nagel et al., 2004). Future VLBI development is directed towards increased accuracy 
(1 mm for baselines and 0.1 mm/year for station velocities) and more continuous meas-
urements, with near real-time solutions for the Earth orientation parameters (Behrend et 
al., 2009). One strategy in this direction is the installation of a “twin”-telescope, e.g., at 
the Geodetic Observatory Wettzell, consisting of two identical telescopes (13 m diameter) 
with improved optics and fast moving capability (Hase et al., 2008).
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Fig. 5.46: Radio telescopes participating in the International VLBI Service for Geodesy and 
Astrometry IVS (status 2010), http://ivscc.gsfc.nasa.gov.

Fig. 5.47: 6m-radio telescope as part of the Transportable Integrated Geodetic Observatory 
(TIGO), courtesy Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt a.M., Germany 
(http://www.fs.wettzell.de).
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5.4 Gravimetry

Gravimetry deals with the measurement of the gravity intensity (gravity) and the gravity 
gradient by terrestrial methods on or close to the Earth’s surface (Marson and Faller, 1986; 
Torge, 1989; Timmen, 2010). “Absolute” gravity measurements refer directly to the stan-
dards of length and time [5.4.1], while modern “relative” measurements use a counter-
force for the determination of gravity differences [5.4.2]. A conventional gravity reference 
system is needed in order to provide a global standard of high metrological quality, serv-
ing as a basis for global, regional and local gravity measurements [5.4.3]. Gravity meas-
urements on moving platforms permit the economic survey of areas diffi cult to access 
[5.4.4]. Local gravity-fi eld information can be obtained by the measurement of the gravity 
gradient [5.4.5]. The continuous record of gravity provides temporal gravity variations at 
different time scales, especially the effects of solid Earth tides [5.4.6].

The unit of gravity in the SI-system is m s –2  . The units mGal = 1 0 −5  m s –2   and μGal = 
1 0 –8   m s –2   = 10 nm s –2   are still in widespread use in geodesy and geophysics. They are 
derived from the unit Gal (after Galilei) of the former cgs-system and serve for a simple 
description of gravity fi eld differences resp. measurement accuracy. The unit of the grav-
ity gradient components is  s –2  . In view of the magnitude of the components and the 
obtainable accuracy, the components are generally expressed in 1 0 −9   s –2   = n s –2  , tradi-
tionally called Eötvös unit (E).

5.4.1 Absolute gravity measurements

An “absolute” gravity measurement determines the gravity g from the fundamental 
acceleration quantities length and time. We distinguish between the pendulum and 
the free-fall method, both going back to Galileo Galilei (1564 –1642), see Faller and 
Marson (1988), Niebauer (2009).

The pendulum method is no longer applied today but governed gravimetry for about 
300 years. Because of its fundamental importance, and because more recent results are 
still part of some gravity networks, a short introduction is given here.

The pendulum method is based on the measurement of the period and the length of a 
freely swinging pendulum. For a mathematical pendulum (point mass m suspended on 
a weightless wire of length l) we have the equation of oscillation

 mlj̈ + mg sin j = 0, (5.73)

with the phase angle j = j (t), and the angular acceleration j = d 2j /dt 2 (Fig. 5.48). 

Integration over a full period leads to an elliptical integral. After expansion into a series, 

we obtain the period T of oscillation

 T = 2p √ 
__

   l __ g      ( 1 +   
 j   0  

2 
 ___ 

16
   + … )  , (5.74)

where the amplitude  j 0  is kept small. Thus, gravity is derived from the measurement of 
T and l.

The mathematical pendulum is diffi cult to realize. But equations (5.73) and (5.74) 
also hold for a physical pendulum if l is replaced by the reduced pendulum length

  l r  =   
J
 ___ ma  . (5.75)
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Here, J is the moment of inertia with respect to the axis of rotation O, m the total mass, 
and a the distance between O and the center of mass S. The reversible pendulum is 
characterized by two axes of rotation, for which, after a corresponding adjustment, the 
same oscillation time is achieved. The distance between the two axes is then equal to the 
reduced pendulum length, thus avoiding the direct determination of J, m, and a (Fig. 5.48).

Early pendulum measurements using mathematical pendulums were carried out at the classical 
arc measurements of the eighteenth century, and also with respect to the introduction of a “natural” 
unit for length (Borda and Cassini in Paris, 1792; Bessel in Berlin, 1835), cf. [1.3.2]. The reversible 
pendulum was introduced by Henry Kater (1818), and a limited number of observations were 
carried out, primarily after the 1860s (transportable devices by Repsold, Brunner, and others). After 
the fundamental gravity determination in Potsdam, cf. [5.4.3], only a few more experiments were 
performed in the twentieth century. The accuracy achieved fi nally remained at a few μm s –2   , which 
is mainly due to problems in determining the length of the swinging pendulum, and keeping 
the pendulum length constant over an observation set comprising a large number of oscillations 
(Schüler et al., 1971). 

The free-fall method is based on the equation of motion

 mz̈  = mg (z ) (5.76a)

of a freely falling body. Here m is mass; z is along the local vertical axis, and z̈ = d 2z/dt 2 
(Fig. 5.49). Assuming a homogeneous gravity fi eld along the falling distance, double 
integration of (5.76a) yields the free-fall equation

 z =  z 0  + z
.
0t +   

g
 __ 

2
    t  2 . (5.76b)
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Fig. 5.48: Absolute pendulum method: a) mathematical pendulum, b) reversible pendulum.

Fig. 5.49: Distance-time diagram: a) free-fall method, b) symmetrical rise and fall.
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Equation (5.76b) relates the position z of the falling body at the time t to gravity. 
The integration constants  z 

0
  and z

.
0 represent z and z

.
 = dz /dt at the starting time of the 

experi ment (t = 0). These quantities slightly deviate from zero, due to problems in accu-
rately defi ning the starting position (resting position of the gravity center of the test mass 
at the start of the experiment) and small microseismic accelerations.

If at least three position/time pairs are measured,  z 
0
  and z

.
0 can be eliminated in 

(5.76b), and gravity is given by

 g = 2  
 (  z 3  −  z 1  )   (  t 2  −  t 1  )  −  (  z 2  −  z 1  )   (  t 3  −  t 1  )     ______________________________   

 (  t 3  −  t 1  )   (  t 2  −  t 1  )   (  t 3  −  t 2  ) 
  . (5.77)

For the symmetrical rise and fall, the test mass is thrown vertically upward and falls 
back after having reached the apex (Fig. 5.49). Now, it is suffi cient to measure time at 
the same two positions during rise and fall. Evaluation of (5.76a) then yields

 g =   8Δz ________ 
 Δt  2  

2  −  Δt  1  
2 
  , (5.78)

with Δz =  z 
2
  −  z 

1
 , Δ t 

1
  =  t 

3
  −  t 

2
 , Δ t 

2
  =  t 

4
  −  t 

1
 .

With modern technology (see below), considerably more than the necessary number 
of position/time pairs is measured at one site. A least-squares adjustment of (5.76b) then 
provides the parabolic fi tting curve, and also  z 

0
  and z

.
0.

Present accuracy also requires that the gravity change along the falling distance has 
to be taken into account (non-homogeneous gravity fi eld) by introducing ∂g/∂z = gz. 
Equation (5.76a) then reads as

 mz̈ = m (  g 0  +  g z z ) , (5.79a)

with g0 = g at the resting position z = 0. Double integration now leads to 

 z =   
 g 0  __  g z 

    ( cosh √ 
__

  g z    t − 1 ) ,  (5.79b)

for z0 = z
.
0 = 0. A series development of z (up to order t4) with inclusion of z0, z

.
0 gives 

the observation equation (Cook, 1965)

 z =  z 0   ( 1 +   1 __ 
2
    g z  t 

  2  )  + z
.
0  ( t +   1 __ 

6
    g z  t 

 3  )  +   1 __ 
2
    g 0   (  t  2  +   1 ___ 

12
    g z  t 

  4  )  + …. (5.79c)

The vertical gradient is generally determined independently by repeated relative 
gravity measurements along a vertical tripod, and the adjusted fi nal gravity value is 
referred to a fi xed reference height (with minimum effect of vertical gradient error!), 
e.g., 1.2 m at the FG5 gravimeter (Timmen, 2003).

Accuracy demands for absolute gravimetry are at the order of 1 0 −9  g or 1 0 −8  m s –2  . 
Hence, according to (5.76b), for a falling distance of 0.2 m (falling time 0.2 s), accuracies 
of 0.2 nm and 0.1 ns are required for position and time, respectively. This is achieved by 
interferometric distance measurements and simultaneous electronic timing.

For recent free-fall gravimeters, a polarization or iodine stabilized He-Ne gas laser 
(l = 633 nm) serves as the length standard and an atomic (rubidium) frequency normal 
as the time standard. A Michelson interferometer is used for the distance measurement, 
with two corner-cube refl ectors as the main components (Fig. 5.50). One of the refl ectors 
is fi xed and serves as a reference; the other one represents the falling body (test mass). 
By splitting the laser light into a measurement and a reference beam, and superimposing 
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them again after parallel refl ection, light interferences occur. The zero crossings of this 
fringe signal have a distance of l /2, and the fringe frequency increases with time due to 
the velocity increase of the test mass according to z

.
  ( t )  = gt (Fig. 5.51). The zero crossings 

are sensed by a photodiode, converted to an electronic signal, amplifi ed, triggered, and 
counted. A time measurement (atomic clock and time interval counter) is carried out after 
a preset number n of zero crossings, which corresponds to a falling distance of

 Δz = n   l  __ 
2
  . (5.80)

LONG PERIOD
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FALLING
CORNER CUBE
REFLECTOR

LASER
BEAM
SPLITTERMIRROR

REFERENCE
CORNER CUBE
REFLECTOR

MIRROR PHOTODETECTOR

Fig. 5.50: Michelson interferometer principle.

Fig. 5.51: Timing of scaled fringe pulses, after Zumberge et al. (1982).
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The experiments are performed in vacuum (1 0 −4  Pa) in order to eliminate air resistance. 
Microseismicity is to a large part absorbed by long-period (T > 10 s) compensation devices. 
A further reduction is achieved by randomization, performing a large number (several 100 
to a few 1000) of drops per station. For the rise and fall method, systematic errors that are 
proportional to the falling body’s velocity (residual air drag, timing errors) cancel to a large 
degree according to (5.78). On the other hand, the rise and fall method is handicapped by 
the problems which arise at the realization of a perfect vertical trajectory. 

Several reductions have to be applied to the observed gravity values. The gravimetric 
tides being caused by the Earth’s body and ocean tides, can be reduced with an accu-
racy of a few 0.01 μm s –2  or better in most parts of the world, cf. [8.3.6]. The polar motion 
reduction (“gravity pole tide”), according to (3.109) and (5.66), is given by

  d g pole  = − d pole   w   2 R sin 2j (x p  cos l −  y p  sin l ), (5.81a)

where w is the rotational velocity of the Earth, R the Earth’s radius, and  x p  and yp the 
coordinates of the instantaneous pole with respect to the IERS reference pole. The geo-
detic coordinates j, l suffi ciently approximate astronomic latitude and longitude. The 
factor  j pole  = 1.16 accounts for the Earth’s elasticity, cf. [5.4.6]. 

The direct (gravitation) and indirect (deformation) effect of air pressure variations is 
taken into account by a reduction

  d g p  = 3 ( p −  p n   )   nms –2  , (5.81b)

with p being the actual air pressure, and pn the normal air pressure as given by a stan-
dard atmosphere, cf. [5.1.1], both in hPa (Niebauer, 1988). Current weather conditions 
may cause larger deviations from the global regression factor used in (5.81b). Improve-
ments are possible by means of local/global weather data and deformation models 
(Gitlein and Timmen, 2007), cf. [8.3.1]. Finally, the fi nite velocity of light c must be 
taken into account by adding the term z /c to the observed time values. The reduction 
of the adjusted gravity value from the reference height to the ground mark is performed 
by relative gravity measurements, with an accuracy of 0.01 to 0.02 μm s –2  , cf. [5.4.5].

The long-term stability of the length and time standards is controlled by calibration 
of the laser (1 0 −9  to 1 0 −10  frequency stability) and the atomic clock (1 0 −10 ). The repeat-
ability of the gravimeter system (hard- and software) can be checked by regular meas-
urements at a reference station, (Fig. 5.52), the data may be systematically biased by 
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Fig. 5.52: Long-term stability control of JILAG-3 and FG5-220 absolute gravimeters at station 
Clausthal, Germany (hard bedrock). An instrumental offset of – 0.09 μm s –2   was applied to the 
JILAG-3 results, after Timmen (2010).
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environmental effects (Fig. 5.53). The accuracy of the absolute gravimeter results, on 
the other hand, can be estimated only by comparisons with other instruments, with 
possibly different design and evaluation procedure, cf. [5.4.3].

The accuracy of absolute gravity measurements strongly depends on site conditions. 
Stable sites (hard bedrock, low man-made noise) provide better results than locations in 
sediments, close to the coast, or in urban environment. The drop-to-drop scatter (0.05 
to a few μm s –2  ) is reduced by a large number of measurements. The adjusted station 
gravity-value (generally several 1000 drops distributed over 1 to 3 days) is derived with 
a standard deviation of 0.01 to 0.03μm s –2  . The accuracy is at the order of a few 0.01μm s –2  , 
due to unmodeled instrumental effects (e.g., fl oor recoil, electronic phase shift, laser 
instabilities) or environmental “noise” (atmospheric loading, groundwater table varia-
tions etc.). Systematic discrepancies (“offsets”) between different instruments may reach 
0.05μm s –2   and more, cf. [5.4.3].

The free-fall method was developed in the 1950s (Volet and Sakuma at the BIPM Sèvres, Cook 
at the National Physical Laboratory, Teddington). A fi rst transportable instrument was designed 
by Faller in 1968 and employed at the establishment of a wordwide gravity net, cf. [5.4.3], it 
was followed by a small series of operational JILA (Joint Institute for Laboratory Astrophysics, 
Boulder, CO, U.S.A.) gravimeters (Faller et al., 1983). A commercial absolute gravimeter version 
is available now with the FG5 (Micro-g LaCoste, Inc., U.S.A.) free-fall instrument (Niebauer 
et al., 1995). With these instruments, around 200 (JILA gravimeter) respectively 700 (FG5 
gravimeter) position/time data pairs are collected over one drop, which are evenly distributed 
in distance over the drop length of 20 cm, and adjusted on-line to a fi tting parabola. The time 
interval between two drops is between 10 and 30 s, which includes the reset of the falling 
corner-cube and the online adjustment. The falling object moves in a co-accelerated “drag-free” 
chamber. The chamber eliminates residual air drag and serves, by adequate acceleration, for 
dropping and catching the corner-cube as well as for transporting it back to the initial position. 
The reference corner-cube is isolated from ground motions by a “super-spring”, which by a 
feed-back system electronically generates effective free-oscillation periods between 30 and 
60 s. While the JILA gravimeters have a horizontal interferometer basis, the FG5 instruments 
employ the Mach-Zender interfero meter arrangement. Here, the falling and fi xed corner-cube 
are arranged in the vertical, with corresponding laser beam splitting (Figs. 5.54, 5.55). The 
vertical basis strongly reduces the infl uence of fl oor recoil and tilt on the optical path length. The 
iodine-stabilized laser is separated from the instrumental vibrations induced by dropping, by 
routing the laser light through a fi bre optic cable to the interferometer base. The instruments are 
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Fig. 5.53: Long-term repeatability of JILAG-3 (offset corrected) and FG5-220 absolute gravimeters 
at station Hannover/Germany (glacial sediments close to a river-bed), after Timmen (2010).
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Fig. 5.54: Free-fall gravimeter FG5 principle, courtesy Micro-g – A, Division of LRS, Lafayette, 
CO, U.S.A.

Fig. 5.55: Free-fall gravimeter FG5 view, courtesy Micro-g Lacoste – A Division of LRS, Lafayette, 
CO, U.S.A.
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disassembled for transportation (FG5: 240 kg in eight containers). Setting up at a station requires 
about 2 h, and observations (e.g., 1500-3000 computer-controlled drops, subdivided into sets 
of 50 drops each) are generally carried out over 1 to 3 days, depending on local noise (Torge 
et al., 1987; Timmen, 2010). A portable modifi cation (drop length 0.15 m) of the FG5 gravimeter 
(A-10 absolute gravimeter) can be used in outdoor environment on quiet sites. It allows a 
sampling rate of 1 Hz, and provides a precision of 0.1 μm s –2   after 10 min of operation (Liard 
and Gagnon, 2002), Fig. 5.56. Other absolute gravimeter developments (e.g., in Russia, Japan, 
China) also date back to the 1970s, and partly also operated worldwide (e.g., the gravimeter of 
the Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences).

Based on the research work of Sakuma at BIPM, transportable rise-and-fall instruments have 
been developed at the Istituto Nazionale di Ricerca Metrologica (formerly Istituto di Metrologia 
“G.Colonnetti” IMGC), Torino, Italy (Alasia et al., 1982) and by Jaeger S.A., France (Sakuma, 
1983). The recent IMGC-02 construction is highly operational and applied, among others, for the 
investigation of active volcanoes. The rise-and-fall range amounts to 20 cm, and the reference 
refl ector is fi xed to a 20 s-seismometer. With a launch carried out every 30 s, the result of a 12 
h-observation session is better than 0.1 μms–2 (D’Agostino et al., 2008).

Cold atom gravimeters represent a promising alternative to the corner cube free fall 
instruments (Kasevich and Chu, 1992). At this method, a source of cooled atoms is 
introduced into a free-fall chamber, and the free-fall acceleration of the atoms is measured 
by atomic interferometry. There are no moving parts which can wear off, and measurements 
can be performed with a high repetition rate (e.g., 3 Hz). A transportable device developed 
at LNE-SYRTE, Paris, already provides an accuracy of a few 0.01 μms–2 from a 1-night 
observation series (Merlet et al., 2010).

Fig. 5.56: Portable absolute gravimeter A-10, courtesy Micro-g LaCoste – A Division of LRS, 
Lafayette, CO, U.S.A.
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5.4.2 Relative gravity measurements

“Relative” gravity measurements yield the gravity differences between different stations 
or – if carried out in the stationary mode – the variations of gravity with time, cf. [5.4.6]. 
Either time or length is measured, keeping the other quantity fi xed. As a consequence, 
relative measurements can be performed more easily than absolute ones.

For the pendulum method, the oscillation periods  T 
1
  and  T 

2
  of the same pendulum are 

measured at two stations  P 
1
  and  P 2 . From (5.74) we obtain

   
g 2  __  g 1 

   =   
 T   1  

2 
 ___ 

 T   2  
2 
   (5.82)

or, after simple transformation, the gravity difference

 Δ g 1,2  =  g 2  −  g 1  = − 2 g 1   
 T 2  −  T 1  ______ 

 T 2 
   +  g 1    

  (  T 2  −  T 1  )  2  ________ 
 T  2  

2 
  . (5.83)

“Relative” pendulum measurements were carried out already at the fi rst modern arc 
measurements (Bouguer, Maupertuis and others) and at the marine expeditions of the early 
nineteenth century (Sabine, Biot and others). At these surveys, the “mathematical” and the Kater 
reversible pendulum were used in the relative mode, in order to derive the gravity differences 
to “reference” stations as the Paris or Greenwich Observatory, cf. [5.4.1]. The method was 
employed extensively since R.v. Sterneck (1887) developed a transportable device (pendulum 
length 25 cm, two pendulums swinging on the same support in opposite phase in order to 
eliminate fl oor recoil effects). Although the systematic effects that are independent of time and 
position cancel with this differential method, the accuracy could not be increased over a few 
μm s –2   due to problems in keeping the pendulum length constant during a fi eld survey. The 
pendulum method was superseded in the 1930s by relative measurements employing elastic 
spring gravimeters (see below). Nevertheless, the method was still used until the 1960s for 
establishing gravimeter calibration lines, exploiting the fact that pendulum results are given in 
the unit of acceleration and do not need to be calibrated. 
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Fig. 5.57: Rise and fall transportable absolute gravimeter IMGC-02 principle, modifi ed after 
D’Agostino et al. (2008).
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Relative gravity meters use a counterforce in order to keep a test mass in equilibrium 
with gravity. Gravity changes in space or time are monitored by corresponding changes 
of the counterforce, which are transformed to the gravity unit by a calibration function. 
An elastic counterforce is used at most constructions, but magnetic counterforces are 
also employed, mainly in instruments operating on moving platforms and in the station-
ary mode, cf. [5.4.4], [5.4.6].

The elastic spring gravimeter is based on the principle of a spring balance. If grav-
ity changes, the spring length will also change in order to maintain static equilibrium 
between gravity and the elastic force. According to Hooke’s law, the strain is propor-
tional to the stress for small elongations. We distinguish between translational and rota-
tional systems.

In a translational system (vertical spring balance), the condition of equilibrium is 
given by (Fig. 5.58a)

 mg − k  ( l −  l 0  )  = 0, (5.84)

where k is the spring constant and l (resp.  l 
0
 ) is the length of the spring with (resp. 

without) load. Applying (5.84) on a gravity difference Δg furnishes a linear relationship 
between Δg and the observed difference in length Δl:

 Δg =   k __ m   Δl =   
g
 _____ 

l −  l 0 
   Δl. (5.85)

An undamped spring generates a harmonic oscillation with the proper frequency

  w 0  =  √ 
__

   k __ m     (5.86)

and the oscillation time

  T 0  = 2p  √ 
__

   m __ 
k
     = 2p  √ 

_____

   
l −  l 0  _____ g    . (5.87)

By differentiation, we obtain the mechanical sensitivity 

   dl ___ 
dg

   =   m __ 
k
   =   

 T   0  
2 
 ____ 

4 p  2 
  . (5.88)

In order to assess gravity changes with a relative accuracy of 1 0 −8 , length changes of 
a 0.1 m long spring would have to be determined to 1 nm.

Fig. 5.58: Elastic spring gravimeter principle: a) vertical spring balance, b) lever torsion spring 
balance, c) general lever spring balance.
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Rotational systems (lever spring balance) consist of a lever that supports a mass m and 
rotates about an axis O. Equilibrium can be obtained through a horizontal torsion spring 
or through a vertically or obliquely acting helical spring. The equilibrium of the torques 
for the lever torsion spring balance (Fig. 5.58b) yields

 mg cos a − t (a 0  + a ) = 0, (5.89)

where a is the length of the lever, a the angle between the horizontal and the lever, t 
the torsion constant, and  a 

0
  the pretension angle of the spring. This non-linear system 

becomes a linear one for a  = 0, with

 Δg =   t  ___ ma   Δa . (5.90)

For the general lever spring balance, the spring counterforce acts under an arbitrary 
angle on the lever carrying the mass. The line connecting the rotation axis O with 
the upper point where the spring is mounted deviates by an angle d  from the vertical 
(Fig. 5.58c). With the vertical distance 

 h =  (   bd ___ 
l
   )  sin a (5.91a) 

between the axis of rotation and the spring, the equilibrium condition for the torques 
reads

 mga sin( a + d  ) − kbd  
 l −  l 0  _____ 

l
   sin a  = 0. (5.91b)

The sensitivity of this non-linear system can be signifi cantly increased by approxi-
mating the torques of gravity and of the elastic spring (astatization). With a zero-length 
spring ( l 

0
  = 0), we have the sensitivity

   da  ____ 
dg

   =   sin (a + d  )sin a   ______________ 
g sin d   . (5.92)

High sensitivity is achieved at a small angle d and a ≈ 90°. For a = 0.1 m, a + d = 90°, 
and d = 100″, displacements have to be measured with a precision of 2 μm in order to 
obtain a relative accuracy of 1 0 −8 . Compared to the linear system, the sensitivity is thus 
increased by a factor of 2000. 

The required accuracies of 0.1 μm s –2  , or better, place high demands on the reading 
systems as well as on the stability of the counterforce with time. 

Optical and/or electrical reading systems are used to observe the position of the test 
mass. A capacitive position-indicator is usually employed and is connected to a digital 
readout unit. The zero-method is preferred for the measurement of the displacement, 
with a compensation device for restoring the zero position. Mechanical compensation 
is performed by a measurement screw. Since the 1980s, electronic feedback systems are 
preferred as they are not affected by screw errors (Röder et al., 1988).

The elasticity of the spring should exhibit a time stability of 1 0 −8  over several hours, 
which is the time interval required for transporting the gravimeter between the stations 
of a large-scale network, cf. [7.4]. Spring materials include NiFe alloys (small thermo-
elastic coeffi cient) and fused quartz (large but linear thermoelastic coeffi cient, small 
coeffi cient of thermal expansion, less sensitivity to mechanical shocks). In addition, the 
measurement system has to be protected against changes in temperature (thermostat), 
air pressure (air-tight sealing), and magnetic fi eld (shielding of metal alloy springs). The 
effects of mechanical shocks and vibrations can be reduced by a damping device, in 
addition to air-damping.
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Spring gravimeters have been developed since the 1930s for use in geophysical exploration. From 
the 1950s, instruments were available which could be used for establishing large-scale gravity 
networks (Woollard, 1950). Most of these early gravimeters had a limited measuring range (e.g., 
2000 μm s –2  ) and required a reset screw for changing to another gravity range (Askania gravimeter: 
torsion spring balance, metal alloy; Worden gravimeter: fused quartz system with horizontal beam 
and vertical counter spring). The LaCoste and Romberg astatized gravimeters employ a metal alloy 
zero-length spring, acting at 45° inclination on the horizontal beam (model G: 70000 μm s –2   range, 
measuring screw with 10 μm s –2   per one rotation), Krieg (1981), Kanngieser (1983). Recently 
developed instruments are microprocessor-controlled and are highly automated. They employ 
capacitive transducers and electronic feedback systems with worldwide range (Valliant et al., 
1986). Self-leveling by electronic levels, a high data acquisition rate (e.g., 1 s-reading cycle and 
30 s-sampling over 15 min) and on-line evaluation (automatic data compression and analysis, 
Earth tides reduction, drift control and correction) are further characteristics of these state-of-the-
art instruments. We mention the Scintrex CG-3 and CG-5 Autograph gravimeters (non-astatized 
linear fused-silica system with vertical spring, pick-off resolution 0.2 nm, world-wide range, 
constant calibration factor and no periodic errors (Timmen and Gitlein, 2004) and the automated 
Burris Gravity Meter of ZLS Corporation based on the LaCoste and Romberg system, with a digital 
feedback range of 500 μm s –2   (Jentzsch, 2008), Figs. 5.59, 5.60.

Options of conventional land gravimeters include underwater and bore-hole instruments. 
After sealing in a pressure and water protected diving bell, an underwater gravimeter is 

Fig. 5.59: ZLS Burris Gravity Meter, courtesy ZLS Corporation, Austin, TX, U.S.A.

Fig. 5.60: Scintrex Autograph CG-5 Gravity Meter, courtesy Scintrex, Concord, Ontario, Canada.
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lowered to the sea bottom and remotely operated from on board a survey vessel. Underwater 
gravimeters have been used since several decades, mainly in the shelf areas at water depths 
less than 200 m (Beyer et al., 1966). A remotely operated deep ocean seafl oor gravimeter 
has been developed recently using three gravity sensors (Scintrex CG-3M) in one watertight 
pressure case, with motorized gimbals for leveling and quartz pressure gauges for depth 
information. Repeated measurements atop seafl oor benchmarks yielded a repeatability of 
better than 0.1μm s –2   (Sasagawa et al., 2003). A bore-hole gravimeter (Micro-g LaCoste Inc.) is 
characterized by small dimensions and remote-controlled operation at high temperatures. It is 
used for the estimation of rock densities from vertical profi les, and corresponding modelling of 
geological layers (LaFehr, 1983). 

Air/sea gravimeters will be described in [5.4.4], and recording (Earth tide) gravimeters in 
[5.4.6].

Despite all measures to protect the gravimeter’s measuring system against environmental 
disturbances, the zero reading changes with time: drift and tares. The drift is caused by 
aging of the spring material (approximating zero after some years) and short-term changes 
which occur during a fi eld survey. This “transportation” drift results from reactions of the 
spring to vibrations and small shocks, uncompensated temperature fl uctuations, and elas-
tic effects after unclamping the lever. It depends on the spring material and on measure-
ment conditions and can reach a few μm s –2  /day. Larger mechanical shocks may produce 
sudden tares of the same order of magnitude or more. The drift is determined by re-
peated station occupations during one day and subsequent modeling. Different methods 
have been developed depending on the instrumental behavior and the network structure; 
among them are the profi le, the star, and the step method (Fig. 5.61). 

After reducing the gravimeter reading for the Earth tides, cf. [8.3.6], the drift function 
can be modeled by a low-order polynomial with time (Fig. 5.62):

 D  ( t )  =  d 1   ( t −  t 0  )  +  d 2    ( t −  t 0  )  2  + …, (5.93)
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Fig. 5.61: Drift determination methods: a) profi le method, b) star method, c) step method.

Fig. 5.62:  Drift determination (profi le method).
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with  t 
0
  being the starting time (e.g., beginning of the survey) and  d 

1
 ,  d 

2 
 , … the drift 

parameters. The network adjustment delivers the drift parameters, based on repeated 
observations, cf. [7.4].

The gravimeter reading z (in counter units) is converted to the gravity unit by means 
of the calibration function:

 g = F(z). (5.94a)

F(z) depends on the physical and geometrical parameters of the measuring system, 
see (5.85), (5.90), (5.92), which cannot be determined individually with the desired 
accuracy.

Therefore, the calibration function is derived by comparing reading differences with 
known differences of gravity. Modeling is performed by a low degree polynomial (gen-
erally only a linear “scale factor”), periodic calibration terms may be added for taking 
cyclic errors of a measuring skrew into account. Restricting ourselves to the linear cali-
bration coeffi cient, the transformation from the readings to the gravity reads

  g i  =  N 0  +  Y 1  z i  =  N 0  +  ( 1 +  y 1  )  z i  , (5.94b)

where Y1 is the scale factor and y1 the (small) scale correction, N0 represents the level 
unknown.

Laboratory and fi eld methods are available for determining the coeffi cients of the calibration 
function. In the laboratory, gravity changes can be simulated and compared with the 
corresponding gravimeter readings. The tilt-table method uses the inclination by a known 
angle for producing an apparent gravity variation, and the mass method uses the defi ned 
change of the gravimeter mass. Special methods have been developed for recording 
gravimeters, cf. [5.4.6]. Calibration lines provide gravity differences, determined by absolute 
gravimeters, and eventually densifi ed by relative gravimetry. They exploit the fact that 
gravity varies with latitude (horizontal calibration line) and height (vertical calibration line), 
Kanngieser et al. (1983), Timmen et al. (2006). The limited gravity range of these lines only 
allows determination of an approximate value for the linear calibration factor; an improved 
estimate of the linear and eventual non-linear parameters must be based on a global gravity 
reference system, cf. [5.4.3]

Gravity networks are generally adjusted by the method of parameter variation (Torge, 
1993). Absolute gravity measurements and relative gravimeter readings are introduced 
as observations, and gravity values as well as (for relative gravimeters) drift and calibra-
tion coeffi cients are to be determined. The observation equation for an absolute gravity 
measurement on the station i reads

   
_

 z  i  =  g i  , (5.95a)

where   
_

 z  i  represents the observed mean value corrected for polar montion and Earth 
tides and reduced to ground level, cf. [5.4.1]. By combining (5.93) with (5.94b) we 
obtain the observation equation for relative gravimeter readings:

  z i  =  g i  −  N 0  −  Y 1   z i  +  d 1   (  t i  −  t 0  ) . (5.95b)

In most applications, reading differences between the stations i and j are introduced 
as “observations”, hereby eliminating the level unknowns:

 Δ z ij  =  z j  −  z i  =  g j  −  g i  −  Y 1   (  z j  −  z i  )  +  d 1   (  t j  −  t i  ) . (5.95c)
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The accuracy of gravity differences (Δg < 1000 to 2000 μm s –2  ) observed with well 
calibrated and drift-controlled instruments is 0.1 to 0.2 μm s –2  . Repeated measure-
ments and the use of several instruments increase the accuracy to 0.05 μm s –2   and better, 
and 0.01 to 0.02 μm s –2   for local ties (Becker et al., 2000; Timmen, 2010).

5.4.3 Gravity reference systems and gravity standard

Gravity reference systems provide homogeneity of gravimetric surveys by realizing a 
gravity standard through the gravity values of a selected number of stations.

The need to establish a global reference system arose at the end of the nineteenth century 
when larger sets of absolute and relative pendulum measurements had to be combined. 
The Potsdam Gravity System was introduced in 1909 by IAG. It was based on reversible 
pendulum measurements carried out in the Geodetic Institute Potsdam by Kühnen and 
Furtwängler (1898–1904). Relative pendulum ties to national base stations transferred the 
Potsdam absolute value to other parts of the world. Since the 1930s, new absolute and 
relative gravity measurements revealed that the Potsdam gravity value was 140 μm s –2   too 
high and that transfer errors of several 10 μm s –2   had occurred.

The Potsdam Gravity System was superseded by the International Gravity Standard-
ization Net 1971 (IGSN71), recommended by the IUGG (Morelli et al., 1974). This 
network contains 1854 gravity stations (among them about 500 primary stations) deter-
mined by 10 absolute and about 25 000 relative measurements, including 1 200 relative 
pendulum ties (Fig. 5.63).

The mean uncertainty of the adjusted gravity values is less than 1 μm s –2  . High relative-
accuracy is provided at gravimeter calibration lines, which extend in the north-south direc-
tion in America, Europe and Africa, and in the western Pacifi c. Meanwhile the IGSN71 
has been extended to previously uncovered parts of the world. Regional networks have 
been connected to IGSN71, or transformed (shift and scale factor) to it, with the help of 

Fig. 5.63: International Gravity Standardization Net 1971 (IGSN71): absolute gravity stations and 
selected network ties, after Morelli et al. (1974).
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identical stations. The IGSN71 gravity values can be used to derive the linear calibration 
factor of relative gravimeters with a relative accuracy of some 1 0 −5 .

With the increasing availability of transportable absolute gravimeters with accuracy 
of 0.05 μm s –2   and better, the gravity standard can be established independently from a 
global system with any gravity survey, through the length and time standards inherent 
in the gravity meter (Torge, 1998). The linear calibration factors of relative gravimeters 
then are derived from the absolute values available in the survey area. The IGSN71 
consequently does not need a readjustment but rather is improved continuously by 
networks based on absolute gravimetry. This strategy requires a regular quality control 
of the absolute gravimeter systems, cf. [5.4.1]. As a consequence, international com-
parisons of absolute gravimeters have been carried out since the 1980s at the BIPM, 
Sèvres (Vitushkin et al., 2010), and since 2003 also at the European Centre of Geo-
dynamics and Seismology in Walferdange, Luxembourg (Francis et al., 2010), see Fig. 
5.64. For advanced absolute gravimeters, both the r.m.s. scatter around the reference 
station mean value and the long-term stability is a few 0.01 μm s –2  , which characterizes 
the present state of the realization of the gravity standard.

Fig. 5.64: Absolute gravimeter compaison, BIPM Sevres 2005: Deviations from mean value and 
standard deviations for different gravimeter types (FG5, A10, JILAG, rise and fall instruments, 
others), after Vitushkin et al. (2010), courtesy L. Vitushkin.
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5.4.4 Gravity measurements on moving platforms

Kinematic methods have been developed for rapid and high-resolution gravimetric sur-
veys in areas of having challenging environmental conditions, such as the oceans, the 
polar regions, high mountains, and tropical forests. Ships and airplanes are predomi-
nantly used as carriers, but helicopters and land vehicles also have been employed 
for local surveys. Sea gravimetry concentrates on regions of geological interest and 
geophysical exploration, especially at border seas and in shelf areas. Regional and local 
airborne surveys serve for covering areas lacking in terrestrial gravity data, and thus sup-
port high-resolution geoid calculations as well as geology, geophysics, and glaciology. 

Compared to stationary gravimetry, additional diffi culties arise in kinematic gravi metry, 
i.e., the continuous orientation of the gravity sensor with respect to the vertical, and 
the separation of gravity from non-gravitational accelerations, which occur at a broad 
frequency range (Brozena and Peters, 1995; Schwarz, 2001).
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The principle of kinematic gravimetry is based on Newton’s law of motion (e.g., 
Jekeli, 2001a). In an inertial system it reads as

 r̈ = f + g , (5.96a)

where r̈ = d 2r/dt 2 is the kinematic acceleration of a body, f the acceleration due to 
action forces (also called specifi c force, i.e., force per unit mass), and g the gravita-
tional vector. The specifi c force is measured by accelerometers (employing a mechani-
cal spring, an electromagnetic force or a vibrating string as a sensor), with mechanical 
or computational orientation provided by gyros. The kinematic acceleration has to be 
determined independently by geometric methods of positioning and navigation, e.g., 
through GNSS (Fig. 5.65).

For an accelerometer resting on the surface of the rotating Earth and aligned with the local 
vertical, the kinematic acceleration in (5.96a) is zero. The accelerometer now measures gravity 
and is designated as gravity meter, see (5.84).

Based on (5.96a), modeling of kinematic gravimetry can be done in the local ellipsoidal 
system orientated in the system of global ellipsoidal coordinates, cf. [4.1.3], Timmen 
et al. (1998), Schwarz (2001). In kinematic gravimetry, this system is called local level 
system (subscript l ), and generally defi ned as a north-east-down-system. We assume 
that the kinematic acceleration is given in this system (e.g., by GPS/GNSS positioning), 
and that the accelerometers are fi xed to the vehicle, the specifi c force is then measured 
in the vehicle’s body frame (subscript b). The transformation from the body frame to 
the local level system is carried out by the rotation matrix R containing the orientation 
angles between the two frames which vary with time. The gravity vector (the measure-
ment takes place on the rotating Earth, which introduces the centrifugal acceleration!) 
is now expressed by:

  g l  = r̈l −  R  b  
l    f  b  + (2 W  ie  

l   +  W  el  
l   ) × r

.l, (5.96b)

where again r̈ is the platform kinematic acceleration and r
.
 its velocity, r is the posi-

tion vector and f is the measured acceleration vector. g now represents gravity instead 
of gravitation as defi ned in (5.96a). As the platform moves with r

.
 with respect to 

the rotating Earth, inertial accelerations arise. These accelerations are taken into 
account by the last term in (5.96b).  W 

ie
  and  W 

el
  are the skew-symmetric matrices of 

angular velocities due to the Earth’s rotation rate and the vehicle’s rate, referenced 

Fig. 5.65: Airborne gravity meter principle, modifi ed after Timmen (2010).
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to the ellipsoid (Earth-fi xed frame e): Coriolis effect, see below (Jekeli, 2001a, p. 
123 ff.). 

The Earth’s and the vehicle’s rotational matrices depend on latitude and longitude rates 
(horizontal velocities), and on the Earth’s angular velocity. Introducing the individual parameters 
into (5.96b) fi nally leads to a set of non-linear differential equations for position and velocity. 
Integration delivers the fundamental equations of inertial navigation/positioning. In kinematic 
gravimetry, they are solved for gravity, by introducing independently measured position and 
velocity. Inertial positioning, on the other hand, utilizes gravity fi eld models, and solves for 
position, cf. [5.5.3].

At the practical evaluation of (5.96b) the normal gravity vector f  is subtracted from grav-
ity, which introduces the gravity disturbance as the unknown parameter, in contrast to 
the gravity anomaly which is used traditionally at gravimetric geodesy, cf. [6.5.1].

Gravity sensors used in kinematic gravimetry are either land gravimeters (including 
special constructions) converted for use under dynamic conditions, or force-balanced 
accelerometers. They operate either on a stable platform or are (accelerometers) part of 
an inertial platform rigidly connected to the carrier (Glennie et al., 2000). 

Operational sea and airborne gravimetry generally employs modifi ed land gravime-
ters mounted on a damped two-axes gyro-stabilized platform. Stabilization occurs in 
the local-level frame by two gyroscope/accelerometer pairs operating in a feed-back 
mode. At this “scalar” gravimetry, only the magnitude of gravity is determined, and 
(5.96b) reduces to (Jekeli, 2001a, p. 334)

 g =  f z  − z̈ + 2w cos j sin a v +    v   2  __ r  . (5.97)

Here,  f z  and z̈ are the vertical (upward) components of the specifi c force and the 
platform acceleration, respectively. w is the angular velocity of the Earth rotation, j the 
geodetic latitude, a the geodetic azimuth, v the platform velocity with respect to the 
Earth, and r the distance to the Earth’s center. Again, for the static case, (5.97) transforms 
into the equilibrium conditions of relative gravimetry, cf. [5.4.2].

The velocity dependent terms on the right-hand side of (5.97) represent the Eötvös reduc-
tion (Harlan, 1968). From Fig. 5.66, it can be identifi ed as the Coriolis acceleration, which 

Fig. 5.66: Eötvös effect.
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increases (for a west-east directed course) the angular velocity of the Earth rotation, and 
the centrifugal acceleration arising from the platform’s angular velocity v/r around the 
center of the Earth. Close to the Earth (r = R = 6371 km) the Eötvös reduction amounts to 

 d g Eot  = 40v cos j sin a + 0.012 v  2  μm s –2  , (5.98)

with v in km/h. The second term is small for sea gravimetry but attains large values with 
airborne applications. As velocities can be determined by GNSS navigation with an ac-
curacy of 0.05 m/s and better, the uncertainty of the Eötvös reduction is now less than 
10 μm s –2  .

Instead of using a gravimeter on a stabilized platform, the gravity sensor can be rigidly 
connected to the vehicle. GNSS supported inertial navigation systems (INS) are employed with 
this strapdown inertial gravimetry, characterized by the use of force-rebalanced accelerometers 
with a high digital data rate (Jekeli, 2001a, p. 320 ff.). This vector gravimetry mode requires 
three orthogonally mounted accelerometers in order to determine the specifi c force vector. 
According to (5.96b), the orientation angles between the body-frame and the local level-frame 
are needed continuously, and are computed by integrating the output of the INS gyros and from 
GNSS multiantenna systems. One advantage of vector gravimetry would be the simultaneous 
determination of gravity disturbances and defl ections of the vertical, with the possibility of a 
direct determination of geoid profi les, cf. [6.7.4]. Due to the high demands on attitude control 
(gyro drift!) vector gravimetry is still in the experimental stage (Jekeli and Kwon, 1999; Kreye 
et al., 2006), but it offers an inexpensive and robust tool for airborne gravimetry. In the scalar 
mode, only one approximately vertical accelerometer is used. Demands are now less stringent, 
especially if the output of an accelerometer triad is used for the determination of the magnitude 
of gravity (rotation invariant scalar gravimetry), Wei and Schwarz (1998).

The methods for separating gravity from non-gravitational accelerations depend on the 
frequency of the accelerations and differ for sea and airborne gravimetry, after strong 
reduction of high-frequency vibrations by damping of the measuring system. 

At sea gravimetry (stabilized platform), “disturbing” accelerations occur with periods 
between 2 and 20 s, and they may reach amplitudes of 0.1 g. Due to low ship velocity 
(10 to 20 km/h) and the nearly constant reference surface (sea level), low-pass fi ltering 
suffi ciently suppresses the vertical accelerations. By averaging the recorded data over 
time intervals of 1 to 5 minutes, mean gravity values over some 0.1 to 2 km are thus 
obtained. The effect of horizontal accelerations remains small because of the stabiliza-
tion. Off-leveling effects generally can be neglected at an attitude accuracy of about 
10″. More critical are cross-coupling effects, which occur with horizontal lever spring 
gravimeters between the horizontal and the vertical component of the disturbing accel-
eration. They may reach 50 μm s –2   or more and must be corrected using the horizontal 
acceleration records. Straight line gravimeters (vertical sensitivity axis) are free from 
these errors. This is also valid for vibrating string gravimeters which are based on the fact 
that the resonant vibrational frequency of a string under tension is proportional to the 
square root of g. Other advantages of this design are the large dynamic measurement 
range and the little shock sensitivity.

For airborne gravimetry, accelerations vary with periods from 1 to 300 s (long-periodic 
eigenmotion of the airplane), and with amplitudes up to 0.01…1 g and more. Large air-
plane velocities (250 to 450 km/h) prevent an effective fi ltering, and thus with a long fi lter-
length (one minute to several minutes) only mean gravity values over some km to 10 km 
and more are obtained. In addition, the attenuation of the gravity fi eld with height, 



194     5 Methods of Measurement

cf. [3.3.3], prevents a high resolution at high fl ight altitudes of several km. These problems 
in principle require the employment of low-velocity and low-fl ying airborne vehicles. 
The vehicle’s kinematic accelerations have to be determined independently by geodetic 
methods, nowadays practically performed through differential GNSS (carrier phase mea-
surements), using the second derivative of height or the fi rst derivative of velocity. As the 
measurement noise is amplifi ed by these time differentiation, the fi rst time derivative of 
velocity as obtained from Doppler shifts is preferred in this context. Over water and ice 
areas, radar and laser altimetry can also be employed for height determination. Heights 
are also needed in order to reduce the gravity data to a common reference level, by apply-
ing the free air reduction, cf. [6.5.3], this is achieved satisfactorily by GPS/GNSS heighting 
(Forsberg and Olesen, 2010). 

Gravity observations on sea started at the beginning of the twentieth century, when O. Hecker 
obtained gravity data along several ocean-wide ship-tracks by exploiting the gravity correction 
to be applied to mercury thermometer readings, when compared with hypsometer (thermometer 
operating at the boiling point of water) results. In 1923, F.A.Vening-Meinesz constructed a three-
pendulum instrument for gravity measurements in a submerged submarine; world-wide cruises 
followed until the 1960s. At that time, sea gravimeters (e.g., modifi ed Askania and LaCoste 
and Romberg land gravimeters) mounted on gyro-stabilized platforms became operational on 
board of surface vessels (Dehlinger, 1978), Fig. 5.67. First attempts for airborne gravimetry were 
also made in the 1960s, using stable platform mounted sea gravimeters on board of high fl ying 
aircrafts (LaCoste, 1967). Conventional sea-air gravimeters on platforms are now employed 
operationally on board of helicopters and airplanes. A more recent development especially for 
use under rough conditions consists of a rotational double quartz fi laments system embedded in 
a viscous fl uid (Krasnov et al., 2008). 

Since the 1970s, force-balanced accelerometers, as developed for inertial navigation, became 
another tool for sea-air gravimetry. These instruments are small and robust with respect to strong 

Fig. 5.67: Gravimeter System KSS31M with Gravity sensor Gss30 and gyro-stabilized 
platform KT 31, Bodenseewerk Geosystem, Überlingen, Germany, courtesy Bundesanstalt für 
Geowissenschaften und Rohstoffe (BGR).
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dynamics but have less resolution and larger drift rates than conventional land gravimeters, linear 
and rotational systems are available (Fig. 5.68). For a linear system, the proof mass is constrained 
to move in only one direction and maintained at the zero position by an electromagnetic fi eld, 
the electrical current needed to maintain zero is proportional to the acceleration. Depending 
on the direction of the sensitive axis, dedicated components of the specifi c force are measured. 
Force-balanced accelerometers are especially suited for use under rough conditions on sea 
and in air; they have also been employed on board of deep sea vessels (Bell and Watts, 1986; 
Cochran et al., 1999). 

Sea and airborne gravimetric surveys generally are carried out along parallel tracks, 
with track distances ranging from a few km to 10 km and more. Orthogonal tracks serve 
for control and accuracy improvement by adjustment of the crossover discrepancies, 
(Denker and Roland, 2005), Fig. 5.69. The accuracy of sea and airborne gravity meas-
urements (data recording generally with 1 s average) depends on the survey conditions 
(sea state, air turbulence, ship and aircraft properties, fl ight altitude and velocity), on 
attitude errors, and, for airborne gravimetry, on the separation between gravity and 
disturbing accelerations. Accuracies of 5 to 20 μm s –2   are achieved with sea gravimetry 
with a resolution of about 1 km along track (track distances 1 to 5 km and more), Wessel 
and Watts (1988). Airborne gravimetry generally is carried out at fl ight heights of a few 
km, but low speed and elevation (several 100 m) surveys are also performed, especially 
with helicopters (Hammer, 1983; Segawa et al., 2002). A resolution of 5 to 10 km is rou-
tinely obtained now (helicopter 1 to 3 km), with accuracies of 20 to 50 μm s –2   (helicopter 
5 μm s –2  ). An increase in resolution and accuracy by a factor of two has been reached 
at surveys carried out at low altitudes and under favorable environmental conditions 
(e.g., Brozena and Peters, 1995; Skourop et al., 2009). It must be remembered that the 
attenuation of the gravity fi eld with height prevents a high frequency resolution at high 
fl ight altitudes. Also high frequency disturbances through turbulence still pose severe 
problems, and may lead to corresponding changes at fl ight planning. 

Among the areas covered by airborne gravity surveys since the 1990s are the Arctic (Fig. 5.70) 
including Greenland (Brozena et al., 1997; Kenyon et al., 2008), alpine Switzerland and France 
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Fig. 5.68: Force-balanced accelerometer principle: translational (suspended mass) system (left) 
and rotational (pendulum) system (right).
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Fig. 5.69: Sea gravimetry profi les (1965–1972), Western Mediterranean Sea, Osservatorio 
Geofi sico Sperimentale, Trieste, after Finetti and Morelli (1973).
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Fig. 5.70: Airborne gravity surveys over Greenland (1991/1992) and the Arctic (1998, 2003), 
Forsberg and Kenyon (1995) and Forsberg and Olesen (2010).
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(Verdun et al., 2002), the Amazon region, and parts of central Asia and Africa. An international 
Antarctic project has started in order to obtain a homogeneous gravity fi eld information over that 
continent which is only at small parts covered by terrestrial or airborne gravimetry (Scheinert, 
2005).

5.4.5 Gravity gradiometry

The gravity gradient tensor (3.68) contains local gravity fi eld information, and thus is of 
interest for high-resolution gravity fi eld determination. It is generally expressed in the 
local astronomic (local level) system, cf. [3.2.2]. The unit of the components of grad g is  
s –2  , with 1 0 −9   s –2   = 1 n s –2   traditionally called Eötvös unit (E). 

A gravity gradiometer determines the components of grad g, either all, several or 
linear combinations of them. This is achieved by exploiting the reaction of neighboring 
proof masses to the gravity fi eld. A gradiometer unit consequently consists of two gravity 
sensors (mostly accelerometers) rigidly connected and generally orientated in the local 
level system. Taylor expansions of gravity in the two sensors 1 and 2, with respect to 
the center of mass C of the system, and differences in the output of the sensors (specifi c 
force f ) yields in the stationary mode

  f 2  −  f 1  =   ( grad g )  C    (  r 2  −  r 1  )  
l , (5.99)

where  r 
1
 ,  r 

2
  are the position vectors of the sensors in the local level system. A gradio-

meter system is composed of several gradiometer units orientated in different directions 
in order to derive the corresponding components (Fig. 5.71). Rotation of the gradiom-
eter units in the gravity fi eld provides another means for the determination of different 
components (Torge, 1989, p. 300 ff.).

The torsion balance, developed by R.v. Eötvös around 1900, was the fi rst dedicated gravity 
gradiometer. It consists of two equal masses situated at different heights and rigidly connected 
by a beam system. At the center of mass the system is suspended by a torsional thread. 
Equilibrium of the torques acting on the masses is achieved by horizontal rotation, which 
depends on the components  W yy  −  W xx ,  W xy ,  W xz ,  W yz . These quantities and the zero position 
of the beam are determined by observing the beam direction at fi ve different azimuths. A 
precision of 1 to 3 n s –2   was obtained (Mueller et al., 1963). The torsion balance was widely 
employed in applied geophysics between 1920 and 1940, with great success at the early oil 
exploration, for example, at the reconnaissance of salt domes in Texas. The effect of rugged 

Fig. 5.71: Gravity gradiometer translational system principle with longitudinal (left and center) 
and transverse (right) constellation.
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topography and close man-made constructions limited the application of the torsion balance 
to fl at areas and reduced the accuracy of the results to about 10 n s –2  . A dedicated borehole 
gravity gradiometer has been developed in order to detect changes in oil/gas/water pore space 
(Nukut, 1989).

On the Earth’s surface, gravimeters can also be used to approximate the components of 
grad g by measuring gravity differences between adjacent stations. The horizontal gra-
dient ( W zx , W zy ) can be derived with a precision of 10 n s –2   from gravity profi les or area 
surveys, with station distances of 10 to 100 m (Hammer, 1979). The vertical component 
W zz  can be determined with the same precision by repeated relative gravity measure-
ments on tripods, with heights up to 3 m (Timmen, 2010, p.26 ff.).

Terrestrial gravity gradiometry in the stationary mode is time consuming and strongly 
affected by local mass anomalies. Terrain reductions have to be taken into account even 
in the immediate surrounding (within 100 m), which limits the application to fl at or 
moderate hilly areas.

Measurements on moving platforms allow rapid data collection (e.g., with a 1 s rate 
or more). Terrain effects are signifi cantly reduced with height above ground, this favors 
airborne and satellite applications. With increasing height, on the other hand, the gra-
dient signal decreases with the cube of the distance, which requires sophisticated data 
processing for the separation of signal and noise. We now concentrate on airborne gra-
diometry, satellite application have been presented in [5.2.8]. In this kinematic mode, 
the gradiometer unit consists of two accelerometer pairs, mounted orthogonally on 
a slowly rotating disk (Fig. 5.72), and set up on a gyro-stabilized platform. The disk’s 
rotation (rotation rate, e.g., 0.5 Hz) minimizes systematic effects related to the instru-
ment’s orientation. By subtracting the readings of a pair of opposing accelerometers, 
non-gravitational accelerations of linear type mostly cancel. As in airborne gravimetry, 
effects of the platform’s rotation about the Earth have to be taken into account, cf. 
[5.4.4]. 

Gravity gradiometry on moving platforms was adopted from military developments for U.S. 
Navy nuclear submarines (Bell Aerospace design), and further developed for geodetic and 
geophysical purposes (Jekeli, 1993). It reached commercial use at exploration geophysics 
(mineral deposits, cavities, groundwater) in the 1990s. Survey areas are limited in extension 
(few km to 10 km or more), and are surveyed by parallel profi les with line spacing ranging from 

Fig. 5.72: Rotating gravity gradiometer principle, after Jekeli (1988a).
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50 m to 2 km. Small fi xed-wings aircrafts serve as gradiometer carrier, and fl ight height above 
ground may be less than 100 m. By combining three gradiometer units mounted on rotating 
disks under different orientation, the full tensor gravity gradient containing fi ve independent 
elements can be derived. The additional hardware employed at a gravity gradiometry survey 
includes GPS for positioning and timing, and altimeter hardware for the construction of a high-
resolution digital elevation model. With present-day technology, an accuracy of a few n s –2  and 
better can be obtained, with a gravity fi eld resolution down to about 50 m (Murphy, 2004; 
Dransfi eld and Lee, 2004).

Gravity gradiometry in the airborne mode is primarily applied in exploration geophys-
ics, while geodetic application concentrates on dedicated satellite missions, cf. [5.2.8].

5.4.6 Continuous gravity measurements

Continuous gravity records contain information especially on Earth and ocean tides, 
but also on a multitude of other geodynamic phenomena, ranging from seismic normal 
modes over atmospheric and ocean loading, free core nutation, polar motion and hy-
drologic effects to post-glacial rebound, tectonics, and volcanic and earthquake activity 
(Wilhelm et al., 1997). These effects occur at time scales between seconds and several 
years and have amplitudes of about 1 to 1000 (tides) nm s –2  , cf. [8.3.6]. Hence, a record-
ing gravimeter should provide a resolution of 0.01 to 1 nm s –2   and a high stability with 
time (low drift rates). It should be time-controlled within 10 ms. In order to reduce en-
vironmental effects (temperature changes, microseismicity, local surface inclinations), 
recording gravimeters generally are installed at underground sites (basement, tunnel).

Recording gravimeters operate in an electronic feedback mode, cf. [5.4.2], over a 
limited measuring range, e.g., 10 μm s –2  . The voltage output is proportional to gravity 
and fi rst undergoes an analog fi ltering in order to reduce the high-frequency noise. It is 
then digitized by an A/D converter. Digital fi ltering delivers a data set (1 to 10 s sam-
ples), which is stored on a PC. Further numerical fi ltering and data reduction may be 
appropriate as well as the reduction of spikes due to earthquakes and the interpolation 
of data gaps. Corresponding procedures are part of data processing software for Earth 
tides analysis (Wenzel, 1996). An analogue output offers a convenient on-line control 
of the data acquisition.

Spring-type and superconducting (also cryogenic) gravimeters are used for gravity 
recording (Melchior, 1983).

Elastic spring gravimeters can be employed if supplemented with a low-pass fi lter, a 
recording unit, and a quartz clock. Special Earth tide gravimeters with small measuring 
range have also been developed and are characterized by long-term stability (e.g., by a 
double thermostat). Some recent land gravimeters also offer the option of an Earth tides 
mode through increased sensitivity, large memory, and computer-controlled remote 
operation. The long-term drift of these elastic-spring type instruments has to be removed 
by fi ltering. Consequently, only short-period effects (e.g., diurnal and higher-frequency 
tides) can be determined, at a noise level of a few 0.1 to 1 nm s –2   (Fig. 5.73).

For the superconducting gravimeter (Goodkind, 1999) the gravity acting on the proof 
mass (hollow Niobium sphere of 2.5 cm diameter) is compensated by a magnetic coun-
terforce (Fig. 5.74). The magnetic fi eld is generated by superconducting coils and thus 
is extremely stable with time. The position of the mass levitating in the magnetic fi eld is 
monitored by capacitive sensing plates, with the zero position restored by a feedback 
system. Cooling by liquid helium provides the superconducting state at a temperature 
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of 4.2 K. The superconducting cylinder provides a primary shielding from the Earth’s 
magnetic fi eld, supported by an additional μ-metal shield on the outside of the vacuum 
case. The measuring system is kept in an insulating dewar vessel (Fig. 5.75). An auto-
matic leveling system (two orthogonally mounted tiltmeters and two levelers under the 
dewar) provides an alignment better than 1 μrad.

Fig. 5.73: Gravimetric Earth tide record, obtained with LaCoste and Romberg gravimeter G298, 
Institut für Erdmessung (IfE), University of Hannover.

Fig. 5.74: Superconducting gravimeter principle, after GWR-Instruments information.
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The instrumental drift of a superconducting gravimeter is very small (on the order 
of 10 nm s –2  /a), and may be modeled for the fi rst months of observation by an expo-
nential function, followed by a linear trend (Van Camp and Francis, 2007), Fig. 5.76. 
Absolute gravity measurements can be used to control the drift at longer time intervals. 
From tidal analysis, a noise level of <0.01 nm s –2   (frequency domain) and <1nm s –2   (time 
domain) has been found for superconducting gravimeter results (Hinderer et al., 2009; 
Neumeyer, 2010).

The superconducting gravimeter was introduced by Prothero and Goodkind (1968) and 
commercially manufactured since the 1980s by GWR Instruments. Systematic investigations 
at several institutions, e.g., at the Observatoire Royal de Belgique, Brussels, and the 
Bundesamt für Kartographie und Geodäsie, Frankfurt a.M. (Richter, 1987) led to continuous 
improvements. This includes the reduction of the instrument’s size, the increase of the time 
interval for helium refi lling (a closed cycle cooling system will make the refi lling practically 
superfl uous), and the development of a dual-sphere instrument in order to detect instrumental 
offsets (“tares”). 

A global project of gravity recording with superconducting gravimeters (Global Geodynamics 
Project GGP) has been launched in 1991, and started operation in 1997. Today the net 
comprises about 20 stations, which continuously record gravity and provide the raw data 
decimated to 1 minute samples (Fig. 5.77). The results serve for improving Earth and ocean 
tidal models and for investigating a multitude of geodynamic phenomena, and are used as 
ground truth for gravimetric space missions, cf. [5.2.8], Crossley and Hinderer (2010). The 
GGP data are included in the data bank for tidal gravity measurements which is maintained 
at the International Centre for Earth Tides, it contains the tidal gravity data (hourly values) of 
about 360 stations (Melchior, 1994).

Calibration of a recording gravimeter is performed by relative and absolute methods. A 
relative calibration is realized by parallel registration with a “calibrated” gravimeter or 
by recording on a station with well-known tidal parameters. Absolute calibration pro-
cedures include the artifi cial periodic acceleration on a vertically moving platform, the 
controlled vertical displacement of large external masses, and the parallel registration 

105 DAYS

Fig. 5.76: GWR superconducting gravimeter drift, with (top to bottom) raw gravimeter signal, 
Earth tides reduced signal, atmospheric pressure and gravity residuals after removal of Earth tides 
and atmospheric pressure effects, courtesy GWR-Instruments, Inc., San Diego, CA, U.S.A.
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with an absolute gravimeter. Concentrating now on the superconducting gravimeter, 
the latter method is often used now, achieving a calibration precision of about 0.05% 
(Tamura et al., 2005). An even better precision has been obtained at the moving plat-
form calibration, while the accuracy of the relative methods is limited to a few 0.1% 
(Richter et al., 1995; Francis, 1997). The instrumental phase shift is determined by re-
cording the gravimeter’s response to a defi ned impulse (step response method), Van 
Camp et al. (2000). 

The gravity signal is strongly correlated with atmospheric pressure. A linear regression 
with local air pressure (between –2.5 and  −3.5 nm s –2  /hPa) reduces the main part of this 
effect, see (5.81b), also Fig. 5.76. More refi ned models are available which also take the 
air pressure around the station and the elastic response of the Earth’s crust into account 
(Merriam, 1992; Gitlein and Timmen, 2007; Kroner et al., 2007). Variations of groundwater 
level and precipitation also affect the gravity record and may reach the order of some 
10 nm s –2  , but they are diffi cult to model (Virtanen, 2000), cf. also [8.3.1].

Longer (several months and more) gravity records can be subjected to a tidal analysis 
(Wang, 1997; Agnew, 2009). This dedicated analysis is already introduced here, as the 
tidal frequencies for a rigid Earth are extremely well known, cf. [3.5.2], in contrast to 
the majority of other geodynamic phenomena, cf. [8.3.6]. The analysis is based on the 
spectral decomposition of the observed signal into a number of partial tides. By com-
paring the observations (hourly samples, atmospheric pressure effects reduced) with the 
gravimetric tides for a rigid Earth, deviations in amplitude and phase are found, which 

Fig. 5.77: Global Geodynamics Project: station distribution, status 2010 (Hinderer et al., 2009), 
courtesy GGP Website (http://www.eas.slu.edu/GGP/ggphome.html)
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depend on the Earth’s elastic response to the tidal forces (Earth and ocean tides). For the 
partial tide i, this is expressed by the amplitude factor (also gravimetric factor)

  d i  =  A i   ( obs ) : A i   ( theor )  (5.100)

and the phase shift 

 Δ Φ i  =  Φ i  (obs) −  Φ i  (theor), (5.101)

where  A i  is the observed resp. calculated (solid Earth) amplitude, and  Φ 
i
  the correspond-

ing phase. The observation equation for a least-squares spectral analysis then reads

 l(t) =  ∑ 
i = 1

  

n

   d i  A i   (theor) cos  (   w i t +  Φ i  (theor) + Δ Φ i  ) , (5.102)

with l(t) being the recorded gravity value at time t, and  Φ 
i
  = 2πTi the circular frequency 

(Ti is the period) for the partial tide i (Wenzel, 1976, 1997a). As a fi rst approximation, a 
gravimetric factor of d = 1.16 and a phase lag of zero may be introduced for the reduc-
tion of gravity data, but more sophisticated gravimetric tidal models are available. This 
will be discussed in [8.3.6], together with the relation of the gravimetric factor to the 
Love numbers describing the reaction of the elastic Earth to tidal forces and loads.

Elastic spring gravimeters allow the determination of 10 to 20 partial tides (mainly diurnal, 
semi-diurnal, ter-diurnal), with an observation time of 4 to 6 months. Superconducting 
gravimeters can resolve up to 40 tides (including semi-annual and annual) by registration 
over several years. The gravimetric factor for polar motion has also been derived from 
long-term series. As an example, a 158 days registration with a LaCoste and Romberg feedback 
gravimeter at Hannover (j = 52.387°N, λ = 9.713°E, H = 50 m) yielded for the lunar diurnal 
tide O1 (Timmen and Wenzel, 1994a):

 d (O1) = 1.151 ± 0.001, ΔΦ(O1) = 0.16° ± 0.08°

and for the semi-diurnal tide M2

 d (M2) = 1.188 ± 0.0005, ΔΦ(M2) = 1.70° ± 0.03°.

The factor for O1 is close to the observed global value 1.155, while the M2 result differs due to 
ocean load and attraction, cf. [8.3.6].

5.5 Terrestrial geodetic measurements

Terrestrial geodetic measurements determine the relative position of points on the 
Earth’s surface, and generally use electromagnetic waves for deriving geometric quanti-
ties between them. The majority of the observations refers to the local vertical, and thus 
delivers results orientated in local gravity related astronomic systems. The measurement 
of horizontal and zenith angles [5.5.1] and of distances [5.5.2] allows relative three-
dimensional positioning. Combined instruments (total stations) are now generally used, 
and even integrated with absolute GNSS positioning. Inertial surveying applies accel-
eration measurements, and seafl oor positioning uses acoustic waves, for positioning 
under special environmental conditions [5.5.3]. Precise height differences are provided 
by leveling, which again refers to the Earth’s gravity fi eld [5.5.4]. Strain and tilt measure-
ments serve for detecting local changes of distances and inclination with time [5.5.5].
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Due to the high accuracy and economy of satellite-based positioning techniques, 
terrestrial geodetic measurements are used primarily for interpolating satellite-derived 
results or in areas where satellite methods fail or need terrestrial support. This includes 
underground and underwater positioning, surveys in forests and in urban areas, engi-
neering surveys, and monitoring of local geodynamic processes.

Terrestrial methods are treated in textbooks on surveying, e.g., Anderson and Mikhail 
(1998), Bannister et al. (1998), Johnson (2004), Kahmen (2006). Classical surveying 
instruments are described by Deumlich (1982), while a more recent state is dealt with in 
Deumlich and Staiger (2002) and Joeckel et al. (2008). Kahmen (1978) and Schlemmer 
(1996) concentrate on the fundamentals of electronics employed in geodetic instru-
ments, and Brunner (1984b) deals with the effects of atmospheric refraction.

5.5.1 Horizontal and vertical angle measurements

The horizontal angle is defi ned as the angle measured in the horizontal plane of the 
local astronomic system between two vertical planes. It is formed by the difference in 
horizontal directions to the target points which defi ne the vertical planes. The vertical 
angle is the angle measured in the vertical plane between the horizontal plane and the 
direction to the target point. The zenith angle (also zenith distance), being the comple-
ment to 90°, is often introduced instead of the vertical angle, cf. [2.5].

A theodolite is used for measuring horizontal and vertical angles. The principal 
components of this instrument are a horizontal and a vertical circle with graduation, 
a telescope capable of being rotated about the vertical and the horizontal axes, and a 
mechanism for reading the circles. In order to orientate the theodolite with respect to 
the plumb line direction, it is equipped with spirit or electronic levels. 

Regarding the reading of the circle graduation, we distinguish between optical and 
electronic or digital theodolites.

Optical theodolites of highest precision were developed since the second half of the eighteenth 
century and were then used until the 1960s for fi rst order triangulation (with the Kern DKM3 
and the Wild T3 theodolites being the latest developments) at station distances of 30 to 60 km, 
cf. [7.1]. They were characterized by very stable construction and circle diameters of 100 to 250 
mm. Circle graduation errors were less than 0.5”, and reading accuracy reached 0.1″ by using 
a coincidence microscope with micrometer screw. The lens aperture of the telescope was 60 to 
70 mm, and the magnifi cation 30 to 40 or more. Standard deviations of 0.2″ to 0.4″ have been 
achieved for an adjusted horizontal direction

Today, horizontal and vertical angles are measured only over shorter distances reaching 
from a few meter to about one and eventually up to 10 km, at engineering projects, geo-
detic network densifi cation, and local geodynamic control. Electronic theodolites (lens 
aperture 30 to 45 mm, magnifi cation of 30 or more) are employed for this purpose, they 
have superseded the optical analogue instruments. Generally, the electronic theodolite 
is combined with a distance meter to produce a total station, cf. [5.5.2], but “pure” 
theodolites still fi nd application at industrial surveys (Fig. 5.78). 

The horizontal and vertical circles (circle diameter 60 to 70 mm) of an electronic 
theodolite are either coded (with code signals arranged on concentric circles) or carry 
an incremental graduation (bright/dark changes). Reading is microprocessor-con-
trolled and performed by optical-electronic scanning and subsequent interpolation 
(electronic micrometer). Electronic levels are used as tilt sensors, they are based on 
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the refl exion of light at the surface of a fl uid and measure the refl ected light point’s 
position by means of a CCD array. A dual-axes compensator serves for automatic lev-
eling the instrument (measuring range about 5″, precision 0.3… 0.5″); a residual tilt 
correction may also be applied automatically. Collimation and horizontal axis errors 
are either eliminated by measurement at both positions of the telescope or corrected 
internally. For the measurement of vertical angles, the theodolite is equipped with a 
reading index for the vertical circle. By leveling the index either manually (spirit level) 
or automatically (electronic level) the readings are referred to the local vertical, with 
an accuracy of a few 0.1″. With electronic theodolites an accuracy of 0.5″ to 2″ is 
obtained for observed angles.

Gyrotheodolites have been developed for the determination of astronomic azimuths by 
combining a theodolite with a gyroscope. The principle of the gyroscope is based on the 
fact that a rapidly rotating gyro with horizontal spin axis swings into the north direction 
due to the combined effects of the gyro’s spin, the Earth’s gravity, and the Earth’s rota-
tion. An accuracy of 3″ can be obtained by an automatic measurement procedure (20 
individual measurements), within a time span of 10 min. Gyrotheodolites are employed 
primarily for mining and tunnel surveys (Lienhart and Brunner, 2004), Fig. 5.79.

Fig. 5.78: Industrial Theodolite (Leica TM6100A), courtesy Leica Geosystems AG, Heerbrugg, 
Switzerland

Fig. 5.79: Gyrotheodolite (Gyromat 3000 with Leica TM5100 Theodolite), courtesy Deutsche 
Montan Technologie (DMT), Essen, Germany.
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Ray bending by terrestrial refraction is an error source which may pose special prob-
lems, cf. [5.1]. The effect of lateral refraction on horizontal angles generally can be 
neglected, but may reach the arcsec order of magnitude under unfavorable circum-
stances, e.g., if the light ray is closely passing a hill. Extended classical triangulation 
networks partly suffer from this effect which is diffi cult to model. Further processing of 
vertical angles, on the other hand, always requires the consideration of errors due to 
vertical refraction.

The refraction angle depends on the coeffi cient of refraction and thereby on the 
meteorological conditions along the path of light, particularly the vertical gradient 
of temperature, cf. [5.1.2]. Generally, a traditional value for the refraction coeffi cient 
(e.g., k = 0.13) is introduced in order to reduce the effect of vertical refraction, more 
actual values for the refraction coeffi cient can be derived from meteorological data 
taken at the endpoints of the observation line. These strategies easily may lead to a 
vertical angle error of a few arcsec and more. The effect of this error on the height 
difference increases with the square of the distance and thus reaches the order of a 
few decimeters already over a few km. The error of the observed zenith angle, on the 
other hand, only propagates with distance and thus remains at the order of a few cm. 
An approximately symmetric behavior of refraction is to be expected for simultaneous 
observations at the endpoints, especially with cloudy weather and prior to the isother-
mal conditions of the evening and if the light ray is more than 15 to 20 m above the 
ground. The uncertainty of the refraction angle then remains less than 1″ for distances 
below 10 to 25 km. This has led to the method of observing reciprocal-simultaneous 
zenith angles, cf. [6.4.2].

For the direct determination of the refraction angle, attempts have been made to utilize the 
dispersion of the light, cf. [5.1.1]. Here, two different wavelengths are used for observation 
which causes a difference between the two angles of refraction at the target point. The 
dispersion angle is proportional to the refraction angle but about two orders of magnitude 
smaller which requires a measuring accuracy of a few 0.01″. Corresponding experiments at 
distances less than 20 km gave uncertainties of 1 to 2″ for the refraction angle (Williams and 
Kahmen, 1984). 

5.5.2 Distance measurements, total stations

Terrestrial distance measurements have played and still play an important role for posi-
tioning. They provide geometric relations between neighboring control points, and they 
have also established the scale of classical geodetic networks.

Until about 1960, the scale of triangulation networks, constructed from angle measurements, 
was derived from baselines having lengths of 5 to 10 km. Measuring rods and, since about 1900, 
wires or tapes served to measure the base line length. With the Jäderin (1880) method, freely 
hanging invar (NiFe alloy) wires 24 m in length were used, characterized by a small coeffi cient 
of thermal expansion. The relative accuracy of the more recent base lines amounts to 1 0 −6 , 
which corresponds to 1 mm/km. For fi eld calibrations of wires and tapes, several international 
calibration lines were established by interferometric methods. Starting from the length of a 
standard meter, the Väisälä light interference comparator provided an optical multiplication up 
to base line lengths of 864 m (relative accuracy 1 0 −7 ).

Electromagnetic distance measurements started at the end of the 1940s. They may either 
use light waves (l = 0.4 to 0.8 μm) and the near infrared (up to l = 1 μm) or microwaves 
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(l = 1 to 10 cm) as carriers of the measuring signal (Rueger, 1997; Joeckel et al., 2008). 
Microwaves are hardly absorbed by the atmosphere and allow the measurement of large 
distances (50 km and more) even under unfavorable weather conditions. The effect of 
humidity on refraction, on the other hand, is big and may signifi cantly deteriorate the 
results. Distances measured by light waves are about one order of magnitude more accu-
rate, but the measurement range depends on visibility, and is eventually strongly limited 
by disturbances through clouds, haze, or fog, cf. [5.1.2]. 

The travel time Δt of the signal serves as a measure for the distance s, according to 
the relation

 s = v Δt and v =   c __ n  , (5.103a) 

with v being the actual velocity of the electromagnetic waves, c the velocity in vacuum, 
and n the index of refraction, cf. [5.1.1]. Time measurement is performed by the pulse 
or the phase comparison method, where we have to distinguish between electro-optical 
and microwave distance meters.

For electro-optical distance measurements, the transmitting and the receiving unit 
are combined in one instrument, and a refl ector (prism) is posted on the target sta-
tion (refl ectorless measurements are also possible over limited distances). At the pulse 
method, the transmitter emits a pulse which after refl ection is observed at the receiver. 
An electronic timer measures the time Δt that the signal requires to travel forth and back 
along the distance s leading to

 s =   v  __ 
2
   Δt. (5.103b)

If the uncertainty in distance is to remain less than 1 mm, the time of propagation 
must be obtained to an accuracy better than 0.01 ns. This high accuracy demand can 
be fulfi lled by short (a few ns) laser pulses, electronic counting controlled by a reference 
oscillator, and averaging the results of a large amount of individual measurements. 

A similar instrumental arrangement is used for the phase comparison method. A 
high-frequency carrier wave is produced by a laser diode, and modulated continuously 
(amplitude or frequency modulation), with modulation frequencies between about 10 
and 100 MHz. The corresponding half wavelength (because of the double distance 
traveled by the signal) serves as a “yard stick” (about 1 to 10 m) in surveying the dis-
tance. After transmission and refl ection, the phase shift Δj between the emitted and 
the received signal is measured by a phase meter (Fig. 5.80). It represents the residual 
part of the distance above an integral number N of complete wavelengths, which is 
determined automatically by applying several slightly different modulation frequencies 
generated by frequency division. With a digital phase detector and a microprocessor, 
the measuring process can be fully automatized; the resolution achievable is 1 0 −3  to 
1 0 −4 , which corresponds to a “mm”-precision. 

Travel time Δt and phase shift Δj are related through

 Δt =   
N +   

Δj 
 ___ 

2p    _______ 
f
  , (5.104)

where N is the number of complete periods, and the modulation frequency

 f =   v __ 
l

 =   c ___ 
nl

 , (5.105)
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with the group refractive index n (5.13) and the wavelength l. Substituting (5.104) and 
(5.105) into (5.103b) delivers the distance

 s =   l  __ 
2
    ( N +   

Δj 
 ____ 

2p    ) . (5.106)

With the residual part of a wavelength

 Δl =   
Δj 

 ____ 
2p   l, (5.107)

the distance can also be expressed by

 s = N   l  __ 
2
   +   Δl  ___ 

2
  . (5.108)

Terrestrial microwave distance measurements differ from the optical method by the 
separate setting up of transmitter/receiver-units (combining master and remote func-
tion in one instrument) at the end points of the distance to be measured, both units are 
equipped with an antenna for sending and receiving the signals. The phase comparison 
method has been applied generally. Here, the emitted signal is received at the remote 
station, where it is demodulated and amplifi ed. After superimposing on the remote 
station’s carrier wave, the signal is sent back to the master station. Demodulation and 
comparison with a reference signal (phase measurement) delivers the phase shift, and 
again the use of different modulation frequencies allows a unique solution. At the pulse 
method the receiver has to include a correlator for measuring the travel time, while a 
one-way measurement would require precise clocks on both stations. The evaluation 
then would follow (5.103a), and apply modifi ed formulas (5.106) and (5.108). 

The calibration of electronic distance meters includes the control of the modulation 
frequency by a temperature-stabilized frequency meter and the determination of the 
instrumental constants (zero point correction and possible cyclic errors) on a compara-
tor or on a short (about 1 km) calibration line. Calibration lines are usually partitioned 
into several sections and determined by laser interferometry or with a short-range 
distance meter of high precision.

Terrestrial microwave distance measurements started with the development of the tellurometer 
by T. L. Wadley (1956). Here, the master station emitted a modulated (modulation frequencies 
between 7.5 and 150 MHz) carrier wave (λ = 8 mm to 10 cm), which was retransmitted from an 
active transponder (receiver and transmitter). Measurement of ranges up to 100 km and more were 
obtained. The accuracy strongly depended on refraction uncertainties and could reach 10 … 15 
mm + 3 ppm (ppm is relative to distance). Electro-optical distance measurements trace back to the 
fi rst geodimeter developed by E. Bergstrand (1948). Long-range distance meters used laser light 

TRANSMITTER

RECEIVER

S

REFLECTORl

Δl

Fig. 5.80: Phase comparison method principle (electro-optical distance measurement).
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(He-Ne gas laser) with modulation frequencies between 15 and 50 MHz and were able to measure 
distances up to 60 km on clear days, with an accuracy of 1 … 5 mm + 1 … 2 ppm. Long-range 
microwave and electro-optical distance measurements have been carried out extensively from the 
1950s to the 1980s. The measurements were primarily for establishing fi rst order control networks 
and for strengthening existing horizontal control, cf. [7.1]. 

Long-range distance measurements have become obsolete, as large-scale positioning is 
carried out nowadays almost exclusively by satellite methods; and terrestrial microwave 
distance measurements are no longer carried out at all. Microwave range and range rate 
measurements between satellites and ground stations, on the other hand, play an out-
standing role for positioning and navigation on Earth and in space, cf. [5.2.5], [5.2.7].

Today, terrestrial distance measurements concentrate on distances less than one km, 
ranges of a few km are rarely exceeded. Visible light and near infrared are used, either 
in the pulse or in the phase comparison method. Separate distance meters have been 
available for special applications (partly suitable to be mounted on a theodolite), but 
generally electronic total stations are employed, providing distances, horizontal direc-
tions and zenith angles by combining a theodolite with a distance meter. 

The measuring range of a distance measuring unit incorporated in a total station 
depends on the number of prisms posted on the target station. With one prism, distances 
up to 3 km can be observed, and the measurement range can be extended to about 
6 km (three prisms) and 9 km (nine prisms), respectively. The error budget of the distance 
measurements contains a constant part that depends on uncertainties in timing or phase 
measurement and on the zero point stability. It is augmented by a distance dependent part 
which is determined by errors of the modulation frequency and by refraction effects. Gen-
erally, an accuracy of 3 … 5 mm + 1 ppm can be achieved with electro-optical distance 
meters, within a measuring time of a few seconds. The refl ectorless mode allows ranging 
up to more than one km, with accuracies of 2 … 10 mm + 2 … 10 ppm, depending on 
material and structure of the refl ecting surface.

When integrated into a total station, the microprocessor-controlled operation in addition 
to distance measurement also provides automatic prism search, automatic leveling, and 
the measurement of horizontal directions and zenith angles. Further processing includes 
data storage in the internal memory, calibration, and application of refraction corrections 
with standard or actual meteorological data, as well as the transformation from local polar 
to Cartesian coordinates (Feist et al., 1998). High fl exibility is given through the control 
unit in connection with a graphic display, and especially by the interchange of individual 
modules. Of special importance is the modular connection or the integration of GNSS 
units (antenna and receiver). The latter strategy allows precise absolute positioning through 
real time kinematic methods, cf. [5. 2.5], and consequently the transformation of the local 
results to a global reference. Examples for total stations are given in Figs. 5.81 to 5.83.

While refraction effects have played an important role at long-range distance 
meas urements, they are of less importance at shorter distances usually observed 
today. Nevertheless, refraction corrections still have to be applied in order to achieve 
high accuracy at terrestrial distance measurements. 

The meteorological parameters needed for modeling the corrections, cf. [5.1.2], gen-
erally are measured only at the instrument and at the target point, and the arithmetic 
mean is introduced with the refraction reduction. This value may not be representative 
for the entire distance, and thus a limiting factor for precise distance measurements is 
set (Iliffe and Dodson, 1987). It also must be noted that measurements conducted under 
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Fig. 5.81: Total station (Spectra 
Precision Focus 8), courtesy Spectra 
Precision, Westminster, CO, U.S.A.

Fig. 5.83: Total station with integrated GNSS (Leica Smartstation TPS1200+), courtesy Leica 
Geosystems AG, Heerbrugg, Switzerland.

Fig. 5.82: Total station (Trimble S8), courtesy 
Trimble Navigation Ltd., Sunnyvale, CA, U.S.A.

the same atmospheric conditions may be highly correlated, but this correlation can be 
signifi cantly reduced if observations are carried out under different conditions. 

The refraction corrections which have to be applied to the observed distances before 
further processing can be split up into three parts (Höpcke, 1966). The distance   

_
 s   0  read 

on the instrument is based on a standard value  n 
0
  for the refractive index calculated 

from standard temperature and air pressure (5.17). If a more realistic value  
__

 n  is available 
from local meteorological measurements, the relation

  
_
 s   
__
 n  =  

_
 s 0 n 0  (5.109)

provides a fi rst velocity correction

  k n  =  
_
 s   (  n 0  −   

_
 n  ) . (5.110)
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As seen from (5.20a), the radius of the light curve differs from the Earth’s radius 
(r ≈ 8 R). Hence, the light passes through atmospheric layers with a larger refractive 
index than the mean value  

__
 n , calculated from the endpoint data only. With (5.10) 

and the coeffi cient of refraction k = 0.13, we obtain 

   dn ___ 
dh

   = −   k __ 
R

   = −20 ×  10 −6 /km, (5.111a)

which can be used to derive a second velocity correction

  k Δn  = −  ( k −  k  2  )      
_
 s   3  _____ 

12 R  2 
  . (5.111b)

This correction is less than 1 mm over a distance of 15 km and can be neglected generally.
For three-dimensional computations, the chord distance s is required. By assuming a 

spherical arc with radius r we have

 s = 2r sin    
_
 s  ___ 

2r 
  ,

or after a series expansion

 s = 2r  (     
_
 s  __ 

2r
   −   1 __ 

6
     (     

_
 s  __ 

2r
   )  3  + … ) .

Introducing (5.10) yields the curvature reduction

 k r  = − k  2      
_
 s  3  _____ 

24 R  2  
  , (5.112)

which is part of the reduction formula (5.6). This reduction is less than 0.1 mm for a 
distance of 15 km and can be neglected. By adding (5.110) to (5.112), we obtain the 
total reduction from the observed distance to the chord:

 s −   
_
 s 0 =   

_
 s  (  n 0  −   

_
 n  )  −   2k −  k  2  _______ 

24 R  2 
      

_
 s  3 . (5.113)

The reduction from the chord distance to the length of the normal section and the 
geodesic on the ellipsoid will be given in [6.3.2].

Special distance meters have been developed in order to measure shorter distances 
with very high precision, as required for calibration lines and for geodetic surveying, 
and for monitoring related to engineering projects and to geodynamic control networks. 
These developments are based either on instrumental refi nements and better determina-
tion of the refraction effects or on the use of two or three different wavelengths. 

The Kern Mekometer ME 5000 uses a He-Ne laser as a light source, with a polarization 
modulated wavelength of 0.6 m (Meier and Löser, 1986), Fig. 5.84. The modulation 
frequency (500 MHz) is automatically adjusted by means of a cavity resonator compensated 
for temperature change, such that the distance becomes an integer number of wavelengths. 
Distances of a few km can be measured with instruments of this type, and an accuracy of 
0.1…0.2 mm + 0.2 ppm may be obtained, where residual refraction effects still play an 
essential role (Rueger and Cidder, 1987). 

If the distance is measured with different wavelengths, the dispersive effect of air for visible 
light can be exploited, cf. [5.1.1]. The difference in the distances obtained with “blue” and 
“red” light particularly depends on the infl uence of temperature and atmospheric pressure 
on the index of refraction. If an additional microwave measurement is performed, the effect 
of humidity is refl ected in the difference between the microwave and the light results. From 
(5.14), (5.15), (5.17), and (5.18), a relation between the geometric length of the path and 
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the light and microwave results can be established, where a resolution of a few 0.01 mm 
is required. We mention the Terrameter as an realization of this strategy, which has been 
developed as a two-wave laser-instrument to measure distances up to 10 km with a precision 
of better than 0.1 mm, and which has been applied to measure crustal strain rates in California 
(Huggett, 1981).

5.5.3 Inertial surveying, underwater acoustic positioning

In the following we shortly describe two measurement methods which are not based on 
electromagnetic waves but use different physical signals for positioning: Inertial survey-
ing and underwater acoustic positioning. The application of these methods is limited to 
areas where GNSS or classical terrestrial instruments fail or face severe problems, but 
GNSS techniques are generally integrated in order to strengthen the results and to con-
nect them with the global geodetic reference frame.

Inertial positioning is based on measurements with an inertial navigation system (INS, 
also inertial survey system) carried on a vehicle moving in space (car, helicopter, ship, 
submarine, airplane, spacecraft). INSs have been originally developed for autonomous 
navigation in aviation and missile guidance, and found wide application in space and 
marine (especially submarine) navigation (Salychev, 1998; Jekeli, 2001a). An INS con-
sists of two sensor sets mounted on a common platform (body frame) and a computer. 
The platform may be gyro-stabilized or body-fi xed (strap-down method). The sensors 
are the accelerometers measuring the (linear) velocity rates of the platform, and gyros 
providing the orientation of the accelerometers by monitoring the angular rates of the 
accelerometer frame with respect to the local level resp. inertial frame (cf. [4.1.3]); 
accelerometers and gyros are arranged at three mutually perpendicular axes.

The evaluation of the INS outputs is based on Newton’s second law of motion, 
extended by the effect of gravity. The fundamental observation equations (5.96) thus 
can be solved either for gravity or for position. Solving for gravity leads to kinematic 
gravi metry and presupposes an independent determination of the moving vehicle’s 
kinematic acceleration, e.g., by GNSS methods, cf. [5.4.4]. By introducing gravity val-
ues derived from a model (ellipsoidal normal gravity fi eld, global gravity fi eld model) 

Fig. 5.84: Distance meter Mekometer ME 5000, Leica Geosystems AG, Heerbrugg, Switzerland. 
IfE, Leibniz Universität Hannover.
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or from local gravity data, on the other hand, the observation equations can be solved 
for the platform’s acceleration. Starting from an initial point with known position and 
velocity, the updated position and velocity is then continuously computed by single 
resp. double integration with time. This method of inertial surveying thus offers the pos-
sibility of a nearly continuous positioning, which, in principle, works independently of 
an external reference (Cross, 1985; Schwarz, 1986). The simultaneous evaluation of the 
INS/DGNSS data streams for the vehicle’s trajectory and the gravity disturbance along 
its path may offer some advantage, but is generally avoided. This is due to the strongly 
different functional and stochastic (error) models to be applied for positioning and grav-
ity determination (Schwarz, 2006), see below and [5.2.5]. 

Inertial surveying started in the 1970s, with a fi rst commercial geodetic inertial survey system 
developed by Litton Guidance and Control Systems. Other local-level or space-stabilized systems 
followed, and Kalman fi ltering was developed for an optimal processing of the INS survey data 
(Schwarz, 1983). The method has been used until recently for the establishment of geodetic 
control and for station densifi cation in existing networks, in order to accelerate mapping of vast 
undeveloped areas, e.g., in Canada and in Brazil. 

A weakness of inertial positioning is the error propagation. INS errors are character-
ized by the time stability of the output’s bias (drift) and of the scale factor (calibration). 
There exists a wide accuracy range at these quantities, ranging at the bias stability from 
0.0001°/h to 0.1°/h for the gyro’s and 10–6 to 10–2 for the accelerometers, and 1 to 100 
ppm for the scale factors. These errors increase with the square of time, due to the 
double integration from acceleration to position. This error behavior led to the zero-
velocity-updating (ZUPT) procedure, where the INS results are controlled and corrected 
every few minutes either by a stationary measurement (at land vehicles with the con-
dition of zero velocity) or by external information (e.g., from GPS positioning). Today, 
INS surveys are generally combined with GNSS, which provide control of INS error 
propagation and system synchronization through updating and relate the INS results to 
a global reference system (Fig. 5.85). The INS results (output rate 10 to 100 Hz) on the 
other hand, supply high spatial resolution and serve for bridging gaps due to temporal 
loss of GNSS signals. Integrated positioning using INS and GNSS is usually done along a 

Fig. 5.85: iMAR iNAV-RQH: Inertial Laser Gyro Navigation System, courtesy M. Becker, Institut 
für Physikalische Geodäsie (IPG), TU Darmstadt.
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traverse connecting two points with known position, and traverses may be combined to 
an area network. Coordinates can be calculated already nearly real-time using Kalman 
fi lter techniques, but post-processing by least-squares adjustment delivers best results. 
With rapid updating, relative centimeter-accuracy can be achieved now, while INS net-
works with zero-velocity-updating every few minutes are characterized by an accuracy 
of 0.1 to 0.3 m over distances of 100 km and more.

At most geodetic applications, inertial positioning cannot compete nowadays with 
GNSS methods, with respect to economy and accuracy. Nevertheless, there a number of 
useful applications, e.g., subterranean and submarine surveys. Continuous positioning 
and orientation based on integrated GNSS/INS instrumentation, on the other hand, is of 
high interest at kinematic applications using land, sea and air vehicles. The multitude 
of sensor results to be georeferenced especially includes photogrammetric, laser and 
radar mapping, and also gravity, magnetic and other geophysical surveys (Schwarz and 
El-Sheimy, 2004; Vennegeerts et al., 2008). 

Acoustic waves are employed for positioning on, and mapping of the ocean fl oor 
and the bottom of rivers and lakes. This is due to the fact that sound waves propagate 
well in water, in contrast to electromagnetic waves which are attenuated rapidly with 
increasing frequency. The propagation of acoustic waves through water depends on the 
interdependent water properties temperature (main effect), salinity and density resp. 
pressure. Distances between points on the sea surface and on sea bottom are derived 
from acoustic signals emitted from a ship-borne transducer and either refl ected by the 
sea bottom (mapping of the ocean, lake or river fl oor), or sent back by a transponder 
established at sea fl oor (positioning). Acoustic sea fl oor mapping is nowadays carried 
out effi ciently and in a global scale by multibeam sonar systems, with GNSS position-
ing of the survey vessel Lurton (2002), it will not be discussed here further. Precise 
positioning, on the other hand, requires the installation of sea-bottom control points, 
with active transponders (acoustic beacons) transmitting the received signal to the 
transducer on board of the ship (Fig. 5.86), Chadwell et al. (1998). 

The slant range between the transducer and the transponder is calculated from the 
propagation time of the signal traveling forth and back, according to the two-way 
pulse travel time relation (5.103b). Depending on the distance between the transpon-
ders (“baselines”), the frequency of the carrier waves varies between 5 to 20 kHz, 

Fig. 5.86: Acoustic positioning on the sea bottom (transponder T, transmitter S).
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for baseline lengths up to 10 km and more; pulse lengths are between 5 and 15 ms. 
Signal travel time is measured with μs-accuracy, and refraction (pulse delay and ray 
bending) is taken into account by empirical formulas for the effects of temperature, 
salinity and pressure changes. Velocity values vary between 1470 and 1540 m/s for 
sea water (mean value 1500 m/s), with large variations occurring within the uppermost 
500 m. Baseline accuracy depends on the range and the network’s confi guration, and 
reaches the cm-order of magnitude. Relative positions of the sea fl oor control points 
are derived by spatial trilateration (Rinner, 1977), while the relation to the global refer-
ence system is established by GNSS-positioning on board of the surface vessel.

Geodetic underwater acoustic networks have been established locally for geodynamic 
investigations, e.g., for the observation of sea fl oor spreading at active ridge zones, and 
for monitoring crustal deformation at subduction zones (Spiess et al. (1998); Isshiki, 
2000/2001/2004). Control points are usually arranged in arrays of three to four stations, with 
station separation of a few km to 10 km and more. The acoustic transponders are powered by 
batteries, with lifetime up to 5 years, or by nuclear energy sources. The connection to “stable” 
reference stations on land is realized through relay stations established at platforms on the sea 
surface (ship, buoy) or even inside the water.

5.5.4 Leveling

In geometric leveling (also spirit leveling or differential leveling), differences in height 
are determined using horizontal lines of sight between points in close proximity to each 
other. Leveling is conducted with a leveling instrument (level) and two vertically posted 
leveling rods (Fig. 5.87). The leveled height difference d n between the rods is given by 
the difference between the backsight (b) and the foresight (f ) reading:

 dn = b − f. (5.114)

The leveling instrument consists primarily of a measuring telescope capable of rota-
tion about the vertical axis. The line of sight is brought into the horizontal either 
by a coincidence bubble in conjunction with a tilting screw or, for most modern 
instruments, automatically by a compensator that is comprised mainly of a gravity 
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Fig. 5.87: Geometric leveling principle.
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pendulum (fi rst introduced with the ZEISS Ni2 level in 1950). A setting accuracy of 
0.2″ to 0.5″ is achieved by both methods. The use of a compensator increases the 
speed of leveling and reduces the sensitivity with respect to temperature variations. 
On the other hand, a spirit level is less sensitive with respect to high-frequency oscil-
lations as produced by traffi c, machinery or wind. Thus it may still offer advantages at 
high precision industrial and engineering surveys, Fig. 5.88.

High-precision levels employ telescopes with an aperture of 40 to 50 mm and a 
magnifi cation of 30 to 40 or more. Lines of sight (distance between the level and the 
rods) depend on leveling purpose and topography, and are kept within 30 to 50 m at 
precise leveling. Setting-up the instrument in the middle of two subsequent rod posi-
tions is usual, as it eliminates errors due to non-parallelism of the collimation and the 
bubble axes as well as symmetric refraction effects (see below). In the analog mode, the 
leveling rods carry two graduation lines on invar tape, displaced against each other and 
numbered differently in order to detect reading errors. The line of sight is adjusted to the 
closest graduation mark by means of a parallel plate mounted in front of the objective’s 
lens. The amount of the displacement is measured by a micrometer (Fig. 5.89).

Digital levels were introduced with the Wild NA 2000 (Ingensand, 1990). They are 
used in connection with invar staffs that carry a binary code (division e.g., 0.3 mm), 
Fig. 5.90. A code section around the horizontal sight is projected on a CCD sen-
sor in the image plane of the telescope. A subsequent processing of the image by a 
microprocessor includes electronic scanning (A/D conversion) and correlation with a 
digital reference signal, whereby the automatically measured distance has to be taken 
into account. Special calibration procedures have been developed for digital levels 
and staffs (Rueger and Brunner, 2000).

Fig. 5.89: Automatic level (Wild/Leica NA2), courtesy Leica Geosystems AG, Heerbrugg, 
Switzerland.

Fig. 5.88: Bubble precision level NABON, courtesy Breithaupt, Kassel/Germany.
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In order to transfer heights over larger distances, the individual leveled differ-
ences are summed. For one set-up, the non-parallelism of the level surfaces may be 
neglected (quasi-differential method). The observed difference d n then corresponds to 
the height difference of the level surfaces passing through the rod sites. Summing the 
individual differences between two bench marks  P 

1
  and  P 

2
  yields the “raw” leveled 

height difference

 Δ n 1,2  =  ∑ 
1
   

2

  d n . (5.115)

At longer distances, the effect of the non-parallelism may reach the cm-order of 
magnitude and more, cf. [3.2.1]. Hence Δn depends on the path taken and does not 
provide a unique height. A unique height determination can only be achieved by 
considering gravity g, that is by referring to potential differences ΔW. According to 
(3.52) we have

 Δ W 1,2  =  W 2  −  W 1  = −  ∫ 
1

   
2

  g dn ≈ − ∑ 
1
   

2

  g d n. (5.116)

Thus potential differences can be determined without any hypothesis from level-
ing and surface gravity. In order to obtain height differences in any specific height 
system from the raw leveling results, gravity reductions have to be applied, cf. 
[6.4.1].

The accuracy of precise leveling depends on many effects. Some of the leveling errors 
behave in a random manner and propagate with the square root of the number of indi-
vidual setups. Other errors are of systematic type and may propagate with distance in 
a less favorable way. Hence, particular attention must be afforded to reduce them, by 
instrumental measures and modeling or by employing dedicated measurement meth-
ods. We mention the main error sources (Kukkamäki, 1980):

Misleveling of the instrument is of random type and results in an error of a few 0.01 mm for 
an individual height difference. Residual adjustment errors at a bubble instrument cancel at 
“leveling from the middle”. An imperfect operation of the compensator causes an “obliquity of 

Fig. 5.90: Digital level (Trimble DiNi Level), courtesy Trimble Navigation Ltd., Sunnyvale, CA, 
U.S.A.
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the horizon” which is eliminated by measuring in two opposite positions of the compensator. 
Magnetic effects on the compensator are kept small generally, but a regular control is advisable. 
Rod graduation errors include a “mean” scale error, errors of the individual graduation marks, 
and effects of thermal expansion. Routine calibrations deliver the corresponding corrections, 
with a remaining random part less than 5 to 10 μm (Rueger and Brunner, 2000). Rod inclination 
errors can be kept suffi ciently small by properly adjusting the rod bubble and carefully holding 
the rod in the vertical position. Local vertical movements (0.01 to 0.1 mm per station) of the 
rods may occur during the measuring process, depending on the stability of the ground. If 
proportional to time, they cancel by forward and backward leveling runs. 

Vertical refraction, cf. [5.1.2], contains an irregular (shimmer) and a systematic part. The 
fi rst one acts as a random error, reaching 0.01 mm under cloudy skies. Systematic effects 
particularly affect observations made close to the ground or in terrain with steep slopes. These 
effects may reach 0.01 to 0.1 mm per 1 m height difference. They can be modeled in part 
by a refraction correction, with the vertical temperature gradient as a function of height, and 
eventually additional information about the environment (Angus-Leppan, 1984). The time-
variable effect of the Earth tides plays a role at extended leveling networks, causing periodic 
inclinations of the line of sight. These can be modeled by the horizontal tidal component 
acting in the azimuth of the leveling line. Starting from (3.119) and taking the elasticity of the 
Earth into account, the tidal reduction for the moon reads

 d  
t(m)

  = 0.06 sin 2 y 
m
  cos  (a 

m
  − a ) s mm/km. (5.117)

Here,  a 
m
  and a are the azimuths of the moon and of the leveling line, and  y 

m
  is the geocentric 

central angle between the directions to the moon and the computation point; s is the length of 
the leveling line in km. The same equation is valid for the sun, with an effect of 46% of that for 
the moon (Kukkamaki, 1949).

In order to eliminate or reduce systematic errors, precise leveling is always carried out 
with equal back and foresights (“leveling from the middle”) at less than 50 m distance. 
Observations should be performed during cloudy weather, preferably in the morning 
and in the evening hours. Line of sights very close to the ground (0.5 m or less) should 
be avoided. Leveling is generally conducted twice, in opposing directions and possibly 
under different meteorological conditions. For a 1 km double-run leveling, one can at-
tain an accuracy of 0.2 to 1.0 mm. 

The time needed for precise leveling can be signifi cantly reduced by motorized leveling, 
whereby the instrument and the rods are carried in and operated from an automobile. This 
mode also reduces time dependent errors and partially eliminates asymmetric refraction 
effects, as the line of sight is more remote from the ground (Peschel, 1974; Becker, 2002).

For leveling across broad waterways and inlets of the sea, several methods have been 
developed. In reciprocal leveling, approximately horizontal sights to specially designed 
targets are taken simultaneously with precise levels from both sides of the waterway. For 
longer series of observations including a change of the instruments, height differences 
over 1 to 2 km can be determined with a precision of 1 to 2 mm (Kakkuri, 1966). Larger 
distances can be bridged by hydrostatic leveling based on the principle of communi-
cating tubes. A hose fi lled with water (free of air bubbles, uniform temperature) is laid 
between the shores of the watercourse, and the water level at the vertical ends of the 
hose is observed, assuming that it represents the same level surface. In hydrodynamic 
leveling (geostrophic leveling), the height is transferred over the waterway utilizing 
water level records, which have to be reduced for the effects of sea surface topography, 
cf. [3.4.2]. This implies the use of a hydrodynamic model, which takes water velocity, 
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wind drag, water depth and bottom friction, atmospheric pressure and water density 
into account, as well as gravity and Coriolis force. 

Hydrostatic leveling has been applied for ranges up to 20 km (e.g., Fehmarn-Belt/Baltic Sea) and 
delivers mm-precision (Andersen, 1992). In the Netherlands, it was used in an operational mode 
for measurements off-shore and through rivers and canals (Waalewijn, 1964). Hydrodynamic 
leveling was employed, for instance, for a height transfer over the British channel (70 km), with 
a precision of about 1 cm (Cartwright and Crease, 1963).

5.5.5 Tilt and strain measurements

Tilt and strain observed on the surface of the Earth indicate the response of the Earth’s 
crust (crustal deformations) to external and internal forces such as Earth tides, tectonic 
processes, and seismic and volcanic activities. Tilt and strain are dimensionless quanti-
ties and are given in radian or arcsec and (relative) extension (positive sign) or compres-
sion per distance, respectively. 

Over time intervals of years to decades, long-term tilt and strain can be determined 
from repeated observations of geodetic control networks, delivering relative displace-
ments between the observation sites. Classical terrestrial techniques as triangulation, tri-
lateration and leveling could only detect the integral deformation effect over large time 
spans (years to decades), while satellite techniques as GPS are now able to continuous 
recording of absolute site displacements, in horizontal position and height, cf. [8.3.3]. 
Tiltmeters and strainmeters (also called extensometers), on the other hand, have been 
developed in order to monitor continuously local deformations (Agnew, 1986; Zadro 
and Braitenberg, 1999).

Short-term (up to 1 day) tilt and strain is dominated by tidal deformations and is at the 
order of 1 0 −8  to 1 0 −7 , which correspond to inclinations of 0.002″ to 0.02″ and lengths 
changes of 0.01 to 0.1 μm/m. Long-term effects of tectonic origin generally are only at 
the order of a few 1 0 −7 /year. Episodic effects related to seismic or volcanic events may 
reach the same order of magnitude and more over a few hours to a few weeks and 
months. Consequently, the instrumental sensitivity of tilt and strainmeters should be 
at least about 1 0 −9  to 1 0 −10 , and the stability with time should be better than 1 0 −7 /year. 
A variety of tiltmeters and strainmeters has been developed over the past 50 years and 
operated underground in order to reduce the strong disturbances of atmospheric and 
hydrological origin. Instrumental noise was remarkably reduced at the transition from 
analogue to digital recording. 

Tiltmeters measure the inclination of the Earth’s surface with respect to the local verti-
cal. Two mutually perpendicular sensors are needed in order to completely determine 
the tilt, which are usually orientated in the NS and EW-directions. Tiltmeters have been 
designed as horizontal and vertical pendulums, electronic tiltmeters, and long water 
tubes (Zürn et al., 1986).

Horizontal pendulums consist of two nearly vertical threads that support an approximately 
horizontal beam with an attached mass (Zöllner suspension), Fig. 5.91. Because of the small 
inclination of the rotational axis with respect to the vertical, a tilt of the support (basis about 
30 cm) or a plumb line variation cause a strongly amplifi ed angular defl ection (astatization), 
which may be further enlarged optically. Fused quartz (Verbaandert-Melchior pendulum) or 
metallic alloys are used as pendulum material in order to keep thermal effects small. Calibration 
is performed by controlled tilting of the instrument (Van Ruymbeke, 1976). Among the vertical 
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pendulums is the Askania borehole instrument (length 60 cm) which may operate in depths of 
20 to 60 m (Fig. 5.92). The pendulum’s suspension allows it to swing freely, and the defl ections 
are sensed by two three-plate capacitive transducers installed at right angles to each other. 
The pendulum is calibrated by displacing a small mass over a known distance (Flach, 1976). 
Short-base electronic tiltmeters (e.g., the Hughes tiltmeter) use electrodes as sensors to measure 
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Fig. 5.91: Zöllner horizontal pendulum principle.

Fig. 5.92: Vertical pendulum “Askania borehole tiltmeter”, Bodenseewerk Geosystem, 
Überlingen, Germany, after Flach (1976) and Agnew (1986).
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a bubble’s position, or record the fl oating of the sensing mass in a magnetic fi eld; these 
instruments are especially adapted for the installation in boreholes. Water-tube tiltmeters with 
lengths of several 100 m have also been developed, and installed in cavities. Tilt is derived from 
the water level variations at the endpoints of the tube which are measured by capacitive or 
interferometric methods (Kääriäinen, 1979).

Strainmeters measure relative displacements of the Earth’s crust (King and Bilham, 
1973). For a complete determination of the strain tensor, which contains six indepen-
dent components, a strain meter array should be arranged with orientation in different 
spatial directions, although in most cases only horizontal strainmeters have been in-
stalled. Strainmeter constructions use mechanical or laser length standards, with base-
line lenghts from 0.1 m to 1 km.

Short-baseline strainmeters (baseline length 10 to 30 m and more) are represented by invar 
wires and fused quartz tube rods. One end of the instrument is fi xed to the rock, and the crustal 
displacement is measured at the other end by inductive or capacitive transducers (King and 
Bilham, 1973), Fig. 5.93. Borehole strainmeters were developed since the 1960s, including a 
hydraulic dilatometer (Myren et al., 2006) and a 3-component rod strainmeter of 0.1m-baselength 
(Gladwin et al., 1987). Laser strainmeters apply the Michelson interfero meter principle. Operated 
in an evacuated tube, they can measure distances up to 1 km with nm resolution and better 
(Berger and Levine, 1974; Takemoto et al., 2006).

Among the instrumental errors of tiltmeters and strainmeters are the uncertainties of 
the calibration (about 0.1 to 1%) and the direct effects of temperature and air pres-
sure variations, which are kept small by the selection of the material and appropriate 
shielding. Long-term drift effects are at the order of 1 0 −6  to 1 0 −7 /year and to a large 
part are due to problems inherent with the sensor-rock coupling. Effects induced by 
atmospheric and hydrological variations (air temperature, air pressure, solar radiation, 
rainfall, groundwater) pose severe problems in interpreting the results, especially for 
tiltmeters. These disturbances pronounce daily and seasonal periods but also happen at 
other time scales, they severely obscure tidal, tectonic and other geodynamic signals. 
Modeling of these effects, with frequency bands including those of the Earth tides and 
the seismotectonic deformations, is still in its infancy. Consequently, their infl uence 
is reduced by installing the instruments below the Earth’s surface, in tunnels, mines, 
natural caves, and boreholes. Unfortunately, this strategy causes other problems to be 
discussed in the following. 

Fig. 5.93: Invar wire strainmeter, courtesy Black Forest Observatory Schiltach.
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When installing tiltmeters and strainmeters below the Earth’s surface, geologic, topo-
graphic, and cavity effects in most cases produce large local distortions of the tiltmeter 
and strainmeter data. This is due to variable rock properties including local fractures, 
rugged topography, and different cavity reactions to deformation. Local distortion may 
reach 10 to 15% and more, leading to non-representative results (Harrison, 1976). 
Attempts to model these effects have been only partly successful (Sato and Harrison, 
1990; Kohl and Levine, 1995). Consequently, in addition to carefully selecting the 
observation site, preference now is given either to short-base tiltmeters and strainmeters 
operating in boreholes (if possible with depths of 100 m or more) or to long-baseline 
instruments installed in tunnels or cavities. In the latter case, local effects are reduced 
by integrating over the large distance of some 10 to some 100 m.

Tilt and strain is measured continuously at underground observatories and dedicated networks, 
frequently in connection with GNSS observations and gravity recording. Extensive observations 
started with the “International Geophysical Year” (1957), and concentrate now on regions of 
seismotectonic and volcanic activity, as the western United States, Japan, China, and Italy. A 
strong impetus also for tilt and strain techniques came from national earthquake prediction 
programs, as e.g., established in Japan and China. Among the participating observatories we have 
the Piñon Flat Observatory/California (Institute of Geophysics and Planetary Physics, University 
of California, Wyatt et al., 1990), the observatories of the Research Center for earthquake 
Prediction/Disaster Prevention (Kyoto University, Japan) and other Japanese institutions, the 
observation sites and observatories under the responsibility of the China Seismological Bureau, 
and the Black Forest Observatory Schiltach (Karlsruhe Institute of Technology KIT and University 
of Stuttgart, Germany). Extended geodetic networks for monitoring surface displacements due to 
plate tectonics have been installed, among others, in Japan (Takemoto, 1995) and in the western 
United States. Here, the Earth Scope Plate Boundary Observatory (PBO) started operation in 
2008. This National Science Foundation funded project now coordinates the operation of more 
than 1000 permanent GPS stations (with partly one Hertz or higher frequency and one second 
and less latency) and a number of borehole and laser strainmeters, located along the Pacifi c/
North-American plate boundary (Agnew, 2007). The strategy of obtaining “real-time” data for 
actual crustal movements is pursued also at the global differential GPS network (more than 
100 stations) of JPL/NASA (Kechine et al., 2003). Tiltmeter networks have been established 
especially at active volcanoes, e.g., at the Kilauea/Hawaii and Mount Etna/Italy. 

Tiltmeter and strainmeter results contribute to Earth tide research in the short-periodic 
part and to the detection of anomalous tilt and strain related to seismic and volcanic 
activity, cf. [8.3.4], [8.3.6].
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Geodetic evaluation methods may be separated into positioning and gravity fi eld 
determination (the determination of the Earth’s rotation parameters is not pursued in 
the following, as it has been discussed in connection with global reference systems 
[2] and measuring techniques [5]). This separation is possible because position-
ing only requires an approximate knowledge of the gravity fi eld, and gravity fi eld 
modeling needs only approximate positions. The linearization of the gravity fi eld is 
essential in both cases, and it permits a statistical fi eld description [6.1]. Nowadays, 
positioning is based on three-dimensional models [6.2], while classical strategies 
distinguish between horizontal positioning [6.3] and height determination [6.4]. 
Gravity fi eld modeling utilizes all kind of gravity fi eld related observables, it can 
be formulated in the form of boundary-value problems of potential theory [6.5]. 
Global models are derived mainly from the results of space geodesy, with addi-
tional information from terrestrial observations [6.6]. Local gravity fi eld estimation, 
on the other hand, is primarily based on terrestrial gravity fi eld data, and generally 
supported by satellite results [6.7]. Least-squares collocation represents another ef-
fi cient method for transformation and combination of gravity fi eld quantities, and is 
now routinely applied for regional and local solutions [6.8].

The simultaneous determination of station coordinates and gravity fi eld quantities, together 
with other parameters of different kind, in one mathematical model has been designated as 
integrated or operational geodesy (Eeg and Krarup, 1973; Hein, 1986). Employing all relevant 
data and taking the errors of the data into account, functional modeling fi nally leads to 
least-squares adjustment. The combination strategy allows to more completely exhaust the 
information content of the data, and to improve the accuracy and reliability of the results. On the 
other hand, the large amount of data and unknown parameters (at least at global and regional 
dimensions) raises serious problems with respect to proper weighting of the observations, 
modeling of systematic effects, and data processing. Hence, the application of deterministic 
combination methods is restricted to a limited number of observations and unknown geometric 
and physical parameters, recent examples being the “satellite-only” Earth models calculated 
since the early days of satellite geodesy, cf. [6.6.2]. An alternative (and extended) approach 
to combined modeling of geometric and physical quantities is least-squares collocation with 
parameters (Moritz, 1980, p. 111 ff.), where again for practical reasons the geometric part of the 
problem is treated separately from the gravimetric part. The integration of geodetic techniques 
and the consistent combination for geometry, gravity fi eld and Earth rotation is a fundamental 
part of the Global Geodetic Observing System (GGOS) established by IAG, cf. [1.4.2], Plag and 
Pearlman (2009).

Geodetic evaluation methods are described in textbooks on geodesy, e.g., Bomford 
(1980), Moritz (1980), Vaniček and Krakiwsky (1986), Heck (2003a), Hofmann-
Wellenhof and Moritz (2005). The theory of errors and adjustment methods applied to 
geodetic modeling are discussed in Koch (1999), Grafarend (2006), Niemeyer (2008) 
and Ghilani (2010), among others.
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6.1 Residual gravity fi eld

The actual gravity fi eld can be suffi ciently well approximated by the normal gravity fi eld 
of the level ellipsoid, cf. [4.2.2], which results in linear relations between the residual 
observations and the unknown gravity fi eld parameters. The fundamental quantity of 
the residual gravity fi eld is the disturbing potential. It is closely related to the height 
anomaly and the geoid height [6.1.1]. The residual gravity vector generally is expressed 
by its scalar components, the gravity anomaly or the gravity disturbance and the defl ec-
tion of the vertical [6.1.2]. On certain assumptions, the residual gravity fi eld may be 
treated by statistical methods, which is of importance in gravity fi eld interpolation and 
modeling [6.1.3]. 

6.1.1 Disturbing potential, height anomaly, geoid height

Approximation of the Earth’s gravity potential W (3.42) by the normal gravity potential U 
(4.37) leads to the disturbing potential (also anomalous potential) T defi ned at the point P :

 TP = WP − UP . (6.1)

W and U contain a gravitational and a centrifugal part. As the centrifugal acceleration 
of the Earth is known with high accuracy, cf. [3.1.4], we may assume that the centrifugal 
parts of W and U are identical. The disturbing potential then is formed by the difference 
of the gravitation of the Earth and of the level ellipsoid, and thus is a harmonic function 
outside the Earth’s masses. Hence, it obeys Laplace’s differential equation (3.29)

 ΔT = 0, (6.2)

where Δ stands for the Laplace operator. T can be expanded into spherical harmonics, 
in analogy to the corresponding development for the gravitational potential (3.89) and 
(4.45). Expressed in spherical coordinates r, J, l, the disturbing potential as a spatial 
function reads, in abbreviated form, see (3.88): 

 T = T (r, J, l ) =  ∑ 
l = 2

  
∞

    (   a __ r   )  l + 1
   T l (J, l ). (6.3)

In its full form this development reads as

 T =   GM ____ r    ∑ 
l = 2

  
∞

    (   a __ r   )  l    ∑ 
m = 0

  

l

   ( Δ C lm  cos ml + Δ S lm  sin ml  )    P lm  (cos J ), (6.4)

where the Δ C lm  and ΔSlm are the residual harmonic coeffi cients, being defi ned as differ-
ences between the coeffi cients of the actual and the normal gravity fi eld. Comparing 
(6.3) and (6.4) yields the surface spherical harmonics

  T l  =   GM ____ a    ∑ 
m = 0

  

l

  (Δ C lm   cos ml + Δ S lm  sin ml ) P lm  (cos J ). (6.5)

Due to the properties of U, only the even zonal residual coeffi cients differ from the 
actual gravity fi eld coeffi cients  C lm , while all the other Δ C lm  are identical with the actual 
gravity fi eld parameters, cf. [4.2.2]. The development of (6.3) and (6.4) starts at l = 2 
since equality of the masses of the Earth and the ellipsoid is assumed, as is coincidence 
of the center of the Earth’s masses with the center of the ellipsoid, cf. [3.3.4].
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The disturbing potential is closely related to the vertical distance between P and the 
point Q located on the spheroidal surface U =  U Q   , cf. [6.5.1]. Q is associated with P 
by the condition

 UQ =  W P  , (6.6)

cf. [4.2.3], Fig. 6.1. This distance is called height anomaly z. Geometrically, it is the 
difference between the ellipsoidal height h and the normal height  H  N  (3.107), (4.66): 

 z = h −  H  N , (6.7)

where we have neglected the slight curvature of the normal plumb line. The surface 
for which (6.6) holds at every point is called the telluroid (Hirvonen, 1960; Grafarend, 
1978b). A corresponding relation holds at any point in the exterior space.

The telluroid represents an approximation to the physical surface of the Earth. By 
extending  H  N  downward from P we obtain the quasigeoid, which is often used as a 
zero height surface, cf. [3.4.3], [7.2]. The height anomaly z now becomes the distance 
between the level ellipsoid U = U0 and the quasigeoid, and is also called quasigeoid 
height.

If P is located on the geoid, we obtain the geoid height N (also called geoid undula-
tion) as the vertical distance between the ellipsoid and the geoid. In analogy to (6.7), a 
geometric defi nition follows by differencing the ellipsoidal height h and the orthometric 
height H (3.106):

 N = h − H, (6.8)

where again the effect of the plumb line curvature has been neglected.
The difference between the geoid height and the height anomaly is equal to the dif-

ference between the normal height and the orthometric height and follows from (3.106) 
and (3.107):

 N − z =  H N  − H =   
 
_

 g  −   
__

 g  
 _____ 

  
__

 g    H =   
Δ g B  ____ 
  
__

 g    H. (6.9)
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Fig. 6.1: Ellipsoidal, normal and orthometric height.
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The difference depends on the height and thus is zero on the oceans, if we neglect the 
small effect of sea surface topography, cf. [3.4.2]. It also depends on a “mean” gravity 
anomaly  

_
 g  −   

_
 g  , which (approximately) corresponds to the Bouguer anomaly Δ  g B , to be 

introduced in [6.5.3 ]. 

6.1.2 Gravity disturbance, gravity anomaly, defl ection of the vertical

The gravity vector g at P can be approximated by the vector of normal gravity f , which 
leads to the gravity disturbance 

 d   g P  =  g P  −  f  P  , (6.10)

see Fig. 6.2. Neglecting the small angle between the directions of g and f  (defl ection of 
the vertical), we obtain the magnitude of the gravity disturbance 

 d   g P  =  g P  −  g P  . (6.11)

g can be measured on the Earth’s surface and in the exterior space. The calcula-
tion of  g P  presupposes the knowledge of the geodetic coordinates (ellipsoidal latitude 
and height) of P. This is nowadays possible through geodetic space techniques (mainly 
GNSS methods), while classical geodesy had to consider the ellipsoidal coordinates 
as unknowns, cf. [6.3], [6.4]. This fact posed a serious problem with the height coor-
dinate, as only normal or orthometric heights determined by leveling were available, 
cf. [3.4.3]. Consequently, gravity fi eld modelling, instead of the gravity disturbance, 
employed (and generally still employs today) the gravity anomaly 

 Δ g P  =  g P  −  f Q  , (6.12)

with the magnitude

 Δ g P  =  g P  −  g Q . (6.13)
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Fig. 6.2: Actual and normal gravity.
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Again, Q is related to P by the condition (6.6).  g Q  can be calculated by (4.63), starting 
from normal gravity  g 0  on the ellipsoid (4.41) and replacing h by  H  N  (3.107). This free-air 
reduction is given by (4.61):

 dg  
F
  N  = −   

∂g 
 ____ 

∂ H N 
   H  N . (6.14)

The free-air gravity anomaly, defi ned on and outside the Earth’s surface according to 
Molodensky, reads

 Δ  g  F  
N  = g + dg  F  

N  −  g 0 . (6.15)

In many applications,   
∂g 
 ____ 

∂ H N 
   is approximated by a mean value of –3.086 μm s –2 /m.

The determination of the geoid requires that the gravity anomalies are given every-
where on that level surface. Furthermore, in order to apply the Laplace equation, the 
masses outside the geoid have to be removed. Several types of gravity reductions are 
available for this purpose. The methods differ by the manner in which the topographical 
masses are displaced, and gravity is reduced onto the geoid. The gravity anomaly on 
the geoid then is defi ned as the difference between the gravity on the geoid  g 0 , and the 
normal gravity  g 0  on the ellipsoid (Fig. 6.2):

 Δg =  g 0  −  g 0 . (6.16)

Dependent on the kind of reduction, different types of geoid related gravity anomalies 
have been defi ned, serving not only for the determination of the geoid but also for grav-
ity fi eld interpolation and geophysical interpretation, cf. [6.5.3]. 

According to the previous defi nitions, gravity disturbance and gravity anomaly are 
vector quantities. Their directions are given through the difference between the direc-
tion of the actual plumb line and a reference direction defi ned in the normal gravity 
fi eld. This difference is called defl ection of the vertical (Fig. 6.3). With respect to the 
reference direction, we distinguish between three kinds of vertical defl ection, which 
differ only slightly (Jekeli, 1999):

• The defl ection of the vertical  q  N  defi ned on the surface or the exterior of the Earth, 
with the direction of the normal plumb line at Q as a reference (Molodensky 
defi nition). The reference direction practically coincides with the surface normal 
to U =  U P  at P.

Fig. 6.3: Defl ection of the vertical according to a) Molodensky, b) Helmert, c) Pizetti.
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• The defl ection of the vertical q at the Earth’s surface, referring to the ellipsoidal 
normal at P (Helmert defi nition). It differs from  q  N  only by the slight curvature (ef-
fect of a few 0.1″ ) of the normal plumb line, cf. [4.2.3]. This defi nition is preferred 
generally, as the ellipsoidal normal is provided by the geodetic coordinates.

• The defl ection of the vertical  q  0  defi ned on the geoid (Pizetti defi nition). It is given 
by the difference between the actual plumb line on the geoid and the ellipsoi-
dal normal. It differs from the previous defi nitions by the curvature of the actual 
plumb line and is of importance for the determination of the geoid.

The defl ection of the vertical is expressed either by its magnitude q and its azimuth  a q  
or, more generally, by its components in the north-south and east-west directions. A 
geometric derivation follows from spherical trigonometry on the unit sphere around 
the calculation point (Fig. 6.4). Here, we assume that the minor axis of the reference 
ellipsoid is parallel to the Z-axis of the global reference system and that the ellipsoidal 
initial meridian is parallel to the X-axis. These conditions are practically fulfi lled with 
modern reference systems and well approximated by classical geodetic systems, cf. 
[6.2.2]. After parallel displacement, we identify N as the point of intersection of the 
Z-axis with the unit sphere and  Z a  and  Z g  as the directions to the astronomic and the 
geodetic zenith, respectively. The defl ection of the vertical represents the spherical dis-
tance between  Z a  and  Z g , its azimuth is denoted by  a q . The defl ection is decomposed 
into the meridional component x (positive when  Z a  is north of  Z g ) and the component 
in the prime vertical h (positive when  Z a  is east of  Z g  ). Along the azimuth a to a target 
point  P i , we have the vertical defl ection component e.

From spherical trigonometry we get

 sin j = cos h sin (Φ − x ), sin h = cos j sin (Λ − l ),

and with

 cos h ≈ 1,  sin h ≈ h,  sin (Λ − l ) ≈ Λ − l,

the components are given by (linear approximation)

 x = Φ − j, h = (Λ − l )cosj. (6.17)

According to Fig. 6.4, the component e in the azimuth a is composed by two parts:

 e = x cos a + h sin a. (6.18)

These relations can also be derived by subtracting (4.36) from (3.45), after corre-
sponding linearization, cf. [6.2.2]. 
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Fig. 6.4: Vertical defl ection components.
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Equations (6.17) and (6.18) are valid for any defi nition of the defl ection of the vertical. 

The residual gravity fi eld quantities (disturbing potential, height anomaly/geoid height, gravity 
disturbance/gravity anomaly, defl ection of the vertical and others) depend on the geodetic 
Earth model used for approximating the gravity fi eld and on its orientation with respect to 
the Earth, cf. [6.2.2]. If referred to a geocentric mean Earth ellipsoid, they are designated 
as absolute quantities, otherwise they are relative only. The root mean square variation of 
absolute height anomalies and geoid heights is ± 30 m (maximum values about 100 m). The 
free-air gravity anomalies vary by about ± 400 μm s −2  (maximum values of a few 1000 μm s −2 ) 
and the defl ections of the vertical by ± 7” (maximum 30″ to 1″ in the high mountains), cf. 
[6.1.3], [6.6.3].

6.1.3 Statistical description of the gravity fi eld, interpolation

The residual gravity fi eld can be viewed as a realization of a stochastic process and 
treated by statistical methods (Moritz, 1970; Tscherning, 1978). The gravity anomaly is 
used as a fundamental gravity fi eld parameter in this aspect, as gravity data are avail-
able with high resolution on the continents and on the oceans. Other type gravity fi eld 
observations are either restricted to the long-wave part of the gravity fi eld (satellite de-
rived spherical harmonic coeffi cients) or to the oceanic (satellite altimetry) respectively 
continental (defl ections of the vertical) parts of the Earth’s surface. 

We assume that the mean value of the gravity anomalies Δg corresponding to the 
zero-degree term of the spherical harmonic expansion of Δg over the Earth (spherical 
approximation) is zero, cf. [6.5.4]:

 M { Δg }  =   1 ___ 
4p  ∫ s   

 

   ∫ Δg ds = 0, (6.19)

where M{ } is the mean value operator, and s represents the unit sphere with the area of 
4p. The surface element can be expressed in spherical coordinates J,λ by

 ds = sin J dJ dl. (6.20)

The further statistical behavior of Δg is described by the covariance function 

 C(y ) = co v y  ( Δg )  = M  { Δg Δg ′ }y .  (6.21a)

It is defi ned as the mean value of all products of gravity anomalies at the points P(Δg) 
and P ’ (Δg´) having constant spherical distance y on the unit sphere. C(y ) shall only 
depend on y and neither depend on the position (homogeneity of the anomalous grav-
ity fi eld) nor on the azimuth of the line PP’ (isotropy), Grafarend (1976). The evaluation 
of (6.21a) leads to 

 C(y ) =   1 ___ 
2p

 ⋅   1 ___ 
4p

    ∫ 
l = 0

  
2p 

      ∫ 
J = 0

  
p    

     ∫ 
a = 0

  
2p

  ΔgΔg′ sin J dJ dl da =   1 ___ 
4p

  ∫ 
s

   
 

   ∫  { ΔgΔg ′ } y ds. (6.21b)

C(y ) describes the distance dependent correlation of the gravity anomalies, which 
decreases with increasing distance. For y = 0, we have Δg = Δg ′, and the covariance 
transforms into the anomaly variance 

  s   2  ( Δg )  = M  { Δ g  2  }  =   1 ___ 
4p  ∫ s   

 

   ∫ Δg  2   ds. (6.22)

From the theory of stochastic processes, the statistical properties should be derived from an 
infi nite number of process realizations. As only one realization of the gravity fi eld is available, 
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the hypothesis of ergodicity is necessary, which states that the statistical quantities may also be 
calculated from mean values over one realization only (Moritz, 1980, p. 269).

As shown in [6.6.1], Δg as a functional of T can be expanded into spherical harmonics. 
On the Earth’s surface (r = R) the abbreviated form of this expansion reads

 Δg  ( J,l ) =  ∑ 
l = 2

  
∞

   Δg l   (J,l ), (6.23)

with Δ g l  Laplace’s surface harmonics, cf. [3.3.2]. With the conventions of mass equality 
between the Earth and the reference ellipsoid, and geocentric position of the ellipsoid, 
the terms of degree 0 and 1 are missing again, cf. [6.1.1]. As a consequence of (6.23), 
C(y ) can also be expanded into spherical harmonics in the defi nition range 0 ≤ y ≤ p :

 C(y ) =  ∑ 
l = 2

  
∞

   c l   P l  (cos y ) , (6.24a)

with  P l  (cos y ) Legendre polynomials. Because of isotropy, only zonal terms exist in 
(6.24a). As is well known from potential theory, the harmonic coeffi cients cl can be 
derived by inversion, applying orthogonality relations:
 

  c l  =   2l + 1 ______ 
4p        ∫ 

a  = 0

  
2p

      ∫ 
 y  = 0

  
p 

   C(y ) P l   (cos y )sin y dy da

    =   2l + 1 ______ 
2
   ∫ 
y = 0

  
p 

   C(y ) P l   ( cos y  )  sin y dy. 
(6.24b) 

Corresponding equations are valid for fully normalized spherical harmonics, cf. 
[3.3.2], with

 C(y ) =  ∑ 
l = 2

  
∞

     
_
 c  l   
__

  P l  (cos y )   (6.25a)

and

   
_

 c  l  =   
 c l   _______ 

 √ 
_____

  2l + 1  
  . (6.25b)

Equation (6.24b) can be solved for a known covariance function by numerical inte-
gration. By inserting (6.21) into (6.24b), and taking (6.23) into account, we fi nally obtain

  c l  = M {  Δg  l  
2  }  =  s    l  

2  ( Δg ) . (6.26)

Hence, the coeffi cients are given by the anomaly degree variances defi ned as mean 
values over the squares of Δ g 

l 
 , and related to the degree variances of the residual har-

monic coeffi cients, cf. [6.6.1].
A good approximation to reality is provided by the Tscherning and Rapp (1974) – degree 

variance model and the related covariance function, both have been successfully applied 
to date. The Tscherning-Rapp-model is based on satellite-derived harmonic coeffi cients for 
the degrees 2 to 10 and a set of 1° equal area anomalies (approximately quadratic com-
partments with constant area 110 km × 110 km). The variance of the point anomalies is 
 s   2 (Δg) =  ( 424 μ ms −2  ) 2 and that of the mean anomalies  s   2 (  

__
 Δg  ) 1°  =   ( 303  μms −2  )  2 . The transi-

tion from the variance/covariance of point to mean anomalies has been performed per 
degree by a smoothing factor, which depends on the cap radius of the mean anomaly 
block (here 1° × 1°). As seen from Fig. 6.5, the correlation of the 1° × 1°-anomalies 
approaches zero at a spherical distance of about 30° to 40°. 
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The anomaly degree variance model reads

 

 s   l  
2  (Δg ) =  { 

0         for l = 0,1
754  ( μms –2  )  2     for l = 2

  A ( l − 1 )  ___________  
 ( l − 2 )  ( l + B ) 

   s  0  
  l + 2   for l ≥ 3

   

, (6.27)

with A = 42 528 and B = 24.  s 0  =   (  R B  /R )  2  = 0.999 617 is the ratio between the radius 
of the Bjerhammar sphere (internal boundary surface for the harmonic development, 
cf. [3.3.2]), and the Earth’s radius, Fig. 6.6 shows the anomaly degree variances of the 
Tscherning-Rapp (1974) model and the more recent geopotential models EGM96 and 
EGM2008, cf. [6.6.2], where the latter one has been developed until degree and order 
2159, see Arabelos and Tscherning (2010). 

More details on the spherical harmonic development of different gravity fi eld quanti-
ties and their relation with degree variances and covariance functions will be given in 
[6.6.1] and [6.8.2].
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Fig. 6.5: Global covariance function of gravity anomalies, model Tscherning and Rapp (1974).

Fig. 6.6: Anomaly degree variances, left: model Tscherning and Rapp (1974) and geopotential 
model EGM96 (after Lemoine et al., 1998); right: EGM96 (green), EIGEN-GL04C (blue) and 
EGM2008 (red) (after Arabelos and Tscherning, 2010).
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For regional applications, a covariance function may be derived by subtracting the 
long-wave part from the global function, which results in a decrease in the variance and 
a shortening of the correlation length. Local gravity fi eld interpolation is even possible 
by a plane covariance function, e.g., the Gauss function

 C (y ) =  C 0  e − A 2  y  2  , (6.28)

see Fig. 6.7.
It should be noted that covariance functions have to be positive defi nite. This condi-

tion is fulfi lled for (6.24), as all coeffi cients according to (6.26) are non-negative, as well 
as for (6.28).

An important application of the anomaly covariance function is the interpolation of 
gravity anomalies at points or areas not surveyed. Simple interpolation methods such as 
the manual construction of iso-anomaly maps or the geometric interpolation using adja-
cent data are not ideal and do not deliver optimum results. Least-squares prediction, on 
the other hand, utilizes the statistical information inherent in the covariance function 
and takes the errors of the observations into account.

In the usual linear prediction, the (unknown) gravity anomaly at the point P is esti-
mated by a linear function of the anomalies observed at the points  P 

i
   ( i = 1, …, n ) . We 

assume that, in addition to the covariance function of the anomalies, an error covari-
ance function is also available, describing the statistical behavior of the data errors. It 
can be derived from a priori error and error correlation estimates, where the demands 
on homogeneity and isotropy have to be fulfi lled again. Generally the error covari-
ances are unknown, and the error model has to be restricted onto the error variances. 
Among the rare examples of error covariance functions are the analytical approxima-
tions, based on overlapping data of different sea gravimetry surveys carried out around 
Europe (Weber and Wenzel, 1983). 

Based on the statistical information on the gravity anomalies and their errors, the fol-
lowing covariances, for any distance y, can be calculated:

 C 
 P 

i
 
  = M {  Δg 

P
  Δ g 

i
  } : cross-covariance of Δ g 

p
  with the observation Δ g 

i
 ,
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Fig. 6.7: Local covariance functions of trend-removed 6′ × 10′ mean free air anomalies 
(Torge et al., 1984).



6.2 Three-dimensional positioning      233

 C 
ij
  = M {  Δg 

i
  Δ g 

j
  } : auto-covariance of the observations,

 D 
ij
  = M {  n 

i
   n 

j
  } : auto-covariance of the observational errors (noise n), and combined 

into

  C  P  
T  =  (  C  P 1 

 ,…, C  P i 
 ,…, C  P n 

  ) 

 

C = 

 

( Cnn
…    …    …

…    …    …

…
  …

  …

…
  …

  …

…

…

Cn1

C11

Cij

C1n
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,

  

D =

  

( Dnn
…    …    …

…    …    …

…
  …

  …

…
  …

  …

…

…

Dn1

D11

Dij

D1n

 

)
  

.

 

(6.29)

Now, the prediction error is introduced, being the difference between the true gravity 
anomaly and the predicted value Δĝ. The requirement of a minimum prediction error 
variance, in analogy to least-squares adjustment, leads to the predicted anomaly, as the 
result of least-squares prediction

 Δg ̂ P  =  C  P  
T    

__
  C  –1 Dg, (6.30)

where the observed anomalies have been collected in the vector

  Dg T  =  ( Δ g 1 , … Δ g i , … Δ g n  ) . (6.31)

Under the (plausible) assumption that the gravity anomalies and their errors are not 
correlated, the corresponding matrices C and D can be added element by element, 
leading to the combined matrix   

__
 C  appearing in (6.30):

  
__

 C  = C + D. (6.32)

The prediction of point free-air anomalies (based on a point anomaly covariance function) is 
successful only for very densely surveyed areas, as these anomalies strongly depend on height. 
A smoother gravity anomaly fi eld with improved possibility of interpolation is obtained by 
calculating mean anomalies over larger surface elements (e.g., 5’ × 5’, 30’ × 30’). An effective 
smoothing is obtained by reducing the effect of the topographic masses, and eventually also 
geological mass anomalies, where Bouguer and isostatic anomalies are especially well suited 
for interpolation, cf. [6.5.3]. As well known from least-squares adjustment theory, the predicted 
values of the gravity anomalies are relatively independent from the choice of the covariance 
function, while the error estimates strongly depend on it. Realistic prediction results can be 
expected only within the correlation length defi ned by a covariance of   1 _ 2   s   2  ( Δg ) .

6.2 Three-dimensional positioning

Three-dimensional positioning is generally carried out in a Cartesian coordinate sys-
tem; the use of ellipsoidal coordinates results in more complicated models [6.2.1]. The 
Geodetic Datum provides the orientation of the three-dimensional model with respect 
to the global geocentric system [6.2.2]. Three-dimensional modeling has been early 
proposed by Bruns (1878), and taken up, expanded and carefully investigated since the 
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1950s by Hotine (1969), Wolf (1963a, b), Grafarend (1978a), also Hofmann-Wellenhof 
and Moritz (2005, p. 208 ff.). 

6.2.1 Observation equations 

As usual, the observation equations relate the observed quantities to the unknown sta-
tion coordinates and other parameters (functional model). By “observations” we mean 
geometric quantities that result from preprocessing of the original measurements, such as 
signal travel time, phase and frequency, and readings on graduated circles or staffs, see 
the corresponding sections on geodetic measurement methods in [5]. We also assume 
that instrumental corrections have been applied (e.g., calibration) and that effects from 
the atmosphere (refraction) and the gravity fi eld (Earth tides) have been taken into ac-
count. The observation equations are mostly non-linear. They have to be linearized for the 
subsequent least-squares adjustment, which also includes the treatment of the errors of 
the observations (stochastic model), see references given at the beginning of this chapter. 

The “observations” used for three-dimensional positioning may be divided into space 
and terrestrial measurements.

Space observations include satellite related

• space directions, cf. [5.2.4],
• ranges derived from GNSS (GPS and other satellite systems) and laser distance 

measurements, cf. [5.2.5], [5.2.6],
• range rates from Doppler measurements, cf. [5.2.4].

We add

• baseline vectors obtained from VLBI, cf. [5.3.4].

Global and regional satellite and VLBI networks are nowadays adjusted separately, and 
independent from terrestrial geodetic data. The results (Cartesian coordinates or coordinate 
differences) can be introduced later as “observed” parameters into combined adjustments, 
together with other satellite networks or with terrestrial measurements. Naturally, the 
correlations produced by the previous adjustments (variance-covariance matrix) have to be 
taken into account in that case, cf. [2.5], [7.3]. 

Satellite observations provide the components of the observation vector s directed 
from the station P to the satellite S (Fig. 6.8). The vector s is related to the geocentric 
station vector  r P  and the radius vector  r S  of the satellite by

  r P  + s −  r S  = 0, (6.33a)

with

  r P  =  (   X P 
 
 

  Y P    
 Z 

P
 
  ) ,  r S  =  (  X 

 
 Y   

Z
  ) ,  r S  −  r P  =  (    ΔX  P  

S  
 

  
  ΔY  P  

S      
 ΔZ  P  

S  
  ) . (6.33b)

The “observation” vector is formed by the distance and the spatial direction (as obtained 
by optical direction measurements) to the satellite given in the hour angle system 

 
s = s

  (     cos  h Gr  cos d 
        

sin  h Gr  cos d 
  

       
 sin d 

   ) , (6.34)
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where d  is the declination and

  h Gr  = GAST − a (6.35)

is the Greenwich hour angle, cf. [2.4.1]. For the reductions to be applied to the original 
topocentric observations in order to obtain declination and Greenwich hour angle see 
[5.3.3].

Inserting (6.34) into (6.33) and solving for the components of s yields the observation 
equations

    

 h Gr  = arctan  
  ΔY  P  

s  
 ____ 

 ΔX  P  
s  
  

d = arctan   
 ΔZ  P  

s  
 ___________  

 √ 
__________

   ΔX  P  
 s 

2
   +  ΔY  P  

 s 
2
    
  

s =  √ 
________________

    ΔX  P  
 s  

2
   +  ΔY  P  

 s  
2
   +  ΔZ  P  

 s  
2
     
}
  

. (6.36)

Range differences to the satellite positions (i, j ) are given by

  s j  −  s i  =  √ 
________________

   Δ X  P  
 j  

 2
   +  ΔY  P  

 j   
2
   +  ΔZ  P  

 j   
2
     −  √ 

________________

    ΔX  P  
 i  

2
   +  ΔY  P  

 i  
2
   +  ΔZ  P  

 i  
2
     , (6.37a)

with

 Δ X  P  
j   =  X j  −  X P  etc., Δ X  P  

i   =  X i  −  X P , etc. (6.37b)

If the directions to the quasars are known, VLBI observations deliver the baseline vec-
tor between two terrestrial stations  P 1  and  P 2 :

  b 1,2  =  r 2  −  r 1  =  (   X 2 
 

 
  Y 2    

Z2

    
−  X 1 

 
  

 −  Y 1     
−  Z 1 

  ) . (6.38)

The relations of the original measurements to the “observations” introduced as geo-
metrical quantities in (6.36) to (6.38) are given by (5.42) for Doppler counts, (5.43) and 
(5.45) for GNSS, (5.48) for satellite laser ranging, and (5.68) for VLBI.

The observation equations contain a large number of parameters in addition to the station 
coordinates, and the coordinates of the satellites (orbital parameters) and the quasars, respectively. 
Among them are the Earth orientation parameters, which relate the terrestrial to the celestial 
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Fig. 6.8: Satellite tracking principle.
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reference frame, cf. [2.4.1], parameters describing temporal variations of the ground stations 
(e.g., Earth tides and crustal deformation effects), as well as the coeffi cients of the gravitational 
fi eld and other “disturbing” forces entering through satellite orbit modeling. There are two 
strategies to handle the large amount of data and unknown parameters. The fi rst one consists in 
estimating most of the unknowns in one adjustment process and to adopt only a few parameters 
(e.g., the Earth orientation parameters) from other sources. This leads to “satellite-only” Earth 
models, which provide a global set of station coordinates, the harmonic coeffi cients of the 
gravitational fi eld, and other parameters. If only positioning is intended, the station coordinates 
are the most important adjustment unknowns. Numerical values for the other parameters are 
then taken from corresponding models (e.g. the high precision orbital parameters as provided by 
operational services for GNSS and laser satellites, geopotential models, tropospheric refraction 
models, and others, cf. [5.2], [5.3]. If necessary, small corrections to the model values can 
also be derived (corrections to the Keplerian elements for short arcs, introduction of a local 
tropospheric scale factor, clock corrections, etc.) 

As already discussed for GNSS observations, cf. [5.2.5], we may distinguish between 
absolute and relative positioning when evaluating the observation equations. Absolute 
positioning utilizes the satellite’s orbit (coordinates of the satellite as a function of time) 
and delivers geocentric station coordinates, with an accuracy directly depending on 
the quality of the orbital data. Relative positioning is based on simultaneous observa-
tions on two or more stations. It leads to purely geometric solutions which contain 
datum defi ciencies of a different kind. At least one station has to be known in order to 
fi x the origin of the network. A pure triangulation network requires a minimum of one 
measured distance for defi ning the scale, and a trilateration net would need orientation 
through the spatial direction to stars or quasars. 

By differencing simultaneous observations a number of errors are eliminated or 
greatly reduced which is due to the high error correlation between neighboring sta-
tions. This strategy has been developed especially for the parameter estimation in GPS/
GNSS networks by introducing differences or linear combinations of the observables 
(code and carrier phases) into the adjustment (Teunissen and Kleusberg, 1998b). Since 
the absolute orientation is lost with this strategy, the absolute coordinates of at least one 
station have to be included into the adjustment model. 

As a standard, “single differences”  s  1  
A  −  s  2  

A  between the distances measured simul-
taneously from two receivers  P 1 ,  P 2  to the satellite A at epoch  t i  are formed (Fig. 6.9). 
Thereby, the satellite clock errors are eliminated and refraction and orbital errors are 
reduced. “Double differences” are formed by differencing two single differences 
taken to different satellites A, B at the same epoch  t i :  (  s  1  A  −  s  2  

A  )  −  (  s  1  B  −  s  2  
B  ) . With double

P1 P2 P1 P2 P1 P2

A(ti) A(ti) A(ti)

B(ti) B(tj)A(tj)
B(ti)

Fig. 6.9: GPS single, double and triple differences.
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difference, the receiver clock errors vanish and refraction and orbital errors are further 
reduced. “Triple differences” are constructed by differencing two double differences 
taken at the epochs  t i  and  t j . The ambiguity which enters into carrier phase measure-
ments cancels in the observation equation. Due to the loss of information, triple dif-
ferences allow reduced-accuracy positioning only but are useful for the detection and 
correction of cycle slips.

Sophisticated software packages are available for the adjustment of satellite networks; 
for GNSS networks we mention Wübbena (1989), Webb and Zumberge (1997), King 
and Bock 2005 and Dach et al. (2007). The adjustment delivers the Cartesian coordi-
nates or coordinate differences of the ground stations and their full variance-covariance 
matrix, which has to be taken into account for further processing, e.g., for the com-
bination with other space techniques and/or terrestrial data. If the orientation of the 
networks to be combined is not identical, a corresponding transformation (datum shift) 
has to be included in the adjustment, cf. [6.2.2].

Terrestrial measurements include (traditionally, astronomic observations to fi xed stars 
are included here)

• Astronomic azimuths, latitudes, and longitudes, cf. [5.3.2],
• Horizontal directions (which can be regarded as azimuths without orientation) 

and horizontal angles (corresponding to differences of azimuths), cf. [5.5.1],
• Zenith angles, cf. [5.5.1],
• Distances, cf. [5.5.2],
• Leveled height differences, cf. [5.5.3].

Terrestrial measurements have been classically evaluated separately for horizontal position 
and for height, cf. [6.3], [6.4]. The resulting control networks are nowadays transformed to 
the global reference frame, provided by space methods. This is done by connection to the 
global network and (at least partial) remeasurement, with subsequent transformation. A joint 
evaluation of space and terrestrial observations is now restricted to local applications, with 
dimensions generally not exceeding a few kilometers. More details on the establishment and 
renewal of regional/local geodetic networks are given in [7.1] to [7.3]. 

By substituting (2.20) into (2.29) and taking (2.30) into account, we obtain the obser-
vation equations for azimuths A, zenith angles z, and distances s:

    

A = arctan    −sin Λ ΔX + cos Λ ΔY   _______________________________________    
 −sin Φ cos Λ ΔX  − sin Φ sin Λ ΔY + cos Φ ΔZ

  

z = arccos    cos Φ cos Λ ΔX + cos Φ sin Λ ΔY + sin ΦΔZ    ____________________________________   
  ( Δ X   2  + Δ Y   2  + Δ Z   2  )    

1 __ 
2
   
  

s =   ( Δ X   2  + Δ Y   2  + Δ Z   2  )    
1 __ 
2
     

}
  

, (6.39)

with

 ΔX =  X 2  −  X 1 , ΔY =  Y 2  −  Y 1 , ΔZ =  Z 2  −  Z 1 .

Astronomic latitude Φ and astronomic longitude Λ enter as orientation parameters in 
(6.39). They relate the local astronomic systems to the global geocentric system and are 
treated here as additional unknown parameters. If observed latitudes and longitudes are 
available, they may be introduced as observed parameters in the adjustment.
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As mentioned previously, least-squares adjustment requires linear relations between 
the observations and the unknowns. Corresponding differential relations are derived by 
numerical or analytical differentiation of (6.39). Analytical expressions for the partial 
derivatives ∂A/∂X, etc. are found in Wolf (1963b) and Hofmann-Wellenhof and Moritz 
(2005, p. 211 ff.).

Geometric leveling can be incorporated into three-dimensional computations after trans-
formation of the leveled height difference d n ≈ dn (5.114) into the geocentric coordinate 
system. This is achieved by introducing the ellipsoidal height difference dh, as obtained by 
reducing dn for the effect of the (surface) defl ection of the vertical (Fig. 6.10). In the azimuth 
of the leveling line, the vertical defl ection component e (6.18) is effective, which gives

 dh = dn − e ds. (6.40)

The negative sign prefi xing e ds is based on the sign defi nitions inherent in (6.17) and 
(6.7) resp. (6.8). A differential relationship between the ellipsoidal height and X, Y, Z is 
provided by (4.26a) and (4.27). With

 d  
_
 r Q = 0,

and replacing j, l with Φ, Λ, we obtain

 dh =   
__

 n  T  ⋅ d r = cos Φ cos Λ dX + cos Φ sin Λ dY + sin Φ dZ. (6.41)

Again, we have assumed that the axes of the ellipsoidal and the geocentric system 
are parallel:

 d   
_
 X  = dX, d   

_
 Y  = dY, d   

__
 Z   = dZ.

Integration of (6.40) yields the ellipsoidal height difference 

  Δh 1,2  =  h 2  −  h 1  =  ∫ 
1

   
2

  dn  −  ∫ 
1

   
2

  e ds, (6.42)

which can be included as an “observation” in three-dimensional computations: 
Geometric-astronomic leveling (Heitz, 1973). It is noted that both integrals in (6.42) 
have to be formed over the same path! The differential relation for (6.42) follows 
from differencing (6.41) for the points  P 1  and  P 2 :

 d  (  Δh 1,2  )  =  dh 2  −  dh 1 . (6.43)

e
P

e

z
z

W = WP

ll ELLIPSOID
ds

dn

dh

Fig. 6.10: Geometric-astronomic leveling.
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The fi rst integral in (6.42) can easily be computed by summing the leveled height 
differences. The evaluation of the second integral poses diffi culties, as vertical defl ec-
tions (derived from geodetic astronomy) are generally only available at larger station 
distances (several 10 km in classical networks). This introduces the problem of the inter-
polation of defl ections of the vertical. In fl at and hilly areas, with an average distance 
of the vertical defl ection stations of 20 to 30 km, an accuracy of about 0.1 m/100 km 
can be achieved for the ellipsoidal height differences. If “cm”-accuracy is required, sta-
tion distances of a few km and sophisticated interpolation methods are required (Torge, 
1977; Hirt and Flury, 2008). By reducing the station distance to about 1 km and taking 
into account topography, even “mm”-accuracy can be achieved over distances of a few 
km, cf. [6.7.4].

The three-dimensional concept based on terrestrial observations was already introduced 
by Villarceau (1868) and Bruns (1878). Bruns suggested a point-wise determination of 
the Earth’s surface by a spatial polyhedron constructed from terrestrial measurements and 
orientated by astronomical observations. The feasibility of this concept was demonstrated 
in some test networks (e.g., Torge and Wenzel, 1978), but large-scale application was 
prevented due to the uncertainties of trigonometrical height transfer over larger distances 
and the problems with reducing geometric leveling to ellipsoidal height differences. 

Ellipsoidal coordinates j, l, and sometimes also h are used for numerous applications 
in geodesy, geomatics and cartography, and navigation. They can easily be derived from 
the Cartesian coordinates by the transformation (4.28). However, network adjustments 
in the j, l, h-system are more complicated than in the X, Y, Z-system, and therefore 
restricted to special cases. Nevertheless, differential relations between the observations 
and the ellipsoidal coordinates are useful for solving dedicated problems, e.g., for deriv-
ing reductions onto the ellipsoid and for two-dimensional ellipsoidal calculations, cf. 
[6.3.2], [6.3.3].

Equations (4.27) provide the fundamental relations between the j, l, h- and the 
  
_
 X ,   

_
 Y ,   

_
 Z -systems. Differentiation yields

  (  d   
_
 X 
 
 

 d   
_
 Y    

d   
_
 Z 
  )  =  

__
 A   (    ( M + h ) dj 

  
     

   ( N + h )  cos j dl         

dh

   ) , (6.44)

where  
__

 A  is given by (4.32). Again we assume parallelism of the ellipsoidal and the 
Cartesian coordinate systems. Equation (6.44) can immediately be used if satellite 
derived coordinates or coordinate differences are to be adjusted in the j, l, h-system. 
Differential formulas for the terrestrial observations A, z, s are obtained by inserting 
(6.44) into the differential relations for Cartesian coordinates and reordering (Wolf, 
1963b; Heiskanen and Moritz, 1967, p. 220 ff.), cf. [6.3.2].

We fi nally mention the straightforward transformation from the “natural” coordinates 
Φ, Λ, and H (orthometric height) or  H  N  (normal height) to ellipsoidal coordinates j, l, 
h, where H and  H  N  are derived from the gravity potential W by (3.106) and (3.107), 
respectively. According to (6.17), the defl ection of the vertical (x, h) transforms from the 
plumb line direction to the ellipsoidal normal:

 j  = Φ − x, l = Λ −   
h 
 _____  cos j . (6.45a)
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If normal geodetic coordinates  j   N ,  l  N  (4.73) are required, the curvature of the normal 
plumb line has to be taken into account by d j N (4.74):

  j  N  = Φ −  ( x + dj  N  )  = Φ −  x   N ,  l N  = l = Λ −   
h 
 _____ cos j  . (6.45b)

The relation between h and H respectively  H  N  is given by, see Fig. 6.2:

 h = H + N =  H N  + z, (6.46)

where we have neglected the small (sub-mm order of magnitude) effect of the plumb 
line curvature. 

As shown in [6.7], gravimetric evaluation techniques allow the calculation of the defl ection 
of the vertical and the geoid height or the height anomaly from gravity fi eld data. Equations 
(6.45) and (6.46) thus would permit to establish a geocentric system of ellipsoidal coordinates. 
This led to the idea of establishing a world geodetic system from “natural” coordinates and 
gravimetric corrections, which was pursued since the 1950s, exploiting the (at that time) sparse 
gravity data available especially on the northern hemisphere (Heiskanen 1951). This strategy 
had to be abandoned with the success of satellite geodesy, taking also into account the fact 
that astronomical latitude and longitude generally can be determined only with an accuracy 
of 0.1” (corresponding to 3 m in horizontal position) or less. The height transformation (6.46), 
on the other hand, has obtained high relevance, as it permits the connection of GNSS-derived 
ellipsoidal heights with heights determined by geometric leveling, cf. [6.4.3].

6.2.2 Geodetic datum

The geodetic datum describes the orientation of any geodetic coordinate system with 
respect to the Earth’s body, cf. [2.3.3]. It can be expressed by a parameter set of three 
translations, three rotations and a scale factor (Drewes, 2009c). Generally, ellipsoidal 
coordinates are used at geodetic reference systems, in addition to or instead of spatial 
Cartesian coordinates. This requires the inclusion of two geometric ellipsoid parameters 
(semi-major axis and fl attening) into the datum parameter set.

We distinguish between reference networks based on space methods (satellites, VLBI) 
and classical geodetic networks, established by terrestrial measurements and geodetic 
astronomy. The former networks are directly related to the geocenter and the Earth’s 
spin axis, and thus are very close to a geocentric reference system as the ITRS, cf. 
[2.4.2]. Classical networks, on the other hand, could be orientated only by astronomi-
cal observations (position) and connection to mean sea level (height). This resulted in 
large deviations of the network’s origin from the geocenter, while the axes could be 
made approximately parallel to the geocentric system. Another consequence was the 
separate treatment of horizontal and vertical control networks, with corresponding hori-
zontal and vertical datum, see below and [6.3.3], [7.1], [7.2]. 

We start with the most general case, the transformation of a non-geocentric   
_

 X ,   
_

 Y ,   
_

 Z 
-system into the geocentric X, Y, Z-system. This strategy can be directly applied to sat-
ellite-based networks, and after corresponding transformation, see [4.1.3] and below, 
also to classical ellipsoidal systems. The relation between the two systems is given by 
a similarity transformation in space, i.e., by three translations, three rotations, and a 
change in scale (Fig. 6.11):

 r =  r 0  +  ( 1 + m ) R (  e   __
 X  , e   __

 Y  , e   __
 Z   )  
_
 r . (6.47)
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Here,  r T  = (X, Y, Z ) and   
_
 r  T  =  (   

__
 X  ,   

_
 Y ,   

_
 Z  )  are the position vectors in the two systems, 

and  r  0  
T  =  (  X 0 ,  Y 0 ,  Z 0  )  contains the coordinates of the origin   

__
 O  of the X, Y, Z-system with 

respect to the geocenter O. We assume that the scale of the   
__

 X  ,   
__

 Y  ,   
__

 Z  -system differs only 
slightly from the scale of the global reference system, and that the axes of the two sys-
tems are approximately parallel. Consequently, m is a small scale correction, and the 
rotation matrix is composed of three small Eulerian angles; it takes the form

 
R (  e    __

 X   , e    __
 Y   , e     __

 Z    )  =
  (  1  e    __

 Z    − e     __
 Y   

 − e    __
 Z    1  e     __

 X   
  e     __

 Y     − e    __
 X     1  ) . (6.48)

In order to determine the seven parameters of the transformation (6.47), at least three 
points with seven coordinates given in both systems are required.

The parameters of a geodetic datum are provided indirectly by measurements carried out at control 
points located on the surface of the Earth. These data contain a multitude of time-variable effects, 
stemming from the gravity fi eld and tides, from atmosphere, hydrosphere and cryosphere, as well 
as from crustal motion and deformation. With present-day accuracies, a large part of these effects 
signifi cantly affects the results of geodetic networks, i.e. the coordinates of the reference frame’s 
control points, where temporal variations should be corrected by appropriate models. In this 
connection, a clear distinction should be made between the reference frame with stations moving 
with time and the geodetic datum, which should be fi xed over a longer time span (Drewes, 
2009c). Here, the fi rst and second degree spherical harmonic coeffi cients of the gravitational fi eld 
play a special role, as they independently control shifts of the Earth’s center of mass and the (time-
variable) axis of rotation, cf. [3.3.4]. 

After converting the Cartesian coordinates into ellipsoidal ones (6.47) can be expressed 
in ellipsoidal coordinates j, l, h. The datum parameters in that case also have to include 
the geometric parameters of the ellipsoid, i.e., the semi-major axis a and the fl attening 
f. Of practical interest are the changes of the ellipsoidal coordinates that result from a 
datum transformation, i.e., from translation, rotation, change in scale, and change of the 
parameters of the ellipsoid. We insert (4.27) into (6.47) and take the total differential. 
As the real position of P does not change, we have d r = 0. Neglecting the linear scale 
factor (which can be easily introduced again at all metric quantities) and substituting the 

O

O

P
r

r

Z

X

Y
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Z

YX

eY

eZ

eX

Fig. 6.11: Transformation between 3D-Cartesian coordinate systems.
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differentials by (small) differences, a spherical approximation (M + h = N + h = a, f = 0) 
yields (Merry and Vaniček, 1974):

  (   a dj 
 

   
 a cos j dl      

d  h
   )  = −   

__
 A   −1 d r 0  + C  (  d e     __

 X   
 

  
 d e    __
 Y       

d e    __
 Z   
   )  + F (   d a    

a d f
  ) , (6.49a)

where  A −1  is given by (4.34) and

 C = a  (   sin l 
 

    
   − sin j cos l        

0
     

− cos l 
 

    
 − sin j sin l       

0
     

0
 

  
 cos j     

0
   ) , F =  (   0 

 
 0   

−1
   
sin 2j 

 
  

 0    
 sin 2 j  

   ) . (6.49b)

Equations (6.49) can be used for estimating the changes of the coordinates if the changes 
of the parameters of the geodetic datum are known. All differences are formed in the sense 
geocentric minus non-geocentric, e.g., d a = a(geocentric) – a(non-geocentric). Formulas 
which take the fl attening into account are given by Abd-Elmotaal and El-Tokhey (1995). 

Classical geodetic networks, cf. [7.1], have been orientated by the ellipsoidal coor-
dinates of an initial (or fundamental) point  P F  and by condition equations for the paral-
lelism of the axes with respect to the geocentric system: “local geodetic datum”, the 
distance to the geocenter remained unknown. If we apply (6.49) at a running point P 
and at the fundamental point  P F  , the translation can be expressed in changes  d j F  , d l  F  , 
d h F  of the fundamental point. An equivalent relation can be derived by substituting the 
ellipsoidal coordinates through the (small) residual quantities defl ection of the vertical 
and geoid height, cf. [6.2.1]. By differentiating (6.45) and (6.46), and considering that 
because of d r = 0 also d Φ = dΛ = d H = 0, we obtain

 d x = −dj, dh = − cos j d l, dN = dh. (6.50)

Corresponding equations hold for the “normal” geodetic coordinates, cf. [4.2.3]. 
Hence, the coordinate changes at any point also can be expressed as changes of the 
defl ection of the vertical and the geoid height (or height anomaly), depending on the 
corresponding changes in the fundamental point (Vening-Meinesz, 1950). Spherical 
approximation yields (Heiskanen and Moritz, 1967, p. 208)

 dx =  ( cos  j F  cosj + sin  j F  sin j cos   ( l −  l F  )  )   dx F 
          − sin j sin  ( l −  l F  )   dh F  

          −  ( sin  j F  cos j − cos  j F  sin j cos   ( l −  l F  )  )  (6.51a)

          ×  (   d N F  ____ a   +   da ___ a   +  sin 2  j F  df )  − 2cos j  ( sin j − sin  j F  ) df,

 dh = sin  j F  sin  ( l −  l F  )  d x F  + cos   ( l −  l F  )  d h F 

          + cos  j F  sin   ( l −  l F  )   (    dN F  ____ a   +   da ___ a   +  sin 2   j F  df ) , (6.51b)

 dN = −a  ( cos  j F  sin j − sin  j F  cos j cos  ( l −  l F  )  )  d x F 
 −a cosj sin  ( l −  l F  )  d h F 

 +  ( sin  j F  sinj + cos  j F  cos j cos   ( l −  l F  )  )  
 ×  ( d N F  + da + asi n 2  j F  df  )  − da

 +  (  sin 2 j − 2sin  j F  sin j  )  a df. (6.51c)
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These relations have played a role in the optimum fi tting of horizontal control 
networks to the geoid, cf. [7.1].

We now investigate how the (approximate) parallelism of the axes of classical geo-
detic networks with respect to the geocentric system has been achieved.

We describe the deviation between the local astronomic x, y, z-system (2.20) and the 
local ellipsoidal  

_
 x ,  
_

 y ,  
_

 z -system (4.29) by three (small) Eulerian angles, after refl ection of 
the y and  

_
 y -axes (generating right-handed systems), Fig. 6.12:

 x = R(x, h, y )
_

 x , (6.52a)

with the rotation matrix

 R(x, h, y ) =  (   1 
 

 −y    
x 

     
y 

 
 

 1   
−h

   
−x 

 
 

 h    
1
   ) . (6.52b)

The Eulerian angles are the components of the defl ection of the vertical, cf. [6.1.2], in 
the meridian (x ), in the prime vertical (h), and in the horizontal plane (y ). If the axes of the 
global X, Y, Z- and   

__
 X  ,   

__
 Y  ,   

__
 Z  -systems are not parallel, the following relations hold, accord-

ing to (2.26), (4.29), (6.47), and (6.52):

 ΔX = Ax = AR(x, h, y )  
_

 x  = R (  e    __
 X   , e    __

 Y   , e    __
 Z    )   

__
 A  
_
 x  (6.53)

or

 R (  e    __
 X   ,  e     __

 Y   ,  e     __
 Z    )   

__
 A  = AR(x, h, y ). (6.54)

After inserting   
__

 A  (4.32) and A (2.28), the evaluation of (6.54) results in nine equations. 
Three of the nine equations are independent from each other (orthogonality relations). 
After Taylor expansion of the trigonometrical functions of Φ, Λ inherent in (2.28) at the 
point (j,l), we obtain the components (linear approximation) of the defl ection of the 
vertical if the axes of the global systems are not parallel :

                   

x = Φ − j + sin l  e    __
 X    − cos l  e    __

 Y   

h = (Λ − l ) cosj  − sin j  ( cos l  e    __
 X    + sin l  e    __

 Y     )  + cosj  e    _ Z      

y = (Λ − l ) sin j + cos j (cos l  e    __
 X    + sin l  e   __

 Y   ) + sin j  e   __
 Z   
}
  

. (6.55)

z z
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Fig. 6.12: Rotations between the local ellipsoidal and the local astronomic system.
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We also generalize the equations for the azimuth and the zenith angle given in the 
local astronomic and the local ellipsoidal system. From (6.53) we have

 Ax = R  (  e    __
 X   , e    __

 Y   , e    __
 Z     )   

__
 A  
_

 x .

Inserting (2.20) and (4.29) yields, after linearization of the trigonometrical functions 
of A, z at a, z :

 A − a =  (Λ − l ) sin j + ((Φ − j )sin a − cos j (Λ − l )cos a )cot z
+ cos j  ( cos l  e    __

 X    + sin l  e    __
 Y     )  + sin j  e    __

 Z    , (6.56a)

 z − z = −((Φ − j ) cos a + cos j (Λ − l )sin a )

             − (cos a sin l − sin a sin j cos l ) e    __
 X    

            + (cos a cos l + sin a sin j sin l ) e    __
 Y   

             − cos j sin a  e    __
 Z   . (6.56b)

We now require parallelism of the axes, setting

  e    __
 X     =  e    __

 Y    =  e    __
 Z    = 0.

(6.55) and (6.56) then transform into condition equations for the parallelism of the 
axes of the global and the local system. This was already presupposed when introducing 
the defl ections of the vertical, in [6.1.2]. For the defl ection of the vertical these equa-
tions obtain the form

  
 
   
x = Φ − j, h = (Λ − l ) cos j 

              y  = (Λ − l ) sin j      
   } . (6.57)

The condition equations for the azimuth and the zenith angle now read as

 A − a = h tan j +  ( x sin a − h cos a  )  cot z (6.58)

and

 z − z =  −  ( x cos a + h sin a  ) . (6.59)

Equation (6.58) is known as Laplace’s equation of orientation, while (6.59) furnishes 
the component e of the defl ection of the vertical in the azimuth a (6.18), Vaniček and 
Wells (1974).

A geometric interpretation of the condition equations (6.58) and (6.59) reveals that they prevent 
rotations about the vertical and the horizontal axis of a theodolite. In addition, a rotation about 
the line of sight must be prevented in order to guarantee the parallelism of the global and 
the ellipsoidal system. This can be accomplished if, in addition to (6.58) and (6.59), another 
zenith angle equation is introduced at the fundamental point, possibly with an azimuth which 
differs by 90°. Due to the problems of vertical refraction, classical geodetic networks generally 
employed only the Laplace equation for orientation. A three-dimensional network then would 
need at least three Laplace azimuths at points well distributed over the network (Vincenty, 
1985). In reality, only horizontal control networks were built up by reducing observed azimuths 
and horizontal directions onto the ellipsoid utilizing (6.58) for the reduction, cf. [6.3.2]. In 
order to achieve parallelism of the axes, at least one Laplace equation then had to be fulfi lled at 
this two-dimensional positioning, cf. [7.1.2]. The reduction (6.59), on the other hand, plays an 
important role for trigonometric height determination, cf. [6.4.2].
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6.3 Horizontal positioning

In classical geodetic networks, horizontal positioning (with an ellipsoid as reference sur-
face) has been separated from height determination (referring to the geoid), although a 
three-dimensional concept for geodetic modeling was early available (Bruns, 1878), cf. 
[1.3.4] and [6.2]. This is due to the fact that ellipsoidal height differences to be derived 
from geometric leveling or zenith angles were affected by large uncertainties, which 
entered through the necessary reductions of gravity fi eld related effects (geoid heights 
and defl ections of the vertical, respectively) and of vertical refraction. The separate treat-
ment of horizontal and vertical coordinates was readily accepted by the users of geo-
detic products, especially because gravity fi eld related heights are generally required in 
practice. The possibility to directly compute ellipsoidal coordinates from GNSS-derived 
Cartesian coordinates, cf. [4.1.3], has strongly diminished the importance of horizontal 
positioning on the ellipsoid. In the following, we concentrate on some fundamentals 
of ellipsoidal geodesy, an extensive treatment is found in textbooks such as Grossmann 
(1976), Bomford (1980), and Heck (2003a).

With the ellipsoid as a reference surface, two-dimensional positioning requires ellip-
soidal trigonometry [6.3.1] and reductions of the observed positional quantities onto 
the ellipsoid [6.3.2]. Ellipsoidal “observation” equations then allow the calculation 
of coordinates, after proper orientation of the ellipsoidal network with respect to the 
Earth’s body [6.3.3]. 

6.3.1 Ellipsoidal trigonometry 

In order to carry out computations on the ellipsoidal surface, points on the ellipsoid 
are connected by surface curves. The arc of the normal section and the geodesic are 
primarily employed.

The normal section is defi ned by the curve of intersection of the vertical plane with 
the ellipsoid. Azimuths and distances, after being reduced to the ellipsoid, refer to nor-
mal sections. Since the surface normals of two points on the ellipsoid are in general 
skewed to each other, the reciprocal normal sections from  P 

1
  to  P 

2
  and from  P 

2
  to  P 

1
  do 

not coincide (Fig. 6.13). The differences in azimuth (less than 0.1 ″ for S = 100 km) and 
in distance (less than 1 μm for S = 100 km) are small and can be taken into account 
easily (Bowring, 1971).

P2

P1

= 1 Sg

S (1,2)n

S (2,1)n

g

n(2,1)

n(1,2)

Fig. 6.13: Normal sections Sn and geodesic Sg.
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Normally, because of its favorable properties, the geodesic is used for ellipsoidal 
calculations. It is uniquely defi ned as the shortest connection between two points and 
is generally bounded by the two normal sections. This defi nition is equal to the condi-
tion that the geodetic curvature (curvature of the normal projection of a surface curve 
onto the tangential plane) equals zero. 

As known from differential geometry, the geodetic curvature  k g  is represented by the 
triple scalar product

  k g  =  ( r ′ × r ″ )  ⋅ n. (6.60)

Here, r ′ = d r/dS is the tangent vector and r ″ =  d   2 r/d S  2  is the curvature vector. Also, S 
arc length of the geodesic, and n designates the normal vector to the surface. With  k 

g
  = 0,

we obtain a second-order vectorial differential equation for the geodesic :

  ( r ′ × r ″ )  ⋅ n = 0, (6.61)

the local projection of the geodesic onto the tangential plane is a straight line. We now intro-
duce the j, l -system of ellipsoidal coordinates (Fig. 6.14) and express the geodesic by the 
function l = l (j ). Corresponding evaluation of (6.61) yields the scalar differential equations

  

 

   
 p  2    d   2 l  ____ 

d j   2 
   + 2p   

dp
 ___ 

dj 
     
dl 

 ___ 
dj 

   = 0
          

M  dM ____ 
dj 

   − p   
dp

 ___ 
dj  

   (   dl  ___ 
dj 

   ) 2 = 0
   } , (6.62)

with p = N cos j  radius of the circle of latitude (4.6) and the principal radii of curvature 
M and N (4.13), (4.15). 

From Fig. 6.14, we take the relations

   
dj 

 ___ 
dS

   =   cos a  _____ 
M

  ,   dl  ___ 
dS

   =   sin a  _______ 
N cos j 

   (6.63)

which are valid for any surface curve. We form dl /dj and the second derivative and 
insert them into (6.62). Integration yields Clairaut’s equation

 N cos j sina = const. (6.64)

The constant corresponds to the radius of the parallel circle at which the geodesic has 
an azimuth of 90°. By differentiation with respect to S, and taking (6.63) into account, 
(6.64) is transformed into the equivalent relation

   da  ____ 
dS

   =   
sin a tan j 

 _________ 
N

  . (6.65)

N dcos

Md

= const.

= const.

= = const.d

+ d

+ = const.d

dS

Fig. 6.14: Ellipsoidal (geodetic) surface coordinates.
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Equations (6.63) and (6.64) resp. (6.65) form a system of fi rst-order differential equations 
for the geodesic. The solution of this system leads to elliptic integrals which cannot be 
solved elementarily, cf. [6.3.3].

Two-dimensional positioning on the ellipsoid implies the solution of ellipsoidal tri-
angles, bounded by geodesics. According to (4.18), the curvature of ellipsoidal surface 
curves depends on latitude and azimuth. As a consequence, the solution of a triangle 
not only requires three geometric elements (angles, distances) but also latitude and azi-
muth for orientation on the surface.

At point distances less than 100 km (classical terrestrial networks) the ellipsoid may 
be approximated by the Gaussian osculating sphere (4.23), with the latitude calculated 
as an arithmetic mean of the latitudes of the triangle vertices. Closed spherical formulas 
then can be used for the solution of triangles, e.g., the spherical law of sines

   sin a  _____ 
 sin b 

   =    sin  ( a/R )  ________ 
sin  ( b/R ) 

  , (6.66)

with the spherical angles a, b and sides a, b, R is the radius of the Gaussian sphere. 
Errors due to the spherical approximation remain less than 0.002″ for the angles and 
less than 1 mm for the distances.

We fi nally mention the spherical excess which plays a role in spherical trigonometry. 
It is defi ned as the surplus over 180° of the angle sum of a spherical triangle. The excess 
is proportional to the area F of the triangle:

 e =   F __ 
 R  2 

  . (6.67)

For an equilateral triangle with S = 50 km, the excess amounts to 5.48″.

6.3.2 Reductions to the ellipsoid

In order to carry out a transfer of ellipsoidal coordinates on the ellipsoid, observed 
azimuths and distances have to be reduced to the ellipsoidal quantities a and S, which 
refer to the geodesic.

The reduction of the astronomic azimuth A is composed of three parts. Laplace’s 
equation (6.58) takes the effect of the defl ection of the vertical into account. The cor-
responding reduction to the normal section reads

 a − A = −  ( h tan j +  ( x sin a − h cos a  )  cot z  ) . (6.68)

The fi rst term in (6.68) is the azimuthal component of the defl ection of the vertical. It does 
not depend on the azimuth and corresponds to a twist in the observed directions; horizontal 
angles are not affected by this change of orientation. The second term can be viewed as an 
“error” in setting up the theodolite, by orientating it along the plumb line direction instead 
of the ellipsoidal normal. While the fi rst term reaches the order of magnitude of the vertical 
defl ections and more, a strong reduction takes place in the second term due to cot z. Hence, 
this direction-dependent term is of the order of a few 0.1 ″ in fl at areas only but may reach some 
arcsec in the mountains.

If the target point is not located on the ellipsoid but at a height  h 
2
 , a further reduction has 

to be applied. Namely, the vertical plane formed by the ellipsoidal normal at  P 
1
  and the 

target point  P 
2
 , in general, does not contain the ellipsoidal normal through  P 

2
  (Fig. 6.15). 

Therefore, the ensuing normal section does not pass through the footpoint  Q 
2
 , but through 
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Q2′, which requires a reduction by the angle Q2′  P 
1
  Q 

2
 . This skew-normal reduction can be 

derived from the partial derivative ∂A / ∂ h 
2
 , formed for the adjustment in the j, l, h-system, 

cf. [6.2.1]; it reads

  a n  −  a  h 2 
  =    e  2  ___ 

2b
   co s 2 j sin 2a  h 2 , (6.69)

where e is the fi rst eccentricity and b the semi-minor axis of the ellipsoid, cf. [4.1.1]. For 
j = 0° and a = 45°, the reduction attains only 0.11″ at  h 2  = 1000 m.

Finally, the azimuth has to be reduced from the normal section to the geodesic: 

  a g  −  a n  = −    e  2  ____ 
12 a 2 

    cos 2 j sin 2a  S  2 . (6.70).

At j = 0° and a = 45, this reduction reaches only 0.028″ for S = 100 km.
The reduction of the chord distance s to the ellipsoid is a purely geometric prob-

lem, as distances do not depend on the gravity fi eld (Höpcke, 1966). We assume that 
the effects of atmospheric refraction have been reduced beforehand, cf. [5.5.2]. From 
Fig. 6.16, we read

  s  2  =   ( R +  h 1  )   2  +   ( R +  h 2  )   2  − 2 ( R +  h 1  )   ( R +  h 2  )  cos y,

  s 0  = 2R sin   
y 

 ___ 
2
  , S = Ry,

P2N

h2

Q2

Q ′2

P1

h2

n

=
2

=
1

Fig. 6.15: Skew-normal reduction of the azimuth.

Fig. 6.16: Reduction of the spatial distance on the ellipsoid.
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which gives closed formulas for the reduction to the normal section

  s 0  =  √ _________________

     
  s  2  −   (  h 2  −  h 1  )   2   _________________  

 ( 1 +  h 1 /R )  ( 1 +  h 2 /R )      , S = 2R arcsin  
  s 0  ___ 
2R

  , (6.71a)

where R is taken from Euler’s formula (4.18). After series expansion, the different contri-
butions to the reduction become apparent:

 S − s = −   
 h 1  +  h 2  ______ 

2R
  s −   

  (  h 2  −  h 1  )   2  ________ 
2s

   +   
 s  0  

3 
 _____ 

24 R 2 
  . (6.71b)

The fi rst term in (6.71b) corresponds to a reduction from the mean height to the ellipsoid. It 
reaches the meter-order of magnitude in the mountains at distances of several km. The second 
term takes the inclination of the distance into account. It generally remains below the meter-
order of magnitude in the lowland but may attain large values in the high mountains. The 
magnitude of these reduction terms does not allow substitution of the ellipsoidal heights by 
orthometric or normal heights, otherwise relative errors of 1 0 −5  have to be expected. The last 
term in (6.71b) provides the transition from the ellipsoidal chord to the normal section and 
reaches the cm-order only at larger distances.

The reduction from the normal section to the geodesic is given by

  S g  −  S n  = −    e 4  ______ 
360 a 4 

    cos 4 j  sin 2 2a  S  5 . (6.72)

The magnitude reaches the meter-order only at distances of several 1000 km and can 
be neglected in classical network computations.

6.3.3 Computations on the ellipsoid

As already mentioned, the relevance of ellipsoidal calculations has decreased, since the 
results of three-dimensional positioning in Cartesian coordinates can easily be trans-
formed into ellipsoidal coordinates, see (4.28). Azimuths and distances derived from 
Cartesian coordinates, see (6.39), can be reduced to the ellipsoid according to [6.3.2]. 
Nevertheless, computations on the ellipsoid are still of signifi cance in navigation, and 
they have been the basis for the calculation of classical horizontal control networks, 
which are still in use today.

The geodetic datum of the classical two-dimensional geodetic systems has been 
established by the defl ection of the vertical and the geoid height at a fundamental point 
and the parameters of the reference ellipsoid, cf. [6.2.2]. Equation (6.57) then allows 
the transformation of observed astronomical latitude and longitude into the correspond-
ing ellipsoidal quantities, and (6.46) provides the height relation between the geoid or 
quasigeoid and the ellipsoid. Having reduced the observed horizontal directions and 
the distances onto the ellipsoid, only one rotation about the ellipsoidal normal in the 
fundamental point is possible. This rotation is fi xed by applying the Laplace equation 
on the astronomic azimuth observed at the fundamental point. Equations (6.57) and 
(6.58) thus provide the parallelism of the axes of the ellipsoidal system with respect to 
the global geocentric system.

The accuracy of the parallelism of axes depends on the accuracy of the (nineteenth or early 
twentieth century) astronomical observations which entered into (6.57) and (6.58), and hence 
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it is about 1 to 2 arcsec or even better. The origin of the classical systems, on the other hand, is 
far from being geocentric and may deviate by some 100 m and more from the geocenter. This 
results partly from the fact that 1 arcsec in astronomical positioning already corresponds to 
30 m in horizontal position, but mainly from totally neglecting or only relative use of vertical 
defl ections and geoid heights, cf. [7.1].

Having fi xed the ellipsoidal coordinates and one geodetic azimuth at the fundamental 
point, ellipsoidal coordinate transfer can be carried out with the ellipsoidal “observa-
tions” referring to the geodesic. Here, it is assumed that the ellipsoidal network is error 
free; adjustment strategies are discussed in [7.1].

We distinguish between

• The direct problem, i.e., to compute the ellipsoidal coordinates  j 
2
 ,  l 

2
  of the point  

P 
2
 , as well as the azimuth  a 

2
 , given the coordinates  j 

1
 ,  l 

1
  of point  P 

1
 , the azimuth  

a 
1
 , and the distance S.

• The inverse problem, i.e., to compute the azimuths  a 
1
 ,  a 

2
  and the distance S, 

given the coordinates  j 
1
 ,  l 

1
  and  j 

2
 ,  l 

2
  of  P 

1
  and  P 

2
 .

The direct and the inverse problem correspond to the solution of the ellipsoidal polar 
triangle  P 

1
 N P 

2
  (Fig. 6.17), Ehlert (1993). With the geodesic introduced as a surface curve 

connecting  P 
1
  and  P 

2
 , elliptic integrals appear in the solutions, cf. [6.3.1]. Hence no 

closed solutions are available (Rösch and Kern, 2000). Dependent on the computing 
technique available, numerous solutions of the direct and the inverse problem have 
been developed over the past 200 years. They are based either on series expansions or 
on numerical integration, some examples follow. 

A Taylor series expansion of latitude, longitude, and azimuth as a function of the arc 
length was given by Legendre already in 1806:

  

 

   

j2 −  j 1  =   (   dj 
 ___ 

dS
   )  

1
  S +   1 __ 

2
     (    d  2 j 

 ____ 
d S 2 

   )  
1
   S 2  + …

    

            

     l 2  −  l 1  =   (   dl  ___ 
dS

   )  
1
  S +   1 __ 

2
     (    d   2 l  ____ 

d S 2 
   )  

1
   S 2  + …    

            
    

 a 2  −  a 1  =   (   da  ____ 
dS

   )  
1
  S +   1 __ 

2 
    (    d   2 a  ____ 

d S 2 
   )  

1
   S 2  + …

  } , (6.73)
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Fig. 6.17: Ellipsoidal polar triangle.
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where the fi rst-order derivatives are provided by (6.63) and (6.65), and the equation 
of the geodesic enters through da /dS. The higher-order derivatives are calculated ac-
cording to

   
 d  2 j 

 ____ 
d S  2 

   =   ∂ ___ 
∂j

  (   dj 
 ___ 

dS
   )    dj 

 ___ 
dS

   +   ∂ ___ 
∂a

   (   dj 
 ___ 

dS
   )    da  ____ 

dS
  , (6.74)

and so forth, with variable latitude and azimuth. 

Since the Legendre series are expanded with respect to S, they converge slowly. An expansion 
to the fi fth order (for j, l ) and the fourth-order (fora ) is necessary at mid-latitudes in 
order to provide an accuracy of 0.0001″ and 0.001″, respectively, at distances of 100 km. 
Developments up to the tenth order are available (Krack, 1982), and modifi cations of (6.73) 
improve the convergence and allow an effi cient solution for lengths of several 100 km and 
more.

Series expansions suitable for very long geodesics have been developed by Bessel 
(1826) and improved by Helmert (1880). For this method, the ellipsoidal polar triangle 
is projected onto a concentric sphere with radius a (Fig. 6.18). The latitude j is trans-
formed to the reduced latitude b  (4.10).

Due to Clairaut’s equation (6.64), which now reads.

 cos b sin a  = const.,

the ellipsoidal azimuths are preserved, if the azimuth  a 
1
  is transferred to the sphere. The 

relation between the ellipsoidal distance S and the spherical distance s, as well as those 
between the ellipsoidal and the spherical longitude differences Δl and Δl′, are given by 
differential formulas which correspond to (6.63): 

   
db 

 ___ 
ds 

   = cos a,   dl′ ___ 
ds 

   =   sin a  _____ 
 cos b 

  . (6.75)

By combination with (6.63), the following relations are obtained:

 dS = a √ 
___________

  1 −  e  2 cos2b    ds, dl =  √ 
___________

  1 −  e  2 cos2b   dl′. (6.76)

The elliptic integrals resulting from (6.76) are solved either by expanding the square 
roots in series and subsequent integration term by term or by numerical methods. As the 
series expansions are controlled by the (small) numerical eccentricity, they converge 
rapidly. After projection onto the sphere, the coordinate transfer is carried out by strict 

Fig. 6.18: Transfer of ellipsoidal coordinates: Bessel-Helmert solution.
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formulas of spherical trigonometry, and the results are then transformed back to the 
ellipsoid by inverse relations. Computations around the globe are possible with mm 
accuracy (Klotz, 1993; Sjöberg, 2006).

Numerical methods are based either on a polynomial approximation of the integrals 
and subsequent integration (methods of Newton, Gauss, Simpson and others) or on 
numerical integration (Schmidt, 1999). In the latter case, the length of the geodesic is 
subdivided into small increments (number n), which are calculated using the differ-
ential formulas (6.63) and (6.64), Fig. 6.19. Clairaut’s equation serves for keeping the 
increments on the direction of the geodesic. Summing the line elements provides a fi rst 
approximation. By iteration with smaller increments and comparison of the results, a 
given error limit can be obtained. With increments of 100 m length, sub-cm accuracy 
can be achieved with geodesics of 10 000 km length. 

By inversion, solutions of the inverse problem are available for all kind of meth-
ods. The adjustment of ellipsoidal networks would require differential relations da /dj, 
da /dl and dS/dj, dS/dl. These relations can be derived from the corresponding differ-
entials of a three-dimensional model reduced to the ellipsoid or by differentiating the 
solutions of the inverse problem (Wolf, 1963b).

6.4 Height determination

Precise height determination is possible either with the relative methods of geometric 
leveling and trigonometric height transfer using zenith angles, or with GNSS (today still 
mainly GPS) heighting which may be applied in the absolute or in the relative mode. 
The results of these methods refer to the geoid (quasigeoid) or the ellipsoid, which 
requires corresponding reductions. Geometric leveling after applying small reductions 
provides height differences defi ned in the gravity fi eld [6.4.1]. Zenith angles also refer 
to the gravity fi eld. Trigonometric heighting thus delivers corresponding height differ-
ences, which may be transformed into ellipsoidal ones by taking the effect of the gravity 
fi eld (defl ections of the vertical) into account [6.4.2]. GPS heighting, on the other hand, 
immediately results in geometrically defi ned ellipsoidal heights or height differences, 
which for practical use generally have to be reduced to heights above the geoid (qua-
sigeoid) [6.4.3].

P1
= 1

= 2

P2

2

1

= 2= 1

S S= /n

N cos sin = const.

Fig. 6.19: Transfer of ellipsoidal coordinates: numerical solution.
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As precise heighting is based on observed height differences, the defi nition and 
realization of a vertical reference surface (geoid) is of fundamental importance. This 
vertical datum problem is extensively discussed in [3.4.3], for practical realization 
see also [7.2].

6.4.1 Heights from geometric leveling

The raw results of geometric leveling d n ≈ dn are transformed into potential differences 
by taking surface gravity g along the leveling line into account (5.116). If connected to 
the zero height surface (geoid or quasigeoid) geopotential numbers (3.104) are obtained:

 C = W0 − WP =  ∫ 
0

   
P

  g  dn. (6.77)

In principle, the evaluation of (6.77) requires a gravity value at each leveling point, 
i.e., at distances of 100 m or less for precise leveling. This requirement can be dimin-
ished if we postulate the same relative accuracy for the effect of leveling and gravity on 
the geopotential differences:

   
dg

 ___ g   =   d  ( Δn )  _____ 
Δn

  . (6.78)

Assuming a leveling accuracy of 0.1 mm, gravity would only be needed with an accu-
racy of 100 μm s −2  for Δn = 10 m, and 10 μm s −2  for Δn = 100 m. Consequently, gravity 
values required in (6.77) can be interpolated from gravity measurements carried out at 
station distances of 5 to 20 km in fl at areas, and at 1 to 2 km in the mountains. Prefer-
ably, gravity stations should be established at sites where the gravity changes depart 
from linearity (variations in slope or direction of the leveling line, gravity anomalies). 

Precise leveling in fundamental networks is carried out in closed loops, cf. [7.2]. The 
calculation of heights is performed by adjusting potential differences, with the condi-
tion, cf. [3.2.3]:

 ∫  dW = 0. (6.79)

Subsequent transformation yields metric heights, cf. [3.4.3].
An alternative approach, used classically, is to fi rst convert the raw leveling results 

(with ∫ dn ≠ 0) into differences of the respective height system and then adjust height 
differences, where we distinguish again between dynamic, orthometric and normal 
heights. 

Dynamic height differences are obtained by differencing (3.105):

 Δ H   1,2  
dyn  =  H  2  

dyn  −  H   1  
dyn  =  Δn 1,2  +  E  1,2  

 dyn , (6.80a)

with the dynamic height reduction

  E   1,2  
dyn  =  ∫ 

1

   
2 

      
g −  g    0  

45 
 _______ 

 g     0  
45 

   dn. (6.80b)

For orthometric heights, we expand (3.106) by dynamic heights:

 Δ H 1,2  =  H 2  −  H 1  = Δ H   1,2  
dyn  +  (  H 2  −  H  2  

dyn  )  −  (  H 1  −  H  1  
dyn  ) .
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This leads to 

 Δ H 1,2  =  Δn 1,2  +  E 1,2 , (6.81a)

with the orthometric height reduction 

  E 1,2  =  ∫ 
1

   
2

    
 g −  g     0  

45 
 _______ 

 g     0  
45 

    dn +   
   
_

 g  1  −  g    0  
45 
 ________ 

 g     0  
45 

    H 1  −   
  
_

 g  2  −  g     0  
45 
 _______ 

 g    0  
45 

   H 2 . (6.81b)

An analog equation is valid for the transformation of leveled height differences into 
normal height differences, where mean gravity along the plumb line  

__
 g  is replaced by 

mean normal gravity    
_
 g  , and orthometric height H by normal height  H  N  (3.107). The 

normal height reduction then reads:

  E  1,2  
N   =  ∫ 

1 

   
2

    
g −  g    0  

45 
 _______ 

 g     0  
45 

    dn +   
  
__

  g 1   −  g    0  
 45 
 _______ 

 g     0  
45 

   H  1  
N  −   

   
__

 g     2 −  g     0  
45 
 _______ 

 g     0  
45 

   H  2  
N . (6.81c)

The dynamic height reduction only depends on gravity and height differences along the 
path. It attains values between a few mm (fl at terrain) and some cm to dm (mountains). 
Hence, it has to be taken into account even in local surveys if the vertical reference system 
is based on dynamic heights. The orthometric and the normal height reduction include the 
dynamic reduction, but, in addition, contain two terms with the mean gravity along the 
actual resp. normal plumb line at the end points of the leveling line. The different reduction 
terms substantially cancel each other, with the consequence that these reductions are 
below one mm in fl at areas and only reach a few cm in the mountains. 

Mean normal gravity   
__

 g    can be calculated by (4.67) with the spherical approximation

   
__

 g   =  g 0   ( 1 −    H  N  ___ 
R

   ) . (6.82)

Mean actual gravity   
_
 g , on the other hand, requires the knowledge of g along the 

plumb line between the geoid and the Earth’s surface. At any point P ′ with height H ′, 
we have

 g ′ = g −  ∫ 
H ′

  
H

    
∂g

 ___ 
∂H

  dH , (6.83a)

where g is the surface gravity at P. The actual vertical gravity gradient is given by (3.71), 
where we may introduce (4.60) for the free-air part and 2670 kg/ m 3  as a mean crustal 
density; this yields the approximation

 g ′ = g + 0.848 ×  10 −6   ( H − H ′ )  m  s −2 , (6.83b)

also called Poincaré-Prey reduction (Hofmann-Wellenhof and Moritz, 2005, p. 138 ff.). 
After inserting into (3.106) and integration between H ′ = 0 and H ′ = H/2, we obtain the 
frequently used formula 

  
_

 g  = g + 0.424 ×  10 −6 H m  s −2  (6.84)

for the mean actual gravity between the Earth’s surface and the geoid. Orthometric 
heights based on this estimate are called Helmert heights.

As shown in [6.5.3], the second term on the right side of (6.84) can be interpreted as a 
reduction of the surface gravity to actual gravity at H/2, with the Bouguer plate as a model 
of the topography. The effect of model errors remains small in fl at terrain, but improved 
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models that take topography and density into account are needed in the mountains (Tenzer 
et al., 2005).

6.4.2 Trigonometrical heights

Zenith angles can be used for a trigonometrical height transfer if refraction effects have 
been reduced suffi ciently, cf. [5.5.1], Fig. 6.20. The ellipsoidal zenith angle ζ is ob-
tained from the observed quantity z’ by

 z = z ′ + d + e = z + e, (6.85)

where d is the angle of refraction (5.11) and e  the vertical defl ection component in the 
azimuth of the line of sight (6.18). Using spherical trigonometry, the ellipsoidal height 
difference is given by (Kneissl, 1956, p. 358):

 Δ h 1,2  =  h 2  −  h 1  = S  ( 1 +   
  h m 

 ___ 
R

    ) cot  z 1  +   S 
2

 ________ 
2R sin 2  z 1 

  . (6.86)

S is the length of the ellipsoidal normal section, R the radius of curvature (4.18), and  
h 

m
  =  (  h 

1
  +  h 

2
  )  /2 represents a mean height. 

The use of reciprocal zenith angles offers signifi cant advantages. With the central 
angle y

 y =   S __ 
R

   =  z 1  +  z 2  − p (6.87)

taken from Fig. 6.20, we apply the law of tangents on the triangle  P 1  O   P 
2
 . In connection 

with (6.85), the height difference is obtained:

 Δ h 1,2  = S  ( 1 +   
 h m 

 ___ 
R

   +    S  2  _____ 
12 R  2 

   )  tan   1 __ 
2
    (  (  z ′ 2  +  d  2  +  e 2  )  −  (  z  ′ 1  +  d 1  +  e 1  )  ) . (6.88)

Here, only differences in d and e appear. Symmetric refraction conditions may be 
expected with simultaneous observations, cf. [5.5.1], thus refraction effects will mostly 
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Fig. 6.20: Trigonometrical height transfer.
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cancel with the use of simultaneous reciprocal-zenith-angle measurements (Kuntz and 
Schmitt, 1995). They also offer a possibility to determine the coeffi cient of refraction. 
Combining (5.11), (6.85), and (6.87), and neglecting the defl ections of the vertical, 
yields

 k = 1 −   R __ 
S
    (  z ′ 1  +  z ′ 2  − p  ) . (6.89)

From (6.89), an average value of k = 0.13 ± 0.04 was obtained by Gauss at his arc measurement 
in the kingdom of Hannover. This value was confi rmed by other surveys for lines of sight with a 
large ground clearance, but close to the ground the coeffi cient of refraction may vary between 
–1 and +1. Network adjustment models may be extended by introducing individual refraction 
coeffi cients for each station or for each line (Hradilek, 1984), and observed meteorological 
parameters may also contribute to the determination of more realistic values for k, cf. [5.1.2], 
[5.5.1]. In spite of these refi nements, refraction irregularities strongly limit the application 
of trigonometrical heighting. A cm-order of accuracy may be obtained over distances of a 
few km, but errors of the dm-order of magnitude and more have to be expected with larger 
distances. 

Trigonometric leveling signifi cantly diminishes the errors of a trigonometrical height 
transfer, by reducing the lines of sight to 100 to 300 m (Rüeger and Brunner, 1982). At 
this method, height differences are determined by measuring zenith angles and slope 
distances with a total station, cf. [5.5.2]. Either simultaneous-reciprocal observations 
are carried out using two refl ector-equipped total stations or the method of leveling 
“from the middle” is applied, in analogy to geometric leveling, cf. [5.5.3]. Due to the 
short lines of sight running approximately parallel to the Earth’s surface, refraction er-
rors remain small and obey a favorable error propagation even over larger distances; 
accuracies of 1 to 2 mm per km can be achieved. The effi ciency of the method can be 
increased by motorized procedures (Becker, 2002). Trigonometric leveling may be re-
garded as a special version of geometric leveling using inclined lines of sight. Hence, 
the results represent a good approximation to leveled height differences.

Trigonometric height determination with long lines played an important role in the 
establishment of classical horizontal networks by triangulation, as it simultaneously provided 
heights for reduction onto the ellipsoid and for the later construction of topographical maps. 
Today, it is restricted to special applications, e.g., to the height determination of inaccessible 
sites. Trigonometric leveling, on the other hand, has been employed successfully for surveying 
vertical control networks of large extension (Whalen, 1985).

6.4.3 Heights from GNSS (GPS)

GNSS and especially the Global Positioning System (GPS) provide global Cartesian co-
ordinates with high accuracy, cf. [5.2.5], which can easily be transformed to ellipsoidal 
coordinates including the ellipsoidal height, see (4.28). While absolute heights above 
the reference ellipsoid can be derived with sub-cm accuracy only from global network 
observations, differential methods provide this accuracy already at observation times of 
a few hours or less, for distances of 100 km and more. Main error sources stem from 
the geometry of the satellites’ constellation and the atmospheric refraction, cf. [5.2.5]. 
For distances of a few 10 km, even sub-cm accuracy can be obtained. Consequently, 
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GPS heighting may support or substitute time-consuming geometric leveling, at least for 
distances larger than about 10 km. This has led to the strategy of GPS leveling which 
requires that the reduction of ellipsoidal height differences to normal or orthometric 
height differences can be performed with corresponding accuracy (Dodson, 1995; 
Featherstone et al., 1998). According to (6.46), quasigeoid or geoid differences then 
provide the necessary reductions:

 Δ H  N  = Δh − Δz, ΔH = Δh − ΔN. (6.90)

We remark, that (6.90) may be evaluated for the determination of normal or orthometric height 
differences (“GPS leveling”), but also for deriving the quasigeoid or geoid, respectively. The 
latter problem presupposes the existence of a precise leveling network, well connected to the 
GPS derived heights, cf. [6.7]. Repeated GPS height determinations, on the other hand, may be 
directly evaluated with respect to temporal height changes, as correlated geoid variations only 
happen at large-scale mass shifts, and remain about one order of magnitude smaller. This fact 
can be exploited at the investigation of vertical crustal movements as well as for the detection 
of subsidence at tide gauges or at engineering projects, cf. [8.3.3], [8.3.4].

Today, global quasigeoid or geoid models have an accuracy of about 0.1 m, and re-
gional models reach the cm accuracy, cf. [6.6], [6.7]. The use of these models for the 
reduction of GPS heights presupposes that the model contains the same reference sur-
face as used as zero height surface for the height system, cf. [3.4.3]. This demand can 
be fulfi lled by fi tting the model to quasigeoid or geoid heights at control points where 
GPS and leveled heights are available. The fi tting also reduces long- and medium-wave 
model errors. Following the method of least-squares collocation, cf. [6.8.2], the dis-
crepancies found at the control points can be modeled (for normal heights) as follows 
(Denker et al., 2000):

  h gps  −  H  N  −  z  mod   = t + s + n, (6.91a)

where t describes a trend component, s is a stochastic signal part, and n represents 
the random noise of all types of observations involved (GPS, leveling, geopotential 
model). A simple trend function may consist of a three-parameter datum shift according 
to (6.41):

 t = cos j cos l ΔX +  cos j sin l ΔY +  sin j ΔZ. (6.91b)

Equivalently, the trend function may consist of a change in the ellipsoidal coordinates 
of some initial point, which corresponds to a vertical shift and tilts in the NS- and the 
EW-direction. Presupposing a suffi cient number of control points, the signal part can 
be derived from an empirical covariance function of the de-trended residuals and mod-
eled, e.g., by an exponential function, cf. [6.1.3].

Using trend reduction only, the r.m.s. discrepancies between local geoid/quasigeoid models 
and GPS/leveling control points have been reduced to the dm-order of magnitude over a 
few 1000 km and to a few centimetre over several 100 km. By also including a signal part, 
cm-accuracy may be obtained over distances up to 1000 km, which corresponds to the 
accuracy of classical leveling networks (Denker, 1998). Large-scale GPS leveling is now an 
effi cient tool for improving or completely renewing national and continental height systems, 
cf. [7.2]. Local applications include, among others, the height transfer to islands (e.g., Seeber 
and Torge, 1997) or to high mountains such as Mount Everest (Chen et al., 2010). For local 
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(several 10 km) applications, gravity fi eld related heights may also be estimated by purely 
mathematical interpolation between GPS/leveling control points, employing, e.g., low-order 
surface polynomials or splines. If a dense net of control points is available, and if the gravity fi eld 
is suffi ciently smooth, cm-accuracy can be achieved (Collier and Croft, 1997). The interpolation 
accuracy rapidly decreases at rough topography, and a topographic reduction will be necessary 
then, cf. [6.5.3].

With the further improvement of global and regional quasigeoid/geoid models, GPS 
leveling will become even more important.

6.5 Fundamentals of gravity fi eld modeling

Gravity fi eld modeling is part of the geodetic boundary-value problem [6.5.1]. Topography 
plays an important role in the solution of this problem [6.5.2]. Gravity reductions serve for 
reducing observed gravity fi eld data onto the geoid and subsequent geoid computation, 
and also provide different kinds of gravity anomalies for fi eld interpolation and geophysical 
interpretation [6.5.3]. While the orientation of the gravimetrically derived geoid is uniquely 
defi ned, the scale remains unknown and has to be determined by distance measurements 
[6.5.4].

6.5.1 The geodetic boundary-value problem

The geodetic boundary-value problem comprises the determination of the surface of the 
Earth and of its external gravity fi eld from observations on or close to the Earth’s surface 
(Sansò and Rummel, 1997). The surface to be determined is either the geoid (Stokes 
problem) or the physical surface of the Earth and the quasigeoid (Molodensky problem), 
Sansò (1995). 

We start from Green’s third identity (e.g., Jekeli, 2009, p. 19), applied here for a func-
tion V, being continuous and fi nite outside and on the surface S, with continuous and 
fi nite partial derivatives of the fi rst and second order there, and vanishing in infi nity 
(Heiskanen and Moritz, 1967, p. 11ff.). With n being defi ned as the outer surface nor-
mal and l the distance between the point of evaluation and the source point, cf. [3.1.1], 
we have 

 ∫ ∫ 
v

   
 

   ∫  1 __ 
l
   ΔVdv  = −pV −∫ ∫ 

S 

   
 

    (   1 __ 
l
     ∂V ___ 

∂n
   − V  ∂ ___ 

∂n
    (   1 __ 

l
   )  )   dS,  (6.92a)

with p = 4p if P is outside S, and p = 2p if P is on S. If we apply (6.92a) on the gravity 
potential W (3.42) and take the generalized Laplace equation (3.49) into account, the 
fundamental boundary problem of physical geodesy may be formulated by a non-linear 
integral equation of the second kind in the gravity potential (Molodenski et al., 1962). 
The above substitutions fi nally lead to (Heiskanen and Moritz, 1968, p. 15):
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 ∂n S 

    (   1 __ 
l
   )  −   1 __ 

l
     ∂W ____ 

∂ n S 
   )   dS + 2p  w  2   (  X  2  +  Y   2  )  + 2 w   2  ∫ ∫ 

v

   
 

   ∫   dv ___ 
l
   = 0. (6.92b)

Now  n S  is the outer surface normal to the Earth’s surface S, v is the volume of the Earth 
and w its rotational velocity, and l denotes the distance between the source point (on 
the surface or the interior of the Earth) and the point of calculation. If W and ∂W/∂ n s  
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(i.e., the gravity component normal to the surface) were known on S, then the geometry 
of the Earth’s surface would remain as the only unknown quantity. After the determina-
tion of S, an upward continuation of W would deliver the external gravity fi eld .

This boundary-value problem can be linearized by approximating the Earth’s surface 
by the telluroid (with respect to the physical surface) or the ellipsoid (with respect to 
the geoid), and the actual gravity potential W by the normal potential U, cf. [6.1.1]. 
As the centrifugal part is well known, (6.92b) then transforms into an integral equation 
for T

 −2pT + ∫ ∫ 
Σ

   
 

     ( T  ∂ ___ 
∂ n Σ 

    (   1 __ 
l
   )  −   1 __ 

l
     ∂T ___ 
∂ n Σ 

   )  d Σ = 0. (6.93)

For the physical surface, the integration is now performed over the known telluroid Σ. 
As the surface normal  n Σ  deviates from the direction of the plumb line, ∂T/ ∂ n Σ  not only 
depends on the gravity disturbance and gravity anomaly, respectively, but also on the 
defl ection of the vertical and the slope of the terrain, cf. [6.7.2]. If (6.93), on the other 
hand, is applied on the geoid as boundary surface, this dependence reduces to the grav-
ity disturbance respectively gravity anomaly.

Instead of the integral equation (6.93), the geodetic boundary-value problem can also 
be formulated by Laplace‘s differential equation (6.2):

 ΔT = 0. (6.94)

The residual gravity fi eld parameters observed on the Earth’s surface, or reduced to 
the geoid, then enter into boundary conditions for the solution of (6.94). The primary 
“observables” are the height anomalies and the geoid heights, respectively, and the 
gravity disturbances or gravity anomalies. Defl ections of the vertical and gravity gradi-
ent components play a role only in local calculations.

A Taylor development of U in the telluroid point Q gives

  U P  =  U Q  +   (   ∂U ___ 
∂  

_
 n 
   )  Q   z P  + …, (6.95)

where  
__

 n  is the normal to U =  U Q , and ζP the height anomaly. Solving for ζP and inserting 
into (6.1) yields 

  z P  =   
 T P  −  (  W P  −  U Q  ) 

  _____________  g Q   , (6.96a)

with the normal gravity

  g Q  = −   (   ∂U ___ 
∂  

_
 n 
   )  Q . (6.96b)

The condition UQ = WP (6.6) fi nally delivers 

  z P  =   
 T P  __  g Q   . (6.96c)

If (6.96a) is applied to the geoid, we obtain the corresponding relation between the 
geoid height and the disturbing potential on the geoid:

 N =   
T −  (  W 0  −  U 0  )   ____________  g 0 

  , (6.97a)
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where  g  0  is normal gravity on the ellipsoid (4.41). Under the condition  U 0  =  W 0 , (6.97a) 
reads

 N =   T __  g 0 
  . (6.97b)

This simple relation between the geoid height (a geometric quantity) and the disturb-
ing potential (a physical quantity) has been known as Bruns’ theorem. As demonstrated 
above, it is also valid at the Earth’s surface, and can be extended to the exterior space, 
cf. [6.7.3].

We now derive the relations between the disturbing potential and residual gravity 
(defl ection of the vertical, gravity disturbance/anomaly, cf. [6.1.2]). The defl ection of 
the vertical is the horizontal derivative of z resp. N (Fig. 6.21). Taking (6.96) and (6.97) 
into account, the components in the direction of the meridian and the prime vertical 
are then given by

 x =  −   1 ________ 
g  ( M + h ) 

     ∂T ___ 
∂j

  , h  = −   1 _____________  
g ( N + h )  cos j

 ∂T ___ 
∂l

    , (6.98a)

where the ellipsoidal arc elements are provided by (4.20). The negative sign follows 
from the sign conventions for the quasigeoid (geoid) and the vertical defl ection, see 
(6.40).

In spherical approximation we obtain

 x = −   1 ___ g r     
∂T ___ 
∂j

 , h = −   1 _______ g r cos j ∂T ___ 
∂l

  . (6.98b)

The gravity disturbance (6.11) is related to T by
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where we have neglected the defl ection of the vertical. We now develop  g P  at the tel-
luroid point Q, taking (6.96c) into account:

  g P  =  g Q  +    (   ∂g  ___ 
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__
 n 
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Q
   x P  + … . (6.100a)

Inserting into (6.99) and taking (6.96c) into account yields the gravity anomaly : 
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The important relation between gravity anomaly and gravity disturbance reads as

 Δ g P  =  d  g P  +   1 __  g Q      (   ∂g  ___ 
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   T P . (6.102)
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Fig. 6.21: Defl ection of the vertical components and height anomaly.
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With the spherical approximation cf. [4.2.2], 
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and (6.99a) to (6.101a) and (6.102) read as

 d g P  = −     ∂T ___ 
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  , (6.99b)

  g P  =  g Q  −   2 __ r  T, (6.100b)
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r
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Equations (6.99), (6.101) represent boundary conditions for the solution of the Laplace 
equation (6.94). Because of the importance of (6.101), this fi rst-order partial differential 
equation in T is also known as the fundamental equation of physical geodesy.

High-resolution gravity-fi eld modeling (e.g., geoid determination with cm-accuracy) 
requires some refi nements in the formulation and solution of the geodetic boundary-
value problem (Moritz, 1974; Heck, 1991). This includes the transition to an ellipsoi-
dal approximation by developing the potential in ellipsoidal harmonics or by applying 
ellipsoidal corrections to the spherical approximation (Jekeli, 1988b; Wang, 1999). It 
should be remembered that the spherical approximation primarily stems from neglect-
ing the ellipsoid’s fl attening, which is about 0.3%. This results in corresponding relative 
errors in the residual gravity fi eld quantities derived from the solution of the boundary 
value problem. As an example, with an r.m.s. geoid variation of about 30 m, a geoid cal-
culation would thus be erroneous by 0.1 m. Furthermore, the mass of the atmosphere 
has to be taken into account by a corresponding reduction, cf. [4.3], and the topography 
has to be smoothed by a terrain correction, cf. [6.5.3]. 

The geodetic boundary-value problem resembles the third boundary-value problem of potential 
theory, namely to determine a harmonic function given a linear combination of the function 
and its normal derivative on a bounding surface. It differs from the classical problem, as the 
bounding surface is supposed to be unknown: free boundary-value problem. In addition, 
observed gravity data do not represent potential derivatives with respect to the physical surface 
of the Earth, but rather refer to the plumb line: free and oblique boundary-value problem 
(Grafarend and Niemeier, 1971). Finally, the horizontal components of the position vector 
cannot be determined with suffi cient accuracy from gravimetric data, cf. [6.2.1], consequently 
the geometric part of the problem is generally restricted to the determination of heights: scalar 
free gravimetric boundary-value problem (Heck, 1997). 

With the rapid progress in satellite positioning and satellite altimetry, the geometry of the Earth’s 
surface now can be assumed to be known with still increasing accuracy; the only remaining 
unknown at the boundary value problem then is the external gravity potential. Hence, a 
fi xed boundary-value problem can be formulated according to (6.99) which employs gravity 
disturbances as boundary values (Koch and Pope, 1972; Bjerhammar and Svensson, 1983), cf. 
[6.7.1]. This corresponds to the second (Neumann) boundary-value problem of potential theory, 
which is to determine a harmonic function from its derivative given on the bounding surface. 
Finally, a mixed altimetric-gravimetric boundary-value problem may be set up, taking into account 
that – in addition to the harmonic coeffi cients derived from satellite orbit analysis or satellite 
gradiometry – altimetric geoid heights and gravity anomalies are the main data sets available on a 
global scale (Sansò and Rummel, 1997). 
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6.5.2 Gravitation of topography, digital elevation models

The short-wavelength part of the gravitational fi eld is dominated by the effect of the 
topographical masses. By removing this effect, the gravity fi eld is smoothed signifi -
cantly, which simplifi es gravity fi eld interpolation and transformation procedures; a cor-
responding restoration of topography has to follow, cf. [6.7]. For the determination of 
the geoid, the topography has to be removed completely in order to establish this level 
surface as a boundary surface in the gravity fi eld (Forsberg and Tscherning, 1997). In 
addition, the knowledge of the topography is of relevance at forward gravity model-
ing, i.e., for the calculation of synthetic gravity models from the Earth masses. These 
statements are also valid for the Earth’s crust and upper mantle, where isostasy mainly 
governs the mass distribution and affects the gravity fi eld in the medium-wavelength 
part, cf. [8.2.2]. In the following, we concentrate on the calculation of the gravitation 
of topographic (and isostatic) mass distributions and the present state of knowledge of 
topography (height and density).

The effect of the topographic masses on gravity fi eld parameters is calculated by the 
law of gravitation. The evaluation of (3.10) and corresponding integrals for other para-
meters poses problems, as topography is rather irregular in geometry (heights) and, to a 
far lesser extent, also in density. Therefore, the topographic masses are subdivided into 
elementary bodies for which closed solutions of the mass integrals exist. Rectangular 
prisms of constant density are especially appropriate, as the heights of the topography 
nowadays are provided in gridded form by digital elevation models (see below), but 
spherical or ellipsoidal tesseroids and point masses may also be used (Heck and Seitz, 
2007). Vertical cylindrical columns around the point of calculation, constructed from 
concentric circles and horizontal radii and with constant density and height, have been 
used extensively in the past, but require coordinate transformation. 

Starting from a system of three-dimensional Cartesian coordinates, the gravitational 
potential of the topography is expressed by
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v

   
 

   ∫  dv ___ 
l
    = Gr  ∫ 

 x 1 

   

 x 2 

     ∫ 
 y 1 

   

 y 2 

     ∫ 
 z 1 

   

 z 2 

    1 __ 
l
    dx dy dz, (6.103)

with l =  √ 
___________

   x  2  +  y  2  +  z  2   . The topographic effects on the defl ection of the vertical, the grav-
ity disturbance, and the gravity anomaly follow from the relations (6.97), (6.98), (6.99), 
and (6.101). The integration over a rectangular prism (Fig. 6.22) with density r delivers 
closed formulas for the potential and its derivatives (Nagy, 1966; Nagy et al., 2000, 
2002; Denker, 2012, p. 57). As an example, for a point located at the origin of the local 
x, y, z-system, the potential is given by
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The vertical component of the gravitation reads as (Nagy, 1966)
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The total effect of topography results from the sum over the gravitation of the indi-
vidual elementary bodies:

 d  g top  = Σ  b z . (6.105)

For heights given in a regular grid (e.g., formed by ellipsoidal or plane coordinates). 
Fast Fourier Transform (FFT) techniques provide a powerful tool for the effi cient calcula-
tion of topographic effects (Schwarz et al., 1990).

Digital elevation models (DEM), also called digital terrain models, are nowadays 
available on a global and regional scale (Li et al., 2005). They provide gridded height 
values above the geoid, and depths below mean sea level (marine areas). The qual-
ity of a DEM depends on the sampling density and accuracy of the height measure-
ment method, the grid resolution (ranging from about 1 arcsec to 5′) and the data 
interpolation method as well as on the roughness of the terrain. Until recently, DEMs 
have been derived from digitized topographic and bathymetric maps, generally con-
taining height/depths information in the form of contour lines. The underlying meas-
urement methods included all kind of ground-based surveying methods as well as 
airborne stereo-photogrammetry and LIDAR (LIght Detection And Ranging). Begin-
ning in the 1980s, remote-sensing space techniques now dominate the development 
of DEMs. Among them is the space and airborne Interferometric Synthetic Aperture 
Radar (InSAR). This method uses a digital image correlation from two subsequent 
radar signals (intensity and phase) refl ected from one point on the surface of the 
Earth. The phase differences obtained by two separate antenna positions are used for 
topographic mapping, where either two antennas are installed on the same platform 
(single-pass mode) or one antenna is operated on exactly repeated tracks (repeat-pass 
mode). The images from the same scene but different antenna positions then allow to 
determine topography and surface deformations, cf. [8.3.4], Hanssen (2001). Satellite 
laser and radar altimetry serve for the height determination of the Greenland and Ant-
arctica ice sheets, cf. [5.2.7]. Radar altimetry also provides bathymetric information, 
due to the high correlation (at wavelengths of a few 10 to a few 100 km) between the 
ocean surface and the ocean bottom; ship depths soundings are effi ciently supported 
and densifi ed by this method (Sandwell and Smith, 2001).
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Fig. 6.22: Gravitation of topography: rectangular prism method.
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With respect to the density of the topographic masses a special remark is necessary. 
In the uppermost layers of the Earth this quantity varies between 2000 and 3000 kg/m3,
a global model with high spatial resolution is not available, cf. [8.2.1]. Therefore, a 
mean density value of 2670 kg/m3 (corresponding to the density of granite) generally 
is introduced in physical geodesy, for global and regional applications. More refi ned 
density models are used for local studies, where the density values are estimated 
from geological information, rock samples, and gravity profi les exploiting the density-
dependent relation between gravity and height: Nettleton method (e.g., Torge, 1989). 

Among the more recent global DEMs are the NOAA ETOPO5 (5’ × 5’ gridded land and seafl oor 
elevations) and the GLOBE (GLObal land one-kilometer Base Elevation) model. GLOBE is given 
in a 30” × 30” grid; the accuracy depends on the data quality and varies between 20 m and 
a few 100 m (Hastings et al., 2000), the U.S. Geological Survey model GTOPO30 has similar 
properties. The NASA/NIMA Shuttle Radar Topography Mission (SRTM, February 2000) collected 
a global (between ± 60° latitude) InSAR data set, with a resolution of 1 arcsec (for the area of the 
U.S.A.) and 3 arcsec, respectively, and an accuracy of 6 to 9 m (Farr et al., 2007). The results have 
been used, in connection with ICESat laser altimetry and ocean bathymetry, for the 30” × 30” 
DTM2006.0 (Digital Topographic Model) of the U.S. National Geospatial-Intelligence Agency 
(Becker et al., 2009). Fusing of SRTM data and satellite radar altimetry results (ERS, TOPEX, etc.) 
led to an improved global land digital elevation model (ACE2), Berry et al. (2010). Another high 
resolution (1”/0.3”) and high accuracy (3 m/10 m) Global Digital Elevation Model (GDEM) is 
available from the ASTER (Advanced Spaceborne Thermal Emission and Refl ection radiometer) 
instrument on-board the Terra satellite (1999, i = 98°, h ≈ 670 km), within the frame of an U.S./
Japan cooperation. The German (DLR) TanDEM-X mission (fully operational since 2010) employs 
two active radar satellites (TerraSAR-X) in nearly identical orbit confi guration (polar orbit, mutual 
distance of a few 100 m, h ≈ 514 km). The absolute/relative accuracy of the resulting DEM 
amounts to 10 m/2 m, and the (latitude dependent) resolution is between 12 m and 5 m (Zheng 
et al., 2010). Regional DEMs have been developed in many countries with resolutions down to 
1 arcsec (Smith and Roman, 2000).

Global height information also has been used early for developing spherical harmonic 
models of the topography (and later also for isostasy). While Prey (1922) could only 
carry out a development to the 16th degree, more recent models benefi t from the 
rapid progress of DEMs. The degree of development orientates itself on the state of 
global gravity fi eld modeling, cf. [6.6], resulting in developments (heights and depths) 
until degree and order 360 (Pavlis and Rapp, 1990) and 2190 (Pavlis et al., 2008), cf. 
[6.6.3]. These topographic-isostatic models not only serve for reduction purposes, 
but may also be used for the prediction of gravity anomalies in unsurveyed areas, cf. 
[6.5.3]. 

6.5.3 Gravity reductions to the geoid

The determination of the geoid requires some special considerations. As the solu-
tion of this problem is based on the assumption that the geoid represents a boundary 
surface in the gravity fi eld, the topographic masses (masses above the geoid) have to 
be removed, and the observed gravity fi eld data (here we restrict ourselves to gravity 
values, for the reduction of defl ections of the vertical see [6.7.4]) have to be reduced 
to the geoid. This is done by gravity reductions, which provide gravity anomalies on 
the geoid. 
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Depending on how the topographic masses are displaced, different types of gravity anomalies 
are obtained. The topographic reduction is connected with a propagation of the topographic 
model errors (height and density errors) into the calculation of the geoid. This has to be taken 
into account, for example, in the calculation of orthometric heights (3.106), where the same 
topographic model has to be employed.

The displacement of the topographical masses changes the gravitational fi eld of the 
Earth, including the potential of the geoid: indirect effect of the gravity reductions. 
The level surface which possesses the geoid potential after the displacement is called 
the cogeoid.

The terminus “compensated geoid” was introduced by J. de Graaff-Hunter and G. Bomford in 
the 1930s, after removal of topography and isostatic compensation at geoid calculations for 
India. The more general expression cogeoid results from the discussions at the IAG General 
Assembly in Oslo 1948.

The following steps may be distinguished in the calculation of the geoid (Fig. 6.23):

• Reduction of the direct effect of the topography on gravity and adding of the direct 
effect of the dislocated masses if necessary, both to be calculated by the law of 
gravitation, cf. [6.5.2],

• calculation of the primary indirect effect on the potential, caused by the removal 
of the topography and the dislocation of the topographic masses. The calculation 
is performed according to some rule of compensation:

 d  V =  V top  −  V C  , (6.106)

with  V top  potential of the topography and  V C  potential of the compensating masses, 

• calculation of the vertical distance between the geoid and the cogeoid according 
to Bruns’ theorem (6.97b):

 d N =   d   V ___ g    , (6.107)

• reduction of the gravity values from the geoid to the cogeoid: secondary indirect 
effect. Here, a free-air reduction (6.101) is suffi cient:

 dg C  = 2  
g 

 __ r  d N, (6.108)
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Fig. 6.23: Geoid and cogeoid.
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• calculation of the heights  N C  of the cogeoid above the ellipsoid, as the solution of 
a gravimetric boundary-value problem, cf. [6.6], [6.7],

• calculation of the geoid heights according to 

 N =  N C  + dN. (6.109)

In principle, every kind of gravity reduction could serve for the calculation of the 
geoid according to this scheme. Naturally, the indirect effect should be small in order 
to avoid laborious and error susceptible computations. Other criteria for the selection 
of gravity reductions include the smoothness of the resulting gravity anomalies, which 
facilitates interpolation, and their geophysical signifi cance, which would allow a cor-
responding interpretation. Under these aspects, we may distinguish between the effects 
of a homogeneous topography, density anomalies within the topography and the Earth’s 
crust, and isostatic compensation masses (Martinec, 1998), cf. [8.2.2].

The free-air anomaly is generally used for the calculation of the geoid, with the 
assumption that no masses exist above the geoid. The free-air reduction 

 dg F  = −   
∂g

 ___ 
∂H

  H, (6.110)

with H being the orthometric height, provides the reduction of the surface gravity to the 
geoid, and the simple free-air anomaly on the geoid is then given by 

 Δ g F  = g + dg F  −  g 0  , (6.111) 

where g 0 is normal gravity on the ellipsoid. The free-air anomaly on the geoid should be 
clearly distinguished from the free-air anomaly defi ned on the surface of the Earth (6.15) 
where the normal gravity gradient is used for reduction.

According to (6.110), the correct reduction to the geoid would require the knowledge of the 
real vertical gravity gradient. Splitting the gradient into a normal and an anomalous part gives

   
∂g

 ___ 
∂H

   =   
∂g 

 ___ 
∂H

   +   
∂(Δg)

 _____ 
∂H

  . (6.112)

The real and the normal part may differ by 10% or more. The normal gravity gradient can be 
calculated by (4.61). The calculation of the anomalous part corresponds to the downward 
continuation of a harmonic function. It can be formulated by Poisson’s integral, which is a 
solution of the fi rst (Dirichlet) boundary-value problem of potential theory, and solved by 
an integration over the surface gravity anomalies, cf. [6.7.2]. If the gravity anomaly depends 
linearly on elevation, the anomalous gradient part of the free-air reduction corresponds to 
the terrain correction (Moritz, 1980, p. 421), see below. This is of importance at practical 
geoid calculations, cf. [6.7.1]. A discrete solution of this problem has been given by 
Bjerhammar (1985), which takes into account that gravity data are given only at discrete 
points. This solution satisfi es all given data and generates missing data, and it is harmonic 
down to an internal sphere, located close to the Earth’s surface (Bjerhammar sphere), 
cf. [3.3.2].

The terrain correction removes geometric irregularities of the topography. It creates a 
plate (spherical or planar) of constant thickness and (assumed to be) constant density 
by fi lling mass defi cits below P and removing excess masses above the plate: Bouguer 
plate (Fig. 6.24). For planar approximation (Bouguer plate extending to infi nity), both 
measures increase gravity at P; the terrain correction then is always positive. It can be 
calculated from digital elevation models, cf. [6.5.2], and attains values of 1 to 10 μm s −2  
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in fl at areas, reaching several 100 μm s −2  in the mountains. From the evaluation of 
(6.103), we obtain for the terrain correction
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For small surface slopes, the distance
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The linear approximation of the terrain correction then reads
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where H and  H P  are the orthometric heights of the (running) terrain point and the point 
of calculation (Forsberg and Tscherning, 1997).

By including the terrain correction into (6.111), we obtain the terrain-corrected free-
air anomaly, also called Faye anomaly. The shift of the topographic masses now cor-
responds to a condensation of the Bouguer plate on the geoid (Helmert’s condensation 
method), Heck (2003b). Here, the surface density

 m =   dm ___ 
ds

   = r   dv ___ 
ds

   = rH (6.114)

replaces the volume density r and takes the height of topography into account.

As the mass displacement is slight, the indirect effect of the free-air and the condensation 
reduction remains small. It reaches a few meters in the absolute sense at most, and is of the 
cm- to dm-order of magnitude for geoid differences. As the height-dependent effect of the 
topographic masses has not been removed, free-air anomalies are strongly correlated with 
height. Therefore, point free-air anomalies are not suited for interpolation and cannot be 
geophysically interpreted. For limited areas, the height-dependence generally can be described 
by linear regression, this smoothing of the anomaly fi eld corresponds to the application of the 
Bouguer plate reduction (see below). 
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Fig. 6.24: Bouguer plate and terrain correction.
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By removing the effect of topography explicitly through a topographic reduction d  g top , 
we obtain the Bouguer gravity anomaly Δ g 

B
  (we use this term under the assumption of a 

strict topographic mass reduction, although Bouguer for practical reasons originally ap-
plied an approximation, see below). After the removal of the masses the surface gravity 
again is reduced to the geoid by the free-air reduction and compared with the normal 
gravity  g 

0
  (Fig. 6.24):

 Δ g B  = g − d g top  + d g F  −  g 0 . (6.115)

The topographic reduction can be calculated from digital elevation models, applying 
the law of gravitation on standard mass elements, cf. [6.5.2].

Traditionally (in order to simplify calculation), the topographic reduction is decom-
posed into the Bouguer plate reduction d  g 

P
  and the terrain correction d  g 

T
 . The Bouguer 

plate reduction accounts for the gravitation of an infi nitely extended horizontal plate 
with constant density. Its thickness is given by the height of the computation point. The 
gravitational effect of the Bouguer plate is derived from the attraction of a circular cylin-
der on a point located on the cylinder axis (e.g., Torge, 1989). By extending the cylinder 
radius to infi nity, one obtains

 d g P  = 2p Gr H = 0.000 419 r H μms−2, (6.116)

where r is taken in kg/ m 3  and H in m. Here we have assumed that the terrain correction 
has reduced the actual topography to the Bouguer plate (see above). After this decom-
position of the topographic reduction the Bouguer anomaly reads

 Δ g B  = g − d g P  + d g T  + d g F  −  g  0 . (6.117)

Due to the removal of the height-dependent part of topography, Bouguer anomalies display 
smooth long-wave variations only. Hence, they are well suited for interpolation. Revealing 
density anomalies below the geoid, the Bouguer anomalies are also of considerable 
signifi cance in geophysics and geology, cf. [8.2.4]. For regional and local applications 
(e.g., national gravimetric surveys), a spherical Bouguer plate and a corresponding terrain 
correction is used frequently, with a calculation extending 170 km from the computation 
point and conventional density being 2670 kg/ m 3 . On the other hand, since the topographic 
masses are completely removed and not restored (i.e., they are shifted to infi nity!), the indirect 
effect on the geoid is very large (up to several 100 m). Hence, Bouguer anomalies are not 
used for geoid computations. 

The Bouguer plate model also allows a simple calculation of the mean gravity   
_
 g  along 

the plumb line required for the computation of the orthometric height H (3.106), (6.81). 
If we assume a linear change of g along the vertical,   

_
 g  will be found at the height H/2. 

Hence it can be derived from surface gravity by removing a Bouguer plate of thickness 
H/2, a free-air reduction from H to H /2, and a subsequent restoration of the Bouguer 
plate above H/2. Removing and restoring the Bouguer plate has the same (negative) ef-
fect on gravity; so we obtain

   
_
 g  = g − d g P   ( H )  + d g F   (   H __ 

2
   ) . (6.118)

Evaluation with (6.116) and (6.110), and introducing the density value 2670 kg/ m 3 , 
leads to (6.84). 
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Equation (6.118) also provides an important interpretation of the difference between 
the heights of the geoid and the quasigeoid, and the normal and the orthometric height, 
respectively. We calculate the mean normal gravity

   
_
 g    =  g 0  − d g F   (   H __ 

2
   )  (6.119)

according to (6.118), and subtract it from   
_
 g . The mean gravity anomaly introduced in 

(6.9) is then identifi ed as the “simple” Bouguer anomaly (terrain correction neglected)

   
_
 g  −   

__
 g   = g − d g P   ( H )  +  d g F   ( H )  −  g 0  =  Δg B . (6.120)

This fact permits a simple transformation from the geoid to the quasigeoid and vice 
versa, e.g., Flury and Rummel (2009), cf. [6.7.2].

Isostatic anomalies are formed by not only removing the gravitational effect of 
topography but by also restoring compensation masses in the Earth’s crust below the 
geoid, according to some isostatic model (e.g., Martinec, 1993). In this way, the crust 
is regularized, obtaining constant thickness and density, cf. [8.2.2]. The gravitation 
of the compensating masses is taken into account by an isostatic reduction d   g 

I
  to be 

calculated from the isostatic model according to [6.5.2]. The isostatic anomaly then 
is given by

 Δ g I  = g − d g top  + d g I  + d g F  −  g 0 . (6.121)

The largest part of the Earth’s topography is isostatically compensated. Hence, isostatic anomalies 
are small and vary smoothly about zero, with the exception of uncompensated areas (tectonic 
plate boundaries, regions of postglacial land uplift, etc.). They may be successfully employed 
for gravity prediction, and they are of value for geophysical and geodynamic interpretation, cf. 
[8.2.4]. As the compensating masses are arranged more remote from topography than in the 
free-air reduction (see above), the indirect effect is larger and may reach the amount of 10 m. 
Therefore, isostatic anomalies have been rarely used for geoid calculations. 

6.5.4 Orientation and scale of gravity fi eld models

We now investigate the orientation and the scale of a gravimetrically derived geoid/
quasigeoid, i.e., the “gravimetric datum”, see Hofmann-Wellenhof and Moritz (2005, 
p. 109 ff.).

The following assumptions were made for the spherical harmonic expansion of the 
disturbing potential and the quasigeoid/geoid, respectively, cf. [6.1.1], [6.5.1]:

• The level ellipsoid and the Earth have the same mass:

  M Ell  = M. (6.122)

• Hence, no zero-degree term  T 
0
  appeared in the expansion (6.4).

• The center of the ellipsoid and the Earth’s center of mass (origin of the global co-
ordinate system) coincide; no fi rst-degree term entered into (6.4), cf. also [3.3.4].

• The normal potential U and the real potential W are related by

  U Q  =  W P . (6.123)
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A fi rst-degree term in the spherical harmonic expansion would not affect the gravity 
anomaly, as the corresponding expansion (6.136) contains the factor (l − 1). Hence, 
the ellipsoid may be positioned in the geocenter without changing the gravity fi eld: the 
gravimetric method yields “absolute” results.

Because of residual uncertainties in the determination of the mass and the potential, 
small differences between the values for the geoid and the ellipsoid may be admitted:

 d M = M −  M Ell , d W =  W 0  −  U 0 . (6.124)

The spherical harmonic expansion of T then must be extended by

  T 0  =   Gd M _____ 
R

  , (6.125)

and Bruns’ formula must take  T 
0
  and the potential difference into account:

  N 0  =   G d M _____ 
g R

   −   d W ____ 
g 
  . (6.126)

For spherical approximation, the constant  N 
0
  corresponds to a change in scale of the 

geoid.
The corresponding generalization of the spherical harmonic expansion of the gravity 

anomaly (6.137) provides another relation between the gravity fi eld and the “gravimet-
ric datum”. Taking (6.101) into account, we obtain for the zero-degree term (6.19):

 Δ g 0  = −   
 T 0  __ 
R

   +   2 __ 
R

   d W = −   G d M _____ 
 R  2 

   +   2 __ 
R

   d W, (6.127)

see Hofmann-Wellenhof and Moritz (2005, p. 113 ff.). If  N 
0
 and Δg0 are determined by 

(geometric and gravimetric) measurements, (6.126) and (6.127) can be solved for dM 
and dW. 

The zero-degree undulation  N 
0
  can be derived from a comparison of gravimetric 

geoid heights with geoid values derived from the differences of geometric heights 
referring either to the geoid or to the ellipsoid. The primary data sets to be used for the 
latter purpose are from satellite altimetry (oceans) and GPS leveling (continents), see 
Fig. 6.25, Jekeli (1998). The geoid height is obtained from these satellite techniques 
by the relation

  N sat  =  h sat  − H, (6.128)

REFERENCE
ELLIPSOID

GEOID W = W0

BEST FITTING
ELLIPSOID U = W0

P

N0

hsat

Nsat

Ngrav

H

Fig. 6.25: Gravimetric geoid and geodetic reference ellipsoid.
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where  h sat  stands for the ellipsoidal height of the altimeter or the GPS height, and H is 
the height of the altimeter above the geoid (result of the altimeter measurements) or 
the orthometric height derived from leveling. The zero-degree term is then obtained by

  N 0  =  N sat  −  N grav  , (6.129)

where Ngrav is the geoid height from the gravimetric solution. The determination of 
Δ g 

0
  = 0, on the other hand, is still handicapped by defi ciencies in the global gravity 

coverage. Another solution of this problem has been made possible by separating the 
determination of the geocentric gravitational constant GM. This quantity is known today 
with high accuracy from space probes and high-orbiting satellites, which allows the 
potential of the geoid to be determined from (6.126). Current values for the potential of 
the geoid and the semi-major axis of a best-fi tting ellipsoid are given in [4.3].

As we have seen, with the usual assumption of equality of mass and potential the gravimetric 
solution of the boundary-value problem delivers results which refer to a best-fi tting ellipsoid, 
where the equatorial radius (“scale”) remains unknown by  N 

0
 . After the determination of  N 

0
 , it 

could be used to derive the semi-major axis of the best-fi tting ellipsoid to which the gravimetric 
geoid heights refer (i.e. the ellipsoid is changed): 

  a grav  =  a sat  +  N 0 . (6.130) 

In practice, the adopted ellipsoid parameters are generally part of an international geo-
detic reference system, cf. [4.3], and consequently kept unchanged. In that case, the 
gravimetrically determined geoid heights have to be corrected in order to refer to the 
international reference ellipsoid (e.g., the GRS80 ellipsoid):

  N ref  =  N sat  =  N grav  +  N 0 . (6.131)

6.6 Global gravity fi eld modeling

Global gravity fi eld modeling is required for large-scale problems including the deter-
mination of satellite orbits, inertial navigation, and development of geophysical and 
geodynamic models. Especially the geoid is required for establishing a global vertical 
reference system and for deriving sea surface topography. Finally, global models pro-
vide the long-wavelength part of the gravity fi eld for local gravity fi eld approximation, 
cf. [6.7].

Global gravity models are based on spherical harmonic expansions, applicable on all 
kinds of residual gravity fi eld quantities [6.6.1]. The low and medium frequency part of 
these series expansions is derived from the analysis of satellite orbits, from satellite-to-
satellite tracking and satellite gravity gradiometry [6.6.2]. High degree and order devel-
opments are achieved by combining these data with the results of terrestrial gravimetry 
and satellite altimetry [6.6.3].

6.6.1 Spherical harmonic expansion

Equations (6.3) to (6.5) provide the development of the disturbing potential T into spherical 
harmonics. A gravity fi eld model thus is represented by the spherical harmonic coeffi cients. 
The functional relations between T and other relevant gravity fi eld parameters, cf. [6.5.1], 
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also allow spherical harmonic expansions for the height anomaly, the geoid height, the 
gravity disturbance, the gravity anomaly, and other residual gravity fi eld quantities. These ex-
pansions generally employ fully normalized spherical harmonics, cf. [3.3.2], and are valid 
in the Earth’s exterior space and on its surface. 

By inserting (6.4) into Bruns’ theorem (6.96c), we obtain the spherical harmonic 
expansion for the height anomaly

 z (r, J, l) =   GM ____ rg    ∑ 
l = 2

  
∞

    (   a __ r   )  l    ∑ 
m = 0

  

l

  (Δ  
__

 C  lm  cos ml +  Δ 
_
 S  lm  sin ml ) 

__
 P  lm (cos J ). (6.132) 

Here, we have introduced the fully normalized spherical harmonics indicated by 
bars, cf. [3.3.2]. From (6.97b), a corresponding expansion follows for the geoid height, 
with r = R (spherical approximation) and g  = g0. By introducing (6.120) into (6.9), we 
may prove that simple (approximate) relation between the geoid height and the quasi-
geoid height (height anomaly above the ellipsoid):. 

 N(r, J, l) = z (r, J, l) +   
 Δg B  ____ 
  
__

 g     H. (6.133)

The difference (which is also valid for the corresponding surfaces in outer space) 
depends on the Bouguer anomaly and on height. For the ocean surface (H ≈ 0), this 
approximately leads to N = ζ.

Differentiation of (6.3) with respect to r gives the spherical harmonic expansion (again 
in fully normalized harmonics) for the gravity disturbance (6.99):

 d g (r, J, l) = −   ∂T ___ 
∂r

   =   1 __ r    ∑ 
l = 2

  
∞

   ( l + 1 )    (   a __ r   )  l +1
  T l  (J, l). (6.134a)

By introducing (6.5) we obtain the explicit formula

 d g (r, J, l) =    GM ____ 
 r  2 

   ∑ 
l = 2

  
∞

   ( l + 1 )    (   a __ r   )  l   ∑ 
m = 0

  

l

  (Δ  
__

 C  lm  cos ml 

+ Δ  
_

 S  lm  sin ml )   
__

 P  lm (cos J ). (6.134b)

Inserting (6.3) and (6.134a) into (6.101b) yields the expansion of the gravity anomaly 

 Δg (r, J, l) =   1 __ r    ∑ 
l = 2

  
∞

   ( l − 1 )  (   a __ r   ) 
l  + 1

 T l (J, l). (6.135a)

Again substituting  T l  from (6.5) gives the explicit solution

 Δg (r, J, l) =   GM ____ 
 r  2 

    ∑ 
l = 2

  
∞

   ( l − 1 )    (   a __ r   )  l   ∑ 
m = 0

  

l

  (Δ  
__

 C  lm  cos ml 

                     +  Δ 
_

 S  lm  sin ml )  
__

 P  lm (cosJ ). (6.135b)

By comparing the abbreviated form

 Δg (r, J, l) =  ∑ 
l = 2

  
∞

    (   a __ r   )  l + 1
 Δ g l (J, l) , (6.135c)

with (6.135a), we obtain the relation between the surface spherical-harmonics of T and Δg :

 Δ g l  (J, l) =   l − 1 ____ r   T l (J, l). (6.136)

Corresponding developments for other residual gravity fi eld quantities as defl ections 
of the vertical or gravity gradient anomalies can be derived accordingly (e.g., Wenzel, 
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1985, p. 30 ff.; Wolf, 2007, p. 10 ff.). Due to the scarcity of terrestrial data of these types, 
these (global) expansions have been of limited relevance. This situation has changed 
with the availability of altimetry-derived vertical defl ections on the oceans (Watts et al., 
1984), and of second-order derivatives of T obtained from satellite gravity gradiometry 
(Rummel et al., 1993). These data sets now contribute signifi cantly to the development 
of high-resolution geopotential models, cf. [6.6.3], and justify a corresponding repre-
sentation. Subsequently, we give some examples (spherical approximation).

The spherical harmonic expansions for the vertical defl ection components based on 
(6.98) read as follows:

 x (r, J, l) =   GM ____ 
 r  2 g  

 ∑ 
l = 2

  
∞

    (   a __ r   )  l    ∑ 
m = 0

  

l

   ( Δ  
__

 C  lm  cos ml + Δ  
_
 S  lm  sin ml  )      d   

_
 P  lm (cos J )
 __________ 

dJ 
  ,  (6.137a)

 h (r, J, l) =   GM ________ 
 r   2 g sin J  

   ∑ 
 l = 2

  
∞

    (   a __ r   )  l   ∑ 
m = 0

  

l

   ( −mΔ  
__

 C  lm sin ml + mΔ  
_
 S  lm  cos ml  )      

_
 P  lm (cos J ).

 (6.137b) 

The second vertical derivative Tzz = Trr (with z outwards directed coordinate in the 
local level system) of the disturbing potential, being the most important component of 
the corresponding Eötvös tensor (3.68), is given by 

  T rr (r, J, l) =   GM ____ 
 r  3 

    ∑ 
l = 2

  
∞

   ( l + 1 )    ( l + 2 )    (   a __ r   )  l   ∑ 
m = 0

  

l

    (Δ 
__

 C  lm cos ml +  Δ 
_
 S  lm  sin  ml )     

_
 P  lm (cos J ).

 (6.138)

Equations (6.132) to (6.138) permit the harmonic coeffi cients to be determined from “obser-
vations” (geoid heights, gravity anomalies, etc.), by least-squares adjustment, cf. [6.6.2]. 

The coeffi cients can also be determined by quadrature over the observations. Taking 
the orthogonality relations and the properties of the fully normalized harmonics into 
account, the inversion of (6.133) and (6.136) yields (Jekeli, 1998):

  {   Δ 
__

 C  lm 
    

 Δ 
_

 S  lm 
   }  =   1 _______ 

4p G M
   ∫ ∫ 
s 

   
 

   rg    (   r __ a   )  l N    
_
 P  lm   ( cos ϑ  )  { cos ml     

sin ml 
   } ds (6.139a)

and
 

  {   Δ 
__

 C  lm 
    

 Δ 
_

 S  lm 
   }  =   1 _______ 

4p G M
   ∫ ∫ 
s 

   
 

      r 2  ____ 
l − 1

      (   r __ a   )  l  Δg   
__

 P  lm  (cos ϑ)  {   cos ml     
sin ml 

   } ds. (6.139b)

The integration is extended over the unit sphere s. In contrast to least-squares adjust-
ment, the quadrature approach only allows exploitation of one type of data for the 
determination of the harmonic coeffi cients.

Terrestrial gravity fi eld data sets (gravity anomalies, altimetric geoid heights) do not cover the 
Earth homogeneously, and they have a limited spatial resolution. Consequently, mean geoid 
heights and mean gravity anomalies over surface compartments are generally introduced in 
gravity fi eld modeling, where the surface blocks are bounded by meridians and parallels. The 
mean values are calculated according to

  
__

 N  =   1 ___ 
Δs

 ∫ 
Δs

  

 

   ∫ Nds, Δ 
_

 g  =   1 ___ 
Δs

  ∫ 
Δs

  

 

   ∫ Δg ds. (6.140)
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The block size Δs depends on the data distribution, cf. [6.6.3]. The maximum gravity 
fi eld resolution which can be achieved is  √ 

___
 Δσ  . This corresponds to a maximum degree 

of the spherical harmonic expansion  l 
max 

  = 180°/resolution°, cf. [3.3.3]. The introduction 
of mean values causes a local smoothing of the gravity fi eld, which also leads to smoothed 
harmonic coeffi cients. This fact has to be taken into account by damping factors (≤1), 
which depend on the degree and the dimension of the compartment (Katsambalos, 
1979).

The truncation of the spherical harmonic expansion at  l 
 max 

  produces an omission error 
due to the neglected part of the gravity fi eld. This “error” can be estimated from a de-
gree variance model, as developed for gravity anomalies, see (6.27). Such models may 
be based on the covariance function of the gravity anomalies (6.25), but can also be 
calculated from Laplace’s surface harmonics Δ g 

l
  (6.26). In spherical approximation (r = 

a = R), (6.138) gives

 Δ g l  =   GM ____ 
 R  2 

    ( l − 1 )   ∑ 
m = 0

  

l

   ( Δ    
__

 C  lm cos ml + Δ   
_
 S lm sin ml  )     

_
 P  lm  ( cos J  ).  (6.141)

Inserting (6.141) into (6.26) and evaluating yields the anomaly degree variances as a 
function of the harmonic coeffi cients:

  s   l  
2  ( Δg )  =   (   GM ____ 

 R  2 
   )  2    ( l − 1 )  2   ∑ 

m = 0
  

l

    ( Δ   
__

 C   lm  2
   + Δ   

_
 S   lm  2
   )  . (6.142)

The functional relations between the gravity fi eld parameters, cf. [6.5.1], also permit 
the calculation of degree variances for geoid heights, defl ections of the vertical, and 
higher-order derivatives (Tscherning and Rapp, 1974; Tscherning, 1976). As an exam-
ple, with g  = GM/r  2, a comparison between (6.132) and (6.136) gives the geoid degree 
variance

  s   l  
2  ( N )  =   (   R _______ 

g (l − 1)
   )  2  s   l  

2  ( Δg ) . (6.143)

Based on the anomaly degree variance model developed by Tscherning and Rapp 
(1974), the omission error for geoid heights, gravity anomalies, and defl ections of the 
vertical can be estimated on a global scale, Fig. 6.26. For present-day satellite-only solutions 
(series truncation. e.g., at degree 200), this “error” amounts to about 0.4 m, 300 μm s −2 , and 4″. 
A recent development to degree 2160, cf. [6.6.2], is characterized by a geoid omission 
“error” of only 2 … 3 cm, while the gravity anomalies and the vertical defl ections still 
have omission parts of about 100 μm s −2  and 2″. An expansion to l = 10 000 (represent-
ing a spatial resolution of about 2 km) would reduce these errors to less than 1 mm, 
and 15 μm s −2  and 0.2″, respectively. 

An early and (at least for the lower spectral part) still useful estimate of the power spectrum 
of the Earth’s gravitational fi eld based on a global set of gravity anomalies was given by Kaula 

(1966), with  s   
l
  2  =  ∑ 

m = 0
  

l

   ( Δ  
__

 C   lm  2
   + Δ  

_
 S   lm  2
   )   ≈   160 ×  10 −12  ________ 

 l  3 
   and the average value per degree s   ( Δ  

__
 C  lm ,  Δ 

_
 S  
lm

  )  
=  s 

l  
 / √ 

______
 2l + 1   ≈ ± 10 −5 / l  2 . By summing up the geoid degree variances of the terms omitted at 

a spherical harmonic development until lmax, Kaula obtained ±64/ lmax m as a rough global 
estimate for the geoid omission error. 
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6.6.2 “Satellite-only” gravity fi eld models

Low-degree gravity fi eld models are required for precise satellite orbit calculation, as 
needed for positioning, and for long-wave geoid representation necessary, e.g., for 
modeling sea surface topography, cf. [3.4.2]. Furthermore, these models provide an es-
sential support for high-resolution geoid modeling, cf. [6.6.3], [6.7.1]. The models are 
based on satellite tracking from ground stations, on satellite-to-satellite tracking, and 
on satellite gravity gradiometry. These observations can be analyzed with respect to the 
deviations of the true orbit from a precalculated reference orbit, cf. [5.2.2], where the 
corresponding models include a spherical harmonic development of the gravitational 
potential: “Satellite-only” models. In some cases, these models have been utilized for 
the precise orbit determination of a specifi c satellite, by especially taking into account 
observations to that satellite (“tailored” models). 

The basic equation for the estimation of gravity fi eld parameters from satellite obser-
vations is given by (6.33a), which connects the positions of the ground station and the 
satellite through the observations. With known station coordinates, the satellite orbit 
remains the unknown quantity, where the Keplerian orbit elements are changed with 
time through the “perturbing” gravitational potential (5.35); here we neglect other “dis-
turbing” forces. As the potential is modeled by a spherical harmonic expansion, the 
harmonic coeffi cients enter as unknowns into the observation equations of satellite 
geodesy, cf. [6.2.1]. 

Classical gravity fi eld estimation is based on the infl uence of the gravitational fi eld 
on the satellite orbit, where we may distinguish between secular (linear), long-periodic 
(few days to months), and short-periodic (periods less than one day or one satellite revo-
lution) perturbations (Kaula, 1966; Schneider, 1992, 1993, 1996; Seeber, 2003). After 
transformation of the spherical coordinates of the harmonic expansion (3.89) into the 
Keplerian elements, we obtain the relationship between the orbital perturbations and 
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Fig. 6.26: Omission error for geoid heights (height anomalies), vertical defl ections, and gravity 
anomalies (anomaly degree variance model Tscherning and Rapp, 1974).
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the harmonic coeffi cients by forming the derivatives of the perturbing potential with 
respect to the elements, and inserting them into (5.35).

Determination of the secular and long-periodic perturbations requires the integration 
over long arcs (several days). Here, short-periodic perturbations with periods of one or 
several revolutions are already eliminated. Furthermore, the infl uence of the tracking sta-
tion coordinates becomes smaller with longer integration intervals. For the low-degree 
zonal coeffi cients, the integration over one satellite revolution yields the following varia-
tions for the orbital elements of main interest (Heiskanen and Moritz, 1967, p. 347 ff.):

    

ΔW =  −3p ( a e  __ 
  
_
 p 
   )  2  cos i  J 2  + …

Δw  = 6p ( a e  __ 
  
_
 p 
   )  2   ( 1 −   5 __ 

4
    sin 2 i )   J 2  + …

Δe = −3p  ( 1 −  e  2  )    (    a e  __ 
  
_
 p 
   )  3   ( 1 −   5 __ 

4
    sin 2 i )  sin i cos w  J 3  + …

Δi = 3pe   (    a e  __ 
  
_
 p 
   )  3   ( 1 −   5 __ 

4
    sin 2 i )  cos i cos w  J 3  + …  

}
  

,

 

(6.144)

with   
_
 p  = a ( 1 −  e  2  )  and  a e  semi-major axis of the Earth ellipsoid. 

 J 
2
  and higher even-zonal-coeffi cients cause secular perturbations in W and w. For i < 90°, 

W decreases in time (westward regression of the nodal line). The change in w corresponds 
to a rotation of the orbital ellipse in the orbital plane (Fig. 5.5). This rotation produces long-
periodic perturbations in the quantities e and i, as they depend on w. The even zonals thus 
can be determined primarily from the perturbations in W and w, while the odd zonals are 
obtained from i and e. If the perturbations are added to the orbital elements of the initial 
epoch, one obtains the orbital elements at a specifi c epoch as a function of the zonal har-
monics. As mentioned earlier, the coeffi cients depend particularly on the inclination but 
also on the semi-major axis and the eccentricity.

The tesseral harmonics are responsible for small-amplitude (a few 100 m) short-
periodic perturbations, especially in the elements i, W, w. They can be determined 
from dense observation sequences over short arcs. Several tesseral terms of higher 
degree and order can be also determined by resonance effects, arising after days to 
weeks. These effects occur if the ratio of the mean angular velocity of the satellite to 
the rotational velocity of the Earth is an integer number, which produces an enhance-
ment of perturbation in a repeat orbit.

In order to resolve the gravitational fi eld to a certain degree, satellites in different 
altitudes and with different inclinations are required at this classical strategy, in addition 
to a good global distribution of the tracking stations and a suffi ciently long observation 
time. The attenuation of the gravity fi eld with height and the decrease of the harmonic 
coeffi cients at higher degrees, together with defi ciencies in the geometry of the satel-
lite orbits and the ground stations, limits the resolution of “satellite-only” models based 
only on ground-based measurements. Using several decades of tracking data, a certain 
limit at gravitational fi eld modeling was reached around the year 2000, with spherical 
harmonic expansions until degree and order 70 to 90, where the relative uncertainty of 
the coeffi cients reached around 100% already at degree 30 to 40. 

Dedicated satellite gravity fi eld missions with low Earth orbiters (some 100 km alti-
tude) and “in-situ” sensors (satellite-to-satellite tracking, gravity gradiometry) have led to 
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a signifi cant change of this classical strategy, cf. [5.2.8], Rummel (1979), Reigber et al. 
(2005). Range, range rate and gradient measurements now enter into the correspond-
ing observation equations for the determination of higher degree and order spherical 
harmonic coeffi cients, and tracking data from Earth or from other satellites mainly serve 
for improving the long-wave part of the gravitational fi eld. Corresponding models have 
been calculated until degree and order 200 and higher, and agree well until degree and 
order 120 to 150 (Förste et al., 2009). 

While limitations in computational facilities previously forced zonal, tesseral and 
resonant terms to be computed separately, the harmonic coeffi cients can now be rig-
orously determined from all available observations by a least-squares adjustment (for 
instance by adding the normal equations of different data sets evaluated separately). 
With present knowledge of the tracking station coordinates, the satellites’ orbits, the 
Earth’s rotation parameters, as well as the tidal effects, the corresponding parameters 
generally can be introduced as known quantities into the adjustment, and variations 
of the low-degree coeffi cients with time may be included (Reigber, 1989; Bouman, 
1997). Weighting of different data sets and modeling of systematic effects still poses a 
special problem for these complex adjustments (this is also valid for the “combined” 
models to be discussed in [6.6.3]). As the accuracy estimates generally are too opti-
mistic, the calculated standard deviations are often “scaled”, i.e., enlarged (Lerch 
et al., 1991). 

With respect to the accuracy of gravity models (this is valid for any kind of math-
ematical representation and also for the “combined” solutions!) we have to distinguish 
between the commission and the omission error. The commission error stems from the 
errors of the data which propagate through the modeling process (e.g., a least-squares 
adjustment) into the results. The limited spatial resolution of the data and the model 
derived from them, on the other hand, results in an omission error which can be esti-
mated by corresponding models, cf. [6.6.1]. The accuracy (commission error) achieved 
at the most recent gravity fi eld models (degree and order 200 and higher) is about 0.1 
to 0.2 m (geoid) and 20 to 30 μm s −2  (gravity anomalies), and an accuracy increase to 
2 cm resp. 10 μm s −2  or better is expected as result of the complete GOCE mission (e.g., 
Ihde et al., 2010).

The fi rst gravity fi eld information from space came from Sputnik I (1957), with the dynamic form 
factor  J 

2
  (polar fl attening); and from Vanguard I (1958), with the coeffi cient  J 

3
  (unequal fl attening 

at the north and south pole), O’Keefe et al. (1959). The Smithsonian Astrophysical Observatory 
(SAO) Standard Earth I provided a model complete to degree and order 8 (Lundquist and Veis, 
1966). At the end of the twentieth century, ground-based “satellite-only” models employed 
several million records of tracking data. Laser distance and microwave range and range-rate 
measurements formed the bulk of the data, but optical directions also were included and 
assisted in stabilizing the solutions. Finally, observations to more than 30 satellites were 
generally used, with altitudes varying between 800 and 20 000 km and inclinations between 
40° and 110°. Among the last solutions of this type we have the NASA Goddard Space Flight 
Center (GSFC) Earth model GEM T3 (Lerch et al., 1994), the joint (GSFC, University of Texas, 
Ohio State University, CNES France) gravity model JGM-2S, complete to degree and order 70 
(Nerem et al., 1994), and the JGM-3 model (70,70, including DORIS and GPS tracking, Tapley 
et al., 1996), which was developed primarily for the TOPEX/POSEIDON mission, as well as 
the GRIM5-S1 (99,95) model (Geoforschungszentrum Potsdam and Groupe de Recherches de 
Géodésie Spatiale, Toulouse, Gruber et al., 2000). 
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Among the “satellite-only” gravity models derived during the past ten years from “in situ” 
(satellite-to-satellite tracking and gravity gradiometry) and tracking data, we have the GRACE-
based solutions ITG-GRACE (180,180; Institut für Geodäsie und Geoinformation, Universität 
Bonn, Mayer-Gürr et al. 2010), GGM (180,180; Center for Space Research, University of 
Texas, Tapley et al., 2007), JEM01-RL03B (120,120; NASA/JPL, Pasadena), EIGEN – European 
Improved Gravity model of the Earth by New techniques – (150,150; GRACE and LAGEOS 
data, GRGS Toulouse and GFZ Potsdam, Reigber et al., 2005; Förste et al., 2008; Flechtner 
et al., 2010b). Large-scale gravity fi eld variations with time have been found from monthly 
and weekly GRACE solutions, developed until degree 120 resp. 30 (Cheng and Tapley, 2004), 
cf. [8.3.5]. The evaluation of the fi rst months of GOCE gravity gradiometry and tracking data 
led to GOCE-only models up to degree and order 240 (Pail et al., 2011), and to combined 
solutions with GRACE data, where GRACE dominates until degree and order 100, and GOCE 
signifi cantly contributes from about 150,150 (Pail et al., 2010b), cf. [5.2.8]. 

6.6.3 Combined (high resolution) gravity fi eld models

“Satellite-only” models can be improved (with respect to spatial resolution and accu-
racy) by combining them with satellite altimetry and surface gravity (Rapp, 1998). These 
data are generally available as mean values for compartments (blocks) formed by the 
grid of geographical coordinates, and ranging, e.g., from 5′ × 5′ to 1° × 1° dimensions. 
Again, the spherical harmonic expansion is employed for modeling, where degree and 
order of the development now depend on the spatial resolution of the altimetric and 
gravimetric data. A combination solution thus contains the following “observations”: 
the harmonic coeffi cients of a “satellite-only” model with the full error covariance ma-
trix, mean free-air anomalies from terrestrial gravimetry on land and sea, and mean 
geoid heights derived from satellite altimetry, both with an appropriate error model. The 
corresponding observation equations (i.e., the relation of gravity anomalies and geoid 
heights to the spherical harmonic coeffi cients) are given by (6.136) and (6.133), where 
the reduction of sea surface topography from the altimeter measurements is presup-
posed. Some solutions also use gravity anomalies instead of altimetric geoid heights, 
with a transformation based either on an integral formula, cf. [6.7.1], or on least-squares 
collocation, cf. [6.8]. 

Point free-air gravity anomalies (or mean gravity anomalies for some countries) 
are collected and kept at a few global gravity data bases (U.S. National Geospatial-Intelligence 
Agency (NGA), Bureau Gravimetrique International, Toulouse, France), see Fig. 6.27. The 
accuracy of point anomalies derived from land, sea and airborne gravimetry varies between 
5 and 50 μm s −2 , cf. [5.4.4]. In order to avoid long-wave systematic errors in gravity fi eld modeling, 
the anomalies have to refer to the same gravity (IGSN71), horizontal (ITRF, GRS80) and vertical 
reference systems, where the global vertical datum poses a special problem, cf. [3.4.3], Heck 
(1990). Mean anomalies can be derived, e.g., by least-squares prediction, where Bouguer 
anomalies may be used as intermediate gravity fi eld quantities, cf. [6.5.3]. On the continents, 
mean gravity anomalies are now available for most regions, but with different spatial resolution 
(from 1′ × 1′ to 30’ × 30’) and accuracy (varying between about 20 and 200 μm s −2 ). Larger gaps 
still exist in parts of South America, Africa, Asia and especially in Antarctica, and will be fi lled by 
airborne gravimetry, cf. [5.4.4]. The oceans, on the other hand, are only sparely covered by sea 
gravimetry tracks of rather heterogeneous accuracy, and this situation will in future change only 
slowly, see [4.4] and Fig. 6.27, Kenyon (1998). As a consequence, high-resolution gravity fi eld 
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data for the oceans are now generally derived from satellite altimetry, which covers the oceans 
more homogeneously (see below).

More than three decades of satellite altimetry have provided a large amount of distance 
measurements between the altimeter satellites and the sea surface, cf. [5.2.7]. With proper 
reduction of sea surface topography (oceanographic model), accurate orbit determination 
(tracking), altimeter calibration and adjustment of the track crossover discrepancies, mean 
altimetric geoid heights have been derived for the ocean areas. Data sets of high accuracy 
and resolution (e.g. 2′ × 2′ or 5’ × 5’) are available especially from the GEOSAT and ERS-1 
geodetic missions (Sandwell and Smith, 2009), which cover the oceans between ± 72° and 
82° latitude, respectively, with an equatorial track spacing of 4 and 8 km. After reducing 
the dynamic ocean topography from the altimetric ground data, along-track differentiation 
provides defl ections of the vertical. Double differentiation delivers gravity gradients, which 
can be used for the evaluation of the GOCE mission results, cf. [5.2.8]. Mean altimetric 
gravity anomalies can be calculated by inversion from the mean geoid heights, cf. [6.7.1]. 
Recent solutions exploit retracked satellite altimetry and the results of more recent altimetry 
missions, and provides the global marine gravity fi eld with 1′ × 1′ spatial resolution and an 
average accuracy of 20 to 50 μm s −2  (Andersen et al., 2010). 

By combining the mean anomalies from surface gravimetry and altimetry, only a few percent 
of the Earth’s surface remain uncovered. These gaps can be fi lled either by isostatic anomalies 
calculated from a topographic-isostatic model (Pavlis and Rapp, 1990), or just bridged by the 
satellite-only model.

Fig. 6.27: Global distribution of terrestrial gravity data, courtesy S. Bonvalot, Bureau 
Gravimétrique International.
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High-degree geopotential models are calculated either by least-squares adjustment or 
by quadrature methods (Rapp, 1998).

A least-squares adjustment, in principle, would utilize all available data in order to 
determine the full set of potential coeffi cients (130 321 coeffi cients at l,m = 360,360; 
3.67 million coeffi cients at 2160,2160), together with the error variance/covariance 
matrix. As computational limitations still prevent a rigorous adjustment of these quanti-
ties, alternative solutions have been developed. At these strategies, for instance, a com-
plete data coverage on a grid and homogeneous and uncorrelated errors are presup-
posed for the high-resolution data sets. Special arrangements of the normal equation 
matrix (block-diagonal technique) then allow an effi cient computation by iterative pro-
cedures (Wenzel, 1985; Pavlis et al., 1996). Subsequently, the normal equations of these 
data sets are added to the normal equations of the satellite-only model. 

The quadrature approach employs the integration over the gravity anomalies 
according to (6.139b). As a global and homogeneous data set is required at this strat-
egy, altimetric geoid heights have to be transformed into gravity anomalies (see above) 
and data gaps have to be fi lled by interpolation or model values. After the calculation 
of the harmonic coeffi cients from the gravity anomalies, they are again combined 
by adjustment with the coeffi cients of a satellite-only gravity model (e.g., Rapp and 
Pavlis, 1990).

Early spherical harmonic expansions based on terrestrial gravity data are due to Jeffreys 
(1941–1943), Zhongolovich (1952), and Uotila (1962). Sparse data coverage limited these 
expansions to the low-degree harmonics. Kaula (1959) introduced a constraint from satellite 
orbit analysis in order to develop a 8,8 geoid model. Among the geopotential models, 
developed before the advent of dedicated gravity fi eld satellite missions are the Ohio State 
University (OSU) model OSU91 (combination of the satellite-only GEM-T2 (36,36) model 
with 1° × 1° and 30° × 30° gravity anomalies from surface gravimetry and altimetry, quadrature 
method, Rapp et al., 1991), and the Geoforschungszentrum Potsdam (GFZ) model GFZ96 
(combination of the GRIM-4 (60,60/ 72,72) models with terrestrial anomalies and ERS-1 geoid 
heights, least-squares iteration, Gruber et al., 1997), both complete to degree and order 360. 
A 1800,1800 model GPM98 was developed by Wenzel (1999) by combining EGM96 with 
5′ × 5′ mean gravity anomalies available for about 75% of the Earth’s surface. The inclusion 
of GRACE and also GOCE data signifi cantly improves the quality of combined gravitational 
models. We mention the GGM02C (200, 200) model (Tapley et al., 2005) as a combination 
of a GRACE-only model with EGM96 (see below), and the EIGEN-5C (360, 360) model, as a 
combination of the satellite-only model EIGEN-5S with 0.5° × 0.5° gravimetry and altimetry 
surface data (Förste et al., 2008). The EIGEN-6C (1420,1420) model combines LAGEOS-, 
GRACE- and GOCE-data (EIGEN-6S, 240,240) and gravity anomalies from altimetry (oceans) 
and the EGM2008 model (land), the solution includes time variable (drift, annual and semi-
annual) spherical harmonic coeffi cients up to degree and order 50 (Förste et al., 2011). 

Tab. 6.1 presents the low degree and order harmonic coeffi cients and a selection of 
higher degree values as derived from the recent combination solution EGM2008 (see 
below). The anomaly degree variances approximately follow Kaula’s rule, with relative 
errors reaching about 50% around degree 700, and 100% around degree 1800 (Arabe-
los and Tscherning, 2010). 

Extended sets of satellite tracking data, terrestrial gravity anomalies and ocean-wide satellite 
altimetry have been utilized in the NASA/GSFC and NIMA joint geopotential (360,360) 
model EGM96 (Lemoine et al., 1998). Up to degree and order 359, the model parameters 
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have been derived from a block-diagonal least-squares adjustment, and the degree 360 
coeffi cients were calculated by quadrature. Geoid accuracy estimates are between 0.5 m 
for the oceans and 1 m for land areas. The NGA (U.S.A. National Geospatial-Intelligence 
Agency) Earth Gravitational Model EGM2008 (Pavlis et al., 2008) is based upon the ITG-
GRACE03S gravitational model (180,180) and a global gravity anomaly database of 5′ × 5′ 
resolution. The anomalies have been derived from terrestrial gravity measurements on land 
(16% still not covered with high quality data) and satellite altimetry on the oceans, where 
a dynamic ocean topography model (degree and order 180) is also provided. EGM2008 is 
complete to degree and order 2159 (spherical harmonic coeffi cients given for the “zero-
tide” and the “tide-free” system, cf. [3.4.1]), which corresponds to a 5′ spatial resolution. 
The “scaling” parameters have the numerical values GM = 398 600.4415 × 109 m3s–2 and 
a = 6 378 136.3 m, and a version related to WGS84 is also available, cf. [5.2.5]. The quality 
of the 5′ × 5′ geoid solution has been estimated by error propagation and by independent 
comparisons (GPS/leveling, astronomic defl ections of the vertical), Förste et al. (2009). The 
accuracy obtained varies especially between land and ocean areas and amounts to about 
0.1 m (geoid) resp. 1″… 2″ (defl ection of the vertical) for the continents, and 0.06 m resp. 
0.4″ for the oceans. The omission error for the geoid is a few cm globally, but may reach up 
to 0.1 m in mountainous areas (Jekeli et al., 2009).

The long-wave structures of the free-air anomalies and the geoid, as derived from a 
recent geopotential model, are shown in Figs. 6.28 and 6.29. The free-air anomalies 
vary rather irregularly about zero, but a correlation with extended mountain chains 

Tab. 6.1. Samples of fully normalized spherical harmonic coeffi cients (×106), 
EGM2008 Global Gravitational Model (Pavlis et al., 2008)

l m    
__

 C  lm    
_
 S  lm 

2 0 – 484.169 317 —
2 1 – 0.000 207 0.001 384
2 2 2.439 384 – 1.400 274
3 0 0.957 161 —
3 1 2.030 462 0.248 200
3 2 0.904 788 – 0.619 005
3 3 0.721 322 1.414 349
4 0 0.539 966 —
4 1 – 0.536 157 – 0.473 567
4 2 0.350 502 0.662 480
4 3 0.990 857 – 0.200 957
4 4 – 0.188 520 0.308 804
10 0 0.053 330 —
20 0 0.021 559 —
50 0 – 0.004 844 —
100 0 0.002 355 —
200 0 – 0.000 161 —
500 0 – 0.000 029 —
1000 0 – 0.000 007 —
1500 0 0.000 001 —
2000 0 0.000 001 —



282     6 Methods of Positioning and Gravity Field Modeling

Fig. 6.28: EGM2008 gravity anomalies (Pavlis et al., 2008), (http://Earth-info.nga.mil/GandG/
wgs84/gravitymod/egm2008/  ).

Fig. 6.29: EGM2008 geoid heights, contour line interval 10 m (Pavlis et al., 2008), (http://Earth-
info.nga.mil/GandG/wgs84/gravitymod/egm2008/  ).

(Cordilleras, Himalaya) can be recognized. The principal features of the geoid include 
the maxima near New Guinea (+80 m), in the North Atlantic, the southwestern Indian 
Ocean, and in the Andes, as well as the minima at Sri Lanka (–105 m), in Antarctica, to 
the west of California, and near Puerto Rico.



6.7 Local gravity fi eld modeling      283

6.7 Local gravity fi eld modeling

Local gravity fi eld modeling is especially useful for the determination of geoid/quasi-
geoid heights or defl ections of the vertical, with high accuracy and spatial resolution, 
as for instance needed for the reduction of GPS heights, cf. [6.4.3]. This strategy pre-
supposes the availability of high resolution gravity fi eld data in and around the area 
concerned. The spherical harmonic development of the gravity fi eld, described in [6.6], 
was and is (not yet) capable of delivering such a local solution. Integral formulas, on the 
other hand, allow a pointwise calculation of gravity fi eld quantities for the area under 
investigation, and thus provide the possibility of an arbitrarily high gravity fi eld resolu-
tion which depends only on data coverage and quality (Sansò and Rummel, 1997).

Utilizing gravity anomalies as the primary data set, classical solutions aim at the 
determination of geoid heights and defl ections of the vertical [6.7.1]. Reduction to the 
geoid is avoided in the calculation of the corresponding surface quantities, where the 
quasigeoid plays a special role [6.7.2]. Once the gravity fi eld is known on the geoid or 
on the physical surface of the Earth, upward continuation provides gravity fi eld quanti-
ties in space [6.7.3]. Astronomically determined defl ections of the vertical furnish differ-
ences of geoid or quasigeoid heights and may locally support or substitute gravimetric 
solutions [6.7.4]. 

An alternative approach to the integral formulas is least-squares collocation which 
will be discussed in [6.8].

6.7.1  Gravimetric geoid heights and defl ections of the vertical: 
integral formulas

The series expansion (6.4) for the disturbing potential T can also be represented by a 
surface integral. By inserting (6.138) into (6.3), this expansion reads

 T(r, J, l) =  ∑ 
l = 2

  
∞

     r ____ 
l − 1

      (   a __ r   )  l + 1
 Δ  g l  (J,l). (6.145)

As known from potential theory, the surface spherical harmonics Δ  g 
l
  can be derived 

by inversion of (6.137), as a surface integral of the gravity anomalies over the unit 
sphere s   :

 Δ g l  =   2l + 1 ______ 
4p    ∫ ∫ 

s 

   
 

   Δg  P l  (cos y ) ds, (6.146)

where  P 
l
 (cos y ) are the Legendre polynomials. Inserting into (6.145) yields the disturb-

ing potential on the geoid in spherical approximation (r = R = a)

 T(J,l) =   R ___ 
4p ∫ s   

 

   ∫ S(y )Δg ds, (6.147)

where the integral kernel (Stokes’ function)

 S(y ) =  ∑ 
l = 2

  
∞

    2l + 1 ______ 
l − 1

    P l  (cos y )  (6.148a)

can be expressed in closed form:

 S(y ) =   1 _____ 
 sin   
y 

 __ 2  
   + 1 − 5cos y − 6sin   

y 
 ___ 

2
   − 3cos y ln   ( sin   

y 
 ___ 

2
   +  sin 2   

y 
 ___ 

2
   ) .  (6.148b)
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This integral formula has been derived by Stokes (1849); it is called Stokes’ 
formula. 

By inserting (6.147) into Bruns’ theorem (6.97b), we obtain the geoid height 

 N =   R _____ 
4pg m 

   ∫ ∫ 
s

  
 

   S(y ) Δg ds ,  (6.149)

where  g 
m
  is a mean gravity value over the Earth. Stokes’ formula can also be derived as 

a solution of the integral equation (6.93), if applied to the geoid. If a geoid accuracy 
of the cm-order of magnitude is required, ellipsoidal corrections have to be applied 
to (6.149), Sünkel (1997). We also remember the conditions of mass and potential 
equality between the geoid and the reference ellipsoid, inherent in Stokes’ formula, 
cf. (6.126).

Stokes’ function S(y  ) acts as a weighting function on the gravity anomalies. It depends 
on the spherical distance y  between the point of computation and the surface element 
ds  with the gravity anomaly Δg. S(y ) decreases with y until a fi rst zero value at y = 39°, 
and then oscillates with large values and another zero value at 117° until y = 180° 
(Fig. 6.30). The neighborhood of the computation point requires particular attention, 
as S(y ) becomes infi nite at y = 0°. The contribution of the innermost zone around 
the point of computation can be estimated in planar approximation (e.g., with a radius  
s i  = 5 km), by expanding Δg in a Taylor series and performing integration term by term. 
To a fi rst approximation, the effect of the inner zone on the geoid height depends on the 
gravity anomaly in the computation point:

  N i  =   
 s i  __  g m     Δg P  + …. (6.150)

The components of the defl ection of the vertical are obtained by differentiating the 
disturbing potential T in north-south and east-west direction (6.98). This can be realized 
by expressing y in (6.147) in spherical coordinates of the computation point and the 
source point, the corresponding formulas of spherical trigonometry are taken from the 
spherical polar triangle, see Fig. 2.14. After differentiation with respect to latitude and 
longitude and subsequent resubstitution of y  we obtain

  {   x    h   } 
0
 =   1 _____ 

4p g m 
   ∫ ∫ 
s 

   
 

     
dS(y )

 _____ 
dy 

    Δg  {   cos a     
sin a 

   } ds, (6.151)
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Fig. 6.30: Original and modifi ed Stokes’ function, modifi cation according to (6.163).
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where a is the azimuth of the great circle from the computation point to the source 
point. Equation (6.151) was derived by Vening-Meinesz (1928). The Vening-Meinesz 
function 

   dS ___ 
dy

 = −   
cos  (   y 

 __ 2   ) 
 ________ 

2 sin 2  (   y 
 __ 2   ) 
   + 8siny − 6cos  (   y 

 __ 
2
   )  − 3  

1 − sin  (   y 
 __ 2   )  
 __________ 

sin y 
   

          + 3sin y ln [ sin  (   y 
 __ 

2
   )  +  sin 2  (   y 

 __ 
2
   )  ] . (6.152)

is infi nite at y = 0° and then decreases rapidly, attaining only small values after y = 50° to 
60° (Fig. 6.31). The contribution of the innermost zone depends primarily on the horizontal 
gradient of the gravity anomalies:

  {   x    h     } 
i
 = −   

 s i  ____ 
2 g m 

    {    ∂(Δg)/∂x  
     

∂(Δg)/∂y
   } 

P
 + … . (6.153)

Stokes’ and Vening-Meinesz’ formulas allow a pointwise calculation of the geoid 
height and the defl ection of the vertical, by integrating the gravity anomalies given 
on the surface of the geoid, cf. [6.5.3]. The properties of Stokes’ function require high 
resolution gravity data all over the Earth, while the effect of remote zones is small in 
the calculation of vertical defl ections and can be estimated by low-degree global grav-
ity fi eld models. The inner zone may contribute some cm to the geoid height, this is 
well accounted for at gravity station distances of 1 to 5 km, depending mainly on the 
roughness of topography. The effect of the inner zone on the defl ection of the vertical 
can reach several arcsec, especially in the mountains. A dense gravity survey and/or the 
calculation of the effect of topography is needed in order to achieve an accuracy better 
than 1 arcsec.

In practice, the integrals (6.149) and (6.151) are solved by a summation of fi nite surface 
elements. For this purpose, either a set of gridded point anomalies is formed from the observed 
data, using e.g., least-squares prediction or spline interpolation, or mean values over surface 
blocks delineated by meridians and parallels are calculated, cf. [6.6.3]. The latter case also 
requires the integration of the Stokes’ or Vening-Meinesz’ function over the block. After 
gridding, a very effi cient solution is obtained in the spectral domain using Fast Fourier Transform 
(FFT) techniques. The convolution required in (6.149) and (6.151) then becomes a simple 
multiplication, and the results are easily retransformed to the space domain by the inverse FFT 
(Schwarz et al., 1990; Haagmans et al., 1993). 

Fig. 6.31: Vening-Meinesz function.
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As discussed in [6.6.3], satellite altimetry provides a high resolution data set of 
geoid heights for the oceans, which now signifi cantly contributes to gravity fi eld 
modeling. Computation strategies either directly use the altimetrically derived ge-
oid heights or transform them into gravity anomalies. The transformation procedure 
is based on least-squares collocation, cf. [6.8.2], or on a surface integral over the 
geoid heights.

The surface integral for calculating gravity anomalies from geoid heights respec-
tively from the disturbing potential is obtained by the inversion of Stokes’ formula 
(6.149). Here we remember again that we restrict these developments to the boundary 
case of the Earth’s surface, with a spherical approximation (r = R); the extension to 
space will be discussed in [6.7.3]. We start from the spherical harmonic expansion of 
(6.137) and the relation between the surface spherical harmonics of Δg and T (6.138), 
and take the surface integral for the calculation of surface spherical harmonics into 
account:

  T l  =   2l + 1 ______ 
4p    ∫∫ 

s 

   
 

    T(J,l)  P l (cos y )ds (6.154)

(see the corresponding equation (6.146) for gravity anomalies). We thus obtain a fi rst 
version of the inverse Stokes’ formula (Molodenskii et al., 1962, p. 50):

 Δg (J,l) =   1 ____ 
4p R

   ∫ ∫ 
s 

   
 

   Ẑ (y )T(J ′,l ′)ds,  (6.155a)

with the (only distance dependent) kernel function:

 Ẑ (y ) =  ∑ 
l = 0

  
∞

   ( l − 1 )    ( 2l + 1 )   P l  (cos y ).  (6.155b)

For numerical calculations (6.155) generally is transformed into (Jekeli, 2009, p. 25 ff.):

 Δg(J,l) = −   
T(J,l)

 ______ 
R

   +   1 ____ 
4p R

   ∫ ∫ 
s 

   
 

   ( T(J ′,l ′) − T(J,l) )  Z(y )ds. (6.156a)

The inverse Stokes’ function now can be expressed also in a simple closed form: 

 Z(y ) =  ∑ 
l = 1

  
∞

  l  ( 2l + 1 )    P l (cos y ) = −   1 ______ 
4 sin 3   y 

 
__ 2  

  . (6.156b) 

The effect of the inner zone again has to be considered separately. It depends on the 
vertical gradient of the gravity anomaly (Lelgemann, 1976):

 Δ  g i  =   
 s i  __ 
4
    (   ∂ ( Δg ) 

 _____ 
∂r

   ) 
P   

, (6.157)

where si is the radius of the inner zone. Due to the properties of the integral kernel, 
the infl uence of the more remote zones on Δg decreases rapidly. Hence, in contrast 
to Stokes’s integral, the integration of the inverse Stokes’ integral can be restricted to a 
radius of a few degrees. 

Satellite-based positioning (GNSS), provides ellipsoidal heights for points on the Earth’s 
surface in a continuously increasing manner. This allows to calculate the gravity distur-
bance δg as an “observed” residual gravity fi eld quantity, cf. [6.1.2], and to solve the gravi-
metric boundary value problem on a geometrically known boundary surface, cf. [6.5.1], 
(Hotine, 1969, p. 317 ff.; Koch and Pope, 1972). Exploiting the small difference between 
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Δg and δg, see (6.134), (6.135), we obtain Hotine’s formula for the calculation of geoid 
heights from gravity disturbances (Hofmann-Wellenhof and Moritz, 2005, p. 115 ff.):

 N =   R _____ 
4p  g m 

   ∫ ∫ 
s 

   
 

   H(y )d g ds (6.158)

with the Hotine function 

 H(y ) =  ∑ 
l = 0

  
∞

    2l + 1 ______ 
l + 1

   P l   (cos y ) =   1 _____ 
sin   
y 

 __ 2  
   − ln   ( 1 +   1 _____ 

 sin   
y 

 __ 2  
   )  . (6.159)

In the future, a corresponding strategy may obtain greater relevance for gravity fi eld 
modeling. 

Purely gravimetric or gravimetric/altimetric calculations of geoid heights and defl ec-
tions of the vertical suffer from the data gaps at the polar caps, in some continental 
areas, and at coastal zones. They are also hampered by long-wave systematic data errors 
and by inhomogeneous spatial resolution and accuracy of the gravity data. As global 
geopotential models today provide the long-wave part of the gravity fi eld with high 
accuracy, cf. [6.6.3], and gravity anomalies with station distances down to 1 to 5 km are 
available in many regions, combined solutions based on integral formulas have been 
developed for local solutions covering the area well surveyed by terrestrial gravimetry. 
In addition, data smoothing techniques are employed on the gravity anomalies, consid-
ering the gravimetric terrain effect which can be calculated from digital terrain models, 
cf. [6.5.2].

Combination solutions apply the remove-restore technique (Forsberg and Tscherning, 
1981; Denker et al., 1986), which includes the following steps:

• Reduction of the gravity anomalies Δg by the anomaly part of the global model 
Δ g 

M
 (long wavelengths). 

• Smoothing of the anomalies by some kind of terrain reduction Δ g T  (short wave-
lengths), see below.

• Gridding of the residual gravity anomalies 

 Δ  g res  = Δ g − Δ  g M  − Δ  g T  . (6.160)

• Application of Stokes’ formula (6.149) on the residual gravity anomalies, resulting 
in residual geoid heights  N 

res
 .

• Restoration of the effects of the global model and the terrain to the residual geoid 
heights:

 N =  N res  +  N M  +  N T  . (6.161)

The remove-restore technique can also be applied on the defl ections of the verti-
cal or any other gravity fi eld quantity. It is used successfully also with least-squares 
collocation.

Since the residual gravity anomalies neither contain the long nor the short-wave parts 
of the gravity fi eld, they are considerably smaller and smoother than the original data, 
and they possess (approximately) homogeneity and isotropy properties, cf. [6.1.3]. With 
global spherical harmonic models of high degree and order, the integration area can 
be restricted to the region with dense data coverage and a narrow edge zone (spherical 
distance of a few degrees) around it. As only a small radius of integration is required at 
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this remove-restore technique, a planar approximation of Stokes’ formula is permitted. 
Stokes’ function then reduces to

 S(y ) ≈   1 ______ 
sin  (   y 

 __ 2   ) 
   ≈   2 __ y ≈ 2  R __ 

 l 0 
   , (6.162a)

with  l 0  =  √ 
_________________

     ( x −  x p  )  2  +   ( y −  y p  )  2    and  x p ,  y p   plane coordinates of the computation point. 
The spherical surface element is replaced by the planar element

 dS =  R  2  ds. (6.162b)

Inserting (6.162a) and (6.162b) into (6.149) yields Stokes’ formula in planar approximation

 N =   1 _____ 
2pg m 

   ∫ ∫ 
S

   
 

       
Δg

 ___ 
 l 0 

   dS, (6.162c)

which is very convenient to evaluate by FFT techniques. 
Different strategies can be pursued for the application of terrain reductions (Forsberg 

and Tscherning, 1997).
When Helmert’s condensation method is employed, terrain-corrected Bouguer 

anomalies may be fi rst used for gridding, cf. [6.5.3]. After restoring the Bouguer plate 
term (“condensation”), Faye anomalies reduced by the effect of the global model serve 
for the calculation of residual geoid heights.

With the residual terrain correction, only the high-frequency part of topography is taken 
into account in the remove-restore process, as the long-wave part has been subtracted 
already with the global model (Forsberg and Tscherning, 1981). It is calculated from a resid-
ual terrain model (RTM) which refers to a reference topography, as provided by a global 
topographic model (spherical harmonic expansion of the same degree and order as the 
geopotential model), or the moving average over mean heights of, e.g., 15’ × 15’ or 30’ × 
30’ blocks, Fig. 6.32. The result of this procedure is a balanced set of positive and negative 
anomalies, where the prism method is used generally for the calculation, cf. [6.5.2].

TERRAIN CORRECTION RESIDUAL TERRAIN
CORRECTION

BOUGUER PLATE
MEAN HEIGHT

SURFACE

PP

Fig. 6.32: Bouguer plate with terrain correction and residual terrain correction.

If applied to Stokes’ formula, the remove-restore technique implies that the complete 
spectrum of the geoid heights is computed from the gravity anomalies in the integration 
area, substituted by the values of the global model only outside this region. In the case of 
long-wave discrepancies between the terrestrial gravity data and the global model, this 
leads to a distortion of the long wavelengths of the geoid. This problem is avoided by least-
squares spectral combination (Sjöberg, 1979; Wenzel, 1982). Here, the long-wavelengths 
spectral components of the global model and of the gravity anomalies are combined 
within the area of integration, using least-squares adjustment with spectral weights

  w l  =   
 s   l  

2   (  e M  ) 
  _________________  

 s   l  
2   (  e M  )  +  s   l  

2   ( e Δg )    . (6.163a)
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The error degree variances  s    l  
2  (  e M  )  of the potential coeffi cients of the global model 

are estimated in analogy to (6.143), and the error degree variances of the terrestrial 
anomalies  s    l  

2  (  e Δg
  )  are derived from an error covariance function, in analogy to (6.25). 

Stokes’ function (6.148a) is extended now by the spectral weights to form an optimum 
integral kernel

 W(y ) =  ∑ 
l = 2

  
∞

    2l + 1 ______ 
l − 1

    w 
l
  P 

l
  (cos y ). (6.163b)

This function is no longer infi nite at y  = 0°, and it converges to zero more rapidly 
than the original Stokes’ function, see Fig. 6.30.

Early gravimetric geoid calculations with Stokes’ formula are due to Hirvonen (1934) and 
Tanni (1948). Based on isostatic anomalies, the “Columbus Geoid” was calculated at the 
Ohio State University (Heiskanen, 1957). A combination of a low-degree satellite model 
(Goddard GEM-6, degree and order 16) with 1° × 1° free-air anomalies (integration radius 
10°) was presented by Marsh and Vincent (1974). Among the recent regional solutions 
is the 1′ × 1′-gravimetric geoid model USGG2009 for the United States of America and 
its territories (Fig. 6.33), following the previous 2′ × 2′-geoid, which utilized the EGM96 
model and Faye anomalies (Smith and Roman, 2001). USGG2009 is based on a 1′ × 1′-grid 
of free-anomalies, altimetry-derived anomalies, the SRTM 3′ digital elevation model for 
topographic reductions, and the global geopotential model EGM2008 as a reference 
model, cf. [6.6.3]. The surface gravity data have been reduced by the long-wavelength part 
(global model) and the effect of topography (residual terrain model), and then transferred to 
the ellipsoid by harmonic downward continuation. A modified Stokes’ kernel was applied 
for the integration of the residual anomalies, which retained all signal below degree 120 
from EGM2008. USGG2009 refers to the NAD83 ellipsoid, cf. [7.1], and is centered in the 
ITRF reference frame. Presently it is the best approximation of mean sea level, with an 
accuracy of about 5 cm (Roman et al., 2009). Least-squares spectral combination has 
been also applied in the calculation of a European quasigeoid, which will be discussed 
in [6.7.2]. 

Fig. 6.33: Gravimetric Geoid USGG2009 of the U.S.A., contour line interval 5 m, courtesy 
National Geodetic Survey/NOAA (http://www.ngs.noaa.gov/GEOID/USGG2009/  ).
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6.7.2 Gravimetric height anomalies and surface defl ections of the vertical

The geodetic boundary-value problem for the physical surface of the Earth has been 
formulated by M.S Molodensky, through the integral equation (6.92), Molodenskii et 
al. (1962). By introducing the telluroid Σ as an approximation to the Earth’s surface, an 
integral equation for the disturbing potential was obtained (6.93). In contrast to the de-
rivative ∂T/∂n [n is the normal to the level surface, which entered into the fundamental 
relation (6.101)], the derivative ∂T/ ∂ n 

Σ
 ( n 

Σ
  normal to the telluroid) is now required. It not 

only depends on the gravity anomaly but also on the defl ection of the vertical and the 
inclination of the terrain. Evaluating ∂T/ ∂ n 

Σ
  from (6.101) and inserting into (6.93) yields a 

linear integral equation of the second kind for T (Heiskanen and Moritz, 1967, p. 299 ff.)

    

T −   1 ___ 
2p   ∫ ∫ 

Σ

   
  

     (   ∂ ___ 
∂ n Σ 

    (   1 __ 
l
   )  −   1 __ g       

∂g 
 ___ 

∂h
     
cos b 

 _____ 
l
   ) T  d Σ

=   1 ___ 
2p   ∫ ∫ 

Σ

   
 

       1 __ 
l
    ( Δg − g   ( x  tan  b x  + h tan  b y  )  cos b d Σ ) 

 
}
  

, (6.164)

with  b x  ,  b y  being the angles of terrain inclination in NS and EW-direction, b the angle 
of maximum inclination, and x, h the vertical defl ection components; l is the distance 
between the source point and the computation point. We remember that Δ g represents 
the free-air anomaly defi ned on the Earth’s surface according to Molodensky (6.15).

A simpler integral equation can be derived by expressing T as the potential of an infi -
nitely thin surface layer condensed on the telluroid. With the surface density m (6.114), 
the law of gravitation (3.10) yields

 T = G ∫ ∫ 
Σ

   
 

          
  m 

 ___ 
 l
   d Σ. (6.165)

As the potential of a surface layer is harmonic outside the surface, Laplace’s equation 
is fulfi lled, and we may introduce (6.165) and its normal derivative into the bound-
ary condition (6.101). This strategy again results in a linear integral equation which 
now only depends on Δg and on the terrain inclination. It can be solved by successive 
approximation, leading to a series expansion for T. In spherical approximation (s unit 
sphere, R Earth’s radius), and limiting the series to its fi rst two terms, the disturbing 
potential then is given by (Moritz, 1971):

 T =   R ___ 
4p   ∫ ∫ s 

   
 

    S(y )  ( Δg +  G 1  + … )  ds  =  T 0  +  T 1  + … (6.166a)

With Bruns’ formula (6.96), the corresponding development for the height anomaly z 
is obtained:

 z =   R ____ 
4p g    ∫ ∫ s 

   
 

   S(y )   ( Δg +  G 1  + … )  ds =  z 0  +  z 1  + … . (6.166b)

With S(y  ) being Stokes’ function (6.148), the main term in (6.166a,b) corresponds to 
Stokes’ formula now applied to the surface gravity anomalies (6.14). The fi rst correction 
term, in close approximation, is given by

  G 1  =    R  2  ___ 
2p  ∫ ∫ s 

   
 

     
 H  N  −  H   P  

N 
 ________ 

 l   0  
3 
   Δg  ds,  l 0  = 2R sin   

y 
 ___ 

2
  . (6.166c)
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It depends on the terrain inclination ( H  N  normal height) and on the gravity anomalies. 
Assuming a linear correlation of the gravity anomalies with height,  G 

1
  can be approxi-

mated by the gravimetric terrain correction (6.113), Sideris (1990). Hence, Faye anoma-
lies, cf. [6.5.3], are well suited for the computation of height anomalies.

Since the integral kernel in (6.166c) decreases rapidly with increasing spherical distance y, 
the integration can be restricted to a limited area. Higher-order terms in (6.166a/b) contain the 
tangent of the terrain inclination and can be neglected generally. In order to ensure convergence 
of Molodensky’s series expansion, extreme inclinations and singularities (steep slopes) need 
to be removed by some smoothing procedure. The Molodensky correction terms reach the 
dm-order of magnitude in the high mountains and remain at the cm-order in the lowlands. If 
the remove-restore technique, cf. [6.7.1], is applied, the corrections reduce by about one-order 
of magnitude and the series convergence is signifi cantly improved (Denker and Tziavos, 1999). 
Molodensky’s problem has been thoroughly investigated by Moritz (1971) and others, and the 
existence and uniqueness of the solution was proved by Hörmander (1976) and Sansò (1988). 

A very effi cient method for calculating the height anomaly is provided by the “gradient 
solution”, which is particularly well suited for FFT techniques (Moritz, 1980; Forsberg 
and Tscherning, 1997).

Here, the surface gravity anomalies are fi rst reduced to sea level (geoid or quasigeoid), 
by analytical downward continuation. Then Stokes’ integral is applied, leading to height 
anomalies on sea level. Subsequent upward continuation of the sea level height anomaly 
fi nally gives the surface height anomaly:

 z =   R ____ 
4p g    ∫ ∫ s 

   
 

      ( Δg −   
∂ ( Δg ) 

 _____ 
∂ H  N 

   H  N  )   S(y ) ds +   
∂z 

 ____ 
∂ H   N 

    H   N . (6.167a)

Poisson’s integral provides the radial derivative of Δg (Hofmann-Wellenhof and 
Moritz, 2005, p. 32 ff.):

   
∂ ( Δg ) 

 _____ 
∂ H  N 

   =    R  2  ___ 
2p ∫∫ s 

   
 

     
Δg − Δ g P  ________ 

 l   0  
3 
   ds, (6.167b)

and the vertical gradient of z results from (6.96) and (6.101):

   
∂z 

 ____ 
∂ H  N 

   =   ∂ ____ 
∂ H  N 

    (   T __ g     )  =   1 __ g     (   ∂T ____ 
∂ H  N 

   −   1 __ g      
∂g 
 ____ 

∂ H  N 
  T )  = −   

Δg
 ___ g   . (6.167c)

If the surface anomalies are reduced to the level of the computation point P, H N in 
(6.167a) has to be substituted by  H  N  −  H  

 P
  N . The last term in (6.167a) then vanishes, as H 

outside the integral means  H  
P
  N , and (6.167a) simplifi es to

 z =   R ____ 
4p g   ∫ ∫ s 

   
 

     ( Δg −   
∂ ( Δg ) 

 _____ 
 ∂H  N 

    (  H  N  −  H  P  
N  )  )   S(y ) ds. (6.167d)

The anomalies are now reduced from ground level to the level of the calculation 
point, which means that reference levels are changing with the points of calculation. 

The surface defl ection of the vertical (see Molodensky’s defi nition in [6.1.2]) is derived 
from (6.166b) by differentiation according to (6.98):

  {   x   N 
   

 h  N 
   }  =   1 ____ 

4p g   ∫ ∫ s 

   
 

    ( Δg +  G 1  + … )     
dS(y )

 _____ 
dy 

    {   cos a     
sin a 

   }  ds −   
Δg

 ___ g     {   tan  b x     
 tan  b y  

   } . (6.168)
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The principal term in (6.168) is Vening-Meinesz’ formula (6.151), and the  Molodensky 
correction terms again take the effect of the terrain into account. Another version of 
(6.168) is obtained by differentiation of (6.167d), Hofmann-Wellenhof and Moritz 
(2005, p. 314 ff.).

Molodensky’s problem is characterized by the fact that no assumptions on the density distribution 
within the Earth are necessary, in contrast to the geoid determination using Stokes’ formula. 
By the relation (6.9) between the geoid and the quasigeoid, a simple method is available to 
derive geoid heights from height anomalies by adding a correction term which depends on the 
Bouguer anomaly and the height. Data reductions onto the geoid and calculations of indirect 
effects are avoided by this strategy, and density hypotheses enter only through the Bouguer 
anomaly (Flury and Rummel, 2009). On a large scale, the Bouguer anomalies are negative on 
the continents, cf. [8.2.4], hence the quasigeoid generally is above the geoid. The differences 
between the geoid and the quasigeoid are of the cm- to dm-order of magnitude in fl at and hilly 
regions but may reach one meter and more in the mountains. Defl ections of the vertical defi ned 
on the ground and on the geoid may differ by a few arcsec in mountainous areas.

One example for a regional quasigeoid determination is the European Gravimetric Quasigeoid 
EGG07 (Denker et al. 2009). It is based on a high-resolution data set of point and mean gravity 
anomalies derived from land, sea and airborne gravimetry, and on satellite altimetry in the 
marine areas (Fig. 6.34). The remove-restore technique was applied using the EIGEN-GL04C 
(360,360) model from GFZ geopotential model (based on CHAMP, GRACE and terrestrial data), 
and terrain reductions according to the residual terrain model technique. A 3″ × 3″ (partly 1″ × 1″) 
digital elevation model delivered the terrain information, and a moving average fi lter over 30′ 
× 45′ blocks provided the reference topography. Gridded 1′ × 1′ residual gravity anomalies 
were transformed to height anomalies by least-squares spectral combination, cf. [6.7.1]. 
The main part of EGG07 (Fig. 6.35) stems from the global model, but the contributions from 
terrestrial gravity data and topography still amount to ± 0.4 m (maximum 4 m) and ± 0.03 m

Fig. 6.34: Distribution of land, marine and airborne gravity data used for the European 
quasigeoid EGG07 (Denker et al., 2009).
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(maximum 0.8 m), respectively. The accuracy of the 1′ × 1′ EGG07 quasigeoid model has 
been evaluated by comparisons with GPS/leveling control points, which indicate an accuracy 
potential in the order of 0.03 to 0.05 m at continental scales and 0.01 to 0.02 m over distances 
up to a few 100 km, if high quality and high resolution input data are available in the area of 
interest. The EGG2008 solution follows the same philosophy, by combining an improved gravity 
anomaly data set with the global EGM2008 model, cf. [6.6.3]. This reduces the contribution 
from terrestrial gravity data to about ± 0.2 m (maximum 2.4 m), and further approaches the “cm” 
accuracy at local geoid/quasigeoid modeling (Denker, 2012).

Quasigeoid modeling for other parts of the world follow similar strategies, and partly also 
include GPS/leveling control points.

6.7.3 The external gravity fi eld

The gravity fi eld outside the Earth is of interest for the orbit determination of satellites, 
and for the evaluation and exploitation of gravity fi eld related data obtained by satellite 
and airborne methods. Corresponding modeling is based on the fact that the gravita-
tional potential is a harmonic function in the exterior space, cf. [3.1.3]. This includes the 

Fig. 6.35: European gravimetric quasigeoid EGG07, contour line interval 5 m (Denker et al., 
2009).
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upward or downward continuation of gravity fi eld quantities from or towards the Earth’s 
surface, either globally or locally.

Global modeling employs the spherical harmonic expansion of the disturbing poten-
tial (spherical approximation), see (6.3) to (6.4) 

 T(r, J, y ) =  ∑ 
l = 2

  
∞

    (   R __ r   )  
l + 1

   T l   (J,l ) (6.169)

and the corresponding expansions for the height anomaly (6.132), the gravity distur-
bance (6.134) and the gravity anomaly (6.135), the defl ection of the vertical (6.137), the 
vertical gradient (6.138), and other residual gravity fi eld quantities, where the  T 

l
 (J,l ) 

represent the surface spherical harmonics of T. These expansions converge outside a 
sphere enclosing the Earth, cf. [3.3.2]. The spherical harmonic expansions clearly reveal 
the attenuation of the gravity fi eld with altitude, being proportional to 1/r for the disturb-
ing potential, to 1/r 2 for the gravity anomaly (gravity disturbance) and defl ection of the 
vertical, and to 1/r 3 for the gravity gradient. 

Some examples for gravity fi eld attenuation with height are given in Fig. 6.36. Cal-
culated from the Earth Gravitational Model EGM2008, cf. [6.6.3], the structures of the 

Fig. 6.36: Height anomaly, gravity anomaly and vertical gravity gradient at height h = 0 km 
and h = 350 km, from the Earth Gravitational Model EGM2008 (Pavlis et al., 2008); IfE, Leibniz 
Universität Hannover.
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Fig. 6.37: Measured GOCE gravitational gradients Tzz (gradiometer reference frame) over the 
central Andes (October to December 2010), band-pass fi ltered to the gradiometer measurement 
bandwidth (0.005–0.1 Hz) corresponding to a spatial resolution of about 750 to 40 km, level 1b 
data provided by ESA; IfE, Leibniz Universität Hannover.

height anomaly (equal to the quasigeoid at height zero), the gravity anomaly, and the 
vertical gravity gradient are shown for the height h = 0 and h = 350 km, the different 
behavior of the residual gravity fi eld quantities can be easily recognized.

Another example for the small gravity fi eld signal at satellite altitude is given in 
Fig. 6.37. It shows the near radial component of the gravitational gradient tensor, as 
measured over two months by the GOCE satellite above the central Andes.

With continuously improving global gravity fi eld data sets, cf. [6.6.3], spherical harmonic 
developments are of relevance for the majority of gravity fi eld computations in space. More 
local problems as occurring for instance at airborne gravimetry, on the other hand, requires 
gravity fi eld modeling which additionally utilizes local gravity data of high resolution and 
accuracy. The corresponding solutions are provided again by integral formulas.

Dealing with functions harmonic in space and given on the sphere as boundary sur-
face (spherical approximation), the problem of upward continuation corresponds to 
the fi rst boundary-value problem (Dirichlet problem) of potential theory. The solution 
is given by Poisson’s integral which for the disturbing potential reads as (Hofmann-
Wellenhof and Moritz, 2005, p. 247 ff.)

  T P  =   
R( r  2  −  R  2 )

 _________ 
4p    ∫ ∫ 

s 

   
 

      T __ 
 l   3 

   ds . (6.170)

With respect to the free-air anomaly Δg, according to (6.135) the function

 r Δg =  ∑ 
l = 2

  
∞

   ( l − 1 )     (   a __ r   )  l + 1
  T l  (J,l ) (6.171a)

is harmonic in space. This leads to the integral 

 Δ g P  =    R  2   (  r  2  −  R  2  )  __________ 
4p r   ∫ ∫ 
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Δg

 ___ 
 l  3 

   ds (6.171b)
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for the calculation of gravity anomalies in space from boundary values, where Δ g P  
refers to the point P in space and Δg are the surface anomalies on the spherical bound-
ary surface. The integral kernel decreases rapidly with distance, which allows restriction 
of the integration area on a limited zone around the computation point.

We now insert (6.171b) into (6.101b) which now represents a differential equation in 
space, and remove the spherical harmonics of degree zero and one. This leads to a spa-
tial extension of the geoid related Stokes’ formula (6.147) for the disturbing potential, 
which was derived by Pizetti:

 T(r, J, l ) =   R ___ 
4p    ∫ ∫ s 

   
 

   S(r,y )Δg ds, (6.172a)

where

 S (r,y ) =   2R ___ 
l
   +   R __ 

r
   −   3Rl ____ 

 r  2 
   −    R 2  __ 

 r   2 
   cos y ( 5 + 3 ln   

r − R cos y + l
  ____________ 

2r
   ) , (6.172b)

with

 l =  √ 
_________________

    r  2  +  R  2  − 2Rr cos y   , (6.172c)

is the extended Stokes’ function. 
Bruns’ theorem fi nally gives the separation between the geopotential surface W =  W 

P
  

and the spheropotential surface U =  U 
Q
  =  W 

P
  (height anomaly in space):

 z (r, J, l ) =   R ____ 
4pg   ∫ ∫ s 

   
 

   S  ( r,y  )  Δg ds. (6.173)

Corresponding spatial extensions can be derived for all other integral formulas such 
as the inverse Stokes’ integral, Hotine’s formula for gravity disturbance, and Vening-
Meinesz formulae for the defl ection of the vertical.

6.7.4 Astrogeodetic geoid and quasigeoid determination

Geoid and quasigeoid height differences can be obtained from defl ections of the verti-
cal, determined according to (6.57), (6.58) from astronomic and geodetic latitudes and 
longitudes resp. azimuths.

In astronomic leveling, the defl ections of the vertical are integrated along the path, 
either on the geoid or on the Earth’s surface (Fig. 6.38). On the geoid, we have

 dN = −  e 0  ds, (6.174a)

where  e 
0
  is the vertical defl ection component in the azimuth direction of the path (6.18), 

reduced to the geoid according to Pizetti’s defi nition, cf. [6.1.2]. Integration between  P 
1
  

and  P 
2
  yields the geoid height difference

 Δ  N 1,2  =  N 2  −  N 1  = −  ∫ 
1

   
2

   e 0   ds. (6.174b)

The negative sign follows from the sign conventions for the geoid height (6.8) and the 
defl ection of the vertical (6.17).

The geoid defl ection of the vertical, required in (6.174), is obtained by reducing the 
observed astronomic latitude and longitude onto the geoid: 

  Φ 0  = Φ + d Φ,  Λ 0  = Λ + d Λ, (6.175)
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where  Φ 0  and  Λ 0  are the astronomic coordinates on the geoid (Fig. 6.39). The reductions 
follow from the integration of the plumb line curvature  k  x  ,  k y  (3.74) between the Earth’s 
surface and the geoid:

 d Φ = −  ∫ 
0

   
H

   k x   d H, d Λ cos Φ = −  ∫ 
0

   
H

   k y   d H, (6.176a)

with H being the orthometric height. Inserting (3.67) and (3.70) yields

 d Φ = −  ∫ 
0

   
H

    1 __ g      
∂g

 ___ 
∂x

   d H, d Λ cos Φ = −  ∫ 
0

   
H

    1 __ g      
∂g

 ___ 
∂y

   d H, (6.176b)

R mean radius of the Earth. With (6.17), the NS and EW components of the vertical 
defl ection are given by

  x  0  = x + d Φ,  h  0  = h + cos Φ d Λ, (6.177a)
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Fig. 6.38: Astronomic leveling.

Fig. 6.39: Plumb line curvature in the meridian plane.
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and the azimuthal component reads

  e 0  =  x 0  cos a +  h 0  sin a. (6.177b)

In order to evaluate (6.176), the gravity and the horizontal gravity gradient along the plumb line 
are required. Digital terrain models allow estimation of these quantities with an accuracy between 
0.1″ and 1″, but errors may be larger in high mountains. The angle of plumb line curvature itself 
attains values of a few 0.1″ in the lowlands and may reach 10″ and more at high mountain stations.

Instead of integrating the defl ections of the vertical on the geoid, the surface vertical 
defl ections (defi nitions from Helmert or from Molodensky) may be used. The azimuthal 
component of Helmert’s defl ections of the vertical is given by

 e =  e 0  − d e, (6.178)

where the components of d e are obtained from (6.176b). Inserting into (6.174b) yields 
the geoid height difference

 Δ N 1,2  =  N 2  −  N 1  = −  ∫ 
1

   
2

  e ds −  ∫ 
1

   
2

  d e ds. (6.179a)

As seen from Fig. 6.38, the second term on the righthand side equals the orthometric 
height reduction E which is well known from geometric leveling (6.81b): the angle of 
plumb line curvature is the horizontal derivative of E. We thus have

 Δ N 1,2  = −  ∫ 
1

   
2

  e ds −  E 1,2 . (6.179b)

For height anomalies, the difference follows from the differential (Moritz, 1983)

 dz =   
dz 

 ___ 
ds

   ds +   
dz 

 ___ 
dh

   dh. (6.180)

The fi rst term describes the effect of Molodensky’s vertical defl ection. The second term 
enters because the physical surface of the Earth is not a level surface. Using (6.167c) and 
integration along the path yields Molodensky’s astronomic leveling of height anomalies

 Δ z 1,2  =  z 2  −  z 1  = −  ∫ 
1

   
2

   e  N  ds −  ∫ 
1

   
2 

    
Δg

 ___ g      dh, (6.181)

where Δ g refers to the Earth’s surface. 
The relation between geoid and quasigeoid height differences follows from (6.9) and 

(6.81):

 Δ z 1,2  =  ΔN 1,2  +  E 1,2  −  E  1,2  
N   (6.182a)

or when taking (6.179b) into account

 Δ z 1,2  = −  ∫ 
1

   
2

  e ds −  E   1,2  
N   , (6.182b)

where  E   1,2  
N   is the normal height reduction (6.81c).

The small correction terms in (6.179), (6.181), and (6.182) can be calculated easily from surface 
gravity and a digital terrain model. Therefore, the integration of surface vertical defl ections is of 
advantage even for geoid computations, as the tedious reductions onto the geoid required in 
(6.174) are not necessary.
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The line integrals of astronomic leveling presuppose that the defl ections of the vertical 
are given continuously along the path. In reality, vertical defl ections generally are avail-
able only at larger distances (several 10 km or more), which is due to the time-consuming 
astronomic observations. Station distances of a few km or even less are restricted to spe-
cial engineering or research surveys (see below). This poses the problem of interpolation 
between the vertical defl ection points (in the following, we do not distinguish between 
the vertical defl ections on the geoid and on the Earth’s surface!). Interpolation can be car-
ried out by purely mathematical methods or supported by additional information on the 
gravity fi eld behavior.

In the simplest case of mathematical interpolation, a linear change of the defl ections 
of the vertical between the stations  P 1  and  P 2  is assumed. The integration then yields

 Δ N 1,2  = −   
 e 1  +  e 2  ______ 

2
   s, (6.183)

where s is the distance between  P 
1
  and  P 

2
 . 

The linear interpolation model is adequate in fl at areas and where the distances between the 
vertical defl ection points are not too large (a few km). An area with suffi cient control point 
coverage then can be evaluated either by forming triangles and adjusting the geoid height 
misclosures or by a surface polynomial approximation to the geoid (Vaniček and Merry, 1973). 
The polynomial coeffi cients are determined from the corresponding series expansions of the 
vertical defl ection components, which result from (6.98) and Bruns’ formula 

 x = −   1 __ 
R

     ∂N ___ 
∂j 

  , h = −   1 ______ 
R cosj 

     ∂N ___ 
∂l 

  , (6.184)

where the condition of integrability of a potential fi eld, cf. [3.1.5], must be fulfi lled:

   
∂x 
 _______ 

cos j ∂l 
   =   

∂h 
 ___ 

∂j.
 (6.185)

Least-squares prediction, cf. [6.1.3], offers another effi cient interpolation method 
(Heitz, 1969), while least-squares collocation, cf. [6.8.2], even allows direct estimation 
of geoid heights from the vertical defl ections, thus providing an alternative to the 
integral formulas.

Additional gravity fi eld information between the vertical defl ection points can be supplied 
by terrain models, gravity anomalies, and zenith angles, and used for interpolation. 

A digital terrain model (possibly also taking density variations into account) can be 
used to calculate the effect of topography on the defl ections of the vertical. For more 
extended calculation areas, the effect of isostatically compensating masses should 
also be considered, cf. [6.5.2]. By subtracting the corresponding contribution from the 
observations, the vertical defl ection fi eld is smoothed, and mathematical interpolation 
methods are made easier. The interpolated residual defl ections of the vertical are then 
augmented by the effects of topography and isostasy, leading to a densifi ed network of 
vertical defl ection points. This remove-restore method has proved to be effi cient espe-
cially in mountainous areas (Hirt and Flury, 2008).

If a dense fi eld of gravity stations around the vertical defl ection points is available, it can be 
utilized for a gravimetric interpolation. Here, gravimetric defl ections of the vertical are computed 
according to (6.151) by integrating the gravity anomalies over a limited area (e.g., three times the 
distance between the vertical defl ection points). This gravimetric part is then removed from the 
observations, in addition a systematic difference between the astrogeodetic and the gravimetric 
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vertical defl ections has to be taken into account (different reference systems, effect of the zones 
neglected in the calculation of the gravimetric vertical defl ections). The residual defl ections of 
the vertical thus obtained are smooth and easy to interpolate. This method has been extended 
to astrogravimetric leveling, with a gravimetric “correction” to quasigeoid differences obtained 
from linear interpolation of surface defl ections of the vertical (Molodenski et al., 1962). This 
gravimetric interpolation allows calculation of geoid or quasigeoid height differences with cm 
to dm accuracy, even at larger spacing of the vertical defl ection points.

Reciprocal zenith angles deliver differences of the vertical defl ection components e in the line 
of sight. According to (6.85), the observed zenith angles z and the ellipsoidal quantities z are 
related by (Fig. 6.20)

  z 
1
  =  z 

1
  +  e 

1
 ,  z 

2
  =  z 

2
  +  e 

2
 . (6.186a)

Inserting into (6.87), and taking sign conventions into account, yields

  e 
2
  −  e 

1
  =  z 

1
  +  z 

2
  −   S __ 

R
   − p , (6.186b)

where S is the spherical distance between  P 1  and  P 2 . Starting at a vertical defl ection point, 
these differences can be used for the interpolation of defl ections of the vertical. The method 
has found some application in mountainous areas, where an interpolation accuracy of 
about 1 arcsec has been achieved. 

The advantage of the astrogeodetic method of geoid or quasigeoid determination con-
sists in its independence from data outside the area of calculation, in contrast to the 
gravimetric method where a global coverage with gravity data is needed. In addition, 
the demands on the accuracy of the point heights are less stringent as with the formation 
of gravity anomalies. On the other hand, the establishment of a vertical defl ection point 
requires substantially more time than a gravity measurement. A station spacing of 10 to 
20 km is available only in few regions, and even distances of up to 30 to 50 km are lim-
ited to well-surveyed countries. Large parts of the continents are covered only sparely, 
with concentration on profi les along fi rst-order triangulation chains, cf. [7.1.1]. Under 
these conditions, the accuracy of astronomic leveling mainly depends on the quality 
of interpolation, where an accuracy of a few cm to 0.1 m over some 100 km can be 
achieved in densely surveyed areas. With station distances of a few km, and by apply-
ing remove-restore techniques with respect to topographic-isostatic effects (see above), 
the accuracy can be increased to 0.01 to 0.02 m over several 100 km. Sub-millimeter/
km precision can be obtained at dedicated geoid profi les with station distances of 50 
to 100 m, employing transportable zenith cameras (Hirt and Seeber, 2007), cf. [5.3.1]. 

The superior effi ciency of gravimetric methods has greatly reduced the application of 
astronomic leveling. It is now only occasionally applied at areas or profi les which are 
not well covered by gravity measurements as in the mountains where gravity stations 
are typically concentrated along the roads. More important is the method’s capability 
to independently control gravimetric geoid/quasigeoid solutions, and to high-resolution 
local gravity fi eld determination as required at sophisticated engineering projects. 

Astronomic leveling was introduced by Helmert (1884) and fi rst applied in the Harz mountains, 
Germany. From the 1950s to the 1970s, astrogeodetic geoid determinations were carried out in a 
number of countries, using astronomic observations on the fi rst-order triangulation points (Heitz, 
1969). Defl ections of the vertical, and the resulting geoid, referred to the national geodetic datum 
and served for the reduction of horizontal angles and chord distances onto the national reference 
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ellipsoid, cf. [6.3.2], [7.1]. Large-scale solutions included the “Bomford” geoid for Europe 
(Levallois and Monge, 1978) and the continent-wide geoid determination by Fischer et al. (1968), 
with an average accuracy of a few meters. High precision astrogeodetic geoid models have been 
developed in Switzerland and Austria, based on a densifi ed net of vertical defl ection points and 
high-resolution digital terrain models, and employing remove-restore techniques (e.g., Marti, 
1997). Profi les of 500 km length and with station distances of a few km have been established 
in Germany for the control of gravimetric geoid models. Based on astrogeodetic measurements 
with a transportable zenith camera system and a digital terrain model for applying the remove-
restore technique, an agreement of a few cm was generally obtained between the astrogeodetic 
and the gravimetric solutions (Voigt et al., 2009). For parts of continental Europe, a corresponding 
comparison between astrogeodetic data and gravimetric defl ections of the vertical derived from 
EGM2008 showed an agreement of about 3″, which reduced to about 1″ after taking the omission 
error of the global model into account (Hirt et al., 2010).

6.8 Least-squares collocation 

The strategy of combining observation equations for all relevant data and using least-
squares adjustment for the determination of geometric and gravimetric parameters has 
been already shortly discussed at the beginning of this chapter. Through least-squares 
collocation, a stochastic model for gravity fi eld estimation is added, which leads to a 
very general method of combination.

In the most general form of least-squares collocation with parameters (Moritz, 
1980, p. 111 ff.), this method combines the calculation of station coordinates and 
other deterministic unknowns (harmonic coeffi cients, Earth ellipsoid and Earth ori-
entation parameters, calibration and drift coeffi cients, etc.) with the estimation of 
residual gravity fi eld quantities at unsurveyed points, utilizing all kind of (geometric 
and physical) observables (Krarup, 1969; Moritz, 1973). By extending the (linear) 
observation equation for least-squares (parameter) adjustment by a gravity fi eld signal 
part, the general form of the observation equation reads

 l = Ax + s + n, (6.187)

where l is the linearized vector of observations. It is composed of the deterministic part 
Ax and two stochastic parts s and n. x represents the parameter vector and A the design 
matrix containing the differential relations between observations and parameters. The 
signal vector s contains the residual gravity fi eld quantities at any point, either observed 
or to be predicted; it is more formally handled as a random quantity. The signal vector 
may include, in contrast to least-squares prediction, cf. [6.1.3], any kind of gravity fi eld 
quantities such as residual harmonic coeffi cients, geoid or quasigeoid heights, gravity 
anomalies, defl ections of the vertical, gravity gradient components, etc. The noise vec-
tor n represents the errors of the measurements, and is random originally. Each of the 
stochastic quantities is supposed to have a mean value of zero. The statistical behavior 
of these two parts is described by the covariance matrix C of the gravity fi eld signals, 
on the one hand, and the covariance matrix D of the observational noise, on the other, 
where mutual independence of signal and noise is assumed.

As easily recognized, least-squares collocation with parameters is an overdetermined 
problem with respect to the parameters (the number of observations exceeds the number 
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of parameters) and an underdetermined problem with respect to the gravity fi eld signal 
(more signals have to be predicted than have been observed). It is solved by applying a 
least-squares minimum condition on the weighted quadratic sum of the signal and the 
noise part, thus combining least-squares adjustment with least-squares prediction already 
discussed in [6.1.3], Moritz (1980). Following well-known rules of adjustment theory, the 
solution for the parameter vector is given by

 x =   (  A T     
__

 C   −1 A )  −1
 AT    

__
 C   −1 l, (6.188)

with   
__

 C  = C + D. The component of the signal vector predicted in an unsurveyed point 
P results in

   ŝ P  =  C  P  
T    

__
 C  −1  ( l − Ax ) , (6.189)

where the covariance vectors and matrices are explained in [6.1.3], but may now in-
clude heterogeneous signals. Following the arguments given in [6.2.1] for the combined 
adjustment, the least-squares parameter adjustment generally is separated from detailed 
gravity fi eld estimation. This leads to “pure” least-squares collocation, as an extension 
of least-squares prediction, cf. [6.1.3]. 

At least-squares collocation, applied to gravity fi eld estimation, the elements of the 
signal covariance matrix C are required, describing the correlation between hetero-
geneous residual gravity fi eld quantities. Since all these quantities belong to the same 
gravity fi eld, the covariances have to be derived from a (harmonic) basic covariance 
function through covariance propagation. The covariance function of the disturbing 
potential T is selected for this purpose, as all residual gravity fi eld quantities are related 
to T in a simple manner. This covariance function is defi ned in analogy to the covari-
ance function of the gravity anomalies (6.21). It is considered to be the mean value of 
the products of T in the points P and P ′ for a constant spherical distance y, where again 
we assume homogeneity and isotropy. The function is then given by:

 K(y ) =  cov y  ( T )  = M   { T T ’ }  y . (6.190)

Covariance propagation is well known from the theory of errors and is applied here 
to gravity fi eld signals. As demonstrated by (6.96) to (6.101), all residual gravity fi eld 
quantities (either observed or to be predicted) can be expressed as a linear functional of 
T. For an observation  l 

i
  we thus have

  l i  =  L  i  
P ′  T  ( P ′ ) , (6.191)

where Li is the functional to be applied to the disturbing potential T in order to transform 
it into the gravity fi eld quantity wanted. The covariance between T and  l 

i
  is obtained 

by applying  L 
i
  on the covariance function K(y ) = K ( P,P ′ ) , which can be expressed as a 

function of the spatial coordinates of P and P ′:

  C Pi  = M  { T  l i   }  =  L  i  
P ′ K(y ). (6.192)

For different types of observations at P and P ′, the covariance results from a subse-
quent application of the functionals L valid for the transformation of T into the respec-
tive observation:

  C ij  = M  {  l i   l j  }  =  L  i  
P    L  j  

P ′  K(y ). (6.193)
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The same rules have to be followed if heterogeneous signals shall be estimated. 
The statistical description of the Earth’s gravity fi eld required for least squares colloca-

tion is available by anomaly degree variance models, cf. [6.1.3]. The relation of these 
models to the basic covariance function introduced above can be derived by applying 
the mean value operator (6.190) on the spherical harmonic expansion of the disturbing 
potential (6.4). This yields the spatial covariance function of T:

 K(y ) =  ∑ 
l = 2

  
∞

   s    l  
2    ( T )    (    R  2  ___ 

rr ′
   )  l + 1

   P l  (cos y ), (6.194a)

where the potential degree variances are defi ned in analogy to (6.26):

  s    l  
2  ( T )  = M  {  T   l  

2  } . (6.194b)

Taking Bruns’ formula N = T/g  into account, equation (6.143) provides the relation 
between the degree variances of the disturbing potential and the gravity anomalies:

  s    l  
2  ( T )  =   (   R ____ 

l − 1
   )  2  s    l  

2  ( Δg ) . (6.195)

Inserting (6.195) into (6.194a) fi nally yields

 K(y ) =  R  2   ∑ 
l = 2

  
∞

     1 _______ 
  ( l − 1 )  2  

   s    l  
2    ( Δg )    (    R  2  ___ 

rr ′
   )  l + 1

  P l  (cos y ), (6.196)

which enables the calculation of the basic covariance function from an anomaly degree 
variance model. For local applications, the covariance function has to be fi t to the grav-
ity fi eld structure in the area of calculation, cf. [6.1.3]. 

The advantage of least-squares collocation is the fl exibility in estimating any kind 
of gravity fi eld quantity from different types of gravity fi eld observations, at surveyed 
and unsurveyed points. The data can be processed as discrete values and need not be 
continuous, as required for the application of integral formulas, cf. [6.7]. Neither grid-
ding of the data nor reduction to some reference level is required. For homogeneous 
and continuously distributed data, least-squares collocation transforms into the integral 
formulas of physical geodesy (Moritz, 1976). On the other hand, the amount of data that 
can be handled remains limited by computing facilities, as equation systems have to be 
solved for the inversion of   

__
 C  having a dimension equal to the number of observations. 

Applications have therefore been restricted to limited areas and data sets. By introduc-
ing some restrictions on the data, computing time can be reduced and larger data sets 
evaluated (Sünkel, 1986a; Bottoni and Barzaghi, 1993; Sansò and Tscherning, 2003).

Least-squares collocation is applied especially for local and regional geoid determination 
(Tscherning and Forsberg, 1986; Denker, 1988), but also for the estimation of gravity 
anomalies from altimetric geoid heights and for downward continuation problems. 
Remove-restore techniques are used generally, cf. [6.7.1], which reduces the data collection 
area. One example for the application of least-squares collocation is the geoid of Austria, 
determined from vertical defl ections and gravity anomalies after reducing a global and a 
topographic-isostatic gravity model (accuracy of a few cm), Kühtreiber (2002). The upward 
continuation of second derivatives of the disturbing potential from the ground, for GOCE 
data calibration and validation represents another example of least-squares application 
(Wolf and Denker, 2005). 





7 Geodetic and Gravimetric Networks

Geodetic and gravimetric networks consist of monumented control points that provide 
the reference frames for positioning and gravity-fi eld determination. In the sequel, we 
concentrate on regional networks which are established nation- or continent-wide. They 
serve as the basis for all kind of surveying and navigation, as well as for geo- information 
systems including topographic and thematic map series, and for the investigation of 
recent geodynamics. Regional networks are increasingly derived from or integrated 
into global reference frames established and maintained by international conventions, 
cf. [2.4], [5.4.3]. Local networks are established, e.g., for engineering and exploration 
projects, real estate surveys and crustal movement investigations. They generally follow 
similar rules as regional networks at design, measurement, and evaluation, adapted to 
the specifi c demands and peculiarities of the respective problem.

Until recently, horizontal and vertical control networks have been established sepa-
rately, following the classical treatment of (horizontal) positioning and heighting. These 
networks still are the basis of national geodetic reference systems, and they even have 
been partly combined to continent-wide systems [7.1], [7.2]. Since some decades, 
geodetic space methods allow the establishment of three-dimensional (3D) networks 
orientated with respect to a geocentric reference system. Today, these methods are 
characterized by very effi cient procedures and homogeneous results of high accuracy, 
and consequently they are superseding the classical control networks. Strong endeav-
ors are made now to integrate these networks into the 3D frame which also requires 
the inclusion of a geoid model [7.3]. Gravity networks serve the different needs of geod-
esy and geophysics, with the reference provided either by a global gravity standardiza-
tion net or by absolute gravimetry; they are now also tied to the 3D geodetic reference 
frame [7.4].

If reobserved after a certain time span, geodetic and gravimetric networks can be utilized 
for the detection and investigation of medium- and long-term temporal variations of posi-
tion and gravity. With progress in data acquisition and evaluation, continuously operat-
ing networks are established increasingly, which also allow the measurement of short-term 
variations. World-wide networks meanwhile monitor global changes and the variations of 
the Earth rotation routinely, cf. [2.4.2], while regional and local networks concentrate on the 
investigation of areas affected by recent geodynamic activities, cf. [8.3.4], [8.3.5].

The establishment of geodetic networks is treated in textbooks on geodesy and geo-
detic surveying, e.g., Bomford (1980); Moffi tt and Bossler (1997); Anderson and Mikhail 
(1998); Kahmen (2006), and Hofmann-Wellenhof et al. (2008) with respect to GNSS; for 
gravity networks see, e.g., Torge (1989).

7.1 Horizontal control networks

National horizontal control networks were established from the eighteenth century until 
the 1980s, where the networks’ design, observation, and computation methods changed 
with the available techniques. Computations were carried out on a conventional 
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reference ellipsoid fi tted to the survey area. Since the 1960s, spatial geodetic methods 
have allowed orientation of the classical networks with respect to the global geocentric 
reference system, and control of scale and systematic distortions. In the following, we 
describe the design of these networks, the measurement and computation techniques 
applied, the accuracy achieved, and the orientation with respect to the Earth’s body 
(geodetic datum). Having served (and serving) as a basis for many applications in sur-
veying and mapping, they are still of relevance and now in a state of transition to the 
global 3D reference frame, cf. [7.3]. 

Horizontal control networks have been realized by trigonometric (triangulation) points, 
which in principle should be distributed evenly over the country. One distinguishes 
between different orders of trigonometric points, from fi rst-order or primary ( station sepa-
ration 30 to 60 km) to second-order (about 10 km) to fourth- or even fi fth-order (down 
to 1 to 2 km) stations, where the state of the networks’ coverage strongly depends on 
the development of the respective region or country. The maximum distance between 
fi rst-order points was determined by terrestrial measurement methods, which required 
intervisibility between the network stations. Consequently, fi rst- and partly also second-
order stations were established on the top of hills and mountains; observation towers 
(wooden or steel constructions with heights of 30 m and more) were erected especially 
in fl at areas. The stations have been permanently marked by underground and surface 
monuments (stone plates, stone or concrete pillars, bolts in hard bedrock). Eccentric 
marks have been set up in order to aid in the recovery and verifi cation of the center mark.

Classical horizontal control networks have been observed by the methods of triangu-
lation, trilateration, and traversing.

In triangulation, all angles of the triangles formed by the trigonometric points are 
observed with a theodolite (Fig. 7.1). The instrument is set up on the observation pillar 
or tower; at large distances the targets are made visible by light signals. Either directions 
(successive observation of all target points) or angles (separate measurement of the two 
directions comprising one angle) are observed in several sets (i.e., in both positions of 
the telescope), distributed over the horizontal circle of the theodolite. The scale of a tri-
angulation network is obtained from the length of at least one triangulation side, either 
derived from a short baseline through a baseline extension net or measured directly by a 
distance meter. Astronomic observations provide the orientation of the network, where an 
astronomic azimuth (Laplace azimuth) is needed for the horizontal orientation, see below. 

NORTH
LAPLACE
AZIMUTH

BASELINE
EXTENSION NET

TRIANGULATION

Fig. 7.1: Triangulation with baseline extension net and Laplace azimuth (principle).
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Trilateration employs electromagnetic distance meters in order to measure the 
lengths of all triangle sides of a network, including diagonals (Fig. 7.2). Again, at least 
one Laplace azimuth is needed for the orientation of the net. Electromagnetic distance 
measurements put less demands on the stability of observation towers as compared to 
angular measurements, and the use of microwaves makes the method more indepen-
dent from weather conditions.

Traverses combine distance and angular measurements, where the traverse stations 
are arranged along a profi le between already existing control points. The traverse sta-
tions may be either transformed into the national reference system by means of the 
control points, or immediately calculated in that system if astronomic (Laplace azimuth) 
or terrestrial orientation is available, Fig. 7.3 gives some examples. Traversing represents 
a very effective and fl exible method for establishing horizontal control, with no more 
need to establish stations on hilltops. It has been employed primarily for the densifi ca-
tion of higher-order networks. 

TRILATERATION

NORTH

LAPLACE
AZIMUTH

Fig. 7.2: Trilateration with Laplace azimuth (principle).

Fig. 7.3: Traverse connecting two control points (principle): a) without additional orientation, 
b) with orientation by Laplace azimuths, c) with orientation by directions to control points.
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Horizontal control networks have also be formed by combining the methods of 
triangulation, trilateration, and traversing. Such networks are very stable in design, and 
allow establishment of fi rst- and second-order control simultaneously. Optimization 
methods have been developed for the design and survey of trigonometric networks. 
Starting from the demands on accuracy and reliability, these methods provide informa-
tion on the optimum point confi guration and the distribution of the measurements in the 
network given the limitations of available equipment and the maximum allowable cost 
of the survey (Grafarend and Sansò, 1985).

Triangulation as part of a national geodetic survey started in France (1733–1750: Carte 
géométrique de la France, under the direction of Cassini de Thury) and in Great Britain (since 
about 1780 triangulation by the Ordnance Survey, under W. Roy and others). It continued to 
be the method for establishing horizontal control networks in the nineteenth and twentieth 
century until the introduction of electromagnetic distance measurements. Triangulation often 
started with chains (in many cases established along meridians and parallels) composed of 
triangles or quadrilaterals with diagonals tied together every few 100 km. The meshes of this 
framework then were fi lled by fi rst- or second-order areal triangulation. The triangulations of 
Bavaria (1808–1828, J.G. Soldner) and of Prussia (since 1875, O. Schreiber) brought signifi cant 
improvements in measurement and calculation techniques, which also infl uenced other 
national geodetic surveys. Large-scale networks (chains and fi lling nets) were developed in 
the U.S.A. (starting in the 1830s and connected with the names of F. R. Hassler and (later) 
J.F. Hayford, W. Bowie and many others) and in the former Soviet Union (since the 1930s, 
T.N. Krassovski). Trilateration was applied from the 1950s to the 1970s for strengthening, 
extending, and densifying triangulation networks. Airborne microwave methods were employed 
for the rapid survey of regions with diffi cult access and for bridging water areas (a few meters to 
10 m accuracy over some 100 km). Traversing has been used mainly for network densifi cation 
since the 1960s, but fi rst-order geodimeter traverses also strengthened continental networks 
(U.S.A.) or even established them (Australia). From the 1960s to the 1980s, satellite methods 
were utilized to control the quality of horizontal control networks and especially to determine 
the orientation and the scale of the ellipsoidal systems with respect to the global geocentric 
system, see below.

First- and some second-order horizontal control networks have been calculated on a 
reference ellipsoid within the system of ellipsoidal coordinates, cf. [4.1]. Lower-order 
networks are primarily calculated in planar Cartesian coordinates, after conformal map-
ping of the ellipsoid onto the plane (Maling, 1973; Kuntz, 1990; Grafarend and Krumm, 
2006). The network calculation started with the reduction of the observed horizontal 
angles/directions and spatial distances to the ellipsoid, where the gravity-fi eld-related 
reductions (defl ections of the vertical, geoid height) were not considered during earlier 
surveys, cf. [6.3.2]. The adjustment was carried out either by the method of conditions 
or by variation of the coordinates, with redundancy resulting from triangle misclosures, 
diagonals in trilateration quadrilaterals, and additional baselines and Laplace azimuths. 
The coordinates’ transfer from an initial point (see below) was based on the solutions of 
the direct resp. inverse problem on the ellipsoid, cf. [6.3.3]. Among the defi ciencies of 
this classical “development method” are the neglecting of the defl ections of the verti-
cal, the inadequate reduction of distances on the ellipsoid, and especially the step by 
step calculation of larger networks, with junction constraints when connecting a new 
network section to an existing one. This led to long-wavelength network distortions of 
different type, with regionally varying errors in scale (1 0 −5  and more) and orientation 
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(a few arcsec). Coordinate errors with respect to the initial point increased from a few 
decimeters over about 100 km to about 1 m over several 100 km and reached 10 m and 
more at the edges of extended continent-wide networks. 

The geodetic datum of a horizontal control network comprises the parameters of the 
reference ellipsoid and of the network’s orientation with respect to the Earth’s body, cf. 
[6.3.3]. Conventional ellipsoids, as computed by the adjustment of several arc measure-
ments, were introduced during earlier geodetic surveys, cf. [1.3.3]. Some horizontal 
networks refer to locally best-fi tting ellipsoids, as derived from a minimum condition on 
the observed vertical defl ections, using the equations (6.51):

  ∑ 
 
  

 
     (  x   2  +  h  2  )  = min. (7.1)

Tab. 7.1 gives the parameters of some reference ellipsoids that have been used for 
national geodetic surveys (Strasser, 1957; NIMA, 2000).

The ellipsoids of Airy (applied in Great Britain), Everest (India, etc.), Bessel (Germany, Austria, 
Japan, etc.), Clarke 1866 (U.S.A., Canada, etc.), and Clarke 1880 (France, etc.) are based on 
the adjustment of arc measurements distributed over the continents. The Hayford ellipsoid 
fi ts best to the vertical defl ection (topographic-isostatically reduced) fi eld in the U.S.A., it has 
been introduced in a number of countries. The Krassovski ellipsoid resulted from a fi t to the 
Russian triangulations, with additional data from western Europe and the U.S.A. The ellipsoids 
of the Geodetic Reference Systems GRS67 (Australia, etc.) and GRS80 represent recent global 
approximations to the geoid, cf. [4.3]. 

The orientation of the ellipsoid was realized by defi ning the ellipsoidal coordinates of a 
fundamental (initial) point, also called network origin, and by conditions for the paral-
lelism of the axes of the ellipsoidal and the global geocentric system, cf. [6.3.3].

In earlier surveys, the coordinates of the fundamental point were fi xed by postulating 
equality between observed astronomic latitude, longitude, and orthometric height and 
the corresponding ellipsoidal quantities. This is identical to setting the defl ection of the 
vertical and the geoid height of the fundamental point to zero:

  x 
F
  = 0,  h 

F
  = 0,  N 

F
  = 0. (7.2)

Tab. 7.1. Parameters of reference ellipsoids (rounded values), NIMA (2000)

Name, Year Semi-major axis a (m) Reciprocal fl attening 1/f

Airy, 1830 6 377 563 299.3
Everest, 1830 6 377 276 300.8
Bessel, 1841 6 377 397 299.15
Clarke, 1866 6 378 206 294.98
Clarke, 1880 6 378 249 293.47
Hayford, 1909 6 378 388 297.0
= Int.Ell.1924
Krassovski, 1940 6 378 245 298.3
GRS67 6 378 160 298.247
GRS80 6 378 137 298.257
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This strategy provides a good approximation of the ellipsoid to the geoid close to the 
origin, but may lead to larger deviations at more remote areas (Fig. 7.4). If a suffi cient 
number of vertical defl ection points were available and well distributed over the area 
of calculation, the minimum condition (7.1) was used. It permits the determination of 
the defl ection of the vertical in the fundamental point and at extended networks also 
the parameters of a best-fi tting ellipsoid. This procedure led to an optimum fi tting over 
the whole area, and kept the defl ections of the vertical small. In many cases, the geoid 
height of the origin point was defi ned indirectly by reducing the baselines onto the 
geoid and treating them as ellipsoidal quantities (Fig. 7.5). The minimum condition for 
the geoid heights 

  ∑ 
 
  

 

     N  2  = min.  (7.3)

was seldom applied using relative geoid heights calculated from astronomic leveling, 
cf. [6.7.4], and utilizing the last equation of (6.51).

The parallelism of the axes of the ellipsoidal and the geocentric system was achieved 
by the condition equations (6.57) and (6.58) for the defl ection of the vertical and the 
azimuth (Laplace equation). In extended networks, several base lines and Laplace 
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 stations often were established at distances of a few 100 km in order to control the error 
 propagation through the network with respect to scale and orientation (effects of lateral 
refraction). More recently, the ellipsoid parameters of a geodetic reference system have 
been introduced, cf. [4.3], and the ellipsoid has been optimally fi tted to the geoid, Fig. 7.6. 
Tab. 7.2 lists the ellipsoids and the origin points used for some geodetic datums (NIMA, 
2000).

Fig. 7.6: Mean Earth ellipsoid.
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b
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Tab. 7.2. Reference ellipsoids and origin points of some geodetic datums

Geodetic datum Reference 
ellipsoid

Name of origin Origin

Latit. Longit.

Australian Geodetic 
1984 (AGD84)

GRS67 Johnston  −25°57’ 133°13’

Deutsches 
Hauptdreiecksnetz 
(DHDN), Germany

Bessel 1841 Rauenberg/Berlin 52°27’ 13°22’

European Datum 1950 
(ED50)

Intern.Ellipsoid 
1924

Potsdam, 
Helmertturm

52°23’ 13°04’

Indian Everest 1830 Kalianpur 24°07’ 77°39’

North American 1927 
(NAD27)

Clarke 1866 Meades Ranch, 
Kansas

39°13’ 261°27’

North American 1983 
(NAD83)

GRS80 Geocentric

Ordnance Survey of 
Great Britain 1936 
(OSG36)

Airy 1830 Herstmonceux 50°52’ 0°21’

Pulkovo 1942, former 
Soviet Union

Krassovski 
1940

Pulkovo 59°46’ 30°20’

South American 1969 
(SAD69)

GRS67 Chua, Brazil  −19°46’ 311°54’
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The following description of the triangulation networks established in North 
America and Europe illustrates the development of regional horizontal control sys-
tems, and the primary triangulation of Germany serves as an example for a local 
solution.

The horizontal control network of the U.S.A. was constructed by triangulation chains 
with mesh sizes of about 500 km. Nodal nets with baselines and Laplace azimuths were 
established at the junctions of the chains and treated as constraints in the adjustment, 
and areal networks later fi lled the meshes. A conventional ellipsoid (Clarke, 1866) was 
introduced, with the orientation obtained from the minimum condition for vertical defl ections 
(7.1): North American Datum 1927 (NAD27), see Tab. 7.2. This system has been replaced 
by the North American Datum of 1983 (NAD83), implemented as legal datum in 1986. 
NAD83(1986) combines the horizontal control networks of the U.S.A., Canada, Greenland, 
Mexico, and Central America by a rigorous adjustment (Schwarz and Wade, 1990), 
Fig. 7.7. The observations include terrestrial data (horizontal directions, azimuths, 
distances), Doppler stations (for large-scale control and reference to the geocenter), and 
VLBI baselines (for scale and orientation). The adjustment (about 1.8 million observations 
and 300 000 points) was performed by Helmert-blocking (Wolf, 1978) and utilized a 
height-constrained 3D procedure, cf. [6.2] (Vincenty, 1982). The two-dimensional results 
refer to the Geodetic Reference System 1980, with a geocentric position accurate to about 
2 m. The relative station uncertainty is a few cm to a few dm for distances between 10 
and 300 km (Snay, 1990). NAD83 (1986) has been superimposed by GPS positioning 
since the end of the 1980s, and local readjustments of GPS and terrestrial data led to 
numerous state and regional High Precision Geodetic Networks (HPGNs), in addition to 
a continuously operating GPS network. This led to a recomputation as a 3D network, and 
a new realization of the horizontal datum within the National Spatial Reference System: 
NAD83 (NSRS2007), cf. [7.3]. 

40°

30°

110° 100° 90° 80° W

40°

30°

N

Fig. 7.7: Horizontal control network of the U.S.A. (NAD83), with fi rst- and second-order 
triangulation, and traverses, courtesy National Geodetic Survey, National Ocean Service, NOAA.
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Since the 1950s, attempts have been made in Europe to unify the national triangulation 
networks, where the political separation forced to separate solutions for western and eastern 
European countries. In western Europe, a unifi ed European triangulation network (RETrig) was 
developed, which started from a central European network formed by selected triangulation 
chains and later was augmented by blocks in the southwest, southeast, and north (Whitten, 
1952): European Datum 1950 (ED50), see Tab. 7.2. The International Ellipsoid 1924 served 
as the reference surface and was orientated by the minimum condition (7.1), which provided 
vertical defl ection components (x = 3.36”, h = 1.78”) for the origin Potsdam, Helmert-
Turm. The baselines, reduced to the geoid, indirectly provided the geoid height (N = 0.4 m) 
at the origin. A rigorous readjustment of all fi rst-order triangulation nets was carried out 
later, including electromagnetic distance measurements, VLBI, satellite laser ranging, and 
Doppler observations: European datum 1987 (ED87), Poder and Hornik (1989). Orientation 
was adopted from ED50, but parallelism of the axes and scale could be improved. While 
ED50 was introduced in several countries, and served as the NATO military system until the 
1990s, no practical application was found for ED87. Extensive retriangulations took place in 
eastern Europe since the 1950s. They were connected to the horizontal control network of the 
former Soviet Union, which was based on extended triangulation chains. Calculations were 
performed on the Krassovski (1940) ellipsoid, with parameters and orientation derived from the 
minimum condition for vertical defl ections (7.1), and the geoid height set to zero at the origin 
Pulkovo: Pulkovo Datum 1942 (  Izotov, 1959). Reductions to the ellipsoid became possible by 
observed and gravimetrically interpolated defl ections of the vertical and quasigeoid heights 
from astrogravimetric leveling, cf. [6.7.4]. A readjustment of the Russian triangulation chains 
together with the fi rst- and second-order networks of the eastern European countries delivered 
the last realization of this unifi ed astrogeodetic “System 42” in 1983. Since the end of the 
1980s, a new European Terrestrial Reference System (ETRS) has been defi ned, and realized 
through geodetic space techniques, cf. [7.3]. 

The primary triangulation net of Germany, developed since the 1870s, is an example of a 
local horizontal control network. The northwestern part, between the rivers Elbe and Main, 
was covered by triangulation chains and densifi cation nets between 1870 and 1895 as part 
of the geodetic survey of Prussia. A conventional ellipsoid (Bessel, 1841) was introduced for 
the calculation and orientated by the condition (7.2) at the origin Rauenberg/Berlin, whereby 
the geoid height was fi xed indirectly through the reduction of fi ve baselines, one of them 
located near Berlin. The Laplace azimuth from Rauenberg to Berlin, Marienkirche provided the 
network’s orientation on the ellipsoid. After the network adjustment, the ellipsoidal coordinates 
were calculated according to the development method. The eastern parts of Prussia and 
the triangulations of the southern German states were later tied to this “Schreiber’s block” 
utilizing common points at the networks’ margins: Deutsches Hauptdreiecksnetz (DHDN), 
see Tab. 7.2. In western Germany, the DHDN has been locally improved since the 1950s by 
additional horizontal directions and electromagnetic distance measurements, without changing 
the original datum. While the relative accuracy over some 10 to 100 km is at the dm order 
of magnitude, distortions up to 1 m have been found between different parts of the network. 
In eastern Germany, a complete retriangulation was carried out after 1950 and calculated 
within the common adjustment of the eastern European triangulations (see above): Staatliches 
Trigonometrisches Netz 1942/1983 (STN42/83), Ihde und Lindstrot (1995). The DHDN90 
thus consists of three blocks observed over a time span of more than 100 years with different 
orientation (Schmidt, 1995), Fig. 7.8. The sites of this classical fi rst-order triangulation generally 
are included into the national geodetic base net being established by means of GNSS methods. 
The densifi cation networks, on the other hand, probably will be maintained only partially 
within the frame of state-wide horizontal control, cf. [7.3]. 
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Satellite positioning was employed early to control the quality of horizontal-control 
networks given in a local or regional datum, and to determine the datum transformation 
parameters with respect to the geocentric system, Ashkenazi et al. (1988). Equations 
(6.47) were used to calculate translation, rotation, and scale factor, using identical sta-
tions coordinated in the global system (especially in the WGS84) and in the local or 
regional geodetic datum (after proper transformation from geodetic to Cartesian coordi-
nates). Tab. 7.3 provides mean values for translation, rotation, and scale factor for some 
geodetic datums, with reference to a geocentric system.

Translations are at the order of magnitude of the defl ections of the vertical. They are larger when 
conventional ellipsoids have been used and decrease with best-fi tting ellipsoids. The rotation 
angles mirror the accuracy of the astronomic observations and are usually not signifi cant. While 
the scale errors for older networks reach 1 0 −5  and more, they attain only 1 0 −6  and less in recent 
systems, characterizing the progress in length determination. The results strongly depend on the 
number and distribution of the identical points. Due to network distortions, datum-shift values 
for a limited area may differ signifi cantly from the mean values of a national reference system 
given above, e.g., by 10 to 20 m and more for the translation parameters, and 1 0 −6  and more for 

Fig. 7.8: Primary triangulation net of Germany (DHDN90), courtesy Bundesamt für Kartographie 
und Geodäsie (BKG), Frankfurt a.M., Germany.
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the scale factor. As an example, a scale difference of nearly 3 × 1 0 −6  has been found between 
the central and the southern part of DHDN/Germany. If a 3-parameter solution (translation only) 
is carried out, the translation values of older networks may experience considerable changes. 

The transformation from a local/regional geodetic datum to the geocentric system can 
be done either by a complete readjustment including spatial observations (example: 
NAD83) or by transformation, the latter method being less laborious. Again, the trans-
formation equations (6.47) are used, introducing either mean datum-shift parameters 
or (better) parameter values modeled as a function of position, e.g., as low-order poly-
nomials. Corresponding parameter values or models are provided by the responsible 
agencies (e.g., by BKG Frankfurt a.M. for the transformation from the European national 
systems to ETRS89: http://www.crs-geo.eu), or they can be calculated together with the 
changes of coordinates. Residual differences between the two sets of coordinates may 
be determined also by refi ned transformation methods, e.g., by least-squares prediction, 
cf. also [7.3]. 

Of special interest is the datum transformation of ellipsoidal (geodetic) coordinates, 
which includes the transition from a conventional or best-fi tting ellipsoid to a geocen-
tric one. From (6.49) we obtain the corresponding changes which occur in the ellipsoi-
dal latitude, longitude, and height. Restricting ourselves to a spherical approximation 
and neglecting the (small) rotations and change of scale, we get (ellipsoidal formulas are 
given by DMA, 1987 and Ehlert, 1991):

    

aΔj = −sin j cos l  X 
0
  − sin j sin l Y 0  + cos j  Z 0  + asin 2j Δf

acos j Δl = −sin l  X 0  + cos l Y 0 

Δh = cos j cos l  X 0  + cos j sin l Y 0  + sin j  Z 0  − Δa + a sin 2 j Δf  } . (7.4a)

 

Tab. 7.3. Translation, rotation, and scale factors (mean values) for some geodetic datums with 
reference to the geocentric system (DMA, 1987; NIMA, 2000), for DHDN and Pulkovo 1942 
from Ihde and Lindstrot (1995)

Geodetic 
Datum 
(see Tab. 
7.2)

7-Parameter-Transformation 3-Parameter-Transf.

Translation (m) Rotation (arcsec) Scale 
factor

Translation (m) only

 X 
0
  Y 

0
  Z 

0
  e  

 
__

 X 
  e  

 
__

 Y 
  e  

 
__

 Z 
 m × 1 0 6  X 

0
  Y 

0
  Z 

0
 

AGD84 –127 –50 153 0.0 0.0 –0.1 1.2 –134 –48 149
DHDN 582 105 414 –1.0 –0.4 3.1 8.3
ED50 –102 –102 –129 0.4 –0.2 0.4 2.5 –87 –98 –121
Indian 227 803 274 –0.4 –0.6 –0.4 6.6 295 736 257
NAD27 –4 166 183 –0.3 0.3 –0.1 0.4 –8 160 176
OSG36 446 –99 544 –0.9 –0.3 –0.4 –20.9 375 –111 431
Pulkovo 42 24 –123 –94 0.0 0.2 0.1 1.1 28 –130 –95
SAD69 –56 –3 –38 0.1 –0.6 –0.2 –0.6 –57   1 –41

Remark: Pulkovo42 7-Parameter-Transformation values are valid for eastern Germany, while 
3-Parameter-Transformation values are valid for Russia.
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Here, the sign of the translation vector
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 Y −  
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Z −  
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   )  (7.4b)

has been changed (reduction!). All differences are formed in the sense “geocentric – 
local system”, resulting in the transformation

 j =   
_
 j  + Δj, l =   

_
 l  + Δl, h =   

_
 h  + Δh and

 a =   
_
 a  + Δa, f = f 

–
 + Δf. (7.4c)

Again, the changes in j, l, h can be modeled and demonstrated in contour charts, 
provided a suffi ciently large number of identical points have been used. The accuracy of 
these transformations depends on the area under investigation and the number of points 
available in both systems. A few m accuracy has been achieved for continent-wide geo-
detic systems, and residuals of a few cm may be obtained at well surveyed local networks. 

7.2 Vertical control networks

Traditionally, national vertical control networks have been established separately from 
horizontal control nets. This is due to the demand that heights have to be defi ned with 
respect to the gravity fi eld and a corresponding reference surface (e.g., geoid, quasi-
geoid) rather than to the ellipsoidal system used for horizontal positioning.

Vertical control networks are surveyed by geometric (also spirit or differential) level-
ing and occasionally also by hydrostatic leveling, cf. [5.5.4], the control points being 
designated as bench marks. According to the leveling procedure and the accuracy 
achieved, national geodetic surveys distinguish between different orders of leveling. 
First-order leveling is carried out in closed loops (loop circumferences of some 100 km) 
following the rules for precise leveling. An accuracy of 0.5 … 1 mm √ 

_
  s   (km) is achieved at 

double-run leveling (s is the length of the leveled line), but systematic effects may lead 
to error accumulation over long distances. The loops are composed of leveling lines 
connecting the nodal points of the network (Fig. 7.9). The lines, in turn, are formed by 
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Fig. 7.9: Leveling network (principle).



7.2 Vertical control networks      317

leveling runs that connect neighboring benchmarks (average spacing 0.5 to 2 km and 
more). The fi rst-order leveling network generally is densifi ed by second to fourth-order 
leveling, with diminishing demands on accuracy.

Leveling lines generally follow main roads, railway lines, and waterways. The bench 
marks consist of bolts in buildings, bedrock, or on concrete posts. Long pipes have 
been set up in alluvial regions. Underground monuments are established in geologi-
cally stable areas in order to control the network stability with respect to variations with 
time. First-order networks should be reobserved at time intervals of some 10 years, as 
regional and local height changes can reach one mm/year and more, especially in areas 
which experience vertical crustal movements of tectonic, isostatic or man-made origin, 
cf. [8.3.4]. 

Prior to the adjustment of a leveling network, the observed raw height differences 
have to be transformed either to geopotential differences or to differences of normal 
or orthometric heights by taking surface gravity into account, cf. [6.4.1]. The adjust-
ment then utilizes the loop misclosure condition of zero and is carried out either by 
the method of condition equations or, preferably, by the method of parameter variation.

First-order leveling networks were established in many countries between the 1860s and the 
1950s when surface gravity along the leveling lines was not known. Hence, gravity reductions 
were either neglected completely or actual gravity was approximated by normal gravity, leading 
to normal or spheroidal orthometric heights. These path-dependent heights may differ from 
normal or orthometric heights by some mm (fl at terrain) to some dm (mountains). Today, surface 
gravity along the leveling lines is generally available by measurement or prediction, and can be 
taken into account.

The vertical datum of a national height system generally is defi ned by mean sea level 
(MSL) as derived from tide gauge records. The zero height surface running through the 
defi ning MSL depends on the choice of the height system, and is either a level surface 
close to the geoid (orthometric heights) or the quasigeoid (normal heights). In future, 
high-resolution geoid or quasigeoid models may also serve for the defi nition of the 
vertical datum, again being realized through the heights of fundamental bench marks. 
If based on MSL from different tide gauges, national height systems may differ by some 
dm to one m and more, between each other and from the geoid as a global reference 
surface. This is due to the effect of sea surface topography, which additionally causes 
network distortions if the vertical datum is constrained to MSL of more than one tide 
gauge, cf. [3.4.3].

Estimates of the differences between the vertical datum of different height systems are available 
from satellite positioning and global geoid models and from continent-wide leveling connected 
to tide gauges (Rapp, 1995b). For instance, the zero height surface of the North American 
Vertical Datum of 1988 is about 0.5 m below MSL at Amsterdam. In Europe, the national 
vertical datums have been derived from MSL records in the Mediterranean Sea, the North Sea, 
and the Baltic Sea. Taking the mean sea level in Amsterdam (used, e.g., in the Netherlands, in 
Germany, and in the European leveling net) as reference, MSL in Kronstadt (near St. Petersburg, 
Russia) is about 15 cm higher, and zero-height surfaces derived from tide gauge records along 
the Mediterranean Sea are about 0.4 to 0.5 m lower (Sacher et al., 1999). 

We now shortly describe the development of the North American and the European 
leveling networks, as well as the German height system, being examples for classical 
regional and local vertical control nets. 
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Geodetic leveling in the United States began in the middle of the nineteenth century, and a fi rst 
network adjustment was performed in 1900. The adjustment of more than 100 000 kilometers 
of geometric leveling from the U.S.A. and from Canada provided the National Geodetic Vertical 
Datum of 1929 (NGVD29). Being constrained to the MSL of 26 tide gauges, network distortions 
of 50 cm and more thus have been introduced into the results. After replacing destroyed bench 
marks and extensive re-leveling, a new adjustment of the leveling data of the U.S.A., Canada 
and Mexico was started in the 1970s, and resulted in the North American Vertical Datum of 
1988 (NAVD88). The adjustment included more than 700 000 bench marks and was carried 
out in geopotential numbers, employing the Helmert-blocking technique. Heights are given as 
orthometric heights according to Helmert, see (6.84), and refer to MSL of now only one primary 
bench mark (Father Point, Rimouski, Quebec, Canada), Zilkoski et al. (1995). A national height 
modernization program is underway which will utilize an up-to-date regional gravitational 
geoid model, on the one hand, and a geoid model fi tted to GNSS/NAVD88 control points, on 
the other, for defi ning a vertical datum suitable for GNSS techniques.

The United European Leveling Net (UELN) has been formed by fi rst-order leveling lines 
of the European countries. Several re-adjustments have been carried out since 1954, with 
continuous quality improvement and network extension, the latest one being UELN95/98 
(Fig. 7.11). The adjustments are performed in geopotential numbers, and normal heights are 
derived. The average accuracy of the leveling is about 1.1 mm  √ 

_
 s   (km), and the standard 

deviations related to the datum point Amsterdam remain less than 0.1 m. The vertical datum 
is taken from MSL of the North Sea as determined in the period 1940 to 1958 at Amsterdam 
(Normal Amsterdamsch Peil NAP of 1950). The UELN is connected to a large number of tide 
gauges, which permits determination of sea surface topography around Europe, in addition 
to the datum differences between national vertical reference systems (see above). UELN 
represents the basis of the European Vertical Reference System (EVRS), which by combination 
with GNSS heights is embedded in the spatial reference system ETRS, cf. [7.3], Ihde et al. 

Fig. 7.10: NAVD 88 leveling network, from Zilkoski et al. (1995).
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(2002). The latest realization of this integrated system is the reference frame EVRF2007, 
calculated in the zero-tide system. The datum of the UELN has been kept as good as possible 
by introducing the previous heights of 13 “datum points”, assumed to be not affected by 
temporal variations. Leveling data from the northern European land uplift area have been 
reduced to epoch 2000. In future, UELN will be extended to a kinematic height system by 
including vertical point velocities (Sacher et al., 2008). 

First-order leveling in Germany started state-wide around 1865 and fi nally led to a national 
height system calculated from the raw leveling data, with the leveling of Prussia as the core 
network. The vertical datum was derived by connection to the Amsterdam normal tide gauge, 
representing mean high tide for the period 1683/1684 (Waalewijn, 1986). The zero height 
surface (Normal-Null, N.N.) was fi xed by a standard bench mark, established 37.000 m above 
N.N. at the former Berlin observatory and since 1912 by a set of underground marks. Complete 
re-surveys were carried out from 1912 to 1960 and from 1980 to 1985 (only western Germany). 
These networks were adjusted as normal-orthometric heights: Deutsches Haupthöhennetz 
(DHHN). In eastern Germany, re-leveling was performed in the 1970s and adjusted as normal 
heights within the frame of the eastern European height system, where the vertical datum was 

Fig. 7.11: United European Leveling Net (status 2008), courtesy BKG, Frankfurt a.M., Germany.
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taken from MSL at the tide gauge in Kronstadt near St. Petersburg: Höhennull (HN). Due to the 
different defi nitions of the vertical datum and the height system, systematic height differences 
between 8 and 16 cm were later found at the former boundary between western and eastern 
Germany. After 1990, a re-adjustment of the complete national network (loop diameter 30 to 80 
km, more than 50 000 bench marks with mutual distance between 0.5 and 1.5 km) was carried 
out in geopotential numbers. The vertical datum is defi ned now by the geopotential number of the 
UELN86 nodal point Wallenhorst and thus refers to MSL at Amsterdam (see above): DHHN92, 
Fig. 7.12. Normal heights have been introduced as offi cial heights, referring to the quasigeoid 
as reference surface: Normalhöhennull (NHN), Weber (1995). Recent modernization includes 
re-survey of most leveling lines and connection to existing GNSS-networks and absolute gravity 
stations, a dedicated DHHN-GNSS network comprising about 250 stations was established at 
the beginning of the twenty-fi rst century. 

Leveling networks are characterized by high accuracy, but systematic errors may 
accumulate over large distances. A severe handicap of classical leveling networks 
is the signifi cant loss of benchmarks with time due to human activities, and the 
manifold height changes occurring at local and regional scales. Due to the time-
consuming measurement procedure, repetition or restoration surveys are feasible 
only after longer time intervals, which leads to a rapid network decay. A more 
rapid establishment of vertical control networks has been achieved occasionally by 
trigonometric leveling, cf. [6.4.2], and a drastic change is now taking place by GNSS 
 heighting in connection with high-resolution geoid or quasigeoid models, cf. [6.4.3]. 
In this way, vertical control networks are integrated in, and gradually substituted 
by 3D reference systems, cf. [7.3]. The time-consuming spirit leveling required for 
the establishment and maintenance of the classical vertical control networks may 
become mostly superfl uous. On the other hand, geometric leveling will maintain 

Fig. 7.12: Primary leveling network of Germany (DHHN92), courtesy BKG, Frankfurt a.M., Germany.
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its importance over shorter distances, and especially in areas of recent crustal 
movements, such as regions of land subsidence and zones of  Earthquake or volcanic 
activity, cf. [8.3.4]. 

7.3 Three-dimensional networks

Starting in the end of the 1980s, GNSS techniques have more and more entered into 
geodesy and are now primarily used at all scales for positioning and navigation, cf. 
[5.2.5]. This has led to a drastic change at the establishment and maintenance of geo-
detic control networks which are now defi nitely 3D and based on satellites as system 
carriers. 

Nowadays, the global geodetic reference is well established and provided by the 
International Terrestrial Reference Frame (ITRF) being the realization of the International 
Terrestrial Reference System. The ITRF stations are given with their 3D geocentric coor-
dinates (cm-accuracy) for a certain reference epoch, and with corresponding horizontal 
velocities, cf. [2.4.2]. The International GNSS Service (IGS) provides a powerful con-
tribution to the ITRF and serves for densifying this global reference frame, cf. [5.2.5]. 
A multitude of GNSS surveys has already densifi ed or will in future densify this global 
reference frame, superseding the classical control networks. This process happens at 
local, regional or continent-wide dimensions, and has triggered a new defi nition and 
realization of national and supra-national geodetic reference systems, and strategies for 
integrating the existing control nets. 

Immediately following the development of geodetic GPS and other GNSS methods, 
continent-wide (supra-national) and national 3D networks were established. Although a 
more or less homogeneous station-coverage is generally the goal, the distances between 
the observation sites in reality vary considerably. The station distribution depends, 
among others, on topography and on the state of economic development, and station 
distances consequently range from a few ten to some 100 km and more. At least three 
stations per country have been often selected as a reference for further densifi cation 
and for the transformation of existing control networks, cf. [7.1]. The station sites are 
selected according to the requirements of GNSS observations (no visibility obstruc-
tions between 5° to 15° and 90° elevation, absence of multipath effects, no radio wave 
interference), cf. [5.2.5]. Generally the stations are monumented by concrete pillars, 
providing a forced centering for the GNSS antenna and a height reference mark. Eccen-
tric marks are established in order to locally control horizontal position and height, and 
underground monuments are benefi cial for the long-term preservation of the network. 
Existing fi rst- and second-order control points may be used if they fulfi ll the GNSS 
requirements, otherwise the GNSS stations should be connected to the existing control 
networks by local surveys. 

Although the strategies for establishing and maintaining these GNSS based reference 
networks differ, the following directions clearly can be identifi ed:

• establishment of a large-scale (continent-wide, national) fundamental three- 
dimensional network by GNSS campaigns, with proper system defi nition and 
connection to the International Terrestrial Reference Frame,

• installation of a network of permanent GNSS stations,
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• densifi cation of the fundamental network by GNSS methods, 
• transformation of existing classical horizontal control network into the three- 

dimensional system, 
• connection of the 3D-reference system to the vertical control and gravity refer-

ence systems. 

Dedicated GNSS campaigns are carried out for the determination of the 3D-coordinates 
of the network stations, employing relative positioning, cf. [5.2.5]. This strategy requires 
the inclusion of at least one reference station with coordinates given in the ITRF, but 
generally all ITRF and IGS stations (or control stations of a continent-wide reference 
system) in the survey region are introduced as reference (“fi ducial”) stations. Depending 
on the number of stations and available GNSS receivers (two-frequency geodetic type), 
either all stations are observed simultaneously or the network is divided into blocks 
that are observed sequentially (Fig.7.13). All observations made simultaneously during 
a given time interval are called a “session” (Snay, 1986). The duration of one session is 
between 8 and 24 h, which permits determination of the ambiguity unknowns and a si-
multaneous solution for the station coordinates and tropospheric correction para meters 
(“multi-station” adjustment). The results of one session are highly correlated. Conse-
quently, two or more sessions are generally carried out, leading to a total observation 
time of some days to one week. A “multi-session” adjustment then combines the results 
of several sessions. Optimization methods have been developed and may be employed 
for network planning and survey (Dare and Saleh, 2000). 

By referencing the network to IGS stations and applying the IGS precise orbital data, 
the effect of reference station and orbital errors on the station coordinates is only at the 
few mm level. When different type GNSS receivers are employed in one campaign, 
corrections have to be applied for antenna phase-center differences. In addition, phase-
center variations have to be taken into account by calibration (Seeber et al., 1998). 
Longer observation periods increase the accuracy of the results, due to the changing 
satellite geometry and the reduction of residual tropospheric, multipath, and antenna 
effects. This is especially valid for the height component, where small satellite eleva-
tions improve the geometry of the solution but introduce larger tropospheric errors. 
Accuracies of 1 cm and better are achieved now for the adjusted horizontal coordinates 
of fundamental network stations, and heights can be determined with an accuracy of 
1 to 2 cm.

1 2 3

456

Fig. 7.13: GNSS network constructed from individual blocks (principle).
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Following the ITRF strategy, reference epochs are defi ned for the fi nal station 
coordinates of the fundamental networks, which may differ from the epoch of the ITRF 
stations introduced and from the time of the observation campaign. Consequently, 
reductions have to be applied which take the station velocities between the different 
epochs into account.

Permanent GNSS networks have increasingly been established since the 1990s at 
regional and local scales. They consist of “active” GNSS stations, equipped with geo-
detic GNSS receivers that continuously track all visible GNSS satellites with a high data 
rate (e.g., 1 s). Station distances vary considerably, ranging from about 100 km to a few 
100 km at continent-wide networks, and 30 to 100 km and more at national systems. 
Undisturbed visibility to the satellites is achieved by installing the antennas several m 
to 10 m above the ground on concrete pillars, steel grid masts, etc., or on the top of 
buildings. Permanent networks represent a continuous realization of the underlying 
supra-national or national geodetic reference system, thus serving for maintenance and 
for control of variations with time due to recent crustal movements. They represent a 
reference for all types of GNSS surveys carried out within the permanent network area, 
by making available the raw GNSS tracking data (code and carrier phase measurements) 
for the “reference” station of a “baseline”, Fig. 7.14. More sophisticated “Satellite Posi-
tioning Services” exploit the known geometry of the stations’ array to determine the 
ambiguities and to calculate baseline corrections for ionospheric, tropospheric, and 
orbit effects. Together with the station coordinates this allows the application of differ-
ential GNSS methods with a single receiver ( Wanninger, 2000). Real-time positioning 
with “baselines” is possible with cm-accuracy, and post-processing with long observa-
tion series may achieve a few mm precision, see below and [5.2.5], [6.2.1]. 

After the establishment of a national 3D geodetic reference frame, relative GNSS-
positioning can be employed also for network densifi cation. While the fundamental 
network may be constructed with station distances of several 10 km (corresponding to 
the fi rst-order trigonometric points), densifi cation nets with distances down to 10 km 
(former second-order triangulation) may be useful for larger countries. The relative 
mode again requires two or more receivers and the connection to reference stations. 
If a network of permanent GNSS stations as realization of the national reference frame 
is available (telemetry data transfer to the users), differential GNSS methods can be 
applied. For short (few to 10 km) baselines, a relative cm-accuracy can be achieved 

Fig. 7.14: GNSS network constructed from baselines to permanent GNSS stations (principle).
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in quasi real-time after proper ambiguity solution. For longer baselines, the results are 
degraded by the distance-dependent errors of GNSS, and have to be improved by the 
corrections provided by the permanent network’s positioning service. 

With Precise Point Positioning (PPP), an alternative to the relative method of DGNSS 
has been developed and could also be used for the establishment of geodetic 3D con-
trol networks (Zumberge et al., 1997; Ebner and Featherstone, 2008). This absolute 
method evaluates undifferenced dual-frequency pseudorange and carrier phase obser-
vations obtained with only one receiver, along with IGS precise orbits and satellite 
clock corrections in one mathematical model, for estimating station coordinates, tro-
pospheric zenith path delays, receiver clock corrections, and ambiguities (Kouba and 
Héroux, 2001). Network adjustments (post-processing) of extended observation series 
(up to 24 h) deliver cm-accuracy for position, and clock corrections at the 0.1 ns level. 
The method can be extended by taking current corrections into account derived from a 
regional or local RTK (real-time kinematic) network. This strategy allows an immediate 
determination of carrier phase ambiguities, and delivers quasi-real-time cm-accuracy 
(Wübbena et al., 2005). 

By connecting the 3D GNSS network to fi rst- and second-order trigonometric points, 
the existing classical horizontal control networks can be transformed into the three-
dimensional reference frame. A minimum of three identical points with coordinates 
given in both systems is required for a 7-parameter transformation, which may suffi ce 
for homogeneous networks of high precision, cf. [7.1]. Additional GNSS control points 
are needed if the classical networks contain larger distortions; the selection of these 
points depends on the network peculiarities, and usually more sophisticated transfor-
mation models will be necessary, including polynomial, least-squares, or spline approx-
imation (Moritz, 1978). In this way, the local cm-accuracy of classical networks can be 
kept, and the effect of the network distortions can be reduced to the order of a few cm 
to dm over distances of some 10 to 100 km. After the completion of the transformation 
to a 3D reference frame, the classical horizontal networks of lower order generally will 
no longer be maintained.

Space-geodetic and especially GNSS methods also give reason for a change with 
respect to the defi nition and realization of vertical reference systems. This is due to the 
fact that space-based techniques allow the determination of ellipsoidal heights with an 
accuracy comparable with the accuracy of spirit leveling, at least at distances larger 
than a few ten kilometers, cf. [6.4.3]. By combining with high-resolution global or local 
geoid/quasigeoid models, cf. [6.6], [6.7], another method for determining gravity-fi eld 
related heights thus is available. This forces the incorporation of the classical vertical 
control networks into the 3D reference frame. By including fi rst-order leveling bench-
marks and tide gauges in the 3D network, the differences between the ellipsoidal heights 
and the heights of the national height system can be determined at selected points, i.e., 
the geoid or quasigeoid heights. These GNSS/leveling control points allow the national 
height system to be fi tted to a regional geoid or quasigeoid model, and they can be used 
to derive gravity-fi eld related heights (orthometric heights, normal heights) for all three-
dimensional reference stations. The vertical datum may be even defi ned by a global or 
regional geoid/quasigeoid model, with corresponding reductions of the heights given in 
the classical height system. The vertical control points now are an integrated part of the 
3D reference frame, evenly distributed over the respective continent or nation and not 
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restricted to the leveling lines. With increasing accuracy of the geoid-resp. quasigeoid-
“reduction” of GNSS heights, the application of geometric leveling will be reduced to 
more local problems where mm-accuracy is required, cf. [7.2].

Finally, there is a tendency to also measure absolute gravity on the primary stations 
of a 3D reference frame. This will lead to fundamental geodetic control networks, pro-
viding 3D geodetic coordinates, gravity potential (and related height) and gravity for a 
certain epoch, and (as far as possible) corresponding long-term variations with time.

Some examples for the transition from the classical geodetic control networks to refer-
ence frames embedded in the global 3D system are given in the following, with the con-
tinent-wide reference systems introduced in the U.S.A., in South and Central America, 
and in Europe, and with the spatial reference frame established in Germany.

Since the 1980s, GPS-based methods rapidly entered into surveying and navigation in the 
U.S.A. Numerous adjustments of new GPS and existing terrestrial data led to a number of 
state High Precision Geodetic Networks (HPGN’s), with a local accuracy of around 5 cm, 
but consistency problems across state lines. In addition, a Continuously Operating Reference 
Station (CORS) network was established in the mid-1990s by NGS, which is now operating with 
about 1600 stations in the U.S.A., its territories and a few foreign countries, Fig. 7.15. Based 
on the contributions of over 200 different institutions, CORS provides GNSS data consisting 
of carrier phase and code range measurements in support of 3D positioning, and allows a few 
cm-accuracy. These drastic changes triggered the establishment of a National Spatial Reference 
System (NSRS), superimposing or integrating the previous horizontal and vertical survey 
control. Consequently, a re-adjustment of horizontal positions and ellipsoidal heights for GPS 
stations in the contiguous United States was carried out, holding the CORS coordinates fi xed 
(ITRF geocentric datum!) and including only GPS measurements. ITRF- and NAD83-related 

Fig. 7.15: CORS station equipped with a Trimple Zephyr Geodetic Antenna, El Paso, TX, U.S.A., 
courtesy NGS (http://www.ngs.noaa.gov/CORS ).
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coordinates NAD83(NSRS) have been produced, where the latter experienced changes of 0.2 
to 1 m relative to NAD83(1986), Pearson (2011). 

In South America, a continent-wide densifi cation of the ITRF started in 1995, and was 
later extended to Central and North America: Sistema de Referencia Geocéntrico para las 
Américas (SIRGAS). The system has been fi rst realized through two measuring campaigns 
(1995, 2000), where simultaneous GPS observations over 10 days were carried out on some 
60 resp. 200 stations well distributed over the sub-continent and the whole hemisphere, 
respectively; positions were calculated in ITRF2000 (Drewes et al., 2005). Since 2000, the 
continuously operating network (SIRGAS-CON) represents a third realization of this system, 
which is well connected to the global IGS net (Fig. 7.16.). It provides weekly solutions for 
the station positions and multi-annual solutions which contain linear station velocities, cf. 
[8.3.4]. SIRGAS also serves as a basis for the national reference frames recently established 
through GPS measurements, and for the transformation of the classical horizontal control 
networks in South America (generally given in the South American Datum 1969) into the 
global reference system (Sanchez and Brunini, 2009). A dedicated SIRGAS GPS campaign 
was carried out in 2000 which included leveling benchmarks and tide gauges, in order to 

Fig. 7.16: Reference frame SIRGAS-CON, station distribution (status 2010), courtesy DGFI 
München.
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derive a unifi ed height system for South America. This system shall be defi ned by a geoid 
potential value (national vertical datums now deviate by 0.5 m and more from a common 
MSL) and realized by the geopotential numbers of the control points, based on SIRGAS 
ellipsoidal heights and a geoid model, as well as on readjustments of the existing national 
height networks (Sanchez, 2007).

A European Reference Frame (EUREF) has been built up since the end of the 1980s, as realization 
of the European Terrestrial Reference System 1989 (ETRS89). This system is defi ned through 
the coordinates (1989.0) of the ITRF89 stations located on the “stable” (i.e., moving with the 
same plate velocity) part of the European tectonic plate, which allows the frame to remain 
unchanged over a longer time interval. ETRS was fi rst realized through the European Terrestrial 
Reference Frame 1989 (ETRF89), and continuously extended over the continent. The station 
positions were determined by successive GPS campaigns that included ITRF and IGS stations 
and generally included several countries. With ETRF2000 the network now covers nearly all 
of Europe, with station distances between 100 and 500 km or more. Of special relevance is 
the EUREF Permanent Network (EPN) comprising more than 200 stations with continuously 
observing dual-frequency GPS and GPS/GLONASS receivers (Fig. 7.17). Providing hourly data, 
EPN contributes to IGS and densifi es it (Torres et al., 2009).

A European Unifi ed Vertical Network (EUVN) is under construction, and integrated into 
EUREF. The network now comprises about 200 stations determined since 1997 by dedicated 
GPS campaigns using one-week observation time. It includes EUREF sites, nodal points of the 
European leveling net UELN, tide gauges, and a number of permanent GNSS stations, with 
3D coordinates, geopotential numbers and normal heights. EUVN thus will serve (at a few-cm 
accuracy level) to unify the different European height systems, and provide fi ducial points 

Fig. 7.17: EUREF Permanent Network tracking stations (status 2012), courtesy C. Bruyninx EPN 
Central Bureau, Observatoire Royal de Belgique (http://www.epncb.oma.be/_trackingnetwork/  ).
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in order to fi t the European quasigeoid, cf. [6.4.3], to a unifi ed European height system. By 
extension to a kinematic height system, EUVN shall be used for monitoring large-scale vertical 
crustal movements and sea level changes (Kenyeres et al., 2000).

In Germany, a 3D network related to ITRF and EUREF stations was established in 1991: 
Deutsches Referenznetz 1991 (DREF91). The network stations are mostly co-located with fi rst- 
or second-order trigonometric points. The integration of DREF into the European reference frame 
is realized through the German Geodetic Reference Net (GREF), being part of the European 
GNSS Permanent Net and of IGS. Operated by BKG, it contains about 30 permanent stations, 
with an accuracy of 5 mm in position and 10 mm in height, Fig. 7.18. The Satellite Positioning 
Service (SAPOS) of the State Survey Agencies breaks this DREF/GREF reference frame down to 
the state level. SAPOS is based on about 260 GPS reference stations (average distance 50 km, 
accuracy 1 cm), well distributed over the German states (Hankemeier et al., 1998), Fig. 7.19, 
Fig. 7.20. It serves for differential GNSS positioning by providing range corrections for real-time 
code or carrier phase measurements (meter- resp. cm-accuracy), and raw observation data for 
post-processing (sub-cm accuracy).

With respect to further network densifi cation and connection to existing control nets, the 
German state survey agencies went different ways. This led to a strategy for the development 
of a unifi ed geodetic spatial reference in Germany (AdV, 2006). According to this planning, 
the spatial reference shall consist of the geodetic base net and the SAPOS reference stations 
both defi ned in ETRS89, the fi rst-order vertical control points given in DHHN92, cf. [7.2], 
and the gravity control points given in DHSN96, cf. [7.4]. The base net stations shall have a 
maximum distance of 30 km which corresponds to the average distance of the classical fi rst-

Fig. 7.18: German Geodetic Reference Net GREF (status 2009), courtesy BKG, Frankfurt a.M., 
Germany.
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order triangulation points, and well marked with respect to horizontal position and height. They 
shall be determined by geodetic satellite methods, precise leveling, and gravity measurements, 
with accuracy demands corresponding to the requirements for GREF, DHHN92, and DHSN96. 
Lower-order trigonometric control networks will be under the responsibility of the state survey 
administrations, and generally maintained only at a reduced level. 

Fig. 7.19: Satellite Positioning Service (SAPOS) of the German State Survey Administration (status 
2011), courtesy Landesbetrieb Geoinformation und Vermessung Hamburg (http://www.hamburg.
de/sapos).

Fig. 7.20: SAPOS permanent GNSS station, courtesy Landesbetrieb Geoinformation und 
Vermessung Hamburg (http://www.hamburg.de/sapos).
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7.4 Gravity networks

Gravity networks provide the frame for gravimetric surveys on global, regional, or local 
scales. They consist of gravity stations where gravity has been determined by absolute 
or relative methods. On a global scale, the gravity standard has been realized by the 
International Gravity Standardization Net 1971 (IGSN71), but absolute gravimeters now 
allow an independent realization, cf. [5.4.3]. 

National gravimetric surveys are based on a primary or base network, which in most 
cases is densifi ed by lower-order nets. The gravity base network stations should be evenly 
distributed over the area, with station distances varying between a few 10 km to a few 
100 km depending on the size of the country. The station sites should be (as far as pos-
sible) stable with respect to geological, hydrological, and microseismic conditions. They 
should be permanently marked, and co-location with geodetic base-stations is advis-
able. Eccenter sites may serve for securing the center station and for controlling local 
height and mass changes. Horizontal position and height of the gravity stations should 
be determined with m- and mm- to cm-accuracy, respectively. Subsequent gravimetric 
densifi cation networks generally are co-located with horizontal and vertical control nets. 

Absolute gravimeters generally are employed nowadays for the establishment of 
gravity base networks, partly in combination with relative gravity meters. Densifi cation 
networks are observed primarily with relative instruments, cf. [5.4.1], [5.4.2]. Relative 
gravimeters need to be calibrated, and repeated measurements are necessary in order to 
determine the instrumental drift. The use of several instruments reduces residual system-
atic effects. Relative gravimetry requires at least one absolute station in order to derive 
the gravity “datum”, and a calibration line for the control and improvement of the cali-
bration factor. The establishment of gravity networks for geophysical and geodynamic 
investigations follows the same rules, but the distribution of the gravity stations is then 
determined by the geological structures or the geodynamic processes to be investigated, 
cf. [8.3.5]. The accuracy of primary gravity networks, established by absolute gravime-
ters or by a combination of absolute and relative gravimetry, is about 0.05  μm  s −2  to 
0.1  μm  s −2 ; densifi cation networks may be accurate to 0.1… 0.5 μm s–2. 

Gravity measurements on national scale started in the second half of the nineteenth 
century, triggered by growing demands from geodesy and geophysics. In the twentieth 
century, exploration geophysics and physical geodesy (geoid determination) became 
strong drivers for denser gravity fi eld surveying, based on accurate and reliable gravity 
reference networks. These demands led in many countries to the establishment of grav-
ity base networks, which continuously improved through progress in technology. 

In the U.S.A., the Coast and Geodetic Survey and its successor, the National Geodetic Survey 
(NGS), carried out numerous gravity surveys during the second half of the twentieth century, 
generally within the frame of dedicated programs (statewide surveys, surveys along leveling 
lines, gravimeter calibration lines, etc.). A country-wide gravity network was established in 
1976/1979 by LaCoste and Romberg gravimeters and constrained to the absolute standard. 
A running NGS absolute gravity program (jointly with NIMA Geospatial Sciences Division) 
is covering the country with a multitude of absolute gravity measurements (comprising now 
several hundred absolute gravity sites), serving as national gravity reference network and for the 
studies of vertical crustal movements, among others (Peter et al., 1989). In Canada, the primary 
control points of the Canadian Gravity Standardization Net will be replaced by the Canadian 
Absolute Gravity Array sites, co-located with GNSS reference sites (Fig. 7.21). Following previous 
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Fig. 7.21: Canadian Absolute Gravity Array and Base Network (status 2010), courtesy National 
Resources Canada Geodetic Survey Division (http://www.geod.nrcan.gc.ca/edu/gravi_e.php).

Fig. 7.22: Primary gravity net (red circles) of Germany (DHSN96), with German gravity base net 
(DSGN94) stations (blue circles), courtesy BKG, Frankfurt a.M., Germany.
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repeated absolute gravity observations, regular resurveys of the array stations will contribute to 
the investigation of sea-level rise, post-glacial rebound, and tectonic deformation, cf. [8.3.5]. 

In Germany, gravity base networks and densifying networks were established since the 1930s, 
employing relative pendulum instruments and gravity meters, and tied to the Potsdam absolute 
gravity value. Absolute gravimetry was introduced in 1976/1977 in order to establish a combined 
absolute/relative base network in western Germany which was extended to eastern Germany 
and completely re-measured in 1994/1995: Deutsches Schweregrundnetz 1994 (DSGN94). The 
network consists of 30 stations (one center and at least two eccentric points) that were observed 
with an absolute gravimeter FG5. Repeated observations and relative ties (several gravimeters 
of type LaCoste and Romberg and Scintrex) served for investigations of accuracy (0.05 μm  s –2 ) 
and reliability (Torge et al., 1999). A fi rst-order densifi cation net (average station distance 
30 km) was observed with several relative gravimeters (1978–1982, 1994), Fig. 7.22. Further 
densifi cation down to a few km has been realized or is in progress. 



8 Structure and Dynamics of the Earth

As discussed in the previous chapters, geodesy covers the determination of the Earth’s 
fi gure, its external gravity fi eld, and its orientation in space, which results in time-
dependent models for the geometry, the gravity fi eld and the orientation of the Earth, 
see also [1]. As a part of the geosciences (geophysics including oceanography, hydrol-
ogy and meteorology, geology, petrology, mineralogy, geochemistry and others), ge-
odesy thus provides direct information or boundary conditions for the development of 
static and dynamic geophysical Earth models. These models, in turn, deliver signifi cant 
information for the planning of geodetic networks and space missions, and for proper 
reduction of observations.

Global geophysical Earth models are mainly based on a radial structure of physi-
cal properties, and presuppose hydrostatic equilibrium [8.1]. These assumptions 
are not valid for the upper (and partly also for deeper) layers of the Earth, where 
geodynamic processes play an important role [8.2]. The contributions of geodesy 
to research in geodynamics are demonstrated by examples from Earth rotation vari-
ations, sea level changes, recent crustal movements, and temporal gravity changes 
[8.3].

From the extensive geophysical literature, we mention the classical work of Jef-
freys (1970) and the textbooks by Fowler (2005) and Lowrie (2007). The interrelations 
between geodesy and geophysics have been treated early in Heiskanen and Vening-
Meinesz (1958), see also Lambeck (1988) and Moritz (1990). For the state of geophysi-
cal data collection and parameter estimation, we refer to Ahrens (1995) and Groten 
(2004). 

8.1 The geophysical Earth model

Various observations show that the Earth does not posses a homogeneous structure:

• The mass M of the Earth as derived from the geocentric gravitational constant 
GM, cf. [4.3], and the constant of gravitation G, cf. [2.1], amounts to M = 5.973 
× 1 0 24  kg. With the volume of the Earth ellipsoid 1083 × 1 0 18   m 3 , we obtain the 
mean density 

  r m  = 5.515 ×  10 3  kg  m –3 .

As the density of the Earth’s crust only amounts to 2.7… 2.9 × 1 0 3  kg  m –3 , density 
must increase toward the interior of the Earth.

• Astronomic and geodetic observations of the lunisolar precession, cf. [2.3.2], 
deliver the dynamic (mechanical) ellipticity (Fukushima, 2003):

 H =   C −   
__

 A  ______ 
C

   = 3.2738 ×  10 −3 ,   
__

 A  =   1 __ 
2
    ( A + B ) . (8.1)
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A, B, and C are the equatorial and polar moments of inertia of the Earth, cf. 
[3.3.4]. With the dynamical form factor provided by satellite geodesy, cf. [4.3],

  J 2  =   C −  
__

 A  ______ 
 a 2 M

   = 1082.63 ×  10 −6 , (8.2)

we obtain the moment of inertia with respect to the rotational axis 

  C = 0.330 701  a 2  M.

If the Earth were a homogeneous sphere, we would have C = 0.4  a 2  M. This again 
indicates a density increase with depth. 

• Seismology shows that the Earth has a shell-like structure, with the shell  boundaries 
being defi ned by discontinuities of the seismic waves velocities. 

With the velocities of the seismic waves being known, and under the assumption of 
 hydrostatic equilibrium, density, gravity, and pressure inside a spherically layered Earth 
model can be calculated as a function of the radial distance from the Earth’s center of 
mass. Here, the assumption of hydrostatic pressure in the Earth’s interior is justifi ed 
by the fact that the Earth originally existed in a liquid state. In that case, the pressure 
depends only on the weight of the masses lying above, and it increases toward the 
center of the Earth.

Seismology determines the velocities of the primary (compression) and the secondary 
(shear) seismic waves,vp and vs. From these velocities the seismic parameter

 F =   K __ r  =  v p  
 2  −   4 __ 

3
    v s  

 2  (8.3)

is derived, where K is the bulk modulus (compressibility) and r is density. K is defi ned as 
the ratio between the hydrostatic pressure and the dilation experienced by a body under 
this pressure. The relationship between changes of pressure p and density is given by

 dr =   1 __ F  dp. (8.4)

Under hydrostatic equilibrium, the increase of pressure with depth depends on the 
weight of the additional vertical mass column. With the radial distance r, the  fundamental 
hydrostatic equation reads

 dp = −g (r) r (r) dr, (8.5)

where the minus indicates that pressure decreases with increasing radius.  Finally, 
from (8.4) and (8.5) we obtain the relation between height and density changes 
 (Adams-Williamson equation):

   
dr 

 ___ 
dr

   = −   
g (r) r (r)

 _______ 
F (r)

  . (8.6)

According to (3.52), the radial change of the gravity potential W is given by

 dW = − g(r)dr. (8.7)

Inserting (8.7) into (8.5) yields

 dp = r (r) dW. (8.8)

Hence, the surfaces of equal pressure (isobaric surfaces) coincide with equipotential 
surfaces and, after (8.4), also with surfaces of equal density. 
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Starting from density and gravity values on the Earth’s surface, density, pressure and 
gravity inside the Earth can be calculated iteratively, using (8.3), (8.4) and (3.22), (3.23). 
Here, we use the total mass and the polar moment of inertia as boundary conditions. 
Corresponding spherically symmetric Earth models based on seismic data consist of 
several layers characterized by chemical and physical properties (composition,  pressure, 
temperature), and are based primarily on the results of seismology (seismic travel times 
from body waves and surface waves, free oscillation frequencies). The velocities, or 
the velocity gradients, of the seismic waves change abruptly at the boundaries of the 
layers (discontinuity surfaces or zones), as does density (Fig. 8.1). Inside one layer, den-
sity increases smoothly and reaches about 13 000 kg  m −3  at the Earth’s center. Gravity 
remains nearly constant within the Earth’s mantle and decreases almost linearly to zero 
in the core. Pressure increases continuously with depth. The Earth models developed by 
Bullen (1975) and the Preliminary Earth Model (PREM) from Dziewonski and Anderson 
(1981) have gained special importance. 

The layered structure of the Earth is shown in (Fig. 8.2). The Earth’s crust (average thick-
ness over the continents and the oceans is about 24 km) is the uppermost layer and is char-
acterized by a complex structure. It is separated from the upper mantle by the Mohorovičic  ´ 
discontinuity. Lateral density variations are pronounced in the crust, but are found also in 
the upper mantle, cf. [8.2.1]. The crust and the uppermost part of the mantle (also called 
the lid of the low-velocity layer beneath it) behave approximately rigidly, they are part of 
plate tectonic motions, cf. [8.2.3]. The lower mantle starts at a depth of 650 to 670 km and 
is separated from the core at 2890 km depth, through the Wiechert-Gutenberg discontinu-
ity. The liquid outer core extends to 5150 km, followed by the solid inner core.

The density distribution of these Earth models can also be tested by comparing its 
elasticity parameters with the results obtained from the observation of natural oscil-
lations and (to a limited extent) Earth tides, cf. [8.3.6]. The free oscillations especially 
provide an important constraint on the models.

More refi ned models have to take the deviations from spherical symmetry into 
account, as well as departures from hydrostatic equilibrium. These deviations are clearly 
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Fig. 8.1: Density r (1 0 3  kg/ m 3 ), gravity g (m/ s 2 ), and pressure p with (1 0 11  Pa) inside a spherically 
symmetric Earth model (PREM), after Dziewonski and Anderson (1981).
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indicated by the odd zonal and the tesseral harmonic coeffi cients of the gravity poten-
tial, cf. [3.3.4], and by other geophysical observations. We remember that the second-
degree harmonic coeffi cients in the gravity fi eld reveal the main deviations of the Earth’s 
fi gure from a sphere, i.e., the polar and the equatorial ellipticity, cf. [3.3.4]. The latter 
one is signifi cantly smaller than the fl attening at the poles, as demonstrated by the two 
nearly equal equatorial moments of inertia A = 0.329 615 a2 M and B = 0.329 622 a2 M, 
where the larger principal axis of inertia is directed to about 15°W longitude. Refi ned 
geophysical Earth models that take the ellipsoidal form and the rotation of the Earth into 
account may use the level ellipsoid as a good approximation for the external boundary 
surface, cf. [4.2.1].

A global deviation from hydrostatic equilibrium is indicated by the fl attening of a rotat-
ing spheroidal body in equilibrium, composed of density layers that are approximately 
ellipsoidal. A differential equation derived by Clairaut (1743) provides the fl attening of 
a corresponding layer as a function of its radius. The solution relates the dynamic ellipti-
city H = 1/305.45 with the hydrostatic fl attening fh and the geodetic parameter m (4.50): 

 H =   
 f h  −   1 __ 

2
   m
  ______________  

1 −   2 __ 
5
    √

________

   5 m ____ 
2  f h 

   − 1  
   .  (8.9)
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Fig. 8.2: Spherical Earth model (PREM), with homogeneous shells separated by discontinuity 
zones (D.), not to scale, after Dziewonski and Anderson (1981).
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Inserting the observed values for H and m results in hydrostatic fl attening values 
around 1/299.8, which differ signifi cantly from the value 1/298.25 derived directly from 
satellite orbit analyses, cf. [4.3], Denis et al. (1997).

The deviation of the observed from the hydrostatic value may be attributed to a “fossil” fl attening 
of the lower mantle, which developed when the Earth’s rotational velocity was larger and which 
is not compensated yet. The still incomplete recovery of the ancient ice loads at the polar caps 
may be another explanation.

8.2 The upper layers of the Earth

Large deviations from the spherically symmetric Earth model are found in the Earth’s 
crust and upper mantle [8.2.1]. Topographic mass excesses (mountains) and defi cien-
cies (oceans) are, to a large part, compensated by the underlying masses, which leads 
to isostatic equilibrium [8.2.2]. The theory of plate tectonics introduces (nearly) rigid 
lithospheric plates that move against each other, causing crustal deformations, espe-
cially at the plate boundaries [8.2.3]. Since the gravity fi eld refl ects the distribution of 
the terrestrial masses, it provides an essential constraint in the development of crust and 
mantle models [8.2.4].

8.2.1 Structure of the Earth’s crust and upper mantle

The heterogeneous structure of the uppermost layers of the Earth is recognized by 
the distribution and composition of the topographic masses. There is a pronounced 
 difference between the mean elevation of the continents (about 0.5 km) and the mean 
depth of the oceans (about 4.5 km). Ocean depths increase with growing distance from 
the ocean ridges (mean depth around 2.5 km) due to thermal cooling and contraction 
of the oceanic lithosphere with sea-fl oor spreading, cf. [8.2.3]. Consequently, the age 
of the oceanic crust is 200 million years, at most, while the continental crust dates back 
about 4 billion years (Cazenave, 1995). 

The crust is composed of a variety of sedimentary, igneous (effusive and intrusive), and 
metamorphic rocks. Density changes occur primarily between different types of rock, but larger 
density variations are also found within the same rock material, especially in sediments. Density 
estimates are based on surface rock samples, borehole probes, and the relationship between 
density and seismic wave velocities (Mueller, 1974). The mantle has been investigated mainly 
by seismic methods, and three-dimensional models are now available from seismic tomography. 
Large-scale lateral variations of the P- and S-wave velocities are found here, correlated with 
zones of density and temperature anomalies (Dziewonski and Woodhouse, 1987).

The structure of the Earth’s crust and upper mantle may be briefl y described as follows 
(Fig. 8.3):

Sediment layers with highly varying thickness are found in the uppermost stratum in large 
parts of the crust. Seismic wave velocities and rock densities (average value 2400 kg  m −3  
for consolidated sandstone) vary considerably in this zone. In continental areas, the next 
lower layer of the upper crust consists mainly of acidic rocks such as granite (mean den-
sity 2700 kg  m −3 ); primary wave velocities vary between 5.9 and 6.3 km  s −1 . The lower 
crust is composed of basic rocks such as basalt and gabbro (mean density 2900 kg  m −3 ). 
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Wave velocities exceed 6.5 km  s −1  and gradually increase to more than 7 km  s −1 . The 
boundary between the upper and the lower crust (Conrad discontinuity) is marked only in 
some parts of the continents, at depths of 10 to 20 km. Beneath the oceans, consolidated 
sediments and basalt lava fl ows are found in the upper part of the crust above a basaltic 
layer of 6 to 7 km thickness (Tanimoto, 1995). 

A sharp (over a few km) change in seismic velocity (vp > 7.8 km  s −1 ) is found at an 
average depth of 35 km on the continents and 10 km on the oceans. This Mohorovičic  ´ 
discontinuity (Moho) defi nes the boundary between crust and mantle. Ultrabasic rocks 
(peridotite, with olivine as the main mineral constituent) are assumed to be located 
below the Moho, with a density of 3300 to 3400 kg  m −3 . The depth of the Moho is 
closely related to topography. On the continents, it may be less than 20 km (e.g., at the 
Afar hotspot), reaching about 30 to 40 km at old shields and platforms. Cenozoic moun-
tain belts (Alps, Rocky Mountains, Himalaya) are characterized by a crustal thickness of 
60 to 80 km. Beneath the oceans, the crustal thickness is more constant. An extremely 
thin crust of a few kilometers is found at slow spreading and fracture zones, while a 
thick crust of about 20 km may appear where hotspots (mantle plumes) are located 
under ridge axes, as in southern Iceland. These variations of crustal thickness are mainly 
due to isostasy and plate tectonics, cf. [8.2.2], [8.2.3]. 

Three-dimensional models of the crust are based on seismic and non-seismic data. They contain 
information on the subsurface spatial distribution and density of ice and water, soft and hard 
sediments, and the upper, middle and lower crust. The global CRUST 2.0 model (U.S. Geological 
Survey) provides a horizontal resolution of 2° × 2°; the accuracy of the sediment and crustal thickness 
is estimated to 1 km and 5 km, respectively (Mooney et al., 1998; Tenzer et al., 2009). More detailed 
crustal models are available for several parts of the world, e.g., for Europe (EuCRUST-07: 15′ × 15′ 
grid, sediments and two layers of the crystalline crust), Tesauro et al. (2008). 

8.2.2 Isostasy

When considering the topographic masses and ocean waters as deviations from hydro-
static equilibrium, the removal of topography and the fi lling of the oceans should create 
an equilibrium fi gure, with a gravity fi eld approximately coinciding with the normal 
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gravity fi eld, cf. [4.2.2]. However, from the systematic behavior of the residual gravity 
fi eld quantities, it follows that the visible mass excesses and defi ciencies are, to a large 
part, compensated by a corresponding mass distribution in the interior of the Earth 
(Heiskanen and Vening-Meinesz, 1958; Watts, 2001). 

Already during the arc measurement in Peru, cf. [1.3.2], Bouguer discovered that the defl ections 
of the vertical as computed from the masses of the mountains were larger than the observed 
values. In the nineteenth century, the Survey of India (G. Everest) revealed signifi cant differences 
between observed and calculated defl ections of the vertical caused by the Himalaya Mountains, 
the computed values being several times larger than the observed ones. This observation was 
the basis for the theory of isostasy and the isostatic models developed by Airy and Pratt (see 
below).

The large-scale behavior of the Bouguer anomalies, cf. [6.5.3], is another indication for the 
compensation of the visible mass anomalies. In mountainous areas, the Bouguer anomalies 
are generally negative, reaching values as low as −2000 μm  s –2 , while positive values (up to 
4000 μm  s –2 ) are common over the oceans. A correlation with the mean height or depth (mean 
value calculated over a dimension of several 100 km) can be demonstrated and in many parts 
of the world approximated by a regression of − 1000 μm  s –2 /1000 m height, and + 1000 μm  s –2 /
1000 m depth. Finally, the geoid heights produced alone by the topographic masses would 
reach values of up to about ± 500 m (Helmert, 1884), whereas the observed values hardly 
exceed 100 m. 

The model of isostasy is used to explain these observations. It postulates that the 
topographic masses (excess masses on the continents, defi cit masses on the oceans) 
are compensated in such a way that hydrostatic pressure equilibrium is achieved at 
a  certain depth of compensation. The compensation depends on the quantity of the 
topographic load and may be achieved by different mechanisms. Loads of several 10 km 
to about 100 km horizontal dimensions are supported by the strength of the lithosphere 
and not isostatically compensated, while larger loads generally lead to an elastic fl exure 
of the lithosphere and corresponding compensation. Therefore, large-scale topographic 
features of several 100 km dimension and more are generally in isostatic equilibrium.

Incomplete isostatic compensation is found in the areas of strong pleistocene glacia-
tion (North America and Fennoscandia), at structures of plate tectonics, and in some 
mountain areas. In the fi rst case, the melting of the ice masses (between about 20 000 and 
10 000 years B.C.) after the Pleistocene has caused an isostatic imbalance, which is 
still compensated by postglacial rebound (glacial isostatic adjustment). The resulting 
sea level changes, land uplift rates and gravity variations are observed using differ-
ent terrestrial and space techniques, and provide information on the viscosity of the 
Earth’s mantle, cf. [8.3.3]−[8.3.5]. Isostatic mass transports also happen at tectonic plate 
boundaries as characterized by ocean ridges, deep-sea trenches, and continental colli-
sion zones (mountain building), which consequently are not in a perfect state of equilib-
rium, cf. [8.2.3]. Mountains may also become overcompensated by large erosion, and 
as a consequence a vertical uplift will occur. 

The classical isostasy models of Airy and Pratt are based on the assumption that 
isostatic compensation takes place locally in vertical columns only. Utilizing the hydro-
static equation (8.5), the condition of isostasy then reads (with g = const.)

  ∫ 
H + T

  
H

   r  dz  = const., (8.10)



340     8 Structure and Dynamics of the Earth

with z depth, H height of topography, T depth of compensation. The model developed 
by G.B. Airy in 1855 (also designated Airy-Heiskanen model) is based on a crust of con-
stant density  r 0  and varying thickness, where the “normal” column of height H = 0 has 
the thickness  T 0  (Fig. 8.4). The continental topography (H > 0) forms mountain “roots” 
(thickness  d cont ), while “antiroots” (thickness  d oc ) are found beneath the oceanic columns. 
The ocean depth is denoted as t. In this way, the crust penetrates with varying depths 
into the upper mantle, realizing a fl oating equilibrium. Neglecting the Earth’s curvature, 
the following equilibrium conditions hold for the continental and the oceanic columns:

  (  r M  −  r 0  )   d cont  = r0H

  (  r M  −  r 0  )   d oc  =  (  r 0  − rW ) t ,
 (8.11)

with  r 
0
  density of the crust,  r M  density of the upper mantle,  r w  sea water density. With 

the conventional values  r 0  = 2670 kg  m −3 ,  r M  = 3270 kg  m −3 ,  r W  = 1030 kg  m −3 , the 
thickness of the root and the antiroot is given by

  d cont  = 4.45 H,  d oc  = 2.73 t. (8.12)

The thickness  T 0  of the normal column can be estimated from isostatic gravity anoma-
lies calculated on the basis of a certain depth of compensation, cf. [6.5.3]. For  T 0  = 30 
to 40 km, these anomalies generally do not depend on the height of the topography. 
Hence, the depth of compensation is in good agreement with the depth of the Moho as 
obtained from seismology, cf. [8.2.1].

The isostatic model of J.H. Pratt (1855, also called Pratt-Hayford model) assumes a 
crustal layer of constant thickness  T 0  and allows lateral changes in density in order to 
obtain isostatic equilibrium (Fig. 8.5). With the density  r 0  for the normal column (H = 0), 
continental columns generate densities smaller than  r 0 , while oceanic columns are denser. 
The equilibrium conditions for the continents and the oceans are:

  r cont   (  T 0  + H )  =  r 0  T 0 

  r W t +  r oc  (  T 0  − t )  =  r 0  T 0  ,
 (8.13)
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with  r 0  = 2670 kg  m −3  and  r W  = 1030 kg  m −3  the densities of the continental and the 
oceanic columns are given by

  r cont  = 2670   
 T 0  ______ 

 T 0  + H
   ,  r oc  =   

2670  T 0  − 1030 t
  _______________ 

 T 0  − t
  . (8.14)

The depth of compensation can be estimated from the behavior of residual gravity fi eld quantities 
calculated with different depths. By utilizing topographic-isostatically reduced defl ections of 
the vertical in the U.S.A., Hayford (1909) obtained minimum values for a compensation depth 
of 113.7 km. This value is close to the thickness of the continental  lithosphere, cf. [8.2.3].

A refi ned isostatic model was proposed by Vening-Meinesz (1931). It admits regional 
isostatic compensation by assuming that the upper layer behaves like an elastic plate 
overlying a low-viscosity layer. A surface load then causes a fl exure of the plate, 
with subsidence in the vicinity of the load and regional bending with slight uplift, 
over a horizontal distance wider than the load dimension (Fig. 8.6). The deformation 
continues visco-elastically until the isostatic compensation has been reached. The 
amount of fl exure depends on the distance from the load and can be calculated from 
the load, the density contrast between the plate and the substratum, and the elastic 
parameters (Young’s modulus, Poisson’s ratio) of the plate (crust or even lithosphere), 
Abd-Elmotaal (1995).

Globally, the models of Airy-Heiskanen and Vening-Meinesz, respectively, describe the 
dominating isostatic features in many areas (e.g., at major mountain ranges), but lateral 
density variations (Pratt-Hayford model) also contribute signifi cantly to isostasy, e.g., at deep 
ocean trenches, Göttl and Rummel (2009). In the compensated parts of the Earth, isostatic 
anomalies vary irregularly about zero (maximum values of about 500 μm s −2 ), and they clearly 
indicate areas which are not in isostatic equilibrium. On the other hand, they are not very 
sensitive with respect to a change of the model or variations of the model parameters, which 
makes discerning of different models and estimating the absolute depth of the compensation 
level diffi cult. Utilizing global models of the topography, cf. [6.5.2], spherical harmonic 
expansions of the topographic-isostatic potential have been developed (Sünkel, 1986b). More 
refi ned isostatic models are based on recent crustal models, and take the lithospheric density 
structure into account, with a density jump of 300 to 400 kgm–3 at the Moho (Martinec, 
1993; Kaban et al., 2004). Residual isostatic gravity anomalies or geoid heights derived from 
these models can be analyzed with respect to mantle convection and deep seated density 
inhomogeneities. 

Fig. 8.6: Regional isostatic model of Vening-Meinesz.
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8.2.3 Plate tectonics

The theory of plate tectonics synthesizes a multitude of individual observations of  geological 
and geophysical nature. The theory integrates the concepts of continental drift (Wegener, 
1915) and sea-fl oor spreading (Dietz, 1961; Hess, 1962). According to this model, new 
 oceanic crust is formed by uprising basaltic magma at the axes of the mid-oceanic ridges, 
and it spreads out to both sides of the rift system. The spreading sea-fl oor is characterized 
by stripes of interchanging positive and negative magnetic anomalies aligned parallel to 
the ridges, which indicate the reversal of the Earth’s magnetic fi eld occurring  irregularly at 
 intervals of tens of thousands to tens of million years (Vine and Matthews, 1963).  Radiometric 
age determinations of the oceanic rocks show that the age of the ocean fl oor increases with 
the distance from the ridge axes and does not exceed 200 million years.

Before that time (Permian and Triassic), the supercontinent Pangaea, postulated by Wegener, 
united all present land masses. Break up started during the Jurassic period, when Pangaea rifted 
into Laurasia (today North America and Eurasia) and Gondwana (today South America, Africa, 
India, Antarctica and Australia), with the Tethys Sea between them. This rifting process fi nally 
led to the present distribution of the continents and oceans.

The spreading rates of the ocean fl oor (referring to geological time spans) can be 
derived from the spacing of the magnetic anomalies and the rock age. They vary 
between 2 cm/year (e.g., at the Reykjanes Ridge south of Iceland) and 15 cm/year at 
the East Pacifi c Rise, Minster and Jordan (1978).

Plate tectonics (McKenzie and Parker, 1967; Morgan, 1968) originally postulated seven 
larger (Pacifi c, North and South American, Eurasian, African, Indian-Australian, Antarctic) and 
more than 20 smaller, nearly rigid lithospheric plates which move against each other on the 
asthenosphere; the number of plates – well established or presumed – since then has increased 
continuously (see below). The lithosphere includes the Earth’s crust and the uppermost part of 
the mantle; it possesses a thickness of 70 to 100 km under the deep oceans and 100 to 150 km 
under the continents. The asthenosphere is characterized by low viscosity (resistance to fl ow 
within a fl uid), which allows a viscous fl ow on geological time scales. The plate boundaries 
can be identifi ed by an accumulation of seismic (earthquakes) and volcanic activity, where the 
boundary zones vary in width between some 10 to some 100 km and more (Fig. 8.7).

Fig. 8.7: Major lithospheric plates and direction of plate movements, according to the model 
NUVEL-1. AR Arabian, CA Caribbean, CO Cocos, JF Juan de Fuca, PH Philippines, SC Scotia 
plate, after De Mets et al. (1990).
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The movement of the tectonic plates can be described as follows (Le Pichon 
et al.,1973; Lowrie, 2007), Fig. 8.8.

The mid-ocean ridges represent diverging (constructive) plate boundaries where 
new lithospheric material is formed from magma uprising from the asthenosphere 
and pressed apart. When colliding with another plate, the cooled, heavier oceanic 
plate is forced to sink into the upper mantle (subduction) where it is consumed at 
depths of around 700 km: converging (destructive) plate boundary. This process 
creates deep-sea trenches and island arcs (e.g., at the western and northern Pacifi c, 
subduction rate of about 9 cm/year at the Japan trench) or mountain ranges (e.g., 
the Andes). The collision of two continental plates leads to the formation of moun-
tain chains (e.g., the Himalaya and the Alps). Transform faults with relative motion 
parallel to the strike of the fault are found between ridge segments, but also occur 
where two plates meet with shear movements (e.g., San Andreas Fault, California, 
shear movements of several cm/year): conservative plate boundary. About 85% of 
the Earth’s surface is covered by the (nearly) rigid plates, while deformations are 
concentrated on the plate boundary zones. Thermic convection (heat transfer by 
movement of molecules) in the mantle with extension of some 100 to 1000 km is 
assumed to be the driving mechanism for the plate movements (Runcorn, 1962). 
Different theories exist on the size and the location of the convection cells (whole-
mantle or layered-mantle convection). 

The motions of the lithospheric plates on the spherical Earth can be described as 
a rotation of a spherical cap about an axis through a fi xed point (pole of rotation) 
with a certain angular velocity (Gordon, 1995). From these parameters, the relative 
plate motion (direction and magnitude) can be calculated for any location. Geological 
(average over the last few million years) plate velocities have been estimated from the 
 spacing of the magnetic anomalies across the mid-ocean ridges and from the azimuths 
of submarine transform faults and slips from large earthquakes.

Geological models such as NUVEL-1 (De Mets et al., 1990) and NUVEL-1A (De Mets 
et al., 1994) include 14 major plates (Africa, Antarctica, Arabia, Australia, Caribbean, Cocos, 
Eurasia, India, Juan de Fuca, Nazca, North America, Pacifi c, Philippine Sea, South America). 

Fig. 8.8: Motion of lithospheric plates at diverging and converging plate boundaries, vertical 
scale exaggerated.
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Plate motion is described by keeping either one plate fi xed (NUVEL-1: Pacifi c plate), or 
referencing the motions to a rotation-free system coupled with the Earth: no-net rotation 
(NUVEL-1A). The refi ned interpretation of topography, volcanism, and seismicity led to an 
additional number of 38 smaller tectonic plates and a corresponding digital model (PB2002) 
of plate boundaries (Bird, 2003). The model includes several deformation zones (“orogens” 
like the Alps-Persia-Tibet mountain belt) which are not expected to follow the plate tectonic 
movements. Recent plate motion models (MORVEL) provide velocity estimates for 25 larger 
plates, under the no-net rotation condition (De Mets et al., 2010). Best-fi tting angular velocities 
for the plates bordered by mid-ocean ridges have been determined from seafl oor spreading 
and fault azimuths, and some minor plates were linked by GPS data. An absolute plate motion 
can be derived by reference to the hotspots (Solomon and Sleep, 1974). Here, hot material is 
rising from deep mantle plumes that (probably) do not participate in the plate tectonic motions. 
Hotspots are characterized by surface volcanism and high heat fl ow; examples are Hawaii, 
Iceland, and Afar (Ethiopia). 

It has to be stressed again that the plate velocities derived from these models rep-
resent the average over geological time spans. The results depend on the choice of 
the plates used and also from the choice of the hotspots introduced for reference. 
Deformations occurring especially at the converging plate boundaries are not taken 
into account, and intra-plate deformation is also neglected. Geodetic measurements 
allow the determination of present-day plate motion, and identifi cation of local 
and regional deformation at the plate boundaries and inside the plates, cf. [2.4.2], 
[8.3.4]. 

8.2.4 Interpretation of the gravity fi eld

The observed gravity fi eld refl ects the integrated effect of the mass distribution 
inside the Earth and reveals deviations from spherical symmetry and hydrostatic 
equilibrium, cf. [8.1]. Static and dynamic geophysical Earth models must fulfi ll the 
constraints imposed by the gravity fi eld. The inverse problem, i.e., the determina-
tion of the density distribution from the external gravity fi eld, on the other hand, 
suffers from an inherent ambiguity, which means that it cannot be solved uniquely 
(e.g., Martinec, 1994;  Lowrie, 2007). This fact is seen, for instance, in the formula 
for the gravitation of a spherical Earth composed of homogeneous shells, cf. [3.1.2], 
and in Stokes’ theorem, where the external gravity fi eld of an equipotential surface 
is completely determined without knowing the distribution of the internal masses, 
cf. [4.2.1]. Consequently, gravity fi eld interpretation requires additional informa-
tion through geophysical and geological data, where seismically derived depths of 
bounding surfaces and the composition and density of the masses play a major role 
(Chao, 2005).

Synthetic Earth gravity models have been derived through forward modeling, applying Newton’s 
law of gravitation on refi ned geophysical models. These models are based upon a global 
spherical model, cf. [8.1], and supplemented by models of topography, bathymetry, crust and 
mantle, now available, cf. [8.2.1]. Given by a spherical harmonic representation, these models 
allow the independent evaluation of methods used at gravity fi eld modeling from terrestrial and 
space data (Kuhn and Featherstone, 2005). 
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Gravity fi eld interpretation is based on residual gravity fi eld quantities obtained by 
reducing the effect of the normal gravity fi eld, cf. [6.1], and also partly the gravitation 
of the uppermost layers of the Earth. The primary gravity fi eld parameters used for 
interpretation are gravity anomalies and geoid heights, and to a limited extent also 
defl ections of the vertical and second derivatives of the gravity potential (gravity gradi-
ent). The effect of the masses on gravity anomalies and vertical defl ections is inversely 
proportional to the square of the distance, while geoid heights depend on the recip-
rocal distance to the masses. Consequently, gravity anomalies and defl ections of the 
vertical are more suited for investigating the density distribution in the upper layers 
of the Earth. Gravity anomalies react primarily to vertically extended masses, while 
vertical defl ections refl ect the effect of horizontal layers, hence they especially sup-
port local investigations. Geoid heights reveal deeper seated mass anomalies, which 
generally have large dimensions (Vanic  ̌ ek and Christou, 1994). 

The spectral decomposition of the gravity fi eld as provided by the spherical harmonic 
expansion is especially appropriate for global and regional interpretation, cf. [6.6.1], 
where the geoid and the gravity anomalies play an outstanding role. Degree variance 
models for the gravity anomalies (6.27) and the geoid heights (6.142) show that globally 
about 95% of the geoid variance is concentrated in degrees 2 to 10 (corresponding to 
wavelengths of 20 000 to 4000 km), while this long-wave spectral part attains only 9 % 
of the gravity anomalies. Medium (degree 11 to 180) and short (degree 181 to 2000) 
wavelengths, on the other hand, each contribute more than 40% to the anomaly variance. 
Nearly 10% of the anomaly variance still stem from wavelengths less than 20 km (degrees 
>2000), refl ecting small structures in the upper crust (e.g., salt domes). Defl ections of 
the vertical show a spectral distribution similar to that of the gravity anomalies. With 
the GOCE gravity fi eld mission, cf. [5.2.8], second-order derivatives of the gravitational 
potential became available measured in the satellite’s height and on global scale. 
Although the signal is weak, it contains high-resolution gravity fi eld information, 
cf. [6.7.3]. 

Modeling of the long-wave geoid structures can also be based on equivalent point masses 
arranged primarily around the bounding surfaces as determined by seismology, cf. [8.1], Bowin 
(1994). These solutions strongly depend on the choice of the spectral part to be modeled, the 
distribution of the masses, and the introduced density differences.

Hence, the interpretation of the geoid concentrates on the long and medium-wave 
part of the spectrum. Density and/or temperature anomalies are thought to produce 
the low degrees of the spherical harmonic expansion, while mantle convection and 
lithospheric structures are seen in wavelengths of thousands of kilometers (Bowin, 
2000). Shorter wavelengths of a few 100 to 1000 km can be correlated with diverg-
ing and converging plate boundaries and with hotspots (Cazenave, 1994). Areas of 
postglacial rebound or signifi cant crustal thinning are also refl ected in this spectral 
part. 

Slow-spreading oceanic ridges and hotspots may exhibit relative geoid maxima of several 
meters. Deep-sea trenches are characterized by narrow zones of geoid depression up to 5 to 
20 m, followed by a geoid rise along the island arcs (Fig. 8.9) . Postglacial land uplift areas 
show a geoid depression (up to 10 m in Fennoscandia), which is correlated with present 
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uplift rates (Bjerhammar, 1981), Fig. 8.10. The Ivrea body (western Alps) is an example of a 
local geoid rise (up to 9 m) due to the ascending of lower crustal/upper mantle material to a 
shallow level (Bürki, 1989). 

Fig. 8.9: Geoid structure at the Japan subduction zone, EGM2008 geoid model, spectral part 
degree 11 to 360, after Pavlis et al. (2008).

Fig. 8.10: Geoid structure at the Fennoscandian land uplift area, spectral part degree 11 to 360, 
after Pavlis et al. (2008).
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The interpretation of gravity anomalies uses either the spherical harmonic expansion 
(global and large-scale investigations) or local models based on gridded data. Different 
types of gravity anomalies can be used for regional and local investigations, cf. [6.5.3].

Point free-air anomalies strongly depend on height and are not suited for interpreta-
tion. The long- and medium-wave part provided by global models, or corresponding 
mean anomalies, on the other hand, can be exploited, due to the smoothing of the 
high frequencies. The free-air anomalies then may be interpreted as isostatic anoma-
lies with a compensation depth of zero. Structures of plate tectonics (e.g., subduction 
zones) and postglacial rebound can be identifi ed, where proper fi ltering again may be 
necessary. 

Bouguer anomalies are employed for regional and local investigations, as they are 
free from the effect of topography. They mainly refl ect density anomalies in the crust 
and upper mantle and can be correlated with tectonic structures such as ocean ridges, 
deep-sea trenches, continental grabens, young-folded mountains, and with upper 
 mantle structures (Kogan and McNutt, 1993). Isostatic compensation is indicated by the 
large-scale systematic behavior of the Bouguer anomalies, with negative values in the 
mountains and positive values in the oceans, cf. [8.2.2], Fig. 8.11. Bouguer  anomalies 
play an important role in geophysical prospecting (Dobrin and Savit, 1988; Kearey 
et al., 2002).

More detailed investigations of the deeper regions of the crust are made possible 
by further reducing the effects of known or assumed mass distributions. Isostatic 
anomalies take the effect of the compensating masses into account; deviations from 
zero indicate areas of isostatic imbalance and are often correlated with geologi-
cal features (Simpson et al., 1986). The reduction of geologically known structures 
(“crustal stripping”) allows, among others, the estimation of the depth of sedimentary 
basins and of the crust-mantle boundary (Hammer, 1963). Large-scale crustal strip-
ping down to the Moho is possible through the use of crustal models, cf. [8.2.1]. 
After eliminating the gravitational effect of the topography and the crust from a 

Fig. 8.11: Regional Bouguer gravity anomaly map of the United States, composed of wavelengths 
longer than 250 km, referred to IGSN71 and GRS67, rock density 2670 kg/ m 3 , contour line 
interval 200 μm/ s 2 , after Kane and Godson (1985).
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global gravity model, the residual gravity fi eld can be interpreted with respect to the 
morphology and density of the mantle lithosphere (upper mantle), and partially also 
reveals sub-lithospheric density heterogeneities due to mantle convection (Tenzer 
et al., 2009).

Gravity anomalies have proved to be an effi cient tool for modeling a variety of crust 
and mantle structures of local and regional extent. Here, a starting model is iteratively 
improved by varying the geometry and densities of the masses, taking the constraints 
from seismic data and geology into account. Summarizing we mention the following 
large-scale relationships found between the gravity fi eld and crustal structures (e.g., 
Nerem et al., 1997; Lowrie, 2007): 

• Bouguer anomalies over the continents are generally negative, and strongly posi-
tive over the ocean. This observation can well be explained by the approximate 
isostatic equilibrium of the Earth’s crust, cf. [8.2.2].

• Oceanic ridges show negative Bouguer anomalies (up to − 2000 μm s –2 ) due to 
high anomalous mantle material, while free-air anomalies deviate only slightly 
from zero, Fig. 8.12.

• Deep-sea trenches are characterized by strong, negative free-air anomalies 
(up to − 4000 μm s –2 ), which are explained in part by thick sedimentary layers 
and sea fl oor topography. Further inland, large positive anomalies occur due 
to the subtraction of the cool descending slab into the hot mantle material, 
Fig. 8.13.

• Continental grabens are correlated with strong negative Bouguer anomalies due 
to sedimentary layers and/or anomalous mantle material; local highs may occur 
through crustal thinning.

• Young folded mountain chains arising at continental collision zones exhibit 
strong negative Bouguer anomalies, indicating isostatic compensation. Neverthe-
less, isostatic anomalies may differ from zero due to recent tectonic processes and 
incomplete compensation.

• Postglacial rebound areas are characterized by negative free-air anomalies. 
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8.3 Geodesy and recent geodynamics

Geodetic measurement methods are characterized today by repeated geometric and 
gravimetric data acquisition of high accuracy, and with high spatial and temporal 
resolution. Geodesy thus is able to determine temporal variations of the Earth’s ori-
entation, the Earth’s surface geometry, and the external gravity fi eld. The observed 
changes, after proper modeling, are used for reducing the data and referring them to 
common standard epochs. The observations contain, on the other hand, the effects 
of a multitude of geodynamic processes of extraterrestrial and terrestrial origin, the 
latter ones being located in the solid Earth as well as in the hydrosphere and the 
atmosphere. Geodesy thus signifi cantly contributes to research in geodynamics, in 
collaboration with astronomy, oceanography, meteorology, hydrology, glaciology, 
solid Earth geophysics, and geology.

Previous chapters already dealt with individual geodynamic processes and their 
effects on geodetic measurements and products, as Earth rotation [2.3.4], crustal 
deformation [2.4.2], geoid [3.4], gravity and gravimetric tides [3.5]. In the following, 
we concentrate on recent results obtained by geodetic space and terrestrial meth-
ods, with selected examples from the different branches of geodesy. A review on the 
manifold effects acting on the rotation, surface and gravity fi eld of the Earth is given 
in [8.3.1]. Changes in the Earth’s rate of rotation result from a variety of geodynamic 
phenomena, which are partly well-known, but partly still under investigation [8.3.2]. 
Sea level changes, among others, reveal the effects of global warming and melting 
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of the ice sheets [8.3.3]. Recent crustal movements (horizontal and vertical) serve as 
constraints for modeling of geodynamic processes at all scales, and as earthquake 
and volcanism precursor phenomena [8.3.4]. Gravity fi eld variations contain a wide 
range of information on mass redistribution on the Earth’s surface and inside the Earth, 
and support and supplement geometric information [8.3.5]. Continuous geometric 
and gravimetric observations are especially useful for tidal research, but also contain 
additional information on geodynamics [8.3.6]. 

Geodynamics is treated in monographs and textbooks on physics of the Earth 
(e.g., Turcotte and Schubert, 2002; Lowrie, 2007). For the contribution of geodesy to 
geodynamics research see Lambeck (1988) and Mueller and Zerbini (1989), among 
others, also Ilk et al. (2005b) and Rummel et al. (2009). 

8.3.1 Geophysical processes and effects on geodetic products 

In the following, we shortly describe the manifold geophysical processes which occur 
within the system Earth (solid Earth with inner and outer core, mantle and crust, hydro-
sphere, atmosphere), and which, by different mechanism, affect the three fundamental 
types of geodetic products: Earth rotation, surface geometry, and external gravity fi eld 
(e.g., Ilk et al., 2005b; Rummel, 2005; Rummel et al., 2009). The observable effects 
cover a broad time scale, ranging from minutes and hours (e.g., co-seismic deformation 
or tsunamis) to decades (e.g., sea level change) and secular processes (e.g., postglacial 
rebound, changes in ice cover, tectonic plate movements), and they enter in different 
way into the geodetic observations and parameters, see Fig. 8.14.
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Starting with the rotation of the Earth, the dynamic Euler equation describes the bal-
ance between the Earth’s angular momentum H(t) and the external torques L(t) due to 
the lunisolar and planetary gravitational forces (e.g., Moritz and Mueller, 1987; Seitz 
and Schuh, 2010):

   d __ 
dt

   H(t) + v (t) × H(t) = L(t) (8.15a)

with v (t) rotation vector of the Earth. For a deformable body, the angular momentum is 
composed of two terms: 

 H(t) = I(t) ⋅ v (t) + h(t). (8.15b)

The fi rst term I(t) ⋅ v (t) describes the angular momentum of a rigid body, where the 
tensor of inertia I(t) contains the time variable mass elements (“mass term”). The second 
term h(t) represents the angular momentum relative to the body rotation, and contains 
the mass elements’ velocities with respect to the reference system (“motion term”). The 
equation (8.15a), (8.15b) is known as Euler-Liouville equation. It relates the – well-
known – gravitational forces of moon, sun and planets, cf. [3.5.2], to mass redistribu-
tions and mass motions within the Earth’s body. After linearization, the solution of (8.15) 
provides polar motion and length of day (LOD) variations as functions of their excita-
tions, and allows the study of Earth’s rotation variations. 

Going more into detail, the torques from luni-solar and planetary gravitational accel-
eration directly determine the orientation of the Earth in space: precession, nutation, cf. 
[2.3.2]. Atmospheric and oceanic tides, together with other atmospheric (winds) and 
oceanic (ocean currents) transport processes, change the inertia tensor and exert cor-
responding angular momenta. These effects become visible in polar motion and LOD 
variations. In addition to these direct effects, there is a variety of further contributions to 
Earth’s rotation, resulting from mass redistribution and movements in the fl uid and solid 
parts of the system Earth. 

Starting with the Earth’s interior, we have the effects of the (still not very well 
known) core-mantle dynamics and of motions in the fl uid outer core (Greiner-Mai 
and Barthelmes, 2001). Mantle convection is another deep-seated source for rota-
tion changes. With the involvement of the mantle and lithosphere, we proceed to 
the numerous processes which produce deformations and – generally – also gravity 
changes. The close connection between deformation and gravity change is of special 
interest, as it provides a deeper insight into the mass transfer inside the Earth, and 
allows the discrimination from surface effects. Plate tectonics and glacial isostatic 
adjustment are the dominant global processes. 

While modeling of the relations between mantle convection, mantle plumes/hotspots 
and plate tectonics is still in its infancy, geophysical/geological plate motion models 
generally agree with recent geodetic observations, cf. [8.2.3], [8.3.4]. Seismic events 
(earthquakes) and volcanic activities are also related to plate tectonic structures, but 
pose severe problems at modeling and “prediction”. 

Glacial isostatic adjustment or postglacial rebound, on the other hand, is far better 
understood, and provides an outstanding opportunity to get insight into the rheol-
ogy of lithosphere and upper mantle. This adjustment process is the response of the 
Earth to the changing surface ice load at the recent deglaciation cycle which started 
about 21 000 years ago, it tends to restore the hydrostatic equilibrium. Postglacial 
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rebound becomes visible in a multitude of geological, geophysical, hydrographic and 
geodetic observations, including sea level trends, surface displacements (especially 
uplift), gravity fi eld variations, and it also enters into Earth rotation, cf. [8.3.3]–[8.3.5]. 
The related data contain valuable constraints on mantle viscosity and thickness of the 
lithosphere (Lambeck et al., 1998; Mitrovica et al., 2009), and they serve as bound-
ary conditions for modeling the isostatic adjustment process. Corresponding models 
provide the history of sea-level change relative to the deforming Earth through a time-
dependent convolution integral over the surface mass load weighted by a visco-elastic 
Green’s function, for separating geoid and solid Earth surface (equivalent to the elastic 
surface load Love numbers), Peltier (2004), cf. [8.3.6]. Models for the time-dependent 
displacements (vertical and horizontal) and gravity changes follow from the evalua-
tion of corresponding convolution integrals, based on the elastic properties of a refer-
ence Earth model. 

In addition to glacial isostatic adjustment, there are several other large-scale loading 
effects which produce deformations and gravity variations. These effects have either 
tidal origin, or result from mass displacements in the atmosphere, the oceans, and the 
continental water/ice budget. 

The Earth body tides directly affect the solid Earth, with well known deforma-
tions and gravity changes, cf. [8.3.6]. This is also valid for the solid Earth and the 
ocean pole tide which are caused by the centrifugal effect of polar motion. Atmo-
spheric and ocean loading are composed of the effects of atmospheric tides and 
atmospheric currents, and ocean tides and ocean currents, respectively. Again, the 
tidal contribution can be modeled rather well, based on corresponding models, 
cf. [8.3.6]. 

Non-tidal loading effects due to mass redistribution in the atmosphere, the oceans, 
the cryosphere (snow and ice coverage), the continental hydrosphere (groundwater, 
soil moisture, surface water) and, to a lesser extent, the vegetation are more diffi cult 
to model; more sophisticated models especially exist for the coupled atmosphere 
and ocean circulation (Williams and Penna, 2011). In contrast to the slowly (from 
decades to several thousands of years and more) progressing variations due to pro-
cesses in the Earth’s interior, to isostatic rebound and to climatologic changes in 
land water and ice, recent loading-induced effects run on time scales of minutes to 
years. 

Based on the theory of continuum mechanics, the loading effects are modeled by 
calculating the (vertical and horizontal) deformation and gravity change caused by 
an additional thin surface layer of limited extension, spread on a conventional geo-
physical Earth model. Calculation either employs an empirical admittance function or 
global models of the time-variable physical parameters (Neumeyer, 2010). The empiri-
cal approach is based on measured local data (atmospheric pressure, ocean height, 
groundwater level depth, etc.) exploiting their correlation with the observed changes, 
e.g., by linear regression. The physical model approach evaluates global models with 
assimilated observations. The calculation of these gravitational and loading effects fol-
lows the procedure developed by Farrell (1972), for estimating the deformation of the 
Earth by surface loads, cf. [8.3.6]. 

Atmosphere and ocean general circulation models (now generally coupled models) are 
developed extensively for weather forecast and for simulation of climate changes, they 
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often include land surface and sea ice information. The models deliver relevant information 
(for instance air pressure, ocean height) with spatial resolution of 0.5° to 1° and daily or 
even sub-daily basis, e.g., Jungclaus et al. (2006), Pozzer et al. (2011). Hydrological models 
provide the continental water storage expressed as equivalent water columns in mm of 
water height, e.g., the NASA Global Land Data Assimilation System (GLDAS), Rodell et al. 
(2004). For further examples of circulation models including continental hydrology see, 
e.g., Hense et al. (2009), and for hydrology also Döll et al. (2003) and Fan and van den 
Dool (2004). 

8.3.2 Changes in Earth rotation

Temporal changes of the Earth’s rotation vector with respect to the Earth’s body are 
described by the Earth’s rotation parameters polar motion and Earth rotation angle or 
length of the day (LOD), respectively. Space geodetic techniques provide these quanti-
ties with high temporal resolution and accuracy, and coordinated results are published 
regularly through the IERS, cf.[2.4.3], [2.4.4]. The integral effect of the redistribution of 
masses can be recovered by repeated gravity fi eld observations, employing dedicated 
satellite missions like GRACE and terrestrial gravimetry, cf. also [8.3.5], Schuh et al. 
(2003), Ilk et al. (2005b).

The observed changes of the Earth rotation parameters mirror the combined effects 
of terrestrial mass redistribution, which affect the inertia tensor of the Earth, and of 
the related motions, which act on the angular momentum of the respective layer (e.g., 
atmosphere, ocean, continental water, mantle, core), cf. [8.3.1]. The law of the conser-
vation of the Earth’s total angular momentum then requires corresponding changes of 
the rotational vector. Mass redistribution mainly affects polar motion, while LOD varia-
tions are dominated by motion of the masses.

Polar motion and LOD contain a variety of components, which result from different 
processes and proceed at time scales from hours to decades and millenia, at the 0.1” 
resp. 1 ms and more order of magnitude, cf. [2.3.4]. From the many possible sources 
of these variations, only a limited number has been clearly identifi ed in the observa-
tion series, and most of them cannot be modeled at all or with suffi cient accuracy. We 
summarize some results (Gross, 2009; Dehant and Mathews, 2009; Seitz and Schuh, 
2010).

Long-term observations of polar motion (about 150 years) and LOD (about 2500 
years) reveal secular variations. While tidal friction in the oceans is responsible 
for the main part of the secular change of LOD, a multitude of slow mass redistri-
butions affects polar motion. On time scales of a few thousand years, glacial iso-
static adjustment and sea level change, among others, contribute to polar motion 
and LOD change. The Chandler oscillation and the annual wobble represent the 
main constituents of polar motion, driven by a number of gravitational and inter-
nal geophysical excitations (Gross, 2000; Schuh et al., 2011). The individual con-
tributions cannot be suffi ciently modeled yet, but signal decomposition allows 
for a corresponding splitting of the polar motion signal (Seitz and Schuh, 2010). 
Fig. 8.15 shows the x-component of polar motion after linear trend removal, as 
observed over the past 150 years. The Chandler oscillation is characterized by stron-
ger variations, while the annual period is rather uniform. The course of the residuals 
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demonstrates the increasing accuracy of the observations, and the small amplitudes 
of remaining contributions ranging from decadal to instantaneous, including strong 
earthquakes (Gross, 1986; Chao et al., 1996) and El Niño effects (Kosek et al., 2001), 
cf. [2.4.3].

The interpretation of length-of-day variations can be partly based on models 
of the exciting processes, but partly again on fi ltering. This is demonstrated in 
Fig. 8.16, with the LOD variations between 1962 and 2009 (Seitz and Schuh, 
2010). The secular change due to tidal friction is superposed by decadal variations, 
mainly resulting from the exchange of angular momentum between the Earth’s core 
and mantle. The effect of solid Earth and (far less) of ocean tides can be calculated 
from tidal models, while the annual and semi-annual signal component is more 
diffi cult to model (Herring and Dong, 1994). The residual time series again 
mirrors the observational accuracy, and indicates episodic effects like the El Niño 
event. 

Fig. 8.15: Long-term observation of polar motion (x-component, linear trend removed) between 
1860 and 2009 (a), Chandler (b) and annual (c) signal component determined by wavelength 
fi ltering, and residuals (d), after Seitz and Schuh (2010), courtesy F. Seitz.
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8.3.3 Sea level variations

Variations of sea level with time are relevant in geodesy for the defi nition and realiza-
tion of height reference surfaces, especially the geoid, cf. [3.4.3], [8.3.5], Atmospheric 
and oceanic excitation also contribute to polar motion and to length of day changes, 

Fig. 8.16: Variations of length-of-day (ΔLOD) between 1962 and 2009 with (a) observation time 
series EOP 05 C04, (b) moving average over 5 years compared with the JGB model (Jackson, 1997) 
for the infl uence of core-mantle interaction, (c) effect of solid Earth tides, (d) annual and semi-
annual signal component, (e) residual time series, after Seitz and Schuh (2010), courtesy F. Seitz.
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i.e., to Earth’s rotation variations (Gross et al., 2003; Gross et al., 2004), cf. [8.3.2]. 
Finally, the variable mass distribution – tidal and non-tidal – in the oceans leads to 
crustal loading effects, which produce surface deformation and gravity variations (Boy 
and Lyard, 2008). The determination and interpretation of sea level changes, on the 
other hand, contributes to a better understanding of the coupled atmosphere-ocean 
circulation and of climate change processes, and thus is of high interest for oceanog-
raphy, meteorology and other geophysical disciplines.

Sea level changes occur at a wide range of temporal and spatial scales, with amplitudes 
at the 0.1 to 1 m order of magnitude (Lisitzin, 1974; Cazenave and Llovel, 2010). Many dif-
ferent sources contribute to these changes of the dynamic ocean sea surface. This includes 
tidal effects and density variations due to changes in temperature and salinity, ocean cur-
rents and eddies, and atmosphere/ocean coupling (wind and  pressure), as well as exchange 
with continental waters and the effect of melting ice sheets and glaciers, cf. [3.4.2]. 

Special attention is focussed today on the global sea level rise, cf. [3.4.2], Cazenave 
and Llovel (2010). Fig. 8.17 shows the observed (since 1800) and projected (after 2000) 
change of the global mean sea level. Satellite altimetry has measured the recent accelera-
tion of sea level rise which indicates global warming (Solomon et al., 2007), (Fig. 8.18).

Fig. 8.18: Sea level rise between 1993 and 2007 (monthly mean Values), derived from TOPEX and 
Jason1 satellite altimetry, after Bosch et al. (2010).
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Fig. 8.17: Global mean sea level between 1800 and 2100 from observations (until 2000) and 
future projections. Modifi ed after Cazenave and Llovel (2010, p. 166).
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Sea level changes can directly be measured by tide gauges and by repeated satellite 
altimetry, cf. [3.4.2]. In situ ocean temperature data allow to estimate the contribution 
of ocean warming to sea level rise, and repeated gravity fi eld determinations from the 
GRACE satellite mission provide information on the redistribution of the oceanic water 
masses, as, for instance, due to the melting of ice sheets, cf. [8.3.5]. 

Tide gauge records can be evaluated for the determination of the oceanic tides and 
other short- and medium-term phenomena, including the effects of atmospheric pressure 
changes, storm surges, and meltwater infl ow. Averaging over long time intervals reveals 
long-term water level variations. For the twentieth century, an average global rise of 0.1 
to 0.2 m/100 years has been found, with large regional and local scatter and decadal 
variations (Woodworth, 1997), Fig. 8.19.

It must be emphasized that tide gauge data only provide relative water level changes, by a 
superposition of absolute water level changes and local or regional vertical crustal movements 
affecting the mareograph (Tamisiea and Mitrovica, 2011). These movements are at the one 
mm/year order of magnitude and may reach several mm/year and more in areas of postglacial 
land uplift, cf. [8.3.4]. Hence, long-term height control with mm-accuracy is required for tide 
gauges (e.g., Carter et al., 1989). This is achieved locally by leveling connections to neighboring 
bench marks, and globally by repeated GNSS/GPS height-determination. Continuous GNSS 
monitoring is now usual at many sites, with networks well tied to the International Terrestrial 
Reference Frame (ITRF). Repeated absolute gravimetry provides an independent method for 
the detection of vertical displacements and delivers additional information about internal 
mass redistribution. One example for a regional tide gauge control is given by the dedicated 
continuous GPS stations established at U.K. mareographs, which are regularly surveyed by 
absolute gravimetry (Teferle et al., 2007). 

Satellite altimetry provides a nearly global and quasi-continuous monitoring of the sea 
level with cm-accuracy. Recent ocean tide models allow reduction of the tidal effects 
with cm-accuracy (Shum et al., 1997). The analysis of long-term (several years) altimetry 
observation series improved the ocean tide models and revealed a number of other phe-
nomena, with variations of 0.1 to 0.3 m (Nerem et al., 1997). This includes ocean basin-
wide decadal and interannual fl uctuations, probably due to the shift of water masses 
(Bosch et al., 2010), see Fig. 8.20. An annual cycle includes a 180° phase shift between 
the northern and the southern hemisphere caused by thermal expansion and  contraction. 

Fig. 8.19: Sea level records for San Francisco and Brest, after Woodworth (1997).
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Interannual and seasonal variations can be correlated with the variability of ocean 
 currents such as the Gulf Stream meandering and eddies and the El Niño phenomenon.

The El Niño Southern Oscillation (ENSO) is an outstanding example of a large-scale interannual 
process. It comprises variable warm water currents in the eastern and central tropical Pacifi c, 
caused by strong oscillations of the sea surface temperature and pressure. ENSO occurs with 
varying intensity at irregular intervals of 2 to 7 years, the until now largest event happening in 
1997/1998. El Niño effects have been clearly identifi ed in LOD (increase of several 0.1 to 1 ms) 
and in irregular perturbations of polar motion (Salstein et al., 1999), and are clearly visible by 
variable sea level inclination in west-east direction. 

The combination of tide gauge data and satellite altimetry has led to signifi cant improve-
ments in sea level monitoring (Cazenave et al., 1999). Here, the tide gauge data serve for 
ground control and can be used to remove biases in the altimetric results, which may be 
affected by altimeter drift, systematic orbit errors, and differences between the tracking 
station’s reference systems. By combining the results of different altimetry missions the 
spatial resolution can be improved. Oceanographic and meteorological data such as sea 
surface temperature, salinity, current velocities, and air pressure may also be integrated. 

A signifi cant contribution to the investigations on sea level change is delivered through 
the time-variable gravity fi eld obtained monthly with 1° spatial resolution by the GRACE 
satellite mission, cf. [5.2.8]. Although the inherent ocean mass gravity change signal is 
signifi cantly less (a few cm only) than the corresponding signal from land, cf. [8.3.5], it 

Fig. 8.20: Regional sea level changes (cm) for the periods 1993–1998 and 1999–2004, after Bosch 
et al. (2010).
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is extremely useful as it quantifi es the amount of mass changes in the oceans and thus 
monitors the non-steric contribution to sea-surface variability. Combination with satellite 
altimetry allows to distinguish between steric and non-steric contributions to sea level rise 
(Chambers, 2006; Lombard et al., 2007). The presently available GRACE results show that, 
since the beginning of the twenty-fi rst century, the sea level rise can be explained to a large 
part by an ocean mass increase, with contributions from the melting of polar ice sheets and 
mountain glaciers, and – to less extent – from continental waters. The previously dominant 
steric sea level contribution due to ocean thermal expansion and salinity effects is since 
then reducing (Cazenave et al., 2008). The acceleration of ice mass loss observed at the 
Greenland and Antarctic ice sheets leads to the conclusion that melting of ice sheets could 
be the main part of sea level rise in the  twenty-fi rst century (Rignot et al., 2011), cf. [8.3.5]. 

8.3.4 Crustal deformation 

Recent crustal deformation (horizontal and vertical displacements) can be determined 
by geodetic measurements, carried out on the Earth’s surface at certain repetition rates or 
continuously. Geometric positioning employs satellite (three-dimensional) and terrestrial 
(horizontal position and height separately) methods, frequently supported by repeated 
gravity measurements which deliver additional information on inherent mass redistribu-
tions, cf. [8.3.5]. Remote sensing space techniques like InSAR offer the additional pos-
sibility for mapping of surface deformations, without requiring monuments on the ground. 

Radar interferometry from space-borne platforms is extensively employed for topographic mapping, 
cf. [6.5.2]. Interferometric Synthetic Aperture Radar (InSAR) has also proved as an effi cient 
technique for three-dimensional mapping of surface displacements. The evaluation is based on the 
radar phase change obtained through measuring the surface two times from an exactly repeated 
pass. The phase difference obtained can be transformed into the three-dimensional deformation of 
the image point. Repetition rates and spatial resolution of mapping vary considerably, amounting, 
e.g., to 35 days and 30 m at ERS satellites, and 11 days and a few meters at TerraSAR-X, cf. [6.5.2]. 
Among the fi rst successful applications were the detection of deformations associated with an ice 
stream in Antarctica (Goldstein et al., 1993), and with the 1992 Landers earthquake in southern 
California (Massonnet et al., 1993). Meanwhile, InSAR mapping surveys have been carried out 
successfully at numerous different type deformation areas, related to seismic (earthquakes) and 
volcanic activities, glacier fl ows and ice sheet coverage, as well as to landslides and subsidence 
due to oil or water withdrawal (Massonnet and Feigl, 1998; Simons and Rosen, 2009; Xia, 2010). 
The evaluation of InSAR requires a digital elevation model, monitoring of areas of limited extension 
can be supported by ground-based GNSS/GPS and corner refl ector arrays. The accuracy achieved 
at InSAR deformation monitoring is at the cm- to mm-order of magnitude.

The observation sites for surface-based observations have to be carefully monumented, 
possibly by anchoring the pillar or antenna to the Earth’s crust at depths of some meters 
or more. In addition, the monument’s (i.e., the local reference marker’s) local behavior 
with time must be controlled and reduced for displacements not under investigation 
(Petit and Luzum, 2010, p. 99 ff.). Present-day sub-centimeter to millimeter accuracies 
put high demands on the corresponding reductions, to be derived from models and support-
ed by local measurements. The major reductions include the effects of solid Earth and ocean 
tides, of loads from atmosphere, oceans and hydrology, and of Earth’s rotation changes (pole 
tide and ocean pole tide loading), e.g., Ducarme and Janssen (1990), Van Dam et al. (1994), 
Van Dam et al. (2001), Gipson and Ma (1998), see also [8.3.1].
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On global scale, space-geodetic networks (VLBI, SLR, GNSS/GPS, DORIS) provide 
geocentric coordinates for certain epochs and station velocities with mm/year to cm/year
accuracy, with GNSS/GPS playing a dominant role (Larson et al., 1997; Blewitt, 2009). 
The individual network solutions are combined by the IERS, and the annual station 
velocities are then part of the International Terrestrial Reference Frame ITRF, cf. [2.4.2]. 
The horizontal velocities derived from these global networks are primarily due to the 
motion of the tectonic plates (Robbins et al., 1993). The detection of correlated verti-
cal motion is still problematic (Soudarin et al., 1999), in contrast to height changes 
of regional and local character (see below). For stations located in the interior of the 
tectonic plates, the recently observed horizontal motions (relative velocities) range 
between 2 and 3 cm/year (Mid-Atlantic Ridge) and 16 cm/year (East Pacifi c Rise) at 
diverging plate boundaries, and attain values of up to 10 cm/year at subduction zones 
as the Peru-Chile or the Japan trench zones. These values generally agree well with the 
velocities given by geological/geophysical models as mean values over the past 3 to 10 
million years, cf. [8.2.3]. Larger discrepancies are found at the plate boundaries, as the 
recent local deformations are not taken into account in those models.

Geodetic Actual Plate Kinematic Models (APKIM) have been developed by combin-
ing global geodetic data sets (Drewes, 2009a). These models assume the plates’ interior 
as being rigid and rotating on the Earth’s surface. They admit deformation zones at the 
plate boundaries that result from the forces exerted by the adjacent plates. By interpola-
tion, the velocity fi eld is provided in a 1° × 1° grid, with the condition that the integrated 
velocities over the whole Earth’s surface are zero. Fig. 8.21 provides a comparison 
between a geodetic and a geophysical plate motion model.

Regional crustal deformation is derived from the repeated survey of national or 
continental control networks and from dedicated networks set up in areas of geo-
dynamic activity.

Triangulation and leveling networks established in most parts of the world between the end of 
the nineteenth and the second half of the twentieth century are only partially valuable for the 
detection of long-term crustal movements. Systematically repeated surveys of these classical 
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networks have been carried out in high earthquake risk areas such as California and Japan. 
Higher repetition rates and accuracies became possible since the 1970s, with Laser distance 
measurements and mobile VLBI and SLR systems. Deformation measurements with GPS started 
in the 1980s, followed by other GNSS systems. 

GNSS/GPS measurements are now the primary tool for investigations of recent crustal 
deformation, related to all kind of natural or man-made processes. Data are acquired 
either at measurement campaigns carried out at different epochs, or by permanently 
operating stations. Real-time GNSS/GPS measurements obtained from continuously 
operating regional or local networks are going to play an important role in this connec-
tion. By providing a data rate of 1 Hz or higher with a latency of seconds or less, the 
corresponding data series do not only serve for a better understanding of geodynamic 
processes, but also for the improvement of natural disaster warning systems  (Hammond 
et al., 2011). Naturally, the GNSS/GPS results contribute to the maintenance of  national 
or supranational geodetic reference systems, by revealing the development of the 
 reference frame with time, cf. [7.3].

By inverting GPS station velocities and taking constraints from seismics and geological fault 
slip data into account, a global map of strain-rate has been derived (Kreemer et al., 2003). This 
contributes to the development of a global tectonic stress map (Heidbach et al., 2010).

We mention some examples of large-scale monitoring of plate-boundary and intra-plate 
deformation. 

Iceland offers a unique opportunity to observe crustal deformations occurring at a 
diverging plate boundary. Triangulation (and gravity measurements) for monitoring these 
movements started in 1938, and GPS measurements have been carried out since 1986 
(Völksen, 2000). Country-wide GPS campaigns in 1993 and 2004 revealed an average 
overall spreading rate of 20 mm/year. Recent deglaciation processes explain the uplift (a 
few mm/year) observed in central and southeastern Iceland, although the overall pattern 
of vertical motion is rather heterogeneous (Árnadóttir et al., 2010). The Krafl a (northern 
Iceland) rifting episode (1975–1984) represents an active event within the rifting pro-
cess, it has been extensively monitored by terrestrial measurements, GPS and gravimetry, 
among others (Björnsson, 1989). The rifting process was triggered by the in- and out-fl ow 
of magma in a shallow magma chamber, which caused repeated infl ation and defl ation of 
the Krafl a volcano (Tryggvasson, 1994). During the rifting episode, large horizontal (sev-
eral m) and vertical (up to 1 m and more) crustal movements have been observed. These 
displacements decreased to a few cm/year during the following stress relaxation phase, 
along a narrow zone around the Krafl a fi ssure swarm, and fi nally approached the average 
plate-spreading rate (Jahn et al., 1994), Fig. 8.22. Satellite radar interferometry identifi ed 
a post-rifting subsidence (several mm/year to 2 cm/year) above the magma chamber and 
along the spreading segment, due to cooling induced contraction and ductile fl ow of 
material away from the spreading axis (Sigmundsson et al., 1997).

The Mediterranean collision zone between the Eurasian and African plates has been 
early surveyed by repeated GPS campaigns, including several permanent GPS net-
works. The eastern Mediterranean is characterized by complicated movements of some 
cm/year, involving the Arabian and the Anatolian plates (Kahle et al., 2000). The western 
Mediterranean and Western Europe, on the other hand, are deforming only at slow rates 
(<5 mm/year over more than 1000 km). It follows that most of Europe behaves rigidly 
at a 0.5 mm/year level, but that the convergence process between the African and the 
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Eurasian plate may differ signifi cantly from the geological models (Nocqet and Calais, 
2004). Another example for crustal deformations related to a collision zone (Indian and 
Eurasian tectonic plates) is given by repeated GPS surveys in southern Tibet and Nepal. 
Slip rates of 1 to 2 cm/year of the Indian plate beneath southern Tibet have been found 
here between 1991 and 2000 (Chen et al., 2004). A combination of gravity and GPS 
measurements carried out over two decades reveals an uplift of the Tibetan plateau at a 
mm/year level, with crustal thickening and mass loss beneath (Sun et al., 2009).

In Japan, a countrywide continuously operating GPS network (GEONET) has been 
established by the Geospatial Information Authority of Japan, containing about 1200 
stations with an average station distance of 25 km (Miyazaki et al., 1997). Monitor-
ing the three-dimensional displacement fi eld at the subduction zone along the Japan 
trench is among the main objectives of this network (Tsuji et al., 1995), which delivered 
important information on crustal deformation related to strong earthquakes (see below).

Large-scale vertical crustal movements are found in areas of postglacial rebound, 
mountain building at plate collision zones, continental erosion, and sedimentary 
subsidence. While geometric leveling only allows repetition rates of several years to 
decades, GPS heighting (epoch measurements or permanent stations) offers the possi-
bility to determine elevation changes with high temporal resolution. Repeated gravity 
meas urements often support and extend these investigations, cf. [8.3.5]. 

It must be stressed that leveling and GPS heighting refer to different reference surfaces, i.e., the 
geoid and the ellipsoid, respectively. As the geoid is affected by mass redistributions, the leveling 
results should be reduced accordingly. For that purpose, the formulas developed for gravity fi eld 

Fig. 8.22: Horizontal crustal deformations 1987–1990 in northeastern Iceland, as determined from 
repeated GPS measurements, with (assumed) non-movable stations in the Krafl a fi ssure swarm, 
A Askja volcanoe, K Krafl a volcano, after Völksen (2000).
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modeling can be used, now applied on gravity variations with time, cf. [6.6.1], [6.7.1]. Even with 
large mass shifts, as in the Fennoscandian land uplift area, this reduction remains signifi cantly 
below 10% of the height changes and can often be neglected (Ekman, 1993).

Postglacial land uplift as occurring in Fennoscandia and Canada is due to isostatic adjust-
ment, which involves the complete lithosphere, cf. [8.2.2]. The uplift is a function of the 
ice load time history and the Earth’s mantle viscosity (Peltier, 2004). Present-day changes 
in ice cover as occurring in Antarctica and Greenland also result in vertical displacements, 
with, e.g., rates of several mm/year around Antarctica, and up to 10 mm/year and more 
around Greenland. The rapid melting of the Patagonia icefi eld even resulted in a crustal 
uplift rate of up to 39 mm/year, measured between 2003 and 2006 using GPS (Dietrich 
et al., 2010). Here we have an overlapping of elastic and viscoelastic response, the latter 
one due to past changes in ice coverage, and eventually several times larger than the elastic 
response (Wahr et al., 1995). Postglacial rebound effects can be also found in Earth rotation 
and sea level changes, [2.3.4] and [3.4.2], as well as in gravity fi eld variations [8.3.5].

Fennoscandia is among the best-surveyed areas of recent vertical movements, with 
the postglacial land uplift being investigated by leveling, sea level data, GPS, and 
gravimetry, cf. [8.3.5]. The apparent land uplift (referring to mean sea level) as deter-
mined from leveling reaches a maximum of 9 mm/year (Fig. 8.23), and is associated 
with a viscous infl ow of mass in the upper mantle (Ekman and Mäkinen, 1996; Vestøl, 
2006), cf. [8.2.5]. Repeated GPS measurements confi rm this uplift, where the vertical 
movement now is absolute (Fig. 8.24). In addition, the horizontal strain related to the 
isostatic adjustment process has also been derived from GPS data, with extreme  values 
of 1 mm/year and more (Lidberg et al., 2007). From nearly 9 years of  continuous GPS 

Fig. 8.23: Land uplift rates (relative to sea level) in mm/year, determined from tide gauge 
measurements and repeated geodetic leveling since 1892, after Ekman and Mäkinen (1996).
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observations, recent vertical and horizontal station velocities have been estimated 
with accuracies of about 0.5 mm/year (vertical) and 0.2 mm/year (horizontal).

Land uplift in Fennoscandia naturally also affects the defi nition of the vertical reference 
system, cf. [8.2]. For that reason, the precise levelings from the countries around the Baltic 
Sea were reduced to the epoch 2000.0. The geophysical land uplift model (lithosphere, 
mantle, ice sheet) used for the reduction was tuned to tide gauge observations and to uplift 
rates determined from leveling and permanent GPS stations. The adjusted normal heights 
refer to the zero level (epoch 2000) of the United European Leveling Network (Ågren and 
Svensson, 2006). 

Large-scale vertical displacements of non- (or only partly) isostatic origin have been 
also found in other regions. The uplift generally remains less than 1 to 2 mm/year, 
and is diffi cult to interpret. For example, repeated leveling and continuous GPS 
measurements in the western and central Alps revealed a mountain uplift pattern 
with rates of 1 mm/year and more. These recent movements are probably caused by 
isostatic rebound after erosional unloading, but may also refl ect tectonic processes 
at the convergent European/African plate boundary, with the Adriatic microplate 
rotating relative to stable Europe (Champagnac et al., 2009). From repeated leveling 
and GPS data collected at the German North Sea coastal region, areas of land sub-
sidence reaching 1 to 1.5 mm/year have been found (Wanninger et al., 2009). While 

Fig. 8.24: Absolute land uplift rates in mm/year, determined from continuous GPS measurements 
from 1993 to 2007 (BIFROST Project) after Lidberg (2007). 
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more local effects are caused by the exploitation of natural gas and by  sedimentary 
effects at the river estuaries, a large-scale edge effect of the Fennoscandian land 
uplift cannot be excluded. 

Local investigations in earthquake and volcanic risk areas generally employ a mul-
titude of geodetic techniques (terrestrial distance measurements, leveling, GNSS/GPS, 
strain and tilt measurements, gravimetry) and also InSAR, in order to detect precur-
sor phenomena and to monitor surface deformations during and after activity phases 
(Rikitake, 1982; Rummel et al., 2009).

In seismotectonically active zones, geodetic data provide information on the accumu-
lation of strain energy, its release during an earthquake, and the relaxation that follows 
the quake (Hudnut, 1995), where continuous GNSS/GPS measurements offer special 
advantage (Blewitt et al., 2006; Larson, 2009). Signifi cant deformations have been found 
in connection with large earthquakes. Horizontal and vertical co-seismic displacements 
may easily reach the order of a few cm in an area of some 100 km to 1000 km (depend-
ing on the earthquake’s magnitude) around the epicenter, and several meters close to it.

The San Andreas Fault, California, governed by the shear movements between the 
North American and the Pacifi c plates and affected by several large earthquakes in 
historical time, is among the areas where co- and inter-seismic slip rates are determined 
by geodetic methods since long time (Whitten, 1948; Gan et al., 2000). With a strong 
impetus from the 1992 Landers M7.3 earthquake (Wyatt et al., 1994), continuous GPS 
measurements now play an outstanding role (Larsen and Reilinger, 1992; Bock et al., 
1997). More recently, co- and post-seismic displacements have been observed by GNSS 
in several seismically active regions, e.g., in Chile and Japan, among others. The 2010 
Chile M8.8 earthquake occurred at the subduction zone between the Nazca and the 
South American plate. Based on GPS data from the SIRGAS network stations, cf. [7.3], 
co- and post-seismic horizontal and vertical displacements at the cm- to dm-order of 
magnitude have been found, occuring up to a distance of 1500 km from the epicenter, 
and reaching about 3 m close to it (Drewes and Heidbach, 2012). The 2011 Tohoku 
(Sendai) M9.0 earthquake was related to the plate collision process at the Japan trench 
subduction zone. From the continuously operating Japanese GPS network (see above) 
slip rates of several meters have been observed over large areas before, during and after 
the earthquake (Fig. 8.25.), with a maximum co-seismic displacement of about 30 m 
close to the epicenter (Miyazaki et al., 2011).

Geodetic monitoring of volcanoes allows, in addition to classical repeated surveys, the 
extensive employment of data recording systems. This is due to the well-known location 
of the investigation object. Volcano monitoring methods especially include GPS mea-
surements, supported by leveling and gravimetry, cf. [8.3.5]. Strain and tilt measurements 
also serve for observing the phases of volcanic activity, but suffer not only from atmo-
spheric and hydrological effects, but also from disturbances through local topography 
and geology (cavity effects), cf. [5.5.5], Takemoto (1995), Zadro and Braitenberg (1999).

In addition, InSAR mapping has proved to be an effi cient tool for the investigation of 
crustal deformation related to volcanic activity. This is demonstrated by Fig. 8.26, with 
samples of the deformation (in the sensor’s line of sight) of the Alcedo caldera (Galapa-
gos Islands) between October 1997 and November 2000. The deformation is estimated 
from a stack of 14 descending track SAR images acquired by the ERS satellite, and refers 
to the north-western corner of the image which is assumed to be stable. The Stanford 
method for persistent scatterer radar interferometry was used for the analysis (Hooper, 
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2006). The uplift within the caldera (up to several 10 mm/year) is clearly visible and 
probably driven by crystallization processes in the magma chamber.

Geodetic methods thus contribute in different ways to the modeling of volcanic pro-
cesses and the forecasting of volcanic eruptions (Dvorak, 1995; Dzurisin, 2003). Large 
deformations occurring at major eruptions and connected with magma injection and 

Fig. 8.26: Displacements in line of sight, Alcedo caldera (Galapagos islands). Samples from a SAR 
series (ERS satellite, 10.1997/03.1999/11.2000); Institut für Photogrammetrie und GeoInformation, 
Leibniz Universität Hannover.

Fig. 8.25: GPS-derived rates of horizontal shifts caused by the big Sendai earthquake. Co-seismic 
displacement is shown in red, and fi rst hour of post-seismic motion is shown in blue, including 
motion caused by aftershocks. Preliminary GPS time series provided by the ARIA team at JPL and 
Caltech. All original GEONET RINEX data provided to Caltech by the Geospatial Information 
Authority (GSI) of Japan.
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outfl ow can be easily observed. A prediction of active volcanic phases, on the other 
hand, is still diffi cult as volcanoes are inherently unstable, with surface movements 
ranging from slow spreading to sudden collapses. In addition, recorded precursor sig-
nals may be strongly deteriorated by environmental disturbances. 

Among the routinely surveyed active volcanoes are the Kilauea and Mauna Loa, Hawaii (Owen 
et al., 2000), Long Valley, California (Rundle and Whitcomb, 1986), and Mount Etna, Italy 
(Bonaccorso et al., 1995). At the Mount Etna fl ank project, GPS and InSAR results detected slip 
rates between 1993 and 2006 which varied between several mm/year and meters/week, with 
the largest instability events associated with major eruptions (Neri et al., 2009). 

Man-made vertical crustal movements are related to the exploitation of natural gas, 
oil, and geothermal fi elds, the withdrawal of groundwater, mining, and load changes 
in water reservoirs, among others. They are of more local character and generally result 
in surface subsidence. Monitoring is carried out by repeated leveling, GPS heighting, 
gravimetry, and InSAR, cf. also [8.3.5]. 

8.3.5 Gravity fi eld variations with time

Gravity variations with time result from a multitude of sources, cf. [3.5]. Here we con-
sider the variations that are caused by the redistribution of terrestrial masses, while tidal 
effects are discussed in [8.3.6]. All these variations are of importance for geodesy, as 
they affect Earth rotation and reference systems, and are closely related to Earth surface 
deformations. The geophysical information inherent in the time-variable gravity fi eld is, 
on the other hand, of extreme value for modeling geodynamic processes. 

Gravity fi eld changes with time can be derived from the long-term analysis of satellite 
orbits, from dedicated gravity satellite missions like GRACE, and from repeated terres-
trial gravity measurements. While gravity fi eld data derived from satellites are indepen-
dent from vertical displacements of the Earth’s surface, terrestrial gravity measurements 
depend on them and always contain the effect of mass redistribution and vertical shift 
of the observer. 

Global gravity fi eld variations were determined early from the harmonic coeffi cients 
of the gravitational fi eld obtained from satellite observations (satellite laser ranging 
to LAGEOS, cf. [5.2.6]) over about three decades (Cheng and Tapley, 2004). Secular 
changes of the low degree zonal harmonics (up to degree 5) have been clearly analyzed 
using SLR data, with a change of J

•

2 = d J 
2
 /dt = −2.6 × 1 0 −11  /year for the dynamical form 

factor. It mainly results from postglacial rebound in the polar regions, but other geo-
physical processes may also contribute (Mitrovica et al. 2009). Annual and seasonal 
variations of the second degree harmonics are related to mass redistribution in the 
atmosphere, the oceans, the ice shields, and the continental groundwater (Cheng and 
Tapley, 1999). If the harmonics of degree one are included in the evaluation, variations 
indicate the movement (a few mm to cm) of the geocenter with respect to the terrestrial 
reference frame, as realized by the coordinates of the tracking stations (Swenson et al., 
2008), cf. [2.4.2], [3.3.4].

A signifi cantly higher resolution in space and time is achieved by dedicated satellite gra-
vimetry missions, the GRACE mission (Tapley et al., 2004; Chen and Wilson, 2008) being 
the fi rst experiment of this type, cf. [5.2.8], Wahr (2009). Providing regularly monthly and 
partly also weekly solutions, a spatial resolution of about 300 km (corresponding to a 
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spherical harmonic development up to degree and order 60) is achieved. This allows the 
investigation of a multitude of mass redistribution phenomena, on temporal scales ranging 
from secular via decadal and seasonal down to monthly and even sub-monthly. The under-
lying mass transports are strongly associated with the global water cycle, with a complex 
interaction of hydrosphere (oceans and land hydrology), cryosphere, and atmosphere, and 
with geodynamic processes on the surface and in the interior of the Earth (e.g., Van Dam 
et al., 2007). The results obtained include effects due to ocean mass changes (non-steric 
sea level change) and melting of ice-sheets and glaciers, to variations of the continental 
water storage (e.g., at tropical river systems like the Amazon, Congo or Ganges), to post-
glacial rebound (Canada, Fennoscandia, etc.), and to large earthquakes, cf. also [8.3.3], 
[8.3.4], among others. Man-made contributions have been also found, for example 
through considerable mass loss resulting from the irrigation of large areas in India, and 
subsequent groundwater subsidence (Chen, 2007; Chen et al., 2007b; Rodell et al., 2009).

The interpretation of monthly GRACE-derived gravity fi eld solutions is based primar-
ily on the temporal variation of gravity and of the geoid. The following examples dem-
onstrate some global results.

A linear trend in gravity changes between 2003 and 2011, as derived from monthly 
gravity models of degree and order 120 (GFZ analysis center) is shown in Fig. 8.27. The 
high-frequency gravity fi eld part has been Gaussian-fi ltered (Jekeli, 1981) with radius 400 
km, in order to suppress noise. The gravity changes reach ±10 to 15 nms–2/year and more. 
Gravity increase is clearly correlated with isostatic rebound processes in Northern America 
and Europe (see below), and with water storage change, e.g., in the Amazon region. Grav-
ity decrease becomes visible through ice melting in Greenland, Alaska, and the Antarctic 
(Chen et al., 2006; Schrama and Wouters, 2011). Co-seismic mass redistribution related 

Fig. 8.27: Global linear gravity changes in nms–2/year calculated from monthly GRACE gravity models 
(01.2003–07.2011) of the GFZ analysis center, Gaussian fi ltering with 400 km radius; data provided 
by ftp://podaac-ftp.jpl.nasa.gov/allData/grace/L2/GFZ/RL04/; IfE, Leibniz Universität Hannover.
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Fig. 8.28: Annual amplitude (mm) of geoid height variation estimated from monthly GRACE gravity 
fi eld solutions (01.2003–07.2011) provided by GFZ, Gaussian-fi ltering with 600 km radius; IfE, 
Leibniz Universität Hannover.

to the Sumatra-Andaman earthquake is visible in southeast Asia, with negative gravity 
change at the subduction zone and positive change at the uplift zone (Chen et al., 2007a).

Temporal variations of the geoid have been discussed since a long time, where we 
have to distinguish between a shift in the geoid potential value, cf. [3.4.], and the geo-
metrical change due to the geoid height variations (Ekman, 1989). Mean sea level varia-
tions affect the oceanic, but also the continental geoid (Kuhn, 2002). These changes are 
superposed by the effect of the manifold large-scale mass shifts in the Earth’s interior and 
on the surface of the solid Earth (see above). The resulting geoid variations may reach 
annual variations of about 10 mm amplitude, with regionally very different behavior, 
while the long-term trend remains at the order of 0.1 mm/year. 

Geoid height variations estimated from monthly GRACE data between 2003 and 2011 
are shown in Figs. 8.28 and 8.29, where data were smoothed using a 600 km Gaussian-
fi lter, and atmospheric and ocean effects reduced. Larger annual cycle amplitudes of 
hydrological origin can be recognized in the river basis of Amazon, Niger, Zambesi and 
Ganges. The geoid height trend is correlated with postglacial land uplift and polar ice 
reduction, among others.

The potential of GRACE results for estimating more regional mass changes is dem-
onstrated by examples referring to the accelerated ice mass loss in Greenland, and to 
hydrology-induced variations in central Siberia.

In Greenland, signifi cant ice mass loss has been observed by GRACE for the time span 
2003–2010 (Sørensen and Forsberg, 2010; Schrama and Wouters, 2011). Expressed, 
e.g., as surface density trend, a different spatial distribution of the mass loss becomes 
visible, which amounts to about 200 Gt/year averaged over whole Greenland during 
the observation epoch (Fig. 8.30). These results are supported by ICESat altimetry (Ewert 
et al., 2011). Mass losses of the Antarctic iceshield also reach 100 Gigatons/year, as derived 
from GRACE monthly solutions between 2002 and 2008 (Horwath and  Dietrich, 2009).
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The effect of hydrological variations in a Siberian permafrost location is demonstrated 
by the monthly variations in equivalent water column (EWC) from GRACE for the station 
Yakutsk, central Siberia (Fig. 8.31). In addition to the annual cycle there is an increase 
in water mass until 2007 related to strong rain and subsequent snow fall, but there is no 
signifi cant trend over the whole period (Müller et al., 2011b).

Fig. 8.30: Ice mass changes in Greenland, expressed as surface density trend (kgm–2/year, left part, 
Ewert et al., 2011), and averaged mass loss (Gigatons) for epoch 2003–2010, after Schrama and 
Wouters (2011).

Fig. 8.29: Trend in geoid height variation (mm/year) estimated from monthly GRACE data 
(01.2003–07.2011) provided by GFZ, Gaussian-fi ltering with 600 km radius, IfE, Leibniz 
Universität Hannover.
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A limiting factor of satellite-derived gravity fi eld (static as well as time varying) solutions is the 
omission error, due to the un-modeled part of the fi eld, cf. [6.6.1]. Recent GRACE and GOCE 
geoid solutions, e.g., are still affected by omission errors of 0.3 to 0.4 m, while the accuracy of the 
modeled part (commission error) is reaching an order of magnitude of 10 nms–2 and 1 cm (static 
gravity fi eld), and 1 nms–2/year and 0.1 mm/year (time-variable fi eld), respectively, cf. [6.6.2]. 

This has led to discussing the needs for future satellite gravity fi eld missions, under the aspects 
and demands of Earth sciences (Flury and Rummel, 2005a). Requirements for future gravity 
fi eld missions include a spatial resolution down to 50 km, which is very likely the limit for 
measurements from space. A higher resolution, as for instance necessary for the “cm-geoid”, 
will still require the use of terrestrial measurements and high resolution terrain models (Flury and 
Rummel, 2005b). A synopsis of future science requirements on geoid and gravity fi eld is given in 
Sneeuw et al. (2005), together with a scenario of possible space missions (combination of results 
obtained from very high altitude satellites, satellite-borne gradiometry, and low-low satellite-to-
satellite tracking, extended to confi guration fl ights with inter-satellite tracking in several spatial 
directions). A follow-on gravity mission to GRACE is discussed by Loomis et al. (2011). 

Repeated terrestrial absolute and relative gravity measurements are required in order 
to detect regional and local gravity changes with time. The surface-based gravity data 
can provide a higher spatial and temporal resolution than the gravity fi eld determina-
tions from space. Corresponding investigations concentrate on areas where recent mass 
changes occur, caused by mass redistributions due to, e.g., postglacial uplift, mountain 
building, earthquake and volcanic activity, and man-made land subsidence, cf. [8.3.4]. 
Moreover, absolute gravity measurements may support the vertical control of tide gaug-
es, and serve as ground truth for the variable gravity fi eld derived from satellite missions 
like GRACE (Timmen, 2010).

In order to detect and analyze the small gravity changes associated with global or 
large-scale geodynamic phenomena, a high measurement accuracy and the adequate 
reduction of tidal and loading effects is required. Present-day models of the solid Earth 
and the ocean tides allow the reduction of the gravimetric tidal effects (including tidal 
loading) for most parts of the continents, with an accuracy of a few nms-2, larger devia-
tions may occur close to the coast. Reductions due to non-tidal ocean mass redistribution 
(Kroner et al., 2009) and ocean pole tide are small and can be reduced suffi ciently, this is 
also valid for the polar motion effect on gravity (“gravity pole tide”), cf. [5.4.1], [8.3.6]. 

Fig. 8.31: Monthly variations in equivalent water column (EWC) from GRACE for the station 
Yakutsk, Siberia. Data provided by GFZ, Gaussian-fi ltering with 340 km radius; IfE, Leibniz 
Universität Hannover.
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The effects of atmospheric pressure changes may cause gravity changes of 100 nms–2 
and more, due to the direct attraction and the indirect loading effect. They can be 
modeled approximately by a Bouguer plate, where an empirical coeffi cient of regres-
sion also takes the loading effect into account, cf. [5.4.1]. A refi ned reduction is based 
on atmospheric Green’s functions calculated for a model atmosphere on a spherical 
elastic Earth (Merriam, 1992; Guo et al., 2004). The main contribution to the reduc-
tion results from the gravitational part of a local zone (radius 0.5° around the grav-
ity station), meteorological data as supplied from Weather Forecast Agencies data 
signifi cantly improve the reduction accuracy (Gitlein and Timmen, 2007; Abe et al., 
2010). Atmospheric pressure effects have to be taken into account at absolute gravity 
measurements and at continuous gravity recording, whereas they cancel at relative 
gravity measurements. 

Temporal variations of the groundwater level and soil moisture mainly occur sea-
sonally, with superimposed short-term fl uctuations of a few hours to a few days. They 
may produce maximum gravity changes of 50 to 100 nm s –2  (seasonal), and several 
100 nm s –2  at strong rainfall. For simple hydrological structures, a reduction is possible 
again by applying the Bouguer plate model 

 d  g groundwater  = 4.2 P d H nm s –2 , (8.16)

with P pore volume (%), and d H change of groundwater level in m. A correspond-
ing relation holds for the soil moisture reduction (Mäkinen and Tattari, 1988). A 
more refined reduction is generally handicapped by missing data on local and re-
gional/global hydrology. Station specific topography and geology may contribute 
a few 10 nms–2, and large-scale hydrological effects may reach 10 nms–2 and more, 
for time scales of days to years (Kroner et al., 2007). This requires sophisticated 
local modeling eventually supported by global hydrological models, as provided, 
e.g., by the WaterGap Hydrological Model WGHM (Döll et al., 2003). 

Postglacial rebound in Fennoscandia and in Canada has been monitored early also by ter-
restrial gravimetry, supporting tide gauge observations, geometric leveling, and GPS meas-
urements, cf. [8.3.4], while GRACE results contribute to large-scale information (see above). 

In Fennoscandia, relative gravimetry profi les delivered an average value of –2 nm  s –2 /
mm for the ratio of gravity change and absolute land-uplift rate, where a geoid change 
of 0.6 mm/year had to be applied to the leveling results (Ekman and Mäkinen, 1996). 
Since 2003, repeated absolute gravity measurements have been carried out by different 
institutions, in order to independently monitor the land uplift and to validate the temporal 
variations obtained from GRACE (Gitlein, 2009; Müller et al., 2011a). Gravity variations 
of –10 to − 20 nm s –2 /year have been found from annual repetitions over 4 to 5 years, with 
a gravity to height variation ratio of –1.6 μms–2/m. This agrees well with the assumption 
of a Bouguer plate effect with mass increase in the upper mantle (Timmen, et al., 2011), 
see below. For comparison with the GRACE temporal gravity fi eld, the absolute measure-
ments have been reduced by the free-air gravity gradient, thus taking the effect of height 
changes into account, Fig. 8.32. Absolute gravimetry and GRACE results agree well, espe-
cially near the uplift center, and differ more at the supposed zero-uplift line; combining 
the data improves the data-based model of the present-day secular mass variation.

In Canada, relative gravity measurements carried out over 40 years have been com-
bined with repeated absolute gravity observations which started in the 1980s. Although 
the resulting map of secular variations of gravity is rather inhomogeneous with respect 
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to accuracy (a few nms–2 on the average), it provides constraints for the evaluation and 
refi nement of post-glacial rebound models (Pagiatakis and Salib, 2003). Absolute grav-
ity monitoring over nearly two decades at 10 fi eld sites yields gravity changes of –10 to 
− 20 nm s –2 /year, after reduction of gravity changes due to ocean tide loading, and soil 
moisture and water table variations. The residual long-term trend is clearly associated 
with postglacial rebound (Lambert et al., 2006), Fig. 8.33.

Fig. 8.33: Absolute gravity variations (95% error bound) and linear gravity trend (1987–2005) at 
Churchill, Manitoba, Canada, observed by NRCan and NOAA, employing JILA (until 1993) and 
FG5-model instruments, after Lambert et al. (2006).
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Fig. 8.32: Linear gravity changes for Fennoscandia derived from GRACE GFZ monthly solutions 
(08.2002–09.2008, Gaussian fi lter radius 400 km) and from terrestrial measurements at 10 stations 
(absolute gravimetry with FG5-220 and GPS shown as black bars, after Gitlein (2009).
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Fig. 8.34: Long-term gravity and height changes along an EW-profi le (j = 65°40‘) in northern 
Iceland, related to the Krafl a rifting episode, after Torge et al. (1992).
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Gravimetry is also extensively applied at tectonic plate boundaries and especially in 
areas of seismotectonic activity, adding valuable information to geometric deformation 
monitoring. While gravity changes caused by slow plate tectonic processes are still 
diffi cult to identify, local effects due to subsidence of sedimentary basins and seasonal 
hydrology could be extracted from observations over several years, e.g., in the Venezu-
elan Andes (Drewes et al., 1991). Seismically induced gravity changes have been found 
from terrestrial gravity data for the Alaska 1964 earthquake (Barnes, 1966), and since 
then at several tectonically active zones as, e.g., California (Jachens et al., 1983) and 
Japan (Satomura et al., 1986). The Krafl a rifting process, cf. [8.3.4], in northern Iceland 
mirrored itself in gravity and height variations with signifi cant correlation (Torge et al., 
1992), Fig. 8.34. Co- and post-seismic gravity changes observed around the Krafl a vol-
cano have been evaluated together with other geodetic data, for describing the mass 
transport and vertical displacements at the evolution of the magma chamber and the 
associated rifting (De Zeeuw-van Dalfsen et al., 2006). Occasionally, gravity changes 
of a few μm s –2  have been observed before strong earthquakes, one example being the 
1976 Tangshan/China (M7.8) earthquake (Li et al., 1989). The GRACE results offer the 
possibility to recognize the large-scale temporal gravity variations related to strong 
(partly reaching M9 magnitude) earthquakes, examples being the Sumatra (2004), Chile 
(2010), and Japan (2011) events, with gravity changes reaching 50 nms–2 and more 
(Chen et al., 2007a; Heki and Matsuo, 2010; Matsuo and Heki, 2011).

Volcano monitoring, in most cases, also includes gravimetry, which has proved to be 
an effi cient tool for detecting magma infl ation and defl ation, and to contribute to  eruption 



8.3 Geodesy and recent geodynamics      375

forecasting and observation of the phase of activity (Rymer and Williams-Jones, 2000; 
Battaglia et al., 2008). Extensive gravity measurements based on dedicated control 
networks are – since several decades – carried out on and around volcanoes in Italy, 
Japan, and the U.S.A., among others, where gravity changes up to 1 μms–2 have been 
observed related to magma rising and withdrawal (Jachens and Roberts, 1985; Berrino 
and Corrado, 2008; Greco et al., 2010). Continuous gravity measurements offer addi-
tional opportunities at volcano monitoring and prediction of eruptions (Williams-Jones 
et al., 2008).

Repeated gravity measurements also contribute to the investigation of land subsid-
ence caused by man-made activities, including predictions on the subsurface mass 
redistributions. This includes the exploitation of geothermal fi elds (Hunt and Kissling, 
1994) and of natural gas and oil (Van Gelderen et al., 1999), the withdrawal of ground-
water (Chapman et al., 2008), and the effects of mining (Lyness, 1985).

As discussed above, repeated gravity measurements are often combined with height 
determination, by leveling or by GNSS/GPS. The latter method delivers “absolute” height 
changes, while leveling results refer to the geoid, which is also affected by (small) temporal 
variations. As the observed gravity change contains the combined effect of internal mass 
redistribution and a vertical shift of the observer, the ratio between gravity change and vertical 
displacement contains information on the mass redistribution process (i.e., the rheology of 
crust and mantle). Corresponding investigations have been carried out especially with respect 
to postglacial rebound (see above), tectonic motions, co-seismic deformation, volcanic activity, 
and atmosphere/hydrosphere surface loading. Generally, the gravity-to-height variation ratio 
for tectonic motions may vary between − 1.5 and − 3.5 μm  s –2 /m (Jachens, 1978). The free-air 
relation of − 3 μm  s –2 /m is often found locally and corresponds to a vertical shift without mass 
changes (e.g., dilating sphere). For larger areas, the Bouguer plate relation of − 2 μm  s –2 /m is 
more typical, indicating internal mass displacements, cf. [6.5.3]. More sophisticated models 
have been developed for the gravity-to-height variation ratio due to surface loads (continental 
hydrology, atmospheric pressure, ocean tides), taking the extension of and the distance to the 
load into account (De Linage et al., 2009).

8.3.6 Earth tides and tidal loading

The reaction of the solid Earth’s surface to the tidal forces results in deformations and 
gravity changes. These effects are visible in geodetic measurements, and have to be 
reduced for time-independent geodetic modeling. As the observed tidal signal contains 
different kind of information on the Earth’s interior, it is of high interest for geophys-
ics. Corresponding modeling and interpretation requires the reduction of “disturbing” 
effects which especially result from atmospheric, oceanic, and hydrological loading, cf. 
[8.3.1]. In the following, we discuss the fundamentals of solid Earth tides including tidal 
loading, and some results obtained. 

Tidal effects on a rigid Earth can be calculated from the ephemerides of the moon, 
the sun, and the planets, through a spherical harmonics development of the tidal gravi-
tational potential, cf. [3.5.2]. In reality, the solid Earth reacts to the tidal forces primarily 
like an elastic body with deformation: Solid Earth tides (also Earth body tides). Tidal 
variations are also generated in the oceans and – to far less extent – in the atmosphere: 
Ocean tides, cf. [3.4.2], and atmospheric tides. The tidal deformation and potential 
change at the solid Earth surface is superimposed by the corresponding loading effects: 
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tidal loading. Tidal theory and measurements are described in the classical work by 
Melchior (1983), and with a more recent status in Wilhelm et al. (1997). For Earth tides 
see, e.g., Wang (1997) and Agnew (2009).

The fundamental theory on the tidal response of an elastic, spherically symmetric, 
non-rotating, oceanless Earth goes back to Love (1911). Deformations and potential 
change caused by the Earth tides can be represented by applying coeffi cients of pro-
portionality called Love numbers on the tidal potential Vt (3.116) of a rigid Earth. The 
dimensionless Love numbers h, k, l (l also called Shida number) are functions of density 
and the Lamé parameters (compressibility and rigidity), and they depend on the degree 
of the spherical harmonic expansion of the tidal potential (3.117). Again restricting 
ourselves to the dominant term of degree two, the following relations hold between the 
tidal potential Vt and the tidal effects on an elastic Earth.

The vertical deformation of the Earth’s surface is modeled by the Love number h 
(Fig. 8.35)

 Δ r el  = h Δ r t  , (8.17a)

where the shift of the level surface follows from the fundamental relation (3.52) between 
the changes of potential and height:

  Δr t  =   
 V t  __ g  . (8.17b)

The horizontal displacement in NS- and EW-direction is obtained correspondingly, 
and controlled by the Shida number l :

 Δ x el  =   l __ g     
∂ V t  ___ 
∂  

__
 j  
   , Δ y el  =   l __ g     

∂ V t  _______ 
cos  

__
 j  ∂l 

  , (8.18)

with   
_
 j , l geocentric latitude and longitude. 

The tidal-induced mass shift causes an additional deformation potential which is 
proportional to the tidal potential, according to the Love number k : 

  V d  = k  V t . (8.19)

For the surface of a stratifi ed spherical Earth model like PREM, cf. [8.1], the Love 
numbers of degree 2 amount to

 h = 0.60, l = 0.08, k = 0.30.

k rΔ t

Δrt Δ Δr = h rel t
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Fig. 8.35: Tidal-induced vertical shift of a level surface and the physical surface of the Earth.
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The gravitational potential on the Earth’s surface experiences a tidal-induced change 
Vel which is composed of the direct attraction and the deformation part Vt and Vd , and 
the potential change due to the vertical shift of the surface. By introducing (8.19) and 
(8.17) we obtain:

  V el  =  V t  +  V d  − g Δr el  =  V t   ( 1 + k − h ) . (8.20)

Differentiating with respect to the radial distance r delivers the vertical component of 
the tidal acceleration. According to (3.117), (3.118), we have for the rigid Earth

  b r  =   
∂ V t  ___ 
∂r

   = 2  
 V t  __ 
r
  . (8.21a)

Expressing the deformation potential by a spherical harmonic expansion of degree 
two, and taking (8.19) into account, results in

   
∂ V d  ____ 
∂r 

   = −   
3
 __ 

r
   V d  = −   

3
 __ 

r
  k V t . (8.21b)

Inserting (8.21a, b) into the vertical derivative of (8.20), and taking (3.118) and (8.17) 
into account yields the vertical tidal acceleration 

  b r (el )  =  ( 1 −   3 __ 
2
  k + h )  b r  , (8.22a)

with the gravimetric (amplitude) factor

 d  = 1 −   3 __ 
2
   k + h (8.22b)

already introduced in (5.97).
The horizontal component of the tidal acceleration and its relation to the correspond-

ing component on a rigid Earth (3.119) follows from 

  b y (el )  = −   
∂ V el  ____ 
r∂y

  =  ( 1 + k − h )  b y  , (8.23a)

with the tilt (amplitude) factor

 g  = 1 + k − h. (8.23b)

With the above model values for the love numbers h and k we obtain

 d = 1.16, g  = 0.69.

By applying Love numbers on the tidal effects for a rigid Earth, cf. [3.5.2], we estimate 
the tidal “perturbations” on the elastic Earth at the order of magnitude of a few deci-
meter in height, 1 to 2 μm s –2  in gravity, 0.01” to 0.02” in tilt, and 1 0 −7  to 1 0 −8  in strain. 
Hence, they are clearly visible in geodetic data series. It should be noted that the gravity 
change observed on an elastic Earth is larger than on a rigid one, which is due to the 
vertical shift of the observer. The tilt factor mirrors the fl exibility of the Earth’s surface 
with respect to the tidal force.

Refi ned Earth tide models use the density and elastic parameters of a geophysical Earth 
model like PREM, with slight surface layer modifi cation, cf. [8.1]. They solve for an ellip-
soidal, rotating Earth in hydrostatic equilibrium, where rotation and ellipticity result in a 
slight latitude dependence of the tidal parameters (Wahr, 1981b; Dehant, 1987). An inelas-
tic non-hydrostatic equilibrium Earth model also takes mantle visco-elasticity into account, 
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and includes a small frequency-dependent increase of amplitude and phase delay, Dehant 
et al. (1999). The discrepancies between these models are of the order of 0.1% only, but 
measured tidal parameters may deviate signifi cantly from the model values due to loading 
effects, to local inhomogeneities in the crust, and to recent geodynamic processes. 

The “disturbing” geophysical signals entering into time series of Earth’s rotation, 
geometry and gravity fi eld observations have been discussed before. Here, we concen-
trate on tidal loading and its effect on the solid Earth’s surface. Although formally treated 
as loading effects of atmospheric and oceanic origin, it is distinguished from them by its 
well-known driving force. 

Ocean tidal loading is caused by the tides of the oceans, and composed of the direct 
attraction of the water masses and their loading effect on the Earth’s surface (Jentzsch, 
1997). Superposing the tides of the solid Earth, loading effects are especially pronounced 
in the semi-diurnal waves, where they may reach several percent of the Earth tides at sta-
tions located in the continent’s interior. Close to the coast, the loading effect may assume 
up to 10% of the gravimetric tidal signal, several 10% in strain, and 100% and more in tilt, 
with corresponding deviations in phase shift; the vertical displacement may reach 10 cm. 

Modeling of ocean tidal loading is based on ocean tide models as derived from the 
hydrodynamic equations, and assimilated by different types of observations, cf. [3.4.2]. 
It follows the theory developed by Farrell (1972), which describes the response of an 
elastic Earth model to a point load on its surface. The loading effects (for displacement, 
gravity/tilt, strain) are computed by a convolution integral of the relevant Green’s func-
tion and the tidal model (amplitude/phase), over the loaded region. Where, according 
to [8.3.1], Green’s functions are formed by the weighted sums of the load Love num-
bers and the spherical harmonics, depending on the spherical distance to the load. The 
degree-dependent load Love numbers hl’, ll’, kl’ are computed for a reference Earth 
model like PREM, and – in analogy to the development for the Earth’s tides – refer to the 
vertical and horizontal displacement, and to the potential of the deformed Earth. But, 
depending on the location and the dimensions of the load, it is now necessary to extend 
the series expansion to rather high degrees, e.g., to l = 10 000). 

The solar heating of the atmosphere causes surface pressure oscillations, at periods of 
diurnal and semi-diurnal solar days. The loading effects induced by these “atmospheric 
tides” manifest themselves, e.g., in vertical surface deformations of 1 to 2 cm, while hori-
zontal deformations are one order of magnitude smaller. Modeling is possible by a corre-
sponding tidal model based on global surface pressure data collected for weather forecast 
(Boy et al., 2006). Contrary to this “thermic” effect, the direct (gravitational) effect of the 
lunisolar tides can be neglected, as it remains at least one order of magnitude below. 

Continuous gravity recording has reached a high level of accuracy, and contains not 
only tidal effects but also gravity variations induced by a variety of geophysical pro-
cesses (Agnew, 2009; Neumeyer, 2010). Here, elastic-spring type gravimeters provide 
the short-periodic partial tides, while superconducting instruments, characterized by 
high sensitivity and low drift rate, also deliver long-periodic tides, the pole tide, cf. 
[5.4.6], and a multitude of other geophysical information. Strain- and tilt-meter meas-
urements are of less importance at this aspect, as they are disturbed frequently by 
local crustal heterogeneities. Consequently, they fail at solving global problems, but 
are useful, e.g., for monitoring seismic and volcanic activities, cf. [5.5.5]. Data 
series obtained from continuous (or repeated) monitoring of space geodetic stations 
(VLBI, SLR, LLR, GNSS) can be evaluated with respect to the tidal deformation of 
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the observation site (Mathews et al., 1997). This delivers, among others, the Love 
numbers h and k, and the ocean loading effects (Schuh and Haas, 1998).

An example for long-term gravimetric recording and reductions for Earth tides, ocean 
tides, atmospheric mass redistributions, polar motion, local hydrological mass redistribu-
tions, large-scale variations in continental water storage, and non-tidal ocean loading is given 
in Fig. 8.36, where reductions are based on global or local modeling (Weise et al., 2009). 
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Fig. 8.36: Recorded gravity signal (linear instrumental drift removed) 2004–2006, Earth tide 
station Moxa, Institute of Geosciences, Applied Geophysics, Friedrich-Schiller-University, 
Germany (j = 50.64°N, l = 11.62°E, H = 455 m), superconducting gravimeter CD034, with 
reductions and residual gravity, courtesy C. Kroner.
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We summarize some results of the gravimetric Earth tide analysis (Wenzel, 1997b; 
Neumeyer, 2010):

• The high precision obtained at gravity recording allows the evaluation of grav-
imetric amplitude factors and phase shifts for a large range of periods. As an 
example, Tab. 8.1 contains the gravimetric tidal parameters for a selected number 
of partial tides (out of a total number of 57 analyzed wave groups) from long-term 
observations with a superconducting gravimeter (Dittfeld, 2000), cf. [3.5.2].

• The separation of the small S1 wave mirrors the quality of the analysis, as the 
diurnal tides are strongly contaminated by meteorological effects. 

• The standard deviations of the adjusted tidal parameters are approximately 
inversely proportional to the amplitude of the waves. The amplitude factor of the 
principal waves (O1, P1, K1, M2, S2) can be obtained with a relative accuracy of 
about 0.01% and the phase shift with 0.01°, and better. The long-periodic tides 
(Mm, Mf) are accurate to a few % and a few degrees. 

• Loading effects from mass redistributions in the atmosphere, the oceans and the 
continental water storage can be partly reduced by global or local modeling, but 

Tab. 8.1. Adjusted gravimetric Earth tide parameters (selection, rounded values), Earth tide 
station no.765, GFZ/Potsdam (j  = 52.38° N, l = 13.07° E, H = 81 m), superconducting 
gravimeter GWR TT70 No. 018, recording time June 1992 to October 1998 (2250 days). 
Standard deviation (short- and long-periodic tides adjusted): ± 9 nm s –2 , only short-periodic 
tides: ± 0.8 nm s –2 ; air pressure regression coeffi cient −2.776 nm s –2 /hPa, pole-tide d-factor 1.13. 
after Dittfeld (2000)

Tide Period Amplitude 
(nms–2)

Ampl. factor d Phase lead D Φ(°)
Symbol

Long-periodic (d)
Sa 365.26 18.4 4.4 –40
Ssa 182.62 29.7 1.13 –2
Mm 27.55 34.0 1.14 0.6
Mf 13.66 64.4 1.14 –3

Diurnal (h)
Q1 26.87 66.0 1.146 –0.22
O1 25.82 345.6 1.150 –0.13
P1 24.07 160.9 1.150 0.12
S1 24.00 4.2 1.28 2.0
K1 23.93 480.6 1.137 0.2
 y 1 23.87 4.2 1.26 0.6
 j 1 23.80 7.1 1.18 –0.1

Semi-diurnal (h)
N2 12.66 63.2 1.179 1.99
M2 12.42 332.3 1.186 1.36
S2 12.00 154.6 1.186 0.21
K2 11.97 42.0 1.186 0.45

Ter-diurnal (h)
M3 8.28 3.6 1.073 0.3
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local  irregularities in hydrology may cause larger errors (Harnisch and Harnisch, 
2006). This is also valid for the effect of ocean tidal loading, which is clearly 
 visible in the semi-diurnal tides. After corresponding reduction, the observed 
tidal parameters are in close agreement (within 0.1%) with advanced elastic and 
 inelastic body tide models. They may also provide useful constraints for oceanic 
tidal models (Jentzsch, 1997). 

Calibration accuracy of gravity meters still is a major problem at validating Earth and 
ocean tide models using tidal gravity measurements (Baker and Bos, 2003). Tidal gravity 
observations at several western European sites, e.g., delivered mean gravimetric factors 
and phases of d (O1) = 1.149 (0.10°) and d (M2) = 1.184 (1.64°). After correction for ocean 
loading, these values reduced to 1.153 (0.00°) and 1.161 (0.02°), respectively, which does 
not allow to distinguish between different models.

• World-wide synthetic gravity tide parameters have been calculated for a 1° × 1° 
grid, based on the Wahr (1981b)/Dehant (1987) body tide and the Schwiderski 
(1980) ocean tide models. The parameter values agree well with the gravimetric 
Earth tide observations, they provide the gravimetric tidal reductions with the 
desired accuracy with the exception of strongly disturbed coastal zones and polar 
regions, Timmen and Wenzel (1994b).

• A dependence on large-scale mantle lateral heterogeneities or heat fl ow has not 
yet been detected (Zürn, 1997).

• Co-seismic gravity changes of some 10 nms–2 have been recorded at several earth-
quakes, but tidal triggering of earthquakes and volcanic eruptions is still under 
controversial discussion (Emter, 1997). 

• The resonance effect of the liquid outer core (free core nutation), cf. [2.3.4], has 
been clearly identifi ed in the diurnal tides (K1,  y 1 ,  j 1 ), Ducarme et al. (2009).

• Free oscillations (vertical component) of the Earth as excited by strong earth-
quakes, with periods between 10 s and 54 mins, have been analyzed from high 
resolution records and can be used for the support of global seismic networks 
(e.g., Rosat et al., 2005).

This list of the results of gravity recording is by far not complete, but leads to the follow-
ing conclusions:

With presently available models of solid Earth, ocean and atmospheric tides, geo-
detic measurements in most cases can be reduced satisfactorily. Data series and tidal 
parameters obtained from continuous (or repeated) monitoring of geodetic sites (VLBI, 
SLR, LLR, GNSS, and gravity) are also useful for the validation of satellite-derived 
results. Verifying global Earth models, and validating and improving global and 
regional ocean tide and hydrological models plays an important role at the analysis 
of continuous gravity records, and is of high relevance. Among the challenges of data 
interpretation are the relations to seismicity and tectonic processes, volcanism, and 
recent hydrological variations (Neumeyer, 2010).
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— universal, see – mean solar 
Declination  26, 49, 166, 234
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Direct geodetic problem  250
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Earth
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Earth Geopotential/Gravitational Model 
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Earth model
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Earth surface
— mathematical  2, 9, 76
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Earth tides  12, 89, 375
— analysis  202, 380
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374, 381
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— fi rst numerical  91, 109, 124, 276
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— obliquity  22, 27
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— Conventional  10, 309
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— system  25, 125
Equilibrium
— fi gure  7, 76, 99, 336
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Fermat’s principle  114
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System 148
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General Relativity (geodetic aspects)  
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Geoid model
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— control segment  138
— ephemerides  138
— heighting, see GPS, leveling
— levelling  256
— network  145, 321, 325
— pseudorange 136 
— receiver 139
— relative positioning  144, 236, 323
— session  322  
— space segment  136
— station  40, 146, 321, 323
GLONASS, satellite system 146
GMST, see Greenwich Sidereal Time
GNSS, see Global Navigation Satellite 

System
GOCE, satellite  162
Goddard Earth Models (GEM)  277, 289
Godin  9
GPS, see Global Positioning System
GPS time  139
GRACE, satellite  159, 278, 280, 367, 372
Gravimeter
— absolute  175, 201, 330, 372
— airborne  191, 193
— atom  172
— bore-hole  187
— calibration, see Calibration, gravimeter
— drift , see Drift (gravimeter)
— elastic spring  184, 199
— force-balanced  194
— recording  199, 378
— relative  184, 330, 371
— sea  192, 194
— superconducting  199, 378
— tare, see Tare (gravimeter)
— underwater  186
— vibrating string  193
Gravimetric (amplitude) factor  203,  377, 380
Gravimetric method  9, 258
Gravitation
— acceleration  54
— force  53
— potential  55, 57, 71 

— spherical earth model  55 
Gravitational constant  19, 53, 85
— geocentric  109, 111, 271
Gravity
— acceleration  47, 61  
— force  53
— gradient, see Gravity gradient 
— normal, see Normal gravity
— potential  46, 61, 64, 67
Gravity anomaly  226, 260, 272, 278, 

286, 348
— Bouguer, see Bouguer anomaly
— covariance function, see Covariance 

function
— degree variance, see Degree variance
— Faye, see Faye anomaly
— Free-air, see Free-air anomaly
— interpolation  232
— interpretation  347
— isostatic, see Isostatic anomaly
— mean  273, 278, 289, 292
Gravity fi eld 
— external  2, 63, 293
— homogeneity  229
— internal  58, 73, 335
— isotropy  229
Gravity fl attening, see Flattening, gravity 
Gravity gradient  66, 160, 197, 294
— horizontal  67, 198
— vertical  67, 177, 198
Gravity gradiometer  160, 197  
— airborne  198
— space-borne  160
— terrestrial  197
Gravity meter, see gravimeter
Gravity network, see Network, gravity
Gravity reference system  189
Greenwich Mean Observatory  33, 39 
Greenwich Meridian  11, 22, 29, 39
Greenwich Sidereal Time
— Apparent (GAST)  22, 38, 43, 49, 167
— Mean (GMST)  22
Greene  9
— third identity  258
Grimaldi and Riccioli  6
GRIM, geopotential model  277, 280
Ground water
— gravitation  180, 368, 372, 380
Group refractivity, see Refractivity
Group velocity (electromagnetic waves)  116
Gyrotheodolite  205
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Halley  7
Harmonic analysis (earth tides)  202, 480 
Harmonic coeffi cients, see Spherical 

harmonic coeffi cients
Harmonic function  58
Hassler  308
Hayford  108, 308, 340
Hecker  194
Height
— dynamic  82, 253  
— ellipsoidal  97, 255, 257
— orthometric  83, 253, 318
— normal  83, 106, 254, 318
— normal orthometric  317, 319
— spheroidal orthometric, see – normal 

orthometric
Height anomaly  225, 259, 272, 290, 296, 298
Heiskanen  108, 340
Helmert  1, 10
— blocking method  312
— condensation method 267
— defl ection of the vertical  228, 298
— height  254
— projection  97
— spheroid  100
HIPPARCOS, space mission  35, 166
Hirvonen  289
Homer  4
Horizon system  48
Horizontal 
— angle, see Angle – horizontal
Horizontal control network  305
— Europe  313
— Germany  313
— U.S.A.  312
Horizontal pendulum  219
Horrebow-Talcott method 167
Hotine
— formula  287
— function  287
Hotspot  338, 344
Hour angle  26, 49, 166
Hour angle system  26, 49
Hour circle  26 
Huygens  7
Hydrostatic equation  81, 334
Hydrostatic equilibrium  100, 334, 336, 338

IAG Services 14
— International Centre for Earth Tides 

(ICET)  201

— International DORIS Service  133
— International Earth Rotation and Reference 

Systems Service (IERS)  38, 41, 45
— International GNSS Service (IGS)  145
— International Gravimetric Bureau (BGI)  278
— International Laser Ranging Service 

(ILRS)  154
— International VLBI Service for Geodesy and 

Astrometry (IVS)  173
Iceland, recent geodynamics  361, 374
ICESat, satellite  157
IERS, see IAG Services
IERS conventions  19
IERS Reference Meridian  33, 39
IERS Reference Pole, see Pole, IERS Reference 
Inclination (orbital plane)  125, 130
Index of refraction  114, 118, 121
Indirect effect (gravity reduction)  265
Inertial gravimetry  191
Inertial navigation system (INS)  212
Inertial positioning   212, 213
Inertial surveying, see Inertial positioning  
Inertial System 25, 191
Initial point, see Fundamental point
INSAR  263
Interference comparator  206
Interference fringes
— absolute gravimeter  178
— VLBI  171
Interferometry
— absolute gravimeter  177
— Very Long Baseline, see Very Long Baseline 

Interferometry
International Association of Geodesy (IAG)  14
International Astronomical Union (IAU)  

20, 24
International Gravity Standardization Net 1971 

(IGSN71)  189
International Latitude Service (ILS)  31
International Polar Motion Service (IPMS)  31
International Union of Geodesy and 

Geophysics (IUGG)  14, 45, 108
Intrinsic geodesy  68
Inverse problem
— geodetic (three-dimensional)  97  
— geodetic (two-dimensional)  250, 252
— potential theory  344
Ionosphere  121, 142, 157
Isostasy  338
Isostatic (gravity) anomaly  269, 347
Isostatic (gravity) reduction  269
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Isostatic models
— Airy (-Heiskanen)  340
— Pratt (-Hayford)  341
— Vening-Meinesz (regional)  341
Isozenithal line  67

Jacoby ellipsoid, see Ellipsoid – 
homogeneous

Jäderin-method  206
JASON, satellite  156
Jeffreys  280
Journal of Geodesy  15
Julian Century  20

Kater  176
Kaula’s rule of thumb  274
Kepler  7, 124
— equation  125
— laws  124
Keplerian elements  125, 126, 275
Kilogram  18
Krafl a (Iceland) rifting episode  361, 374
Krassowski  308, 311, 313
Kühnen and Furtwängler  189
Küstner 12

LaCaille  8
LaCondamine  9
LaCoste and Romberg gravimeter  186
Lageos, satellite  150, 367
Lagrange’s perturbation equations  126
LaHire  8
Lambdon  10
Laplace  9
— azimuth  244, 306, 313
— differential equation  58, 224
— equation  244, 247, 310
— station  310
— surface spherical harmonics, see Spherical 

harmonics
— tidal equation, see Tidal equation
Laser distance measurements
— moon  152
— satellites  150
— terrestrial  207, 211
LAST, see Local Sidereal Time
Latitude
— astronomic  46, 67, 166, 239
— ellipsoidal, see - geodetic
— geocentric  29, 93
— geodetic  93, 107, 239, 250

— normal geodetic  105, 107, 240
— reduced  94, 101, 251
Latitude arc measurement  8
Leap second  24
Least squares
— adjustment  9, 223, 234, 252
— collocation  301
— prediction  232, 299
— spectral combination  288
Legendre  9, 250
— functions, associated  70
— polynomials  69, 230
Length of day (LOD)  33, 44, 351, 353
Level ellipsoid  100, 103, 108
Leveling
— astrogravimetric  300
— astronomic  296, 298
— dynamic, see - geostrophic
— geometric (spirit)  48, 215, 253, 316
— geometric-astronomic  238
— geostrophic  81, 218
— GPS/GNSS  257
— hydrodynamic, see – geostrophic  
— hydrostatic  218, 219
— motorized  218
— reciprocal  218
— steric  80
— trigonometric  255
Leveling instrument (level)  215
Leveling network  84, 316, 320
Level spheroid  100
Level surface  3, 46, 63, 64, 76
Lever spring balance  185
LIDAR  263
Light velocity  19
Light waves  114, 118, 206
Lithosphere  342
Loading
— atmospheric, see Atmospheric loading
— ocean, see Ocean loading
Load Love numbers, see Love, load numbers
Local astronomic system, see Local level 

system
Local level system  46, 160, 166, 191 
Local Sidereal Time
— Apparent (LAST)  22, 26, 88, 167
— Mean (LMST)  22
Longitude
— astronomic  22, 46, 49, 67, 167, 239
— ellipsoidal, see -  geodetic
— geodetic  93, 107, 239, 250



Index      429

Longitude arc measurement  8
Love
— load numbers  352, 378
— numbers  376, 379  
Lunar laser ranging (LLR)  85, 152

MacLaurin  64, 100
Mantle convection  343
Mapping function  119, 122
Mareograph, see Tide gauge
Marussi  11
— -tensor, see Eötvös tensor
Maupertuis  8
Mean curvature
— ellipsoid  95
— level surface  66, 67
Mean position  28, 168, 169
Mean radius (Earth)  96
Mean Sea Level (MSL)  78, 80, 356
Méchain  9
Mechanical ellipticity, see Dynamical 

ellipticity
Mekometer  211
Meridian
— astronomic  26, 67
— geodetic  93, 97
Meridian arc  95
Meridian curvature, see Curvature -meridian
Meridian ellipse  93
Meridian plane
— astronomic  26, 47
— ellipsoidal  93
Meteorological parameters  117, 209
Meter  9, 11, 18
Meusnier, theorem  95
Mitteleuropäische Gradmessung  14
Mohoroviči’c discontinuity  335, 338  
Molodensky  
— correction  290
— defl ection of the vertical  227, 291, 298
— – problem  258, 290, 292
Moment of inertia (Earth)  31, 75, 334
Multipath effects (GPS)  143

Nadir  26, 48
Nankung Yüeh and I-Hsing  5
Navigation message (GPS)  141
NAVSTAR Global Positioning System, see 

Global Positioning System (GPS)
Navy Navigation Satellite System 

(NNSS)  133

Nearly diurnal free wobble (NDFW)  32, 381
Network
— geodynamic  359, 361, 371
— GNSS  144, 236, 321, 325
— Gravity  187, 189, 330
— leveling  253, 316, 318
— trigonometric  305, 308, 312
— VLBI  173
Network adjustment  308, 316, 322, 330
Newton  7
— law of gravitation  52 
— law of motion  124, 191
— normal gravity formula, see Normal gravity 

formula, Newton
Normal gravity  82, 101, 104, 108, 226, 

254, 268
— gradient  104, 107
— potential  101, 103, 224
Normal gravity formula  102, 104
— international (1930)  108
— Newton 104
— Geodetic Reference System 1980  110
— Somigliana  102
Normal height, see Height – normal
Normal height reduction  254, 298 
Normalhöhen-Null (NHN)  320
Normal-Null (N.N.)  319
Normal section  95, 245, 248
North American Datum
— horizontal (NAD27, NAD 83)  312
— vertical (NGVD29, NAVD88)  318
Norwood  6
Nutation  28, 37, 43, 169

Observation equation
— gravity measurements  188
— satellite observations  234
— terrestrial measurements  237
— VLBI  235
Ocean fl oor  2, 214
— control points 214
Ocean loading  351, 378, 381
Ocean surface topography, see Sea surface 

topography
Ocean tides  79, 89, 351, 378
Off-leveling effect (gravimetry)  193
Omission error (gravity fi eld model) 274, 277
Orbital elements, see Keplerian elements
Orbital system  124
Orbital velocity (satellite)  128
Orbit determination (satellite)  127
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Orientation (geodetic networks)  240, 243, 
244, 249, 309

Origin, Conventional International, see 
Conventional International Origin

Origin point, see Fundamental point
Orthogonality relations (spherical 

harmonics)  71
Orthometric height, see Height – orthometric
Orthometric height reduction  254, 298

Pageos, satellite  131
Parallactic angle  49, 168
Parallax  26
Parallel
— astronomic  26
— celestial, see  - astronomic
— geodetic  93, 97
Partial tides  88, 380
P-code (GPS)  137
PDOP (GPS)  144
Pendulum
— horizontal, see Horizontal pendulum
— mathematical  175
— physical  175
— reversible  176
— vertical, see Vertical pendulum
Pendulum measurements
— absolute  175
— relative  183
Perigee  125
Permanent Service for Mean Sea Level 15
Permanent tide  78, 88
Perturbations (satellite orbit)  126, 276
Perturbing potential  126, 275
Phase shift (earth tides)  203, 380
Phase measuring method, see Carrier phase 

measurements
Phase velocity (electromagnetic waves)  114, 116
Picard  7
Pizetti  100
— defl ection of the vertical  228
— formula  296
— theorem  102, 103
Plane surveying  1
Planetary geodesy  1
Plate boundary  342, 343, 360, 374
Plate kinematic model
— geodetic  42, 360
— geophysical  42, 343, 360
Plate motion  342, 360
Plate tectonics  41, 342, 361

Plumb line  46, 63, 66, 227, 297
— normal  105, 227
Poisson‘s differential equation  59, 62
Poisson’s integral  266, 295
Polar distance  29
Polar motion  30, 43, 170, 353
Polar radius of curvature  95, 109
Polar triangle
— astronomic, see Astronomic triangle
— ellipsoidal  247, 250
Polar wander  32
Pole
— Conventional Terrestrial, see Conventional 

Terrestrial Pole
— IERS Reference  33, 39, 170
— mean 29
— north 29
Pole offset  44
Posidonius  5
Position lines, method  167
Postglacial rebound, see Glacial Isostatic 

Adjustment  (GIA)
Potential function, see Harmonic function
Potsdam Gravity System  189
Pratt  340
Precession  27, 37, 43, 169
Precession/nutation model (IAU)  37, 43
Precise leveling  217, 316
Precise Point Positioning (GPS)  324
Prediction, least squares, see Least squares 

prediction
PREM (Preliminary Earth Model)  335
Prime vertical  95
Prism astrolabe  163, 164
Product of inertia (Earth)  75
Proper motion  25, 35, 36, 169
Pseudorange (GPS)  136
Ptolemaios  5, 35
Pulkovo Datum  313, 315
Pulse measuring method  150, 154, 207
Pythagoras  4

Quartz clock  131
Quasar  35, 38, 170
Quasigeoid  83, 106, 225, 292

Radar distance measurement  132, 155
Radian  18
Radiation pressure, see Solar radiation
Radio occultation (GPS)  120
Radio source, system  35, 38
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Radio telescope  170, 173
Rebeur-Paschwitz 12
Recording gravimeter, see 

Gravimeter – recording
Reduced pendulum length 175
Reference Atmosphere, see COSPAR 

International Ref. Atmosphere
Reference ellipsoid  9, 108, 271, 309, 311
Reference surface  3
— height  81, 253, 317
Reference System  3, 17, 24
— celestial, see Celestial Reference System
— ellipsoidal  99
— geodetic, see Geodetic Reference System
— gravity, see Gravity Reference System
— terrestrial, see Terrestrial Reference System
— vertical, see Vertical Reference System
Refraction
— astronomic  168
— atmospheric  113, 142, 209
— horizontal  115, 206
— ionospheric  121, 143, 157, 173
— lateral, see - horizontal
— tropospheric  117, 143, 172
— vertical  115, 218
Refraction angle  116, 206
Refraction coeffi cient  116, 119, 256
Refractive index  114, 116, 121, 210
Refractivity  114, 117, 118
Remove-restore method  287, 299, 303
Repsold  176
Reversible pendulum, see 

Pendulum - reversible
Riccioli, see Grimaldi
Richer  7
Rifting process (monitoring)  360, 361, 365
Right ascension  26, 36, 49
— ascending node  125
Ring laser gyroscope  45
Rise-and-fall method  177, 182
Rotational axis (Earth)  21, 25, 27, 29, 353
Rotational ellipsoid, see Ellipsoid – rotational 
Rotational variations (Earth)  30, 85, 351, 353
Roy  308
Runge-Krarup theorem  73

Sabine  183
Sakuma 182  
SAO
— gravity model  277
— star catalogue  166

SAPOS  328
Satellite, artifi cial  128
Satellite altimetry  80, 154, 279, 286, 357
Satellite geodesy  11, 123
Satellite gravity gradiometry  160
Satellite Laser Ranging (SLR)  150
Satellite-only model  236, 275, 277  
Satellite refraction  131
Satellite-to-Satellite Tracking (SST)  158
Satellite triangulation  131, 234
Satellite trilateration  132, 234
Schreiber  308, 313
Schumacher  10
Scintrex gravimeter  186
Sea fl oor spreading  342
Sea level
— mean, see Mean Sea Level
— temporal variations 79, 355
SEASAT, satellite  155
Sea surface topography (SST)  78, 155
Second  18
Secor system  132
Seismic parameter  334
Selective availability (SA)  141
Shida number  376
Sidereal Time  21
— Greenwich, see Greenwich Sidereal Time
— Local, see Local Sidereal Time
SIM Lite Astrometric Observatory  35
SIRGAS  326
Skew normal reduction  248
Snellius  6, 8
Solar radiation (satellite)  127, 159
Solar Time  23
Soldner 10, 308
Solid Earth tides, see Earth tides
Somigliana  100, 102
Spherical excess  247
Spherical harmonic coeffi cients  72, 75, 104, 

110, 130, 273, 276
Spherical harmonic expansion
— defl ection of the vertical  273
— disturbing potential  224
— geoid  273
— gravitational potential  71
— gravity anomaly  272
— gravity disturbance  272
— gravity potential  73
— height anomaly  272
— normal gravity potential  103
— reciprocal distance  69
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— tidal potential  87
— vertical gravity gradient  273
Spherical harmonic functions  71
— fully normalized  72, 272
— solid  71
— surface  71, 73, 224, 272
Spheroid  100
Spheropotential surface  105
Spirit leveling, see Leveling, geometric
SRTM (Shuttle Radar Topography 

Mission)  264
Star catalogue  34, 166
Starlette, satellite  150
Star position  26, 169
Star tracker  159, 160, 162
Stellar system  34
Stellar triangulation  11
Sterneck
— pendulum  183
— method (astrometry)  167
Stokes  9
— constants, see Spherical harmonic   

coeffi cients
— formula  284, 288, 290, 296
— function  283, 290, 296
— inverse formula  286
— inverse function  286
— –Poincaré theorem  99, 344
Stoyko  31
Strainmeter  221, 365
Stratosphere  117
Struve  10
Subduction zone  343, 348
Sun
— mean  23
Surface
— equilibrium, see Equilibrium Surface
— equipotential, see Level surface
Surface density, see Density - surface
Surface layer  290
Système International d’Unités (SI)  18

TanDEM-X (radar satellite mission)  264
Tanni 289
Tare (gravimeter) 187
Telluroid  105, 225, 259, 290
Temperature gradient  117
Temps Atomique International (TAI), see 

Atomic Time
Tenner  10
TerraSAR-X, satellite  264

Terrain correction  266, 268, 287
— residual  288
Terrestrial Intermediate Origin (TIO)  

39, 40, 44
Terrestrial Intermediate Reference System 

(TIRS)  40, 43
Terrestrial Reference Frame (ITRF)  40, 41
Terrestrial Reference System (ITRS)  39, 43
Terrestrial Time (TT)  21, 43
Thales of Milet  4
Theodolite  204, 306
Tidal acceleration  86, 87, 377
Tidal analysis  88, 380
Tidal constant  87
Tidal deformation  87, 352, 375
Tidal effect
— leveling  218
— gravimetry  179, 377
— satellite orbit  127
Tidal equation  88
Tidal friction  33, 353
Tidal loading  352, 378
Tidal potential  86, 376
Tidal model
— ocean  79
— solid earth  89, 377, 381
Tide gauge  80, 317, 357
Tides
— atmospheric, see Atmospheric tides
— ocean, see Ocean tides
— permanent, see Permanent tide
— solid Earth  89, 352, 375
Tilt (amplitude) factor  377
Tiltmeter  219, 365
Time
— atomic, see Atomic Time
— sidereal, see Sidereal Time
— solar, see Solar Time
Time measurement  20, 130, 163
Time signal  24
Time transfer  24, 139
TOPEX/Poseidon, satellite  80, 156
Topocenter  48
Topographic reduction  268
Topography  262, 265, 337
Torsion, geodetic  65, 107
Torsion balance  197
Total electron content (TEC)  121
Total station  209
Transit satellite, see Navy Navigation Satellite 

System  
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Traverse  307
Triangulation  6, 10, 306
Trigonometric height determination  255
Trigonometric point  306
Trilateration  307
Troposphere  117
True position  28
Tycho Brahe  6, 124
Tycho star catalogue  166

United European Leveling Net (UELN)  318
Universal instrument  163
Universal Time (UT) 23, 33
Universal Time Coordinated (UTC)  24, 33
Uotila 280
Upward continuation (gravity)  291, 294

Väisälä, comparator  206
Vening-Meinesz  194
— formula (vertical defl ection)  284
— function  285
Vernal equinox  22, 25, 27, 38, 40
Vertical, see Plumb line direction
Vertical datum  83, 317
Vertical defl ection, see Defl ection of the vertical
Vertical pendulum  220
Vertical Reference System  83, 317

Very Long Baseline Interferometry (VLBI)  
35, 170

Viscosity (mantle)  342
Volcano monitoring  365, 374
Volet 180

Wadley  208
Wave velocity (seismic)  334
Wegener  342
Wiechert-Gutenberg discontinuity  335
World Geodetic System
— 1972 (WGS72), 1984 (WGS84)  133, 138

Y-code (GPS)  137, 141

Zenith  26, 47, 48, 98
Zenith angle,  see Angle – zenith
— ellipsoidal, see - geodetic
— geodetic  98, 255
— reciprocal  6, 206, 255, 300
Zenith camera, transportable, see Camera - 

zenith
Zenith distance, see Angle - zenith
Zenith tube, photographic  163, 165
Zero method (gravimetry)  185
Zhongolovich 280
Zöllner horizontal pendulum 219
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