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Before we start:

If you feel ill, go home
Keep your distance to others

Wash or sanitize your hands

Disinfect table and chair
Respect guidelines and restrictions
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Repetition from last time:

GRACE satellite tracking and gravity
Monthly solution (filtering limitations)
Mass movements in the Earth System

The water cycle

Equivalent water height
GRACE month fields.
GRACE discoveries.

Annual, Hydrology

Droughts and Earthquakes
Melting of the Ice caps + glaciers.

Sea level rise and closing the sea level budget.

The end +
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GRACE - How it works
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What did we learn.

o We used ALL GRACE+GOCE+whatever observatioins to estimated global
geopotential model.

(0 0]

n
e Geoid N =M Z 1 Z P, (sindp)[Cnm cos mA + Snm sin mA |

Yr n=2 m=0

e Gravity Ag = i—]\f z (n+1) Z P, (singp)[Cnm cosmA + Snm sinmA |
= m=0

Today we will remove this from the GRACE observations and look at
the residuals or the changes with time.

m:

. GM
e Geoid A N = g Z Z P,..(sind)[ACnm cosmA + ASnm sinmA ]

e Gravity A (Ag) = { (n+1) Z P, (sind)[ACnm cosmA + ASnm sinmA |
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Cumulative Geoid Height Error (m)
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from entire mission from one month it is less.
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GRACE measurement error increases for high-degree,
short-wavelength gravity coefficients.

Correlation between these errors results in longitudinal

stripes in mapped anomaly fields.

Preliminary GRACE Errors
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Estimates of the square root of the contribution to the variance of the inferred
surface mass anomaly due to GRACE satellite measurement error.
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Gaussian smoothing of GRACE mass anomaly maps
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Small gravity field changes
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1 gal =1cm/s2
1 mGal = 0.001 cm / s2
1 uGal = 0.000001 cm/s2

Changes to the 8t digit of global gravity.
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The water cycle
Equivalent water height
GRACE month fields.
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Sea level rise and closing the sea level budget.

The end +
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Equivalent water height.
The Bouguer plate approximation

e Assuming you have an infinite plate of a material with density p
e And thickness H

Ag=2mGp H

G is the gravitational constant, G = 6.67 x 10-"" m2 s?kg-

e Example
— density of rock as p = 2670 kg/m?3
— density of water has p = 1000.0 kg/m?3

So21mG=4.191 x 1019 m2s2kg-* or 4.191 x 10> mGal m2 kg
Using 1 Gal = 1cm/s2, 1 mGal = 1x10> m/s2.

16 DTU Space, Technical University of Denmark Space Geodesy 30552



DTU Space

i

Equivalent water height
If we have a plate of water.

Inserting p = 1000 kg/m3

So Ag = 0.0419 mGal/meter(of water)
= 0.0419 uGal/mm(of water)
= 0.419 uGal/cm

H=Ag/ (21 Gp)
2.4 cm (water)= 1 uGal (of gravity change)
Hence gravity changes are expressed in water height called

EWH (Equivalvent water height)
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GRACE month fields.
GRACE discoveries.
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Melting of the Ice caps + glaciers.

Sea level rise and closing the sea level budget.

The end +

18 DTU Space, Technical University of Denmark Space Geodesy 30552



DTU Space

=
—
=

A typical GRACE month

The World According to GRACE (in May-2005, specifically):

- Monthly snapshot of near-surface mass variations (expressed in terms of water
height in millimeters relative to the long-term average)

- Resolution: approx. 300km; Accuracy: 10-20 mm water height(depends on

i

location)
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Background Modeling

21

During the processing of the GRACE data, the atmospheric and oceanic
mass variations are modeled (usually using 3-6 hour fields from ECMWF
and AOD1B models) in order to reduce temporal aliasing and remove the
atmospheric mass variations. Depending on the science application, it
may be necessary to restore the monthly mean of these fields. Therefore,
the GRACE project provides these products for that purpose:

GAA = Atmosphere only
GAB = Ocean only

GAC = Atmosphere + ocean (Over the ocean, this is ocean bottom
pressure)

GAD = Ocean bottom pressure (GAC over ocean, 0 over land) This is the
correct field to add for studying land hydrology. It should be nearly the
same as GAC over the oceans.
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Recalibration
Shift of G1/G2

What are the gaps?

Battery degradation in G2 (4 our

Teperature lowering from 20 ° to 3°
24 DTU Space, Technical University of Denmark Space Geodesy 30552
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Continuity - from GRACE to GRACE-FO
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Jan Feb Mar Apr May Jun Jul Aug Sep

a N1~ [\ ~

2008

2010

2012

Continuity with GRACE-FO
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GRACE discoveries.
Annual, Hydrology
Droughts and Earthquakes
Melting of the Ice caps + glaciers.

Sea level rise and closing the sea level budget.

The end +
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GRACE: 15 Years of Amazing Discoveries
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GRACE: Already in 2003 message clear
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Figure 1. Linecar inter-annual TWS trend in Europe from
GRACE. Negative means less water in 2003 than 2002. The
defined European drainage region is outlined in the figure
along with the location of the Wettzell (Germany) and
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GRACE: 15 Years of Amazing Discoveries
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Global hydrological signals.
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The drought
you can’t see

Geophysical methods detect
in water storage pp.1543 & 1587
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Marcia McNutt, 2014

The drought you can’t see

he Western Hemisphere is experiencing a
drought of crisis proportions. In Central Amer-
ica, crops are failing, millions are in danger of
starvation, and if the drought doesn’t break
soon, even vessels transiting the Panama Ca-
nal will need to lighten their loads, which will
increase prices for goods transported globally.
In the western United States, the drought-stricken
region spans a vast area responsible for much of the
nation’s fruits, vegetables, and beef. As the drought’s
grip has tightened, water users have turned to tapping
groundwater aquifers to make up the deficit for people,
crops, livestock, and indus-
try. But even when the rain
does return, regreening the
landscape and filling again
the streams, lakes, and res-
ervoirs, those aquifers will
remain severely depleted. It
is this underground drought
we can't see that is endur-
ing, worrisome, and in need
of attention.

The Gravity Recovery
And Climate Experiment
(GRACE) satellites have
provided a global look at
groundwater depletion by
monitoring small temporal
changes in Earth’s gravity
field. GRACE confirmed
massive losses of ground-
water from the aquifer
underlying California’s ag-
riculturally important Cen-
tral Valley since the 1980s.*
In the decade between 2003
and 2012, the drawdown
was equivalent to the entire
water storage volume of Lake Mead, the nation’s larg-
est surface reservoir.t The extraction of groundwater
has caused wells to run dry and produced detectable
regional uplift or rebound of the land due to water dis-
placement (see Borsa et al., p. 1587).

Underground reservoirs are a natural long-term
water storage solution. Taking advantage of aquifers
avoids the expense and environmental issues of dam
construction. Unlike surface reservoirs, aquifers are
not subject to evaporative loss, but under natural
conditions they are only recharged slowly as excess
precipitation percolates into the aquifer. In some cases,

“It is high time we started
managing our precious water
supplies in harmony with the

laws of nature.”

the average age of groundwater can be many thousands
of years old, dating back to a time when the climate
was wetter. But when water is withdrawn through
pumping at prodigious rates, hydrologic processes are
not sufficient to fully recharge the reservoirs, especially
when land development has created impervious
surfaces.

Forty years ago, the state of Arizona reached a
critical juncture that called for action, with rapidly
falling water tables, dry wells, subsiding land surface,
and deteriorating water quality. Now, in the Tucson
area for example, water from the Colorado River is
used to artificially recharge
the aquifers with excess
water in wet years that can
later be tapped during dry
years. The statewide 1980
Groundwater Management
Act guarantees that over a
10-year period, the aquifer
cannot be  overdrawn.
The current crisis has
prompted the legislature
of  California—the last
state in the west without
groundwater regulation—
to pass a series of bills
that establish state-level
oversight of pumping from
aquifers.

Surface- and ground-
water are all part of one
coupled system, respond-
ing on different time scales
to changes in precipitation.
Five years ago when I was
director of the US. Geo-
logical Survey (USGS), an
Arizona congressman had
some concerns about a USGS report on the impact of
overpumping of groundwater on surface stream flows.
The congressman declared, “You all should be aware
that according to Arizona state law, surface water and
groundwater flows are decoupled.” Jim Leenhouts, the
USGS associate director for the Arizona Water Science
Center responded, without hesitation, “Thank you,
congressman. Here at the USGS we follow the laws of
nature, not the laws of man.” It is high time we started
managing our precious water supplies in harmony
with the laws of nature.

- Marcia McNutt

*http:/pubs.er.usgs.gov/publication/fs20093057. 1J. S. Famiglietti, M. Rodell, Science 340, 1300 (2013).
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— BUt IT soil gets dry -> wildfires hard to control“‘
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—Gravity for Applications: Flood Forecasting=

Is there an indicator that gives us an

early warning sign for flooding?

Saturated soils Danger of flooding

Goal: Flood indices for
early warning before flood
actually occurs
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—G'r'a'V|ty for Appllcatlons Flood Forecastlngw

GRACE-derived
flood index
(May 2007)

Floods that
actually happened
May 2007
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Grace observes “"Earthquakes”

Sumatra 2004 Earthquake where mass was shifted horizontally
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Grace observes “"Earthquakes”

Sumatra 2004 Earthquake where mass was shifted horizontally
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Content

Melting of the Ice caps + glaciers.
Grace limitations...

Sea level rise and closing the sea level budget.

The end +
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GRACE: 15 Years of Amazing Discoveries
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Present day Ice-unloading (PDIL / VLM Lecturg)"
Kulusuk GPS Site

kulusuk

Kort & Matrikelstyrelsen

Februar 2000
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Both GRACE and GPS see a large increase in the trend in 2003/2004; and a
smaller decrease in 2006/2007.
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Image Landsat / Copernicus
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Figure 2 | Rate of change of surface elevation for Antarctica and

Greenland. Change measurements are median filtered (10-km radius),

spatially averaged (5-km radius) and gridded to 3 km, from intervals (At) of
50 C at least 365 d, over the period 2003-2007 (mean At is 728 d for Antarctica

and 746 d for Greenland). East Antarctic data cropped to 2,500-m altitude.
White dashed line (at 81.5"S) shows southern limit of radar altimetry
measurements. Labels are for sites and drainage sectors (see text).
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What limits GRACE?
e North South flying.

Gaussian or more advanced filtering
(called destribing).

| ['H I [N
-800-533-266 0 266 533800 -80-53-26 0 26 53 80 mm

Instrumentation:

GRACE is limited at low frequencies by the accelerometer errors and at
high frequency by the microwave phase noise. Also limited by orbit
sampling in space and time.

To get improved spatial resolution from space:

- Must decrease phase noise, probably by moving from a microwave to
an optical instrument

— Should improve accelerometer as well for best performance
- Flying at a lower altitude also is needed to improve performance
— Fly multiple missions simultaneously?
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Spatial filtering issues
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Sea level rise and closing the sea level budget.
Mass changes
Steric changes

The end +
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DTU Space Why does sea level change?
—_— The Bathtub Model

i

Precipitation
over Oceans
Runoff from
Continents

Thermal Expansion
MELTING ICE

Evaporation from Oceans
Precipitation over Continents
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April, 2002 - June, 2010
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Rate of Ice mass change:

All Greenland:  -239 Gt/yr
South Greenland: -162 Gt/yr
North Greenland: -77 Gt/yr &8

(1 Gton =1 km? of water)

Greenland contributed 0.8
mm/y to sea level rise

1000
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. . 2003 2004 2005 2006 2007 2008 2009 2010
cm/yr of water thickness equivalent
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Ry
Rate of mass change between April, 2002 and May, 2010 Mot
Coastal Alaskan Glaciers
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Rate of mass change: -55 Gton/yr = 0.15 mm/yr sea level rise
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GRACE contribution to Sea Level.

Global Ocean Mass
Mass Increase Trend: 2 mm/year

- Satellite: GRACE
'V Global'Mean Sea Level

Total Sea Level Trend: 3 mm/year
Satellites: TOPEX, Jason-1,2,3

2001 2005 2009 2013 2017
Year
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Global Ocean Mass
Mass Increase Trend: 2 mm/year

- Satellite: GRACE
'V Global'Mean Sea Level

Total Sea Level Trend: 3 mm/year
Satellites: TOPEX, Jason-1,2,3

2001 2005 2009 2013 2017
Year
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cean Mass
rend: 2 mm/year
atellite: GRACE

| 2001 2005 2009 2013 20'17
Year

1993 1997""
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cean Mass
rend: 2 mm/year
atellite: GRACE

2013 2017

Water accumulates in Austfalf“a"%;f;y;arﬁﬁ 13
Creekirlate 2010 ~ i

o A
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Extra water following El Nino.

B0

Fasullo, The 2011 La Nina: So ]
Sfrong, The Oceans Fell, *
Geophys. Res. Lett., 2012.
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DTU Space Why does sea level change?
—_— The Bathtub Model

Precipitation u

over Oceans
Runoff from
Continents

i

Thermal Expansion

MELTING ICE

ASI-Rtotal_ | .= ASI—Rsteric_l_ ASLRmaSS
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S Steric Changes

i

The formula for the steric height is derived from the hydrostatic equilibrium equation and can be ex-

pressed as
1 [ Ap(T.S.p)
SH(z.z :—/ — dz 4
(21, 22) 9Jz, po(To,S0,p) )

Where pg is the reference density, p is the actual density and Ap = p — po. g is the gravitational
acceleration. z; and zo is the depths in which between the water column is analysed.

TO = 0-30°C and SO = 35 psu. (practical salinity unit)

66 DTU Space, Technical University of Denmark Space Geodesy 30552



DTU Space

Microwave QOcean and
Radiometer ; Land Colour
' Instrument

Sea and Land
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Temperature
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S-band
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120 100" S0\ " 50°E  10D0°E  160°E
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If you are to use
spaceborne o L
Data you must assume

a relation between

depth and temperature e

to perform the fncrmasing il

integration

dz

1 (% Ap(T,S,p)
SH(z1,22) = =
(21,22) Qi. po(To, So,p)
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There’s a better way.

e Since 2004 you can get temperature+Salinity as a function of depth.

69 DTU Space, Technical University of Denmark Space Geodesy 30552



DTU Space
National Space Institute The revolution of ARGO

AL EEEent to weather and climate
e e e e A round tHewword,
themetiTiCagmthe Uk

1. Float deployed by
ship or aircraft

i 6. Up to 12 hours at surface to |
transmit data to satellite

|

2. 5l
5]

kL
! F. il pumped back to internal reservoir

I

: : i : Méw cycle begins
ow descent to 2000 metres 5. Tg"m perature & salinity profile v

hours at 10 cm/s recorded during ascent !

:
i
i
i

el pumped from Internal
reservair to inflate external
bladder causing float to rise

3. Drift for 9 days with

ocaan currants
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Argos platform
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ARGO floats......
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Now we can perform the integration
but only for the period 2005-2017

The formula for the steric height is derived from the hydrostatic equilibrium equation and can be ex-

pressed as
L [ Ap(T,S,p)
SH(z.,2 :—/ — dz 4
(21,22) 9 J: pro(To,S0,p) )

Where pg is the reference density, p is the actual density and Ap = p — po. g is the gravitational
acceleration. z; and 29 is the depths in which between the water column is analysed.

H
4

+“— WARM SURFACE LAYER
“— THERMOCLINE

DEPTH = 0.2 km
DEPTH =1 km

NTS

+— COLD DEEP WATER

THE REAL OCEAN: THE EQUIVALENT CYLINDRICAL OCEAN:
V = VOLUME = 1.34 x 10° km’ R=vVA/T =1.07 x 10" km

A = SURFACE AREA = 3.60 x 10° km® D = V/TR?= 3.73 km

73 DTU Space, Technical University of Denmark Space Geodesy 30552



DTU Space

,(a)' T 1
- Global mean sea level
80 Global mean ocean mass
— Global mean steric sea level (0-2000db) f'
— (cean mass + steric sea level
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[E. Leuliette & S. Nerem, 2017]

[From E. Leuliette]
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Sea Level Budget: global mean

WE

15-year trend:

1/3 from heating
(mostly above 2000
m)

2/3 from mass
Locally, we've
detected signs of
deep (<2000m)
ocean warming
(e.g., in the S.
Pacific)

The Earth’s ocean
temperature is really
it's fever
thermometer, 93%
of the current
warming goes into
the ocean!
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Summary: GRACE has been busy

15 YEARS OF GRACE

2002-2017

2 satellites approx. 220 km apart
3,836,760,554 km traveled

Ice loss measured
- GIGATONS .
3,400 creeniano

: 1 550 GIGATONS
y ANTARCTICA
gigaton = '
1 1 kilometer by .
B 1 kilometer cube

In 2018 GRACE-FO took over.

In 2025 NGGM is planned (GRACE-2) Space Geodesy 30552
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Lecture material:
Whats you feeling about the book - good/bad/ok.
Amount of reading: enough/too much
Inclusion of articles:

Lectures:
Lectures (8) Altimetry.
Lecture (9) mean fields - gravity
Lecture (10) time variations/sea level and GIA (+ Tadea)
Lecture (11) INSAR and Laser Altimetry
Lecture (12) Gravity field from laser ranging and gradiometry
Lecture (13) Gravity field variations and sea level change. today.

Ideas to improve lectures ?
Breaks?
Discussions?
Kahoot’s?
Repetitions?
More less Externals
Summary? (of the day at the end?)
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Assignments:
The assignments (particularly last 3) -
Too easy/ok/difficult/too much?.
I had a comment on assignment 6 — which is implemented now.
Focus on real data?
Assignment involving more mathematical computations?

Remember
Assignment can be handed in until 6 December (but no feedback).
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