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1. Introduction 
 

This lecture note provides a basic introduction to the theory on GNSS satellites orbits. 

Keplers laws are reviewed, the orbital coordinate system and the expressions for position 

and velocity within the orbit are described. The conventional inertial reference system is 

introduced along with the procedure for conversion of satellites positions to the inertial 

coordinate system. Also factors perturbing the theoretically smooth satellite motion are 

briefly described, before the introduction of orbital parameters for the GPS satellites. 

Broadcast and precise GPS orbits are discussed, and finally the orbital parameters of 

Galileo and GLONASS are described.  

 

The notes are intended as an introduction to the field of satellite geodesy for students and 

others working with GNSS. As such, the notes are not providing an in depth derivation of 

the equations for a dynamic motion in the earths gravity field. The reader is referred to the 

list of references for this.  

 

In the text, vectors are denoted in bold lowercase and matrices are bold uppercase. Any 

suggestions for improvements of the notes are welcomed by the author.  

 

 

2. Kepler's laws 
 
All positioning of satellites today is based on the laws of Johannes Kepler who lived in 

Germany from 1571 to 1630. Keplers work was based on observations carried out by the 

Danish astronomer Tycho Brahe (1546-1601). Brahe built an observatory on the island of 

Ven located between Denmark and Sweden, and he performed numerous observations of 

the motions of the planets. Kepler was his student, and after Brahe died, Kepler devoted 

most of the remaining part of his life to analyzing the observations collected by Brahe. The 

legacy of Brahe and Kepler is strong within the communities of satellite navigation and 

space technology, and their names are often remembered and honored.  

 

Kepler developed a number of theorems and laws describing the motion of the planets in 

their orbits around the sun. These laws do, in general, also describe the motion of a 

satellite orbiting around the earth and the laws are therefore repeated below. 

 

Keplers 1. law 

The orbit of each planet is an ellipse with the sun in one of the foci.  

 

Effect on satellites: 

The orbit of a satellite is an ellipse with the gravitational centre of the earth in one of the 

foci. 

 

Referring to Figure 1: 

F are the two foci of the ellipse 

P is perigee, the point on the orbit closest to the earth  

A is apogee, the point on the orbit farthest away from the earth 

a is the semi major axis of the ellipse 

b is the semi minor axis of the ellipse 
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Figure 1. Satellite orbital ellipse. 

 

 

Keplers 2. law 

The planets revolve with constant area velocity, e.g. the radius vector of the planet sweeps 

out equal areas in equal lengths of time, independent of the location of the planet in the 

orbit. 

 

Effect on satellites:  

Satellites revolve with a constant area velocity within the orbit. The speed of the satellite is 

not constant, but varies with the location of the satellite in the orbit, so the speed is higher 

when the satellite is close to the earth (see Figure 2). 

 

 

 

 

 

  

 

 

 

 

 

 
Figure 2. The satellite sweeps out equal areas in the ellipse in equal time intervals while orbiting 

 

 

Keplers 3. law 

The relation between the square of the period, T, and the cube of the semi major axis, a, is 

constant for all planets: 

 

  (1) 

 

 

 

Effect on satellites:  

Two satellite orbits with the same size of their semi major axes, will have the same T even 

if the eccentricities of the orbital ellipses are different (see Figure 3).  
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Figure 3. Two orbits with same size of semi major axis and period, but with different eccentricity. 

 

The value of the constant given in Equation (1) was determined several years later by Isac 

Newton (1624 - 1727) based on his work on gravity.  

 

 

(2) 

 

Where GM is the earths gravitational constant of 3986004.418 x 10
8
 m

3
/s

2
  (Misra and 

Enge, 2001) 

 

Keplers three laws would be true for satellites today if the satellite and the earth were point 

masses (or homogeneous bodies with a spherical mass distribution), and if no other forces 

than earths gravity were affecting the satellites.  

 

This is of course not the case, and the expressions of satellite motions are therefore more 

complicated since we have to account for the variations in the earths gravity field, and 

several external forces e.g. lunar gravity and solar radiation affecting the satellites. This 

will be discussed later in the notes. 

 

 

3. Orbital coordinates system  
 
In order to describe the motion of a satellite within its orbit, we define an orbital 

coordinate system, called q.  

 

The axis of the coordinate system are defined so origo is located in the mass center of the 

earth, the first axis, q1, is directed towards perigee, the second axis, q2, is located in the 

orbital plane, perpendicular to the first axis in the direction of the satellite motion, and the 

third axis, q3, is perpendicular to both first and second axis to form a right hand system. In 

Figure 4 the q3 axis is thus pointing out of the plot towards the reader. 
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Figure 4. Elements of the orbital coordinate system, q. 

 

 

Further, in order to describe the location of the satellite within the orbital coordinate 

system we need to define a number of parameters for the orbital ellipse (Figures 4 and 5): 

S, satellite 

a, semi major axis of the ellipse 

e, eccentricity of the ellipse 

E(t), eccentric anomaly of satellite position 

ν(t), true anomaly of satellite position 

rq(t), position vector of satellite in orbital coordinate system 

r’q(t), velocity vector of satellite in orbital coordinate system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Parameters for describing the location of a satellite in the orbital coordinate system, q.  

Figure inspired by Kaula (1969). 
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The position of the satellite for a given epoch in time is given as: 

 

 

(3) 

 

 

 

The q3 coordinate is zero, since the coordinate system is defined so the q3-axis is 

perpendicular to the orbital plane. The satellite motion is, according to the laws of Kepler, 

a 2D motion within the q coordinate system.  

 

The expression in Equation (3) can also be given as below, where the satellite motion is 

described using the eccentric anomaly as the angular variable.  

 

 

 

(4) 

 

 

The eccentric anomaly, E and the true anomaly, ν are two different angles, both indicating 

the satellite position in the orbit as a function of time. Depending on the use of the 

expressions, and the variables given, one expression is usually preferable to the other. 

 

The relation between eccentric anomaly, E and the true anomaly, ν can be given by: 

 

 

  (5) 

 

(6) 

 

(7) 

 

 

(8) 

 

 

Where n is the mean motion of the satellite, and M is called the mean anomaly.  

 

Please note that the mean anomaly, M in Equation (6) and (7) is not the same as the mass 

of the earth, M in Equation (5). It has been decided to use this notation, however, because 

it complies with the standard in most literature. 
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The derivative of the position vector in the orbital plane is given as: 

 

 

 

(9) 

 

 

as functions of the true and eccentric anomalies, respectively. 

 

 

The expressions given in Equation (3) and (4) are solutions to the basic equation of motion 

in a force field, Equation (10), which is a second order non-linear differential equation. 

 

 

(10) 

 

For a derivation of the Equations (3) to (9) the reader is referred to Kaula (1969) or Seeber 

(2003), where also the basic expressions for motion in the earths gravity field are derived 

and discussed.  

 

4. Conventional inertial reference system (CIS) 
 

We have now defined a coordinate system for describing the motion of a satellite within 

its orbit, but in order to use the satellites for positioning on the surface of the earth, we 

need a better relation between the orbital coordinate system and the coordinate systems we 

use for referencing of the positions on the surface of the earth, such as for instance the 

WGS84. 

 

The Conventional Inertial System (CIS) is necessary as an intermediate step in this 

conversion. The CIS is used for positioning and orientation of the earth in space. The 

coordinate system is defined by orienting the axes towards distant quasars.  

 

The Conventional Inertial System (CIS) is defined with origo coinciding with the center of 

mass of the earth. The third axis, Z, is defined to be coinciding with the rotational axis of 

earth rotation, the first axis, X, is located in the equatorial plane towards the vernal 

equinox, and finally the second axis, Y, is located in the equatorial plane to complete a 

right handed cartesian coordinate system. 

 
Figure 6. Coordinate axes of the inertial reference system. 
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The vernal equinox is the point in space where the equatorial plane of the earth intersects 

with the ecliptic (the plane of the earth and the sun) in the spring time. I.e. the direction to 

the sun as seen from the earth when the sun is moving from the southern to the northern 

hemisphere. The point is also called the spring equinox.  

 

Important is that the CIS does not rotate with the earth, what makes it convenient for 

positioning of satellites.  

 

Since the mass distribution of the earth is not homogenous, the rotational axis of the earth 

is time variant, and the motion of the axis is composed of two periodic movements called 

precession and nutation. Precession is caused by gravitational attraction of the sun, the 

moon and other celestrial objects, and it causes the spin axis to move in a slow circular 

motion like a top. Nutation is a smaller movement with a shorter period superimposed on 

the precession (Bock, 1996).   

  

The axis of the CIS are thus not constant in time, and when converting positions from the 

inertial reference system to an earth fixed system as for instance the WGS84, this motion 

must be taken into consideration. More information on precession, nutation and 

conversions between the inertial and terrestrial reference systems is given by for instance 

Seeber (2003). 

 

 

5. Conversion of satellites positions between orbital system and CIS 
 

The CIS and the orbital coordinate system both have the center of mass of the earth as 

origo. This means that conversion of coordinates from one system to the other does not 

include translations, but only rotations of the coordinate axes with respect to each other. 

 

The three rotation angles are given in the inertial reference system, they are shown in 

Figure 7 and are denoted as: 

 

� - right ascension of the ascending node. The angle between the first axis of the CIS, and 

the vector in the CIS pointing from origo to the point in the Equatorial plane where the 

orbital plane intersects with the Equatorial plane. This point is denoted the ascending 

node, and the right ascension of the ascending node identifies the point where the satellite 

moves from the southern hemisphere of the earth to the northern hemisphere. 

 

i  - is called the inclination, and is the inclination angle of the orbital plane with respect to 

the Equatorial plane.   

 

� - is the argument of perigee. The angle between the position vector of the ascending 

node and the position vector of the satellite at the current epoch in time. 

 

Coordinates of the satellite position as given in the orbit coordinate system can now be 

converted to coordinates in the inertial reference system by rotating about the first and the 

third axis of the CIS, using the three rotation angles; �, i, and �, and corresponding 

rotation matrices. 
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Figure 7. Rotation angles between orbital and inertial coordinate systems. 

Figure inspired by Kaula (1969). 
 

 

As before we refer to the orbital coordinate system as q, and the inertial coordinate system 

is referred to as x. Conversion of a position vector, rq to a position vector in the inertial 

coordinates system, rx is carried out using the following expression: 

 

 
(11) 

where 

 

 (12) 

 

The three dimensional rotation matrices, R, with the given rotation, α, are constructed as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 is not used in this context, but included for the sake of completeness.  

 

Converting coordinates in the opposite direction i.e. from x to q is carried out rotating in 

the opposite sequence and direction: 
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Kepler elements 

 
Summing up, the parameters we need for describing the satellite orbit and its relation to 

the inertial reference system are the following six variables, which are normally referred to 

as the Kepler Elements 

 

Satellite orbit size and shape: 

a – semi major axis 

e - eccentricity 

 

Location of orbit in the inertial reference system: 

 i - inclination 

Ω – right ascension of the ascending node 

ω – argument of perigee 

 

Further, to describe the location of a satellite in its orbit, we need: 

ν – true anomaly 

or  

E - eccentric anomaly 

 

 

6. Perturbed satellite motion  
 

The satellite motion is affected by external forces dragging and pushing the satellite from 

the theoretically smooth orbit as described in the previous. The most important perturbing 

effect is, however, caused by variations in earths gravity field. The earth is not a point 

mass and the mass is not homogeneously distributed inside the earth. The deviation of the 

gravity field from a central sphere, and the variations in the earth gravity field as a 

function of the distribution of masses inside the earth are well modeled today, mainly 

because of many years of studies of satellite orbit perturbations, but also because of a very 

dense network of gravity reference stations on the surface of the earth, where gravity is 

measured precisely at regular intervals. The models of the earths gravity field are therefore 

also used to model the effect of the satellite orbits.  

 

The non-spherical and non-central gravity field causes a rotation of the orbital plane 

within the inertial coordinate system. The gravity field basically tries to drag the satellite 

orbit into the equatorial plane. The effect on the Kepler elements, describing the size, 

shape and location of the satellite orbit, is rather large (see Table 2), and must be 

considered when dealing with real satellite positions. The effect is larger for satellites 

located in orbits close to the surface of the earth, the so-called LEO satellites (low earth 

orbiters). 

 

Other forces affecting the satellite motion are gravitational effects of the sun and the 

moon, solar radiation pressure, albedo (reflection of solar light from the surface of the 

earth back into space), effects of earth and ocean tides, radiation from space, atmospheric 

drag etc. 

 

The perturbing forces and their effects on satellite orbits are described in detail by Kaula 

(1969) and Seeber (2003), where also the equations of motion considering perturbing 

effects are derived. Misra and Enge (2001) cover the basics of perturbed satellite motions 
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in a lighter description. Some examples of the effects on GPS satellites orbits are given in 

Table 1 and 2. 

 

 
Table 1. Implications of perturbations on GPS satellite orbit. From Seeber (2003) 

Perturbation  

 

Effect on satellite acceleration 

m / s
2
 

Deviation of earth gravity field from a sphere 

Variations in earth gravity field 

Solar and lunar gravitation 

Earth and ocean tides 

Solar radiation pressure 

Albedo 

5 ·  10
-5 

3 ·  10
-7 

5 ·  10
-6 

          1 ·  10
-9  

 each
 

1 ·  10
-7 

1 ·  10
-9 

 

 
Table 2. Deviation of true satellite orbit from Keplerian reference orbit of a GPS satellite after 4 

hours. From Seeber (2003) 

Kepler element Deviation of 

earth gravity field 

from a sphere 

Variations in 

earth gravity field 

 

Solar and lunar 

gravitation 

 

Solar radiation 

pressure 

 

a 

e 

i 

Ω 

ω + M 

2600 m 

1600 m 

800 m 

4800 m 

1200 m 

20 m 

5 m 

5 m 

3 m 

4 m 

220 m 

140 m 

80 m 

80 m 

500 m 

5 m 

5 m 

2 m 

5 m 

10 m 

 

 

The combined perturbing forces are difficult to model. This means that even though we 

are able to predict the position of a satellite, given the Kepler elements and models of the 

perturbations, there is a limit as to how well this can be done.  
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7. GPS satellite orbits 
 

The Kepler elements for the nominal 24 GPS satellite constellation originally designed is 

given in Table 3.  

 
Tabel 3. Nominal GPS satellite constellation (Misra and Enge, 2001). 

Slot 

ID  

Semi-major 

axis  

[km] 

Eccentricity  

[-] 

Inclination  

[deg] 

RAAN  

[deg] 

Arg. of 

Perigee  

[deg] 

Mean 

Anomaly 

[deg] 

A3 26559.8 0.00 55.0 272.85 0.0 11.68 

A4 26559.8 0.00 55.0 272.85 0.0 41.81 

A2 26559.8 0.00 55.0 272.85 0.0 161.79 

A1 26559.8 0.00 55.0 272.85 0.0 268.13 

B1 26559.8 0.00 55.0 332.85 0.0 80.96 

B2 26559.8 0.00 55.0 332.85 0.0 173.34 

B4 26559.8 0.00 55.0 332.85 0.0 204.38 

B3 26559.8 0.00 55.0 332.85 0.0 309.98 

C1 26559.8 0.00 55.0 32.85 0.0 111.88 

C4 26559.8 0.00 55.0 32.85 0.0 241.57 

C3 26559.8 0.00 55.0 32.85 0.0 339.67 

C2 26559.8 0.00 55.0 32.85 0.0 11.80 

D1 26559.8 0.00 55.0 92.85 0.0 135.27 

D4 26559.8 0.00 55.0 92.85 0.0 167.36 

D2 26559.8 0.00 55.0 92.85 0.0 265.45 

D3 26559.8 0.00 55.0 92.85 0.0 35.16 

E1 26559.8 0.00 55.0 152.85 0.0 197.05 

E2 26559.8 0.00 55.0 152.85 0.0 302.60 

E4 26559.8 0.00 55.0 152.85 0.0 333.69 

E3 26559.8 0.00 55.0 152.85 0.0 66.07 

F1 26559.8 0.00 55.0 212.85 0.0 238.89 

F2 26559.8 0.00 55.0 212.85 0.0 345.23 

F3 26559.8 0.00 55.0 212.85 0.0 105.21 

F4 26559.8 0.00 55.0 212.85 0.0 135.35 

 

The eccentricity of the orbits is zero, implying circular orbits. The argument of perigee is 

also zero and that is possible with circular orbits, since perigee is not a distinct point on the 

orbit as it is with ellipsoidally shaped orbits. With the argument of perigee being zero the 

direction of the q1 axis with respect to the inertial coordinate system is thus defined to be 

located in the Equatorial plane pointing towards the point of the ascending node (ref. 

Figure 7).  

 

Also note that the value of the right ascension of the ascending node (RAAN) is identical 

for each four satellites, indicating that these four satellites are revolving in the same orbit. 

The satellites are thus distributed into six orbital planes (Figure 8). 

 

The mean anomaly indicates the distribution of satellites within the orbit. The satellites are 

not distributed evenly within the orbit, as seen in Figure 9. This design of the satellite 

constellation ensures a better global satellite coverage, compared to if the satellites were 

evenly distributed in the orbit. 

 

The US DoD is aiming at keeping the nominal satellite constellation as described above, 

but because of the perturbing forces, and because some satellites wear out and new 

satellites are launched ahead of schedule, the actual constellation is slightly different. Plot 

of the current satellite constellation are maintained and updated on a regular basis by for 

instance the University of New Brunswick in Canada, and an example of such a plot is 

given in Figure 9. Satellites marked with red in the plot are unhealthy and thus not useable 

for positioning, and satellites marked in orange are set as spare satellites. 
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Figure 8. GPS satellite positions.  

Plot based on 24 hour simulation of nominal constellation from Table 3. 
 

 

 

 
 

Figure 9. Actual GPS satellite constellation of July 16, 2012.  

Plot from prof. R. Langley, University of New Brunswick, Canada 
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The chosen design of the GPS satellite orbits, causes the satellite availability to be 

depending on the location of the observer on the surface of the earth. Figure 10 shows the 

apparent satellite tracks during 24 hours in so-called sky plots, for four different locations 

on the earth.  

 

With a sky plot the virtual observer is located in the center of the plot, and the plot shows 

the location, or tracks, of the satellites as they would be seen in the sky above the observer 

- if they were visible. The outermost ring of the plot corresponds to the horizon around the 

observer, and full circles indicating elevation angles of 30 º and 60º are also plotted. The 

dotted circle illustrates an elevation mask of 15º, which is often used for high accuracy 

GPS applications, where satellites located below this level are eliminated in the data 

processing to reduce the noise level. 

 

The best GPS receiver position accuracy is in general obtained with an even distribution of 

satellites in the sky above and around the receiver. With the GPS satellite constellation the 

best satellite availability is obtained close to the Equator, in Figure 10 this is illustrated by 

Qatar. No satellites are, however, visible directly north of the observer, generating a void 

of observations from the north, which in practice will cause the accuracy of the north-

south oriented coordinate component (e.g. latitude or UTM Northing) to be slightly worse 

than the east-west oriented component (e.g. longitude or UTM Easting) of the position. In 

practice this difference is, however, marginal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. GPS sky plots generated for March 1. 2002 (Dueholm et. al, 2005). 

 

For a location close to the poles, as for instance at Thule located in the northern most part 

of Greenland, signals will be received from satellites located directly north of the observer. 

However, these satellites are located close to the horizon, and the signals are thus affected 

by a higher noise level, and not as attractive as signals received from satellites with higher 

elevation angle affected by a lower signal to noise ratio and this a better signal quality.  
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Close to the Equator there are several satellites located in zenith (directly above the 

observer, at a 90º elevation angle), and close to the pole, no satellites will be observed in 

the zenith direction. This is affecting the accuracy of the height component of the GPS-

derived position, which is generally better at the Equator than at the poles.  

 

 

GPS broadcast ephemeris 

 
For GPS positioning, the GPS receiver needs information on the satellite positions at the 

point in time where the satellite signals were transmitted from the satellites. This 

information is called broadcast ephemeris and is transmitted from the satellites with the 

navigation message.  

 

The broadcast ephemeris are composed of the following variables (Misra and Enge, 2001): 

• The ephemeris reference time, t0  

• The Kepler elements given as:  

o √a, e, i at t0  

o Ω at beginning of the GPS week 

o ω and M at t0  

• A correction factor to the mean motion, ∆n 

• The rate of change of i and Ω 

• Coefficients for correction models of ω, a and i 

 

The broadcast ephemeris are estimated by the GPS control stations. The control stations 

continuously collect data from the satellites, and based on observations of previous 

satellites positions, future positions are predicted by the Kepler elements and their 

derivatives, to compose the broadcast ephemeris.  

 

The ephemeris parameters are uploaded once daily, and by transmitting the Kepler 

elements with derivatives, in stead of satellite positions with derivatives, estimation of the 

satellite positions at the given epoch in time can be carried out more precisely considering 

the perturbations.  

 

When receiving the broadcast ephemeris the GPS receiver estimates the satellite positions 

as X, Y, Z coordinates in the WGS84 reference system, and the actual estimation of the 

position of the GPS receiver can be carried out.  

 

The formal procedure for estimation of satellite positions in the WGS84 based on the 

broadcast ephemeris is given in the GPS Interface Control Document, the official user 

manual of GPS, which is available on the web site of the US Coast Guard: 

 

http://www.navcen.uscg.gov/pubs/gps/icd200/default.htm 

 

 

9. Precise orbits 
 

The broadcast ephemeris are predicted, and the location of a satellite can be estimated with 

an accuracy of about 3 meter based on the broadcast ephemeris. More precise satellite 

positions are estimated by a number of organizations world wide and are made available 

on the internet.  
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The International GNSS Service (IGS) provide precise orbits estimated from several days 

of satellite data collected in more than 200 permanent GPS reference stations distributed 

globally. Each perturbation effect is modeled independently, using advanced estimation 

techniques, and the Kepler elements are estimated by combination of the models leading to 

the final positions of the satellites given in the data files. 

 

The IGS generate a number of different orbit products: 

• Predicted orbits with a standard deviation of about 1 m are available in real time 

• Rapid orbits with a standard deviation of about 10 cm are available after 1 day.  

• Precise orbits with a standard deviation of 6 cm are available after 11 days.  

 

The orbit products are available from http://igscb.jpl.nasa.gov in the sp3 format which is 

described in the next section. 

 

Precise orbits are used for a limited number of GNSS applications with high accuracy 

requirements. Typically when the station separation between reference and rover receiver 

in carrier-phase based differential mode is long (more than 50 km), and/or when positions 

are post processed (not real time) so the extra time needed to wait for the precise orbits is 

of lower priority than the better position accuracy obtainable with precise orbits. But also 

precise orbits are very beneficial for research and development purposes. 

 

 

The sp3 format 
The sp3 format is a text data format used for precise orbit information. The most important 

parts of the format is discussed below, a full description of the format is given on: 

http://www.navcen.uscg.gov/ftp/GPS/PRECISE/FORMAT.TXT 

 

 

                             Example of an sp3 data file 

 
#cP2006  5 29  0  0  0.00000000      96 ORBIT IGb00 HLM  IGS 
## 1377  86400.00000000   900.00000000 53884 0.0000000000000 
+   29   G01G02G03G04G05G06G07G08G09G10G11G13G14G15G16G17G18 
+        G19G20G21G22G23G24G25G26G27G28G29G30  0  0  0  0  0 
+          0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
+          0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
+          0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
++         3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3 
++         4  3  3  4  3  4  3  3  3  4  3  3  0  0  0  0  0 
++         0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
++         0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
++         0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
%c G  cc GPS ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc 
%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc 
%f  1.2500000  1.025000000  0.00000000000  0.000000000000000 
%f  0.0000000  0.000000000  0.00000000000  0.000000000000000 
%i    0    0    0    0      0      0      0      0         0 
%i    0    0    0    0      0      0      0      0         0 
/* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:         
/* cod emr esa gfz jpl mit ngs sio                           
/* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE:  
/* CLK ANT Z-OFFSET (M): II/IIA 1.023; IIR 0.000             
*  2006  5 29  0  0  0.00000000 
PG01  14003.983504 -20531.964425   9495.875403     55.833061  9 10  6 152        
PG02  -4857.749099  14526.560859  21435.621040      0.595589 12 11 10 188        
PG03   7573.446990 -22332.880868 -12077.575640    102.321813 11 10 11 144        
PG04 -17065.511518   8524.720000  18582.647681    241.170978 12 11  9 172        
PG05  13397.115513  21415.123417   8278.836680     56.878513  8  8 10 129        
PG06  18691.208577   1177.506743  19057.727051    543.825785 10 12 10 150        
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PG07  20035.215079 -17199.791044   3809.418273    539.473229  9  9 11 116        
PG08 -23035.896854   1859.631763 -13587.696226    -67.199315  9  8  8 186        
PG09  16286.007420  15179.953835 -15243.135657     22.099821 12 11 12 172        
PG10    287.313626  25303.883467   7425.263642     84.134932  9  9  9 168        

etc. 

 

The content of the header is: 

# Date and time for the first position in the file. Also various information on 

reference frame and types of orbits. 

##  Date and time of first position given by GPS week number and seconds of week, 

followed by the time interval (in seconds) of the positions in the file. The last numbers are 

the modified julian day, integer and fraction. 

+ The number of satellites and the corresponding satellite numbers. G indicate a GPS 

satellite; several alternatives are possible e.g. R for GLONASS or E for Galileo. 

++ Accuracy of the satellite orbits. The numbers are exponents and should be 

interpreted in the following way: If the accuracy exponent is 4, the accuracy is 2
4
 mm. The 

sequence of accuracy exponents corresponds to the satellite numbers in rows 3 and 4.  

%c, %f, %i  Indicate that the following numbers are either chars (c), floats (f) or 

integers (i). Most of the spaces in these lines are not used at present, but reserved for 

further purposes. However it should be mentioned, that in line number 13 , the fourth slot 

indicate the time system used for the satellite positions, which in this example is GPS 

time. An alternative could be UTC time. 

/*  Are comments. In this case the comment lines contain information on processing 

centers that contributed with data and preliminary solutions to the final precise orbits. cod 

is for instance an abbreviation for Center for Orbit Determination at the Astronomical 

Institute, the University of Berne in Switzerland. 

 

Following the header, satellite positions are given with the epoch interval indicated in line 

two, which in this case is 900.0 seconds. When the first character of a line is * positions 

for a new epoch in time are following. 

 

* Year, month, day, hour, minute, seconds for the lines to follow. Valid until next 

line starting with * 

 

Following is information on one satellite per line: 

P is for position and clock records, the alternatives are V for velocity and clock correction 

rate-of-change, EP for position and clock correlation, or EV for velocity and clock rate-of-

change.  

 

When the files contain satellite position and clock records, each line starting with a P 

contains the satellite number, the satellite position, X, Y, Z in km, and a precise estimate 

of the satellite clock error (in micro seconds). The last four numbers in each line are the 

standard deviation in mm for the X, Y and Z coordinates, and the standard deviation in 

pico seconds for the clock error.  

 

 

Several flags can be set in the file, and the reader is referred to the full format description 

for details. There are for instance flags to indicate satellite maneuvers or discontinuities in 

the clock corrections. 
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The SP3 format has been revised a couple of times, each time, however, with backward 

compatibility. The version described above is called sp3-c. The first version was sp3-a. 

 

 

GPS orbit interpolation 
Interpolation in the sp3 files with precise satellite position information should be carried 

out using a Lagrange interpolation routine. Lagrange interpolation is based on polynomial 

functions fitted to the data set. Studies referenced by Hofmann-Wellenhof et al. (2001) 

show that a 17. order interpolator can provide mm-accuracy in the interpolated satellite 

positions.  

 

Lagrange interpolation is briefly described by Hofmann-Wellenhof et al. (2001), and more 

thoroughly by for instance Eldén et al. (2004).  
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10. Galileo and GLONASS satellite orbits 
 

The nominal Kepler elements of the Galileo satellites are given in Table 4. The full 

Galileo satellite constellation will consist of 30 satellites. The last three satellites are not 

given in this list, since they will be placed in the orbits at locations where the need for 

extra satellites is largest. 

 

Table 4. Nominal Galileo satellite constellation. Provided by Galileo Project Office, ESA. 

SV# PRN# Semi-major 

axis  

[km] 

Eccentricity  

[-] 

Inclination 

 [deg] 

RAAN 

[deg] 

Arg. of 

Perigee 

[deg] 

Mean 

Anomaly 

 [deg] 

1 111 29600.318 0.00 56.00 0.00 0.00 0.00 

2 112 29600.318 0.00 56.00 0.00 0.00 40.00 

3 113 29600.318 0.00 56.00 0.00 0.00 80.00 

4 114 29600.318 0.00 56.00 0.00 0.00 120.00 

5 115 29600.318 0.00 56.00 0.00 0.00 160.00 

6 116 29600.318 0.00 56.00 0.00 0.00 200.00 

7 117 29600.318 0.00 56.00 0.00 0.00 240.00 

8 118 29600.318 0.00 56.00 0.00 0.00 280.00 

9 119 29600.318 0.00 56.00 0.00 0.00 320.00 

10 121 29600.318 0.00 56.00 120.00 0.00 13.33 

11 122 29600.318 0.00 56.00 120.00 0.00 53.33 

12 123 29600.318 0.00 56.00 120.00 0.00 93.33 

13 124 29600.318 0.00 56.00 120.00 0.00 133.33 

14 125 29600.318 0.00 56.00 120.00 0.00 173.33 

15 126 29600.318 0.00 56.00 120.00 0.00 213.33 

16 127 29600.318 0.00 56.00 120.00 0.00 253.33 

17 128 29600.318 0.00 56.00 120.00 0.00 293.33 

18 129 29600.318 0.00 56.00 120.00 0.00 333.33 

19 131 29600.318 0.00 56.00 240.00 0.00 26.66 

20 132 29600.318 0.00 56.00 240.00 0.00 66.66 

21 133 29600.318 0.00 56.00 240.00 0.00 106.66 

22 134 29600.318 0.00 56.00 240.00 0.00 146.66 

23 135 29600.318 0.00 56.00 240.00 0.00 186.66 

24 136 29600.318 0.00 56.00 240.00 0.00 226.66 

25 137 29600.318 0.00 56.00 240.00 0.00 266.66 

26 138 29600.318 0.00 56.00 240.00 0.00 306.66 

27 139 29600.318 0.00 56.00 240.00 0.00 346.66 

 

Note that the Galileo satellites will be distributed into three orbital planes as opposed to 

the six planes used with GPS. A plot showing the Galileo satellite orbits is shown in 

Figure 11. 

 

The GLONASS satellites are distributed into three orbital planes with semi-major axis of 

25440 km and an inclination angle of 64.8 degrees. The satellites are distributed evenly 

within the orbits, i.e. a spacing of 45 degrees with the nominal constellation of 24 

satellites. The three orbital planes are distributed evenly around the Equator, which gives a 

spacing of 120 degrees between the ascending nodes (Forssell, 1997). Also the GLONASS 

orbits are nearly circular with an eccentricity close to zero. 

 

Figure 12. shows a plot of the GLONASS satellite constellation. Satellites marked with 

red, indicate unhealthy satellites at the time of plotting. 
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Figure 11. Galileo satellite positions.  

Plot based on 24 hour simulation of nominal constellation from Table 4. 
 

Also note that the GLONASS orbits have a higher inclination angle than the GPS and 

Galileo orbits, thus providing a better satellite availability at higher latitudes. GLONASS 

is therefore met with a particular interest in areas of high latitude, for instance in Norway 

where reliable satellite positioning for marine navigation in narrow fiords is important. 

 

 
 

Figure 12. GLONASS satellite constellation of July 17, 2012.  

Plot from prof. R. Langley, University of New Brunswick, Canada 
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