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Foreword

The present publication comes from the daily work and environment of its authors: Practical
geodelic computations for geodesy and topographic cartography. The target group of readers are
people in our own profession, i.e. colleagues using coordinates for their work. The aim is
therefore to give the background for simple implementations of algorithms with high and known
numerical precision. The main topic is the promotion of the conformal transversal cylinder
mapping (Gauss-Kriiger, UTM, etc.) with safe and simple algorithms working even at the poles
of the ellipsoid.

Two very different books have been our inspiration, (1) "Mathematische Grundlagen der htheren
Geodisie und Kartographie” by R. Konig and K.H. Weise (1951), and (2) "The C Programming
Language” by Brian W. Kernighan and Dennis M. Ritchie (1988). The first book is maybe
"mathematisch altmodisch”, but extremely precise and thorough (apparently almost void of
misprints). The other is apparently simple, but it is an outstanding good tutorial introducing a
complete programming language with examples which "make the reader think".

We have out of necessity maintained the rather old-fashioned mathematical form with much less
thoroughness and in spite of the inspiration coming from the book on C in our daily work no
direct C-algorithms are given here.

We shall with pleasure thank all colleagues, who have contributed with corrections and
suggestions for improvement.



Technical Note

The manuscript has been written with Word Perfect (TM). The formulae are mostly given in
frames numbered in parentheses, e.g. (2.4) = the fourth frame in Chapter 2. Individual lines in a
frame are referred to with capital letters, e.g. (3.7.A).

Input/output parameters to algorithms in frames are often indicated by arrows — and - as a help
for the reader.

Angular units are assumed to be in radians, so that the rather clumsy conversion factors to angular
units are not found in the formulae. All linear units are assumed to be in metres or dimensionless.
The actual algorithms based upon the formulae are always using radians and metres, so that the
conversion from or to any other unit, which may be convenient for the user, is done by the
input/output functions.

The concept scale will refer to mapping in "natural size", so that one metre on the ellipsoid will
mostly be mapped as nearly one metre. (The Mercator mapping and mapping to the Gaussian
sphere are the exceptions). In order to get a publication scale of M, e.g. 1:25000, all coordinates
must be multiplied with M, or the equatorial radius of the mapped ellipsoid should be multiplied
with M.

Some of the transformation formulae are not so easily derived, but they are far more easy and
precise in the use than some of the easily derived and most known formulae. We have tried to
reduce the volume of the text by only giving some hints of the development of the formulae,
which frequently requires substitution of one series into another, even in more than one level. All
details may be found in the first volume of R. Konig und K.H. Weise: Mathematische Grundlagen
der hoheren Geodisie und Kartographie (1951), in the sequel referred to as K&W. Unfortunately
the second volume was never published. Another approach (leading to the same result) is given
by L. Kriiger, 1912.

National Survey and Cadastre, Denmark is in the sequel referred to as KMS.
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Chapter 1 1 Introduction

1. Introduction

The geometric geodesy uses many different coordinate systems - both for convenience and out
of necessity. The safe and fast handling of position information - coordinates - is vital for
professional geodetic and topographic users, but also other professional users requiring such
information as a support for their field of work. The present work treats only some few conformal
mappings, which are used in geodetic computation and topographic maps. The non-conformal
mappings, genuine projections etc. are not interesting for such work, but have applications
elsewhere.

1.1 Transformations and Predictions

From a geodetic point-of-view we have 3 classes of transformations and predictions.

1. Regular mapping: The mapping from the real 3-d world and/or a reference ellipsoid
to and from simple (mostly plane) 2-d surfaces, all on the same datum. All formulae may
be derived from mathematics alone. The name mapping is deliberately used instead of
projection, because there is no general geometrical interpretation of the relation between
the point on or near the ellipsoid and its position on the mapping surface.

2. Prediction: The mapping between two coordinate systems with lacking or incomplete
datum definition for one or both. The formulae are developed empirically from known
coordinates in both systems. This is in principle a pure numerical problem of finding
numerical functional relations between corresponding numerical coordinate values. The
name prediction is used instead of transformation in order to indicate that it is an
approximation found from observations, not a mathematical exact derivation.

3. Datum shift: Mostly a linear transformation between two cartesian coordinate
systems, based upon 3 to 7 parameters and - of course - observation data. (Boucher et
al. (1989), Boucher et al. (1992), Ashkenazi et. al. (1996)). Differential formulae may
be used, but they are not attractive from a numerical point-of-view and not convenient
at high latitudes. A datum shift may be regarded as a prediction, but there is a more clear
physical background for it than just a list of corresponding coordinates from different
and maybe less clear sources. However, in some cases the methods used for prediction
may even give a much better datum shift when used directly. The reduction of GPS data
to/from various epochs may be carried out with the algorithms used for datum shifts,
because it is in reality a datum shift.

The inverse mapping, i.e. from the mapping surface to the ellipsoid is just as useful as the direct
one, not least when using the ideas of
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(1) dual transformation functions, where the same function (= procedure or subroutine)
can transform both to and from the mapping surface, and

(2) a parent and child structure of the transformation processes,

as described by Poder, (1989 and 1992).

1.2 Definitions and Names

The following four items are meant for a clarification of some concepts in connection with

coordinate transformation, but admittedly more precision may be needed from a geodetic view
on datums, reference frames and systems.

1. Datum and reference frame: Definition of the position, scale and orientation of a
network or array of stations from observable quantities. Datum was the classical
concept, where the geodetic ("horizontal") coordinates on the chosen ellipsoid referred
to a horizontal datum, see e.g. Moritz (1978). A vertical datum was used for the heights,
in principle independent of the horizontal datum. A reference frame is defined with 3-d
coordinates, see e.g. Boucher et al. (1995), and could be independent of an ellipsoid.
However, an ellipsoid associated with such a frame is needed if one wants to use the
mappings described in the present work.

2. Reference Ellipsoid: A direct mapping from 3-d coordinates to a 2-d surface would
not be convenient if we want the scale of the mapping to appear almost constant.
Projecting the actual points in space on an ellipsoid maintains the actual scale almost
constant, so the mapping to a Euclidean surface will now be easy. A reference ellipsoid
for mapping and transformation applications requires only 2 parameters defining (1) the
size and (2) the shape. General geodesy requires furthermore 2 parameters for the
ellipsoid and the intrinsic definition that the ellipsoid is a rotation ellipsoid. Appendix II
contains information of how to get the subset of (1) equatorial radius and (2) flattening
from the otherwise preferable 4 parameter definition.

3. Mapping (or projection): A relation between the 3-dim coordinates and/or the
geodetic coordinates and the coordinates in the mapping space (mostly a plane, but
mapping on a sphere may also occur). The relation between the 3-d cartesian coordinates
and geodetic coordinates (supplemented by a height) is in reality also a mapping.

4. Coordinate system: A coordinate system is defined by a datum (which includes the
reference system and an ellipsoid) and a mapping. Some coordinate systems are
(possibly out of ignorance} rather incompletely defined, so that e.g. the relations to
geodetic coordinates do not exist.

As a general principle, names of variables related to the ellipsoid have small letters. In order to
avoid confusion with concepts from physical geodesy, the word geodetic is used instead of
ellipsoidal. In the mappings the north-going coordinate is N, Y, ory and the east-going coordinate
is E, X, or x, although some x may be west-going. Geodetic coordinates and spherical ones are
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positive towards north and east. Some "equation engineering” is left to a user with other sign
conventions.

It should be noted that subscripted variable names in series expansions are selected on a
mnemonic basis. E.g. e” is the squared first eccentricity of the ellipsoid while e, is a coefficient
in a trigonometric series expansion giving Gaussian latitude from geodetic latitude.

The corresponding spherical coordinates are named with corresponding capital letters, just
opposite the principles found in K&W. However, the final linear coordinates in the mappings are
called N and E. It is generally assumed that the origo of the coordinate system has rectangular
coordinates (0, 0) and longitudes are relative to a central meridian, so that subtraction or addition
of e.g. the 500 km added to UTM eastings and the Greenwich longitude of the central meridian
is handled by the input/output process.

(1.1) Coordinate Designations

¢ = Geodetic latitude
p = m2 - ¢ = Geodetic co-latitude or polar distance
A = Geodetic longitude s difference from a central longitude
¢ = ¢ + i@ = Complex geodetic latitude
p. = @2 - §, - i A = Complex geodetic co-latitude
ef2
v = —ln(tan(p/Z) [M] ]
1-ecosp
et ef2
= In{ tan(#/4 + @2) {—lﬁlﬂ-@] ] = Isometric latitude
1+esing

¥, = ¢ + i A = Complex isometric coordinates
u =y + ix = Complex (normalized) mapping coordinates
N + i E = Complex (metric) mapping coordinates
z =exp(i@) =iexp(-ip) = Exponential coordinates
dz = izd@, = -izdp,_ = Differential of exponential coord.

The name complex latitude is taken from K&W, who even called the complex isometric
coordinates complex longitude and the transversal conformal coordinates complex meridian arc.
They also used the greek letters A(=M), B, and I for the mappings of Mercator (isometric coord.),
Breite (=latitude), and Gauss-Kriiger, which we consider as a form of mathematical humour.

1.3 Survey and Strategy

The mappings treated in the present work are a very little fraction of possible mappings, but they
are nevertheless some of the most commonly used mappings, and in fact the conformal
transversal (“cylinder") mapping is the only really practical and attractive onme, if geodetic
computations should be carried out in an Euclidean geometry.

It is our opinion that a very high computation precision, exceeding largely the physical precision
of the coordinates, is very desirable when automatic data processing is used. Neglecting this
would mean that the coordinate values from a transformation would depend heavily on the
computing algorithm, so that "new" results could emerge from the pure manipulation of the
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representation system. The contemporary de facto standard of 14-16 decimal digit computation
precision makes this intention feasible.

Chapter 2 introduces the transversal mapping and the co-axial mappings using the original
differential equations to give normalized coordinates, i.e. coordinates without metric units. The
first Gaussian fundamental form is presented with simplifications, because the coordinate systems
are isometric and orthogonal.

Chapter 3 introduces the Gaussian sphere, which is used as a parametric sphere, which enables
us to (1) do away with the complex latitude, (2) solve the inverse mapping problem (i.e. finding
the latitude and longitude from rectangular coordinates) very easily, and (3) show a shortcut to
transformation between the regular mapping coordinates. The name "Gaussian latitude” is
possibly an idiom used at the Geodetic Institute, e.g. in the Geodetic Tables {Andersen, Krarup
and Svejgaard, 1956). We have here generalized this concept to both the coordinates and the
surface.

Chapter 4 deals with the transversal mapping and produces formulae which are reliable and
robust, permitting transformations at arbitrarily high latitudes (including the poles) and a zone
width of up to 9000 km with a precision of mostly less than 0.015 mm and never more than 0.1
mm on the ellipsoid.

Chapter 5 treats the co-axial mappings, which are simple complex functions of the complex
isometric latitude.

Chapter 6 completes the regular mappings by dealing with 3-d coordinates and geodetic
coordinates + ellipsoidal heights. This chapter and Chapter 7 are included in order to show how
two regular coordinate systems on different datums or reference frames can be mapped, but no
thorough discussion on datum shifts 1s given.

Chapter 7 describes predictions of coordinates by means of empirically determined general
polynomials using a very large number of coordinate pairs.

Chapter 8 shows datum shifts via 3-d coordinates, which permits very consistent transformations,
not obtainable by differential formulae. However, the formulae shown here should in practise be
more specific for the sequence of rotation and scaling.

Chapter 9 describes some of the principles used in the implementation of transformation functions
(subroutines) and transformation programmes.

The appendices contain (I) a description of the Clenshaw summation, (II) ellipsoid parameters,
(M) general formulae for orientation, and (IV) the structure of a so-called coordinate label.
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2. Conformal Mappings

The mappings treated in the present work are all conformal mappings. Consequently the word
“conformal” (sometimes also called "orthomorphic”) in tacitly understood, so that e.g. transversal
mapping means conformal transversal mapping.

2.1 Introduction and Thesis

Thesis: A mapping of the ellipsoid for geodetic applications should be a rigorous
representation of a part of the ellipsoid on a plane enabling computations with any de-
sired accuracy when the observations also are mapped precisely on the space con-
sisting of the mapping plane.

It is rather common (o regard a mapping as an approximation of the nature, but it is a more fertile
view to look at a mapping as a precise representation of the curved (non-Euclidean) surface of
the ellipsoid on a plane. Euclidean surface.

A consequence is that the observations also must be mapped into the mapping space (i.e. the
plane). The geodesic - satisfying Clairauts formula - on the ellipsoid is mapped into a curved line
satisfying Schols's formula for the curvature. It is in fact the geodesic in the mapping space, when
the (varying) scale is used in the metric. In practise corrections are applied to the observations of
directions and distances, so that a simple Euclidean geometry can be used.

(2.1) Conformal Mapping

Geodetic coordinates: @, A (geodetic latitude and longitude)
Isometric coordinates: W, A (isometric latitude and longitude)
Mapped coordinates: ys x (y~north, x-east)

General mapping functions: y = y(i, ) x = x(i§ A)

9 . 0 a. ;
AR R SOY.

Cauchy-Riemann:
4 ay 'ai oy Y

(Orientation parameter: J = +1or -1)
Conformal mapping: y +ix = f(g+id)
Inverse conf. mapping: g+ id = f iy + ix)

A complex function of a complex variable satisfying the Cauchy-Riemann differential equations
is called regular or analytic. meaning that it can be expanded in a convergent series. It is a
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nearby thought, that any of such complex functions can be used for conformal mapping - they are
of course not necessarily useful in practise. But one can take advantage of the theory for complex
functions when treating conformal mappings, instead of speaking of projection cylinders, cones,
and planes in normal, transversal, or skew positions.

The orientation parameter j takes care of the orientation of the coordinate axes. Any odd number
of changes of the orientation of the coordinate axes (ellipsoid and/or mapping) switches the value
of j, but retains the analytic properties of the function. The coordinates y and x can be multiplied
with a common constant without disturbing the Cauchy-Riemann equations.

2.2 Conformal Mappings

The number of conformal mapping kinds is here limited to just two:

1. The transverse conformal mapping (''transverse cylinder projection”), mostly known
as "UTM - Universal Transversal Mercator" or "Gauss-Kriiger transversal conformal
cylinder projection". It is in fact the only really attractive mapping for geodetic computa-
tions.

2. The co-axial, conformal mappings, where the 3 types have the normal "Mercator
projection” as the generating function. The mappings are known under the names of (A)
"Mercator projection”, (B) "Lambert conical projection”, and (C) "Hipparchos or
Stereographic projection”. The polar stereographic mapping can in fact be treated as a
special case of the Lambert conical mapping.

The Mercator mapping is a useful tool for the production of the formulae for the transverse
conformal mapping.

The conical mapping is not very interesting for geodetic computations, because corrections for
direction and distance cannot easily be computed.

The stereographic mapping may be used near the poles of the ellipsoid, but the transversal
mapping as presented here works perfect even at the poles. It turns out that the polar stereographic
can be computed as just an ordinary conical mapping.
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2.3 The First Gaussian Fundamental Form

A differential line element ds on the ellipsoid with its components of latitude and longitude
shown in Fig. 2.1 is related to these components by the so-called first Gaussian fundamental form.
See Appendix I for a general orientation of ellipsoid parameters.

Fig. 2.1 The Differential Line Element

Ncos ¢ dA
Md

/ds

The expression (2.2.A) for the ds” is a simplified version of the fundamental form, which here
presupposes that the coordinate axes are orthogonal. The form can be further simplified by means
of isometric coordinates (coordinates with the same, but not necessarily constant, metric in each
point) instead of using geodetic latitude and Jongitude.

(2.2) The First Gaussian Fundamental Form

ds? = MY @) d@F + N*(¢) cos’*pd
= N @) cos*¢p _MAP) d@f + d#
N*(@) cos*¢
dy = "&H(%%:%?&M and K@) = N(Pcosd  gives:
ds? = r{p @y + d) (4)
ds = K@) @y + idd) (B)
R(ds) = HPdy S(ds) = r(p)dA

The expression (2.2.B) with the ds as a complex number is in principle not the Gaussian
fundamental form, but it is very convenient for the simple mappings in the present work. The
product of ds with is complex conjugate is of course the Gaussian fundamental form as given in
the beginning.

The isometric latitude and the longitude form the most fundamental mapping of the (rotation-)
ellipsoid, and we shall use them as the theoretical gateway to the other mappings. The integration
of the differential relation between the isometric latitude and the geodetic latitude provides a
definition of the isometric latitude. but in practise a much more convenient approach is used.
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2.4 The Mapping Derivative

The derivative of a mapping function can be found as the ratio of the complex differential with
modulus m and argument g of the mapping function to the complex differential of isometric
latitude and longitude. The simplification is possible due to the orthogonality and isometry of
both coordinate systems.

(2.3) The Derivatives of the Mapping Function

du = dy + idx (Mapping fundamental form)
ds = r(@dy + idA) (Geodetic fundamental form)
p = mexplig) = an

ds
ay = Pay+ Pai = Zay+ Zaa
Al Gy YAy

Yoy i & -ia—y]dﬂ
y - \w oy 3l o4
r(@) dy + idd)

Using the Cauchy-Riemann differential equations, four expressions for the complex scale y can
be found. Each of these can also be split into a modulus m and argument g (only one of the four
is shown). Any of the four expressions may be used for finding the scale and meridian
convergence, and the choice of scale for a single line on the ellipsoid in fact defines the mapping
completely because of the Cauchy-Riemann partial differential equations.

The line element differentials do not enter in the expressions for the complex scale, its modulus
and argument, because the complex scale is a function of the position (the coordinates) only, but
independent of the direction of the line element. This also means that the angle between two
geodesics is mapped exactly, because both line elements at the apex of the two geodesics are
rotated by the same angle (viz. g the local meridian convergence). The corrections for the scale
and direction of a geodesic used for replacing observations of the length and/or direction of a
geodesic by a straight iine are functions of the local complex scale along the entire geodesic. The
corrections are mapping the observations into a straight line in the mapping plane. The mapping
of the geodesic itself is a curved line, which is of no special interest for the computations in the
mapping space (the plane).

(2.4) Scale and Meridian Convergence

[_;e»;+i_@z) [_ai-,-_@é’_] (@s_Héa) (_Q&-iéx)
_\ow oy) _\oi o4) _\94 oy) _\dy¥ 94

r(¢) r(¢) r(@) r(®)

m = DYPONOY/GY, FXIOY) o aean2(axldy, yop)

r(@)
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The function names "hypot" and "atan2" are used in the programming language C. Hypot gives
the square root of the square sum of the arguments, and atan2 gives the angle (in proper
quadrants) for arguments proportionate to sine and cosine of the angle.

2.5 The Exponential Latitude Function

The so-called complex latitude is introduced in the next section in order to generalize the well-
known formula for the meridian arc length as a function of the latitude into a formula for the
transversal coordinates as a function of the complex latitude. The formulae in (2.5) are simply
valid for any complex number and shows just how to do when sine and cosine have complex
arguments.

(2.5) Exponential Latitude Function

il

exp(i @) =cos¢g +ising,
z¥ = expix @) = cosxgp, + isinxg,

I}

A A g 5
cos k@ = T cos x ¢ cosh x @ - isin x @ sinh x @,
. ¥ -z7% y . .
sin k@, = Srpm—® sin x ¢, cosh x @, + i cos x @, sinh x @,
i

The complex latitude will appear in differential coefficients used for the definition of the
transversal mapping, and thus may be used in the expressions for the curvature radii of the
ellipsoid, V() and W(¢) (see (ITI.1)). The function F(z), apparently introduced by K&W, is
frequently a much better choice than V and W. F{z) uses the third flattening » defined in Appendix
[L

(2.6) Definition of F(z)

an [z+z7)
V() =\[1 +e'’cos’ g = |1 + B _n)z(z 5 ]
:lin\/l +n(zz+z“z)+nz=i/“?it"—?z
= lin J1 + 2ncos2¢) + n?
F@)=1+n@Ez*+zH+n*=010 +nz? ‘(1 +nz?
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2.6 Fundamental Mapping Coordinates

The isometric latitude used in (2.2) can be derived from the geodetic latitude by simple
integration. The corresponding isometric latitude for a sphere is found by putting the eccentricity
e=0.

(2.7) Geodetic or Spherical Latitude — Isometric Latitude

ELLIPSOID
M(p)
- D4y p-m2-¢
N(@)cos ¢
d = 3 1-¢? dp=—( idp +£(d(l+ecosp) _d(l-—ecosp)}]
(1 - e%sin?p) sinp smp 2\ 1+cosp 1 - cosp
€f2
¥=-In mn@/g)(w] } sp=m2= =0
1 - ecosp
> 1 - esing)|? ; .
Y. = In tan(#4 + #2) | —————= +iA 3 fundamental mapping coord.
1 + esing
SPHERE a
¥ =-Intan(P/2) +iAd =Intan(4 + &2) +iA i P=m2=F=0

The 1sometric latitude as a real number and the longitude as an imaginary number form the
complex 1sometric coordinates, from which the other mappings are derived.

2.7 The Complex Latitude

The differential coefficients from (2.2) and (2.7) for the geodetic latitude and the isometric
latitude may be re-used with complex numbers, but now for finding a relation between the
complex isometric coordinates and the complex geodetic latitude mentioned in the preceding Sec.
2.5.

(2.8) Differentials of isometric coordinates and complex latitude

M(p,) g
dp, = ——<_df = ———"¢ ___ zoexplig), d¢ =~ide
v N(@,) cos @, ¢ V@) cos g, ‘ pe S, i il
PRl ) G R Y (L SR LY. )
Fl) @+ 2 zt -1 F@)z
dy. = LI dz‘ +2in(l + 2 HF ) dz

z+i z-i

The integration is easy due to the convenient series expansion for F'(z) given in (II.2).
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(2.9) Complex Latitude = Complex Isometric coordinates

v = f{dln(f—:’i‘) +2i"(”0""”2‘*E(”zx+”zx+z)zzx*Z("zx*”zx-z)z—zx)] dz
z-1 x=1 x=1
. o x ’
= I zZ t1 & _1_ 4 (-n) z?.r—l _ z—z(x~l) +Int
v (z—i) 2i§(1+n)(2x—1)( )

Integration constant: Int

¢£=0ﬂz=1m~;lrc=0wln(1“:] +Int=0=t¢=-i

=1

< gl 58 EL 1y 4(-n)* 2x-1) _ , -2(x-1)
v n( lz—i)+2i§(1+u)(2x—1)(z g

The complex latitude is different from the complex number composed of the ordinary latitude as
the real component and the longitude as the imaginary one, unless the longitude equals nought
as can be seen by comparing the formulae for the isometric latitude and the complex isometric
coordinates. Therefore the formulae for the complex coordinates based upon z, the exponential
latitude, can also be used for finding the isometric latitude as a function of the latitude.

The inversion of the formulae for the isometric coordinates and the complex latitude will be
shown in Chapter 4.

(2.10) Details of the Isometric Latitude Formulae

( .z i) [ . exp(i @,) - exp(-i m2)
In| -i = Inj -1
exp(i ¢c) + exp(-i /m2)

z-1

_ ln[ 1 exp(i(@/2 + m4)) - exp(-i(¢ /2 + m4))

=1 3
i exp(i(¢/2 + m4)) + exp(-i($/2 + 71?’4))) ’ tan(céf/ oo

% (@ *BF Y - 27Dy - sin(2x-1) ¢)
i

ELLIPSOID: y, = Complex isometric coordinates, i = Isometric latitude

- 4 (-n)* .
= Intan(s7/4 2 2x-1
¢. = Intan(4 + ¢ /2) + ,\2::(1 v vt 1)slm(( k-1)¢,)
- 4 (-n)* .
= Intan(74 2 2x-1
¥ = Intan(s74 + ¢/2) + };(1 e e
SPHERE: ¥ = Complex isometric coordinates, ¥ = Isometric latitude
P - ln(—if’; * '] - Intan(74 + B/2)
-
Y = Intan(74 + &2) = -Intan(P/2)
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2.8 The Normalized Transversal Coordinates

The formula for the length of a meridian arc is derived in Appendix III so that it is also valid for
complex values of the latitude. Therefore the central meridian is mapped precisely in the destred
scale of the central meridian, e.g. 1 for Gauss-Kriiger and 0.9996 for UTM. The value of the
Northing coordinate thus becomes precisely the value of the meridian quadrant times the central
scale. However, it is more convenient for the development of the formulae to use normalized
coordinates at this stage, so that the normalized northing (y) at the North Pole becomes 772. The
metric coordinates (N, E) are then found from the normalized (y, z) by multiplication with the
meridian arc unit Q and the central scale m,. This will be dealt with in Chapter 4.

The complex latitude can be computed from the complex isometric coordinates which is the
direct way used for defining the complex latitude, but in Chapter 3 a "back door" to the complex
coordinates from the geodetic latitude and longitude without need for isometric coordinates will
be found.

The complex latitude can of course be eliminated already in the differential equations in (2.8) and
(2.10), so that a direct transformation from isometric coordinates to transversal coordinates. This
method is frequently used, but has the drawbacks that the poles of the ellipsoid are singular points
for the isometric coordinates and the coefficients of the power series expansions are more
complicated that those of the trigonometric series expansions shown in Chapter 4.

(2.11) Normalized Transversal Coordinates

ELLIPSOID:
M(@) ; - : )
du = —= d @, s differential normalized transversal coordinates
L
u=y+ix = E f M(g) d g, ;s Normalized transversal coordinates
0
u=¢ + Xp,sin2Qxd) ; trig. series for u, see (I11.4.4)
x=1
SPHERE (Radius = 1) :
au =d& ; differential transv. coord
U =29, ; transy. coord = compl. sph. coord

The normalized transversal coordinates for the ellipsoid are almost equal the complex latitude
because the curvature radius of the meridian is varying. The corresponding quantities for the
Gaussian sphere are precisely equal because the radius is constant (= unity).

The inverse transformation uses the inverse of the meridian arc formula shown in (IL.5.A).
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(2.12) Complex Latitude from Normalized Transversal Coordinates

4
@, =u+ Xg,, sin2xu) ; see (IT1.5.A)
k=1

2.9 The Normalized Co-axial Mappings

The co-axial mappings treated in the present work are very simple functions of the complex
isometric coordinates, as indicated in (2.13). It is even so, that the stereographic mapping can be
regarded as a special case of the Lambert (conical) mapping, just by putting k equal +1 or -1. Any
factor k different from 0, +1, and -1 will in fact give a conical conformal mapping, but probably
only the values in (2.13) will be of interest.

(2.13) Normalized Co-axial Mappings

=y +ix . s mapping coordinates
. i ; Mercator
u = exp(-k ) abs(k)<l A k20 ; Lambert & Polar Stereographic

=
i

The factors giving metric coordinates from the normalized coordinates will be found in Chapter S.

2.10 A Diagram of Normalized Conformal Mappings

The diagram in Fig. 2.2 shows the relations end sequences of the conformal mappings treated in
the present work. The formal entrance to the mappings goes via the isometric coordinates.

Fig. 2.2 Normalized Conformal Mappings

 Geographical

]

I—-——— Isomatric e s

Complex lat. : Co—axial

I

Trangsversal

f




14 The Gaussian Sphere

Chapter 3.

3. The Gaussian Sphere

The Gaussian sphere is virtually a Soldner sphere with the equator as the latitude of contact and
a radius of unity (dimensionless). It is not meant to be an approximation sphere (the Gaussian
osculation sphere would do such an approximation job much better), but it is a parameter sphere
leading to very convenient formulae. It is of course permitted to regard it as an intermediate
mapping sphere, but the mapping scale expressions will be complicated and uninteresting,
because they will have to first introduce a very awkward mapping scale 1o the sphere and then
restore this mapping scale when going to the intended mapping surface.

The Gauss-Schreiber mapping is using the Gaussian osculation sphere as a very good
intermediate mapping surface, from which the transversal mapping is very simple, but the scale
on the central meridian is not constant, because the scale of the mapping on the sphere varies with
the third power of the latitude difference from the latitude of minimum scale.

3.1 Mapping Ellipsoid == Sphere

The ellipsoid is mapped on the sphere with the simple and virtually unique mapping equations
as shown below. Strictly speaking we should account for the Riemann leaves arising from the
periodicity of the complex functions. The singularity at the poles is not serious, because the
corresponding latitudes could be found by the atan2 function. We call the spherical latitudes
defined in this way the Gaussian latitudes.

(3.1) Elipsoid == Sphere

Mapping equations
Y=y A=A
& = cos(P) d ¥+idA) _ _ cos(D - m Tl
N(@) cos(@) (dy+id2)  N(P) cos(¢) i
Cauchy-Riemann
9¥ _o4 o4 _ _3¥ _,
oy A dy Y
4 €2
exp(- ) = tan(p/2) (3—&5"5—1’] = tan(P/2) (4)
1 -ecosp

3.2 Geodetic Coordinates == Gaussian Coordinates

The Gaussian latitude plays a central rle in the mappings treated here. In principle the relations
in (3.1.A) to the (same) isometric latitude for ellipsoid and sphere provides a unique definition,
but it is possible to give more useful formulae giving conversion both ways without iteration and
with a precision better than 1 micro arcsecond.
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If the complex isometric coordinates on the Gaussian sphere and the ellipsoid are put-equal, then
we have defined a mapping between the two surfaces. The derivations in (3.2) produce the tools
for creating the formulae giving the complex Gaussian coordinates from the complex latitude and

vice versa.

(3.2) Ellipsoid == Gaussian Sphere Using Exponential Latitude

¥ = ¢ ; Equal complex isometric coordinates, see (2.10)
ln[ . VAR = lnl =i z + i % _1_ - 4(__’1)): (Z +(2x-1) _ z(_(zx..l))
Z - z =i 2i ;i A+n)2x-1)

4
_ (-m)* c@r-1) _ o, -2K-1)
% Tmar ¢ P

ln(—iZ+l_] =ln(—i1+t‘] -ilg 3 Z+I_ =Z+l_exp(-i2q)
Z-i g R L=F - BHY

;2 + exp(i2q)) + i(l - exp(i2g)
Z(1 - exp(i2g)) + i(1 + exp(i2q)

ZzZ =

_ ; z(exp(iq) + exp(~iq)) - (exp(ig) - exp(-ig))
-z (exp(iq) - exp(-iq)) + i(exp(iq) + exp(-iq))

2 1 + z 'tang
1 - ztang

tang = g + 2¢° + o(g®)

Taking the logarithm:
P =¢ +In(1 +z"'tang) - In(1 - ztang) (A4)

The components of the relation of Z and z are found from the expression for the isometric
latitude. The additive non-spheric terms are included by the tan g.

(3.3) Expansion of tan q

e
- 2x-1 . B o
tang = ztzx-z 4 i fgr-n T e '
t,=-n +nt ~2pt t,=  +lp? -Zpd 1,
3 30 3
t, = -ip3 s Ly t, = +int
5 15 7

The next step is the series expansion of the logarithms of the nominator and the denominator. As
q is of the order of n, the two terms shown give a precision of 4™ order. The substitution of tan
g in the series expansions of the logarithms is comprehensive but trivial. The final formula for
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the Gaussian latitude as a function of the geodetic latitude is very simple and valid for the
complex latitudes. However, we shall mostly use it for pure real values. The truncation after the
order 4 produces an error of the order of (1/600)°, ie. much less than one microsecond of arc. Note
that the coefficients are real, which of course simplifies the summation, and that the coefficients
depend only on the 3. flattening, », but not on the latitude.

(3.4) Complex Geodetic Latitude = Complex Gaussian Coordinates

Ll S AV Jud PS5 4
(1 + %tan(q)) - ;;L_.,I_LK__L tan(g)

x=1

In@ - ztan@@) = ~Z < tang)

- 7N~ g olx : '
InZ =Inz + Xe, (-——-—2—-“»-) ; Inz = In expi@) = i)
x=1
4
U=@ =¢ + Le,sin2xg, A4)
x=1
Array e[d] = {e,, e, e €5} (B)
ez=-2n+§n2+ §n3— ;—':n“ e4=+—§—n2—~}§n3—1—:n"
eg = - %‘;n"” + %:-n“ €, = 31287, 4

The notation e{4] in (3.4.B) used for an array of the constants e,, e, €5, and ¢; marks e[4] as
different from e representing the eccentricity of the ellipsoid.

The series (3.4.A) can be inverted to give the complex geodetic latitude as a function of the
complex Gaussian coordinates.

(3.5) Complex Gaussian Coordinates = Complex Geodetic Latitude

=&
4
¢ = U + LG, sin2xU (A)
=1
Array G[4] = {G,, G, G, G} (B)
G, = +2n - 2p? - 27 + Bipt G, =+ In? - 2p3 - Bly4
= 3 45 4 3 5 45
G, = ¢ g3 o B4 G, = + 21,4
o 15 35 8 630

The series in (3.4.A) and (3.5.A) are used for deriving the relations between the normalized
transversal coordinates (u = y+ix) and the Gaussian complex coordinates (U = Y+iX), but they
can also be used for transforming between geodetic latitude and Gaussian latitude. If the meridian
of the actual point is considered to be a main meridian, then the imaginary part of the complex
latitude is zero. The real part of the complex latitude for the formulae in (3.4) and (3.5) is then
the same as the geodetic latitude or Gaussian latitude, and the formulae in (3.1) connecting the
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sphere is defined by putting the complex isometric coordinates equal for ellipsoid and
Gaussian sphere. The actual summation is done as Clenshaw summation (see Appendix I).

(3.6) Function CS(e[4], qu)i Geodetic Coordinates = Gaussian Coordinates

¥ o=y ; identic complex isometric coordinates
4
® = ¢ + Ye,sin2x¢ ; Coefficients in (3.4.B)
x=1 ‘
= ¢ + CS(e[4], 2¢) ; Clenshaw sine summation, sée App
A == 1 R

(3.7) Function CS(G[4], 2¢): Gaussian Coordinates = Geodetic Coordinates

¥.=gg +id= Y =¥+iA ; identic complex isometric coordmares ‘. '
: e i

$=& + XG,sin2xP ; Coefficients in (3.5.B)
= @ + CS(G[M], 2 D) ; Clenshaw sine summation, see App. I
A=A Py g e

The transformation shown in (3.6) and its inverse in (3.7) using only real latitudes are
universal tools used for transformations between geodetic coordinates and Gaussian
coordinates treated in the present work. The transformations in (3.4) and (3.5) are used in
substitutions of the complex geodetic latitude in Clenshaw summations with complex
arguments, see (4.3) and (4.4). :

3.3 Gaussian Coordinates = Complex Gaussian Coordinates

The complex Gaussian coordinates gives a transversal mapping, where the central meridian
is mapped with unity scale, i.e. it behaves as if the central meridian is the "equator” and the
normal to the central meridian plane passing through the centre of the sphere is the "rotation
axis". A point P with Gaussian coordinates &, A should be mapped to the complex Gaussian
coordinates . = &, + [ &, '

The Figure 3.1 shows the latitudes, the longitude (difference) and the auxiliary parameter ¢,
which in fact is the virtual latitude, while &, is the virtual longitude in a Mercator mapping,
where the central meridian acts as the virtual equator and the vitual poles are found in the
real equator 90 degrees from the central meridian.

The formulae are based upon spherical geometry for finding &, and . The latter is then
mapped as a virtual y in a normalized Mercator mapping. The formulae use "atan2" and
"hypot" and have all sign rules built in. The formulae are robust so that they will work even
at the North Pole and the South Pole. The value of ¢ should not exceed 40-50 degrees
(corresponding to 4-5000 km off the central meridian on the earth).

The complex transversal coordinates U = Y + iX and the complex Gaussian coordinates $,
= &, + [P, are identical as shown in (2.11).
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Fig. 3.1 The Gaussian Coordinates and the Complex Gaussian Coordinates
N POLE

VIRTUAL N POLE

A |

|
CENTRAL IAN'
\VIRTUAL EQUATOR

(3.8) Function T,: Gaussian Coordinates = Complex Gaussian Coordinates

- INPUT: &, A s Gaussian latitude & longitude
tan &, = tan P
cosA
- Y = @ = atan2(sin @, cos P+cos A)
t = atan2(cos P+sin A, hypot(sin @, cos P+cos.A))
- X = &, = In tan(/4+1/2)
- U=Y+iX=0 +id
U=TJ(D A) ; FUNCTION NAME

The solution of the inverse problem of finding the Gaussian coordinates from the complex
Gaussian coordinates @, = U is likewise based upon spherical geometry.

(3.9) Function T;: Complex Gaussian Coordinates = Gaussian Coordinates

s U=Y+iX = @ +i® ; Compl. Gauss. coord.
t = 2atan(exp(X)) - w2
- A = atan2(sint, costcosY)

- @ = atan2(sin Y cost, hypot(sin¢, cos/ cosY))
(D, 4) = TY, X) s FUNCTION NAME
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3.4 The Back Door Keys

The formulae in this chapter are the "keys to the back door" mentioned in Sec. 2.8. It is possible
to compute the complex latitude from the geodetic coordinates without using the isometric
coordinates and also to do the inverse computation. This is used in Chapter 4, where the complex
latitude s eliminated.

One of the co-axial mappings (Mercator) has the isometric coordinates as its normalized
coordinates, but the two other mappings can be computed without the isometric coordinates, but
with the Gaussian latitude as a tool as will be shown in Chapter 5, and it is even so that the
Gaussian latitude simplifies the computations to/from Mercator coordinates.

Fig. 3.2 should illustrate where the formulae are used in the sequence of the computations, and
show the back doors labelled "Transv." and "Co-axial".

Fig. 3.2 Geodetic Coordinates == Complex Latitude

Direct mapping

$,A: Geodetic coord.

(3.6) l 1 (3.7)
Co-axial e &,A: Gaussian coord. «~= Co-axial
(3.8) | ] (3.8)

Y, X: Complex Gaussian coord.

(3.5) T

Transv. = $.=¢.+ i p,: Complex lat. = Transv.
' Inverse mapping
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4. Transversal Mapping

The basic idea behind this mapping is the generalisation of the meridian arc to the plane of
complex numbers.
(4.1) Definitions for the Transversal Mapping

Point P with geodetic coordinates (¢, A + A,)
Genuine origo: (N, E) = (0, 0)

at ¢ =0, A = longitude of central meridian
Isometric complex coord: Y, = Y +id = Y, A

ELLIPSOID SPHERE

Cmpl. latitude: §, = @, + i @, D =P +id
d co

2. = s(4) (1+n?+2cos(29,)
di, s n)
Norm. transv. erd: u =y +ix U =Y +1iX
du _ M) v _ 4
d¢. @ dd
N+iE = Q u = Q,(y +ix) U =&

0, Q,: See (42)

Fig. 4.1 Transversal Mapping: Transformation Sequenses

Direct mapping

¢,A: Geodetic coord.
(3.6) | 1 (3.7}

&,A: Gaussian coord.

(3.8) | 1 (3.9)

¥,X: Complex Gaussian coord.

(4.3) i (4.4)

N,E: Transversal cooxd,.

Inverse mapping

The direct and inverse transversal mapping follows the sequence of subprocesses shown in
Fig. 4.1, where the complex latitude has been eliminated.
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The formulae given in Chapters 2 and 3 uses normalized, dimensionless mapping coordinates,
which should be converted to/from metric, scaled coordinates by means of the scale meridian arc
unit.

(4.2) Scaling and Normalizing

el g by By s Meridian arc unit
1+n 1 4
m, = 0.9996 ; UTM central scale
m, = 1.0 ; Gauss-Kriiger central scale
Q,=mQ 3 Scaled meridian arc unit
N +iE =(@(+ix)Q, ;s normalized coord = metric, scaled coord
y +ix = (N+iE)}YQ, ; metric, scaled coord = normalized coord

Two examples of the central scale (0.9996 and 1.0) are shown, but it is easy to use any other
scale. The scaling may also be regarded as a mapping with unit scale for an ellipsoid with the
equatorial radius scaled by the central scale m,,

4.1 Geodetic Coordinates = Transversal Coordinates

The complex latitude can be computed from the geodetic latitude and longitude without using the
isometric coordinates as shown in Chapter 3, and in Chapter 2 the normalized transversal
coordinates could be found by using the meridian arc formula with the complex latitude. The
metric, scaled transversal coordinates are then finally found by means of the scaled meridian arc
unit.

The series for the complex latitude from complex Gaussian coordinates (3.5) can be substituted
in the series for the normalized transversal coordinates from the complex latitude (2.11).

(4.3) Gaussian Complex Coordinates = Transversal Coordinates

= s input: Gaussian compl. coord. = Gaussian transv. coord
4
$. = U + LG, sin2vU ; (3.5.4) : = complex lat.
v=1
4
us=g¢, + Eljzaz’rsinzza;éc 3 (211) : = nrmlz. transy. crd.
x:
4 4 4
=| U+ XG,,sin2vU| + Ep, sin2d U + LG, sin2vU
v=1 x=1 v=1
4
u=U+ LU, sin2xU ; A4)
x=1
U,y=+ip-2p2 4+ 5p3 & BLpd py = +Bp2_ 2,3, 557 p4
2 2 3 16 180 % 48 5 1440
- 613 _ 103 4 _ 49561 . 4
Us Tl w0 Us " Teraso "

- N+iE = uQ 3 Nrmlzed. transv. coord = metric scaled transv.
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4.2 Transversal Coordinates = Geodetic Coordinates

All tools for the inverse problem of finding the geodetic coordinates from the transversal
coordinates are also found in Chapters 2 and 3. The only remaining formula is the series for the
complex Gaussian coordinates from the transversal coordinates. This series is found by
substituting the series for the complex latitude from the normalized transversal coordinates into
the series for the complex Gaussian complex coordinates from the complex latitude.

(4.4) Transversal Coordinates = Complex Gaussian Coordinates

~ N E 3 Input: Transversal coordinates
u=N+iE)Q, : normalized transversal coord
4
@, =u+ g, sinQva) ;3 (2.12) : = complex latitude
v=1
4
U=@ = ¢, + l:)leusinZ x¢. 5 (3.4.A) : =~ complex Gaussian coord.
4 4 4
=|u+ Xgq,,sin2vu| + Ye, sin2xju + Xg, sin2vu
v=1 x=1 v=1
4
=u+ Lu, sin2xu (A)
x=1
w,=-3in +2p?-3Ipd+ Zpt w,= -Lnt-Lp3s Bps
2 3 9% 360 43 15 1440
6 480 240 8 161280
- D=0 +i® =U=Y+iX ; Complex Gaussian coordinates

The formulae will have no problems at the poles of the ellipsoid, and it is even so that coordinates
on "the other side of the pole" may be computed. The poles of singularity of this mapping are
situated on equator 90 degrees of longitude from the central meridian.

The last coefficient of the series expansion is of the order of 10°'!, but eventually the hyperbolic
functions in the series expansion will be large. This will occur at distances of the order of 4-5000
km from the central meridian. The scale will here be rather large (1.2-1.5) for a central scale near
unity.

It is customary to add 500 km to the Easting coordinate, and in the UTM standard, Northings
south of the equator must have an addition of 10 000 km. This is somewhat inconvenient, because
the coordinates are not unique, so 20 000 km would make more sense. This 10 000 km ambiguity
is furthermore inconvenient if one wants to use transversal conformal mappings for polar maps.
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(4.5) Parameters for Transversal Mapping

@, = Reference value for the latitude, mostly 0°

N, = Northing at @,, mostly 0 km or 10 000 km
A, = Longitude of the central meridian
E, = Easting at A, mostly 500 km

Q,, = Meridian arc length unit , scaled = m Q
m, = Scale on central meridian

e[4] = Coeff. for geodetic latitude = Gaussian latitude: (3.4) and (3.5)
G[4] = Coeff. for Gaussian latitude = geodetic latitude: (3.6) and (3.7)
u[4] = Coeff. for Normalz. transv. crd. = Gaussian compl. crd.: (4.3)
Ul4] = Coeff. for Gaussian compl. crd. = Normalz. transv. crd.;: (4.4)
(4.6) Geodetic Coordinates = Transversal Coordinates
- INPUT ¢, A s UNIT: radians
A=4-4 ; Subtract central longitude
4
D=¢+ e, sinxrg) ; see (3.6)
k=1
A=A
U= =T, A) ; see (3.8)
4
u=U+ XU, sinQ2xU) : see (4.3.4)
x=1
- N+iE=ug. +N, *iE, ; UNIT: metres
(4.7) Transversal Coordinates = Geodetic Coordinates
- INPUT: N, E s UNIT: mefres
N =N-N, 3 Subtract origo value
E=FE -E, ; Subtract origo value
u=(N+IiE)Q, 3 Normalized coord.
4
@ =U=u+ Xu, sinRxu) ; see (4.4.4)
x=1
(D, A) =T(P) ; see (3.9)
4
- ¢ =@+ LG, sinQxd) ; see (3.7)
x=1
- A=4+ 4 ; UNIT for ¢ and A: radians




Chapter 4. 24 | Transversal Mapping

4.3 Mapping of Observations

The corrections for mapping the observations of directions and distances on the ellipsoid into the
surface of the coordinate system give the possibility of computing in an Euclidean geometry. The
formulae in (IV.2) are reasonably precise, and the extension of the formulae to a higher precision
requires so many more terms, that it might be worthwhile to compute directly on the ellipsoid,
and later transform the resulting coordinates to the actual mapping.

(4.8) Variables for Mapping of Observations

Indices:
stn = station
obj = object

1
) ;(N sm * N obj)

m
1
Em 1 E(Esm i Eobj)
AN o= Nog' = N
4E = Eobj s Esm
¢ = Geodetic latitude
See (II1.1) and (111.4) in Appendix III

G(®) = Scaled central meridian arc length
#G/Q,) = Latitude for scaled meridian arc

_ (1 +e” cos(P))

K(¢) = = L1 Gaussian curvature gauge (scaled)
2(m,c) 2
/2 2 /2 s
do (m, cy
t = Observed direction on the ellipsoid
T = Mapped direction

s = Observed distance on the ellipsoid
S = Mapped distance

m = Local scale in a point
g = Meridian convergence in a point

The formulae give the mapped values corresponding to the geodetic values, i.e. the observed
values on the ellipsoid contingently reduced for deflections of the vertical, height, slope etc. if
needed and desired.

The use of "station” and "object" for distances is quite reasonable, because distance observations
are frequently made in sets like directions from one standpoint to several other points.
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(4.9) Corrections: Geodetic Observations to Mapped Observations

DIRECTIONS:
T =t - AN E, K¢\l -2 B] K(4,)
E, =E, - 4E :
&, = AN,) : ; see (4.8) and (II1.4)

DISTANCES:
$ =sm, (1 +E}K($,) (1 +1E]K(8,)
E; = (E, +—(4EP)

é,, = AN,/Q,) : ; see (4.8) and (I11.4)
The scaled meridian arc length unit:

- a s 8 1,2 , 1,4
Qm“m01+nMo m01+n(1+4n ten) (4)
m, = 1.0 (Gauss -Kriiger)

m, = 0.9996 (UTM)

The corrections are functions of the transversal coordinates, but a parametric latitude appears in
the formulae, so the half Gaussian curvature gauge K(¢) apparently needs a computation of a
latitude, viz. the latitude of a point on the central meridian with the northing N equal to the
northing parameter (and the easting equal to the easting value at the central meridian). The
variation of K is rather small, so a common (mean) value in many cases will be precise enough.
The latitude and the corresponding N for the directions should be evaluated for the 1/3 -point, but
N, can be used instead. The N, can also be replaced by &,,, and it is even possible to use a

s

common value for some hundreds of km, if the desired precision is modest.

The meridian convergence, defined as the angle from the mapping of the meridian in a point to
the direction of the northing axis, can be computed by the formulae in (4.10). If the geodetic
azimuth for a given direction T is computed from the coordinates then both the meridian
convergence and the direction correction must be subtracted. The astronomical azimuth differs
from the geodetic one by the effect of the local plumb-line deflection.

The trigonometric series in (4.10) can also be used for finding the local scale. Unfortunately the
latitude of the point is required for finding the arc length on the central meridian corresponding
to that latitude. The local scale can be found much easier from the formula for scale correction
of a finite line as shown in (4.9) by putting the eastings of station and object equal and assuming
a geodetic side length s of unity. The mapped length S will then be the local scale.

The summation of the trigonometric series as a complex cosine Clenshaw summation is more
convenient than a direct computation of the imaginary part alone.

Note that N is counted from the equator and E is counted from the central meridian.
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The formulae in (4.7) and (4.8) may be simplified further, if the width of the zone (span of
eastings) is sufficiently small, say, 200 km, and if the maximum length of the lines is modest,
say, 10 km. The terms of the fourth order in the formulae for the directions and distances may be
removed, and the trigonometric series used for the meridian convergence may be reduced to the
term with C, or fully dropped. A mean value of K can be used for a span of northings of 400 km.

(4.10) Meridian Convergence (and Local Scale)

y-=NQ., s Normalized northing

x = E/Q, ; Normalized easting

@ = Latitude of the point (N, E)

A =G(dh/0, s Normalized scaled central meridian arc length

MERIDIAN CONVERGENCE:
4 = atan2(sin(y) tanh(x), cos(y))

¢
- F| 2C, cos(2 x(y +ix))
x=l

GEODETIC AZIMUTH (from T = atan2(E,,. - E,, N, - N,) ) :

[

e L (_ AN E, K(¢) (1 -2 g} K(¢.3))) ; see (4.8) and (IIL4)

LOCAL SCALE:
i \/cosz(y) + sinh’(x)

o

4 cos(A)
4 4
exp| #| LC, cos(2 x(y +ix)) | - Lcos(2 kA)
k=1 x=1
C2:+in ~3n2+—3~n3---—--55 n‘ C4:+in2 "‘{‘713""2421'14
2 8 32 1152 16 2 772
Ce = v B3 1,4 C; = o 15 4
480 899 336

LOCAL SCALE (alternative):
o =mo (I +E;K(¢m) (1 +~§-E;K(¢m))

E; = (Ej +L (4EP)
é, = #N,/Q,) . ; see (4.8) and (II1.4)
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5. Co-axial Mapping

The co-axial mappings treated here are based upon
1. The complex isometric coordinates, giving the Mercator mapping, or

2. Exponential functions of the complex isometric coordinates, giving the Lambert
conformal conical mapping and the polar stereographic mapping.

Fig. 5.1 Co-axial Mapping: Transformation Sequences

Direct mapping |

e

#,A. Geodetic coord. j

(3.8) | t (3.7)
(5.3) @D oA Gaussian coord. ____ (5.3)
or | 1 oxr
(500 ¢ pediata . (5.10)

N,E: Co=-axial cooxd.

Inverse mapping

The diagram shows the sequence of dual subtransformations composing a regular transformation
leading to a direct co-axial transformation or a reverse one.

The co-axial mappings are defined by differential expressions to the geodetic coordinates just as
with the transversal mapping in Chapter 4, and the Gaussian sphere is likewise used as a
parametric sphere for convenient formulae.

(5.1) Constants for Co-axial Mapping

@, = Central latitude (of minimal scale)
A, = Longitude of central meridian
@, = Latitude for N, (optional)

@, @, = Stand. parallels (Lambert only)

= Scaled, metric length unit
= Scale at central latitude

Cone-constant (Lambert and polar stereogr.)
Convenience constants for coordinates

o 8w
H

The constants for the co-axial mappings should be computed once before the actual transforma-
tion is executed and stored in structure, which becomes a common parameter for that particular
transformation, see Chapter 9.
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5.1 Mercator Mapping

The complex isometric coordinates are defined in (2.7).

(5.2) Mercator mapping, Scale and Metric Length Unit

3 ef2
g, = In tan(74 + WZ)(}_&M) + i
1 +esing
a = Slegn “f'%) L g ; complex and real scale
@@y +idd) r(@
g =3 =0 i : meridian convergence
S =r(¢) = N, cos(@,) s unit scale at latitude &,
N+ iE =N, +iE, + Sy, ; Mercator mapping
m(@) = V(@) cos(@)/(V(@,) cos()) ; scale at @

The meridians and the latitude parallels are mapped as straight lines, and the scale depends only
on the latitade, being 1 on the latitude ¢, selected for the actual mapping. The minimum of scale
is always on the equator, and the scale varies inversely proportionate to the cosine of the actual
latitude. As the meridian convergence is zero, the loxodrome (or thumb line), which intersect all
meridians at the same angle will be a straight line. The constants N, and E, may be selected for
convenience, e.g. to avoid having negative coordinates. The longitude is relative to a central
meridian, the value of which must be taken into account in the computation.

The formulae for direct and reverse transformation uses the Gaussian sphere as a parameter
surface for convenient formulae.

(5.3) Geodetic Coordinates == Mercator Coordinates
- Direct mapping: (¢, A = (N, E)
A=A4-4 s subtract the central longitude

@ = ¢ + CS(eld), 2¢)
- N+iE=N0+iE0+S(ln tan(d4 + P2) +ilk)

- Inverse mapping: (N, E) = (¢, A
@ = 2arctan(exp((N - N/S)) - 72

& ¢ = @+ CS(G[4], 29

- A=(E -EJIS + 4
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5.2 Conical Mapping

The conformal conical mapping (Lamberts conformal conical projection) is the exponential
function of the complex isometric latitude multiplied with a constant. The complex function
values are finally converted to metric units by multiplication with a constant in metric units.

(5.4) Conical Mapping. Definition

Y, = ¢ +id=-In(an(P2)) + il
-S exp(-k ) = -Sexp(-k ) exp(-ik A)
= - S tan*(P/2) exp(-ikd) = N + i E ; Polar and rectang. coord.
. k .
Complex scale: pu = — 20 * iglE . ESuPD) exp(~ikA)

r(@) @y +idl) (@)
X

Scale: m = kStan'(P/2) (4)
r(®)

Meridian convergence: g = arg(p) = -k A
Inm = InkS) -k ¢ -~ Inr(¢)
dlnm _ —kﬂ/ _ ~M(P)sin(¢) _ (sin(¢p) - k) M(®)

dg dg¢ r(¢) r(@)
2
d;“;’ =0 for k = sin(¢@), where d;;zm = V21(¢} >0

The mapping coordinates may also be regarded as polar coordinates with the radius S tan*(P/2)
and argument -kA, so that latitude parallels are mapped as circles and meridians as straight lines.
(+7/2. Ay) or (-/2, 4,) with 4, as the central longitude of the mapping. The specific longitude
even on the pole gives the definition of the coordinate axes.

(5.5) Rules for P and tan*(P/2)

@ = ¢ + CS(e[d], 2¢) ; The Gaussian latitude
P, =2 - & ; Polar distance from the North Pole
P . =m2 + & ; Polar distance from the South Pole

Assume k < O0: je. -k = abs(k)
tan*(P,/2) = cot*(P,/2) = tan®®(P /2)

Rule for P: P = 2 - & if k<Q)P = 7w - P

The polar distance P should be counted from the South Pole, when the mapping is on the southemn
part of the ellipsoid. The sign of k can be used to do this simply as shown in (5.5). The values of
k, the cone constant, and §, the metric scale unit, determine the final formulae for the mapping.
In principle any value of k may be used, but 0 gives no meaning, and +1 or -1 will actually give
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a stereographic mapping. Here only -1 < k < +1 will be considered. Minimum of the scale is
found at a latitude where the sine of that latitude equals . The value of § is negative for the
southern hemisphere.

(5.6) Scale and Metric Length Unit Defined by 1 Parallel

- Standard latitude parallel: @ _
- k = sin(g,)
P,= 2 - (qu + CS(efd], 29,) ; and P, by (5.5)
kS tan"b“")(PMIZ) (mostl 1)
- m = - mostly m = m, =
() ’
Ni
- S =m (&) (NB: k<0 =8 <0
tan(@ ) tan®® P _/2)

It is seen that the scales for varying latitudes are almost symmetric with respect to the minimum
scale. It is therefore possible to find pairs of latitudes with the same scale, or inversely for a given
pair of latitudes with the same scale to find the latitude of minimum scale, provided that the two
latitudes are sufficiently different.

The constants k and S needed for a conical mapping defined by two latitude parallels are found
by setting the scale at the two selected parallels equal m,.

(5.7) Scale and Metric Length Unit Defined by 2 Parallels

- Latitudes with scale m,: ¢, and @, ; P, and P, by (5.5)
abs(k) abs(k)
5 i i tan“*"(P,/2) 3 tan™*™(P,/2)
r(¢) r(¢,)
i tanabs(k)(Pliz) + tanabs(k)(P 212)
r(@) + r(d)
P X CAZAC)
In (tan(P,/2)/tan(P,/2))
g r(@) + r(4)
k  tan®®P /2) + tan*D(P2)
- @, = arcsin(k)
tan®>®p 12
r(d,)

It is evident from (5.7) that the case of two parallels always can be reduced to one standard
parallel with a minimum scale less than unity.

The most used case with two standard parallels appears to be based upon m, = 1.
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(5.8) Unit Scale and Metric Length Unit Defined by 2 Standard Parallels

In(r(@,)/r(¢)
) *In (tan(P/2)/tan(P /2))
- @, = arcsin(k)
) 1 r(8) * r(#)
Kk tan™®P /2) + tan®OP )2)
_ me = k5 tan™®(P, /2) i (@) + () tan”®(P _/2)
¢ rb,) tan®®P /2) + tan®*®P2)  HS,)

The scale is equalized over a certain interval of latitude, where the two standard latitudes are
selected to this aim, so that the full latitude interval is equalized. However, it is possible to use
two limiting latitudes for the mapped area, so that the equalizing effect over the interval is directly
determined. Conditions like m, my=1 orm,- 1 =1 - mymay be used in (5.7) to give the constants
k and S, which now will be based upon the geometric mean or the arithmetic mean of the
maximum and minimum scale.

It may be convenient to add constants to N and E, e.g. to avoid negative values. The constants
may be selected freely, but may also be related to the actual mapping, so that there is a
computable relation between geographical coordinates and the added constants. An example of
defining such constants is shown below.

(5.9) Choice of Nyand E,

- (‘;bz! 0) = (Nz’ EZ)

@, = ¢, + CS(eld], 2¢,)
= N, =N, + S tan®®(P f2)
~ E,=E

z

s P, by (5.5)

The Lambert conformal conical mapping has earlier been much used for topographic mapping
and is still in use for large international map series as, e.g. the ICAO map sheets. The advantage
1s (maybe) that the map sheets can be limited by circles for the N and S borders and straight lines
for the E and W borders.

The Lambert mapping has also been used for geodetic computations of local control networks,
but the projection corrections for directions and distances are generally rather complicated or
alternatively not precise. See e.g. (Bomford, 1962), for the complicated ones.

The algorithms for practical computation shown in (5.10) are valid both for positive and negative
latitudes, using the rule in (5.5). The algorithm uses the (presumably precomputed) constants k
and § so that it is independent of the mode used for standard parallels.
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(5.10) Geodetic Coordinates == Conical Coordinates

- Direct mapping: (¢, 1) - (N, E)
A=A~ ; subtract central longitude
D=¢+ CS(9[4], 2¢)
P =2 -
if (k < 0} =rT-P ; take supplementary angle
« N=N, - Stan""’""’(P/Z) cos (k A)
- E = E, + §tan®™®(P/2) sin(k 1)

—~ Inverse mapping: (N, E) - (@, A)
P = 2arctan((hypot(N, - N)/S, (E - EpIS)La)
ifk<0) P=nx-P ; take supplementary angle
D=2 -P
¢ = &+ CS(Gl4], 29
A = atan2(E - EIS, (N, - NYS)Ik + 4,

5.3 Stereographic Mapping

The polar stereographic mappings may be regarded as special cases of the conical mapping with
k = +1 for mapping at the North Pole and k = -1 for mapping at the South Pole. The stereographic
mapping with an arbitrary central point different from the Poles is not co-axial and is not treated
here.

(5.11) Scale and Metric Length Unit for Polar Stereographic Mapping

Selected central latitude: @, #+712, initially
absk) = +1 ;p_ = w2 - abs(@,)
= 72 - (abs(¢,) + CS(el4], 2abs(¢,))
. tan(P_/2) (5.6)
o S m ; see (5.
’ rg,)
ef2
+ecos(p,)
ta )| ———m8M8 —
n(,/2) ( 1 -ecos(p )]

N(¢ ) sinp,)

1 1 +ecos(p, ) 2
2N(@,) cos*(p /2) | 1 -ecos(p,)
@, = xm2 now permitted

=kS

=kS

ef2
m, ~kS_-lm 1+e 3¢ = N(zm2) i.e.
2¢( 1-

_ 22
= S :Emoc(u) ;€

The polar curvature radius
k 1+e

1
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(5.12) Scale, N, and E,

0.994 ; Universal Polar Stereogr. (UPS)
E, = 2000 km ; UPS

my
N,

fl

The algorithm in (5.10) for conical mapping may also be used for the polar stereographic
mapping, but the call of a power-function for raising to the power of abs(k) and 1/abs(k) may of
course be skipped. The central longitude is presumably zero, but if needed then it may be included
as in (5.10).

(5.13) Geodetic Coordinates <= Stereographic Coordinates

~  Direct mapping: (¢, A) = (N, E)
P = ¢ + CS(eld], 2¢)
P=m2-@
ifS<O)P=n-P
- N +iE = Ny + i E; - S tan(P/2) (cos(k A} - isin(k 1))

~ Inverse mapping: (N, E) = (¢, A)
D= 72 - Zatau(hypot((l‘\f6 - N)/S, (E - E)/S))
ifS<0) &=-0
@ + CS(G[4),2 D)
= atan2((N, - N)/S, (E - E)/S)Ik

T
il

1
LB
|

The stereographic mapping with an arbitrary central point may present some problems, when the
ellipsoid is mapped, because the curvature varies with the azimuth. The Gauss-Kriiger
stereographic mapping 1s a double mapping to a Soldner sphere followed by a polar stereographic
mapping of the sphere with the central point as the pole.

It has also been tried in some countries to improve the mapping by replacing the Soldner sphere
with a Gaussian osculation sphere. It appears that the factor of 1/4 instead of the normal 1/2 in
the scale variation has influenced people, who regard the scale variation as a distortion, to select
the stereographic mapping in preference to the transversal Mercator mapping for national
coordinate systems.
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6. Cartesian 3-d Coordinates

The transformation from geodetic coordinates to 3-d cartesian coordinates is quite straightfor-
ward. A problem may turn up if the (ellipsoidal) height is not known. The automatic action s to
assume that the point under transformation is on the ellipsoid, i.e. the height is zero. Alternatively
an available "physical" height (i.e. a geopotential number, a normal height, or an orthometric
height) may be updated to an ellipsoidal height by some kind of geoid height or height anomaly.
If the main intention is to preserve the horizontal position information, then rather modest
precision is required for the height component. The algorithm is:

(6.1) Geodetic Coordinates + Ellipsoidal Height — 3-d Cartesian Coordinates
Z, = (N(@) + k) cosd cosA
Z, = (N(¢) + h) cos sin
Zy = (N(@A-A)? + b) sing
= (N(@ + h - e?N(¢p)) sing

The inverse algorithm presented here uses iteration. The quantity N{(¢) + 4 is considered to be one
unknown. It is therefore necessary to compute the value of N(@) after each iteration step to help
the computation of Z;. The present al gorithm requires 3 or 4 iterations, but performs better the
larger the A is.

(6.2) 3-d Cartesian Coordinates = Geodetic Coordinates + Ellipsoidal Height

Nyo= el
2

[72 2
Z, = Z; + Z,

A= atan2(Z,, Z,)

Iterate: (3-4 iterations needed)
{

@ = atan2(Z, + N, Z)

N, = ¢*N(¢) sin ¢
}

ho= @+ NP+ Z2 - N@)  Gsict)

The computation of geodetic coordinates and ellipsoidal heights from 3-d cartesian coordinates
is iterative. Note that N+h is treated as one unknown, giving a fast convergence even if the
ellipsoidal height h is of the order of a satellite height. The only blemish is the floating point
subtraction of N from N+h. The de facto standard of 16 digits computing precision makes this
blemish almost invisible.
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7. Predictions

Predictions are used as substitutes for transformations in situations where a regular transformation
is not feasible, e.g. because a proper datum definition of one or both systems does not exist. The
applications may e.g. be (1) in an adjustment of a network in a system as the Danish System 1934
with GPS data (Engsager, 1997) or (2) providing preliminary coordinates for a network
adjustment.

The name predictions is used instead of transformations in order to underline, that the coordinates
resulting from such a process are based upon empirically determined relations found from
corresponding coordinates in the two coordinate systems and not by a rigorous system of
algebraic formulae. There is a certain analogy with the prediction of the gravity in a point from
known gravity values in a net or array of points, but in this case a background of physical reality
is found.

Problem: For two geodetic coordinate systems, A and B, where a number of stations
have coordinates in both systems, a method is wanted for prediction of unknown
coordinates in one of the systems from known coordinates in the other system.

The prediction of coordinates is a mapping of coordinates (N,, E,) in a System A to coordinates
(N3, Ep) in a System B based on an empirical transfer structure 7, ;. The transfer structure may
be a vector, a matrix, a table, or a file, depending on the type of the prediction function. The aim
is a reasonable precise and consistent prediction of coordinates covering a large area as a whole
national network. It is evident, that the attainable accuracy cannot be expected to be better than
the accuracy of neighbour stations in each system, because the source data has a finite noise.

A subdivision in smaller areas in order to obtain higher precision and/or more simple functions
may be used, but then special precautions may be required in order to avoid inconsistencies or
ambiguities near the borders of the areas. See e.g. (Dinter, Illner and Jiger, 1996). However, the
examples in Sec. 7.5 show what can be obtained for areas of different sizes.

A prediction should be dual, i.e. predict both from A to B and from B to A. It should be noted that
the computation accuracy may pretty well be much higher than the accuracy of the coordipates.
This is useful for the automatic computation checking, because it is then possible to see if a
prediction is attemnpted for a station situated outside the area where the prediction function is
valid.

7.1 Prediction Methods

The Helmert transformation and the affine transformation are two well-known methods for
prediction of coordinates based upon simple formulae with constants determined from
corresponding coordinate values in the two systems, where a prediction is wanted.
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We have used generalization of these methods by means of polynomials of a suitably high degree
- complex polynomials for Helmert transformation and pairs of general polynomials for affine
transformation.

It is assumed that both systemns are in rectangular coordinates. Geographical coordinates are not
isometric, and a multiplication of longitudes with the cosine of a mean latitude will create an
unnecessary discrepancy, which the method would have to cope with. Furthermore, the geometry
on the ellipsoid is non-Euclidean, so that translation in longitude corresponds to a varying linear
size and rotations refer to the Christoffel length (“the reduced length"). The remedy is to use
rectangular coordinates.

The earlier systems for predictions between UTM coordinates and the Danish cadastral System
1934 used complex polynomials of third degree, (Andersson, 1981), followed by interpolation
from the residual differences tabulated in 80 first order stations, (Poder, 1989). The method gave
unique answers, but the consistency was not satisfactory.

Collocation methods have been used as reported by (Ehlert and Strauss, 1990), based upon 300
stations. As we shall produce predictions based upon several thousands of stations, it is assumed
that collocation was not so well fitted for in this case. However, collocation will ensure that all
coordinates used for creating the prediction function will retain their original values.

The methods based upon polynomials will in general give a certain noise in the predicted values
for the coordinates used for the determination of the polynomials. This is the price to be paid for
the relatively simple method. The last implementations were made several years ago at a time
where we were not aware of the non-linearity of the problem as demonstrated by (Teunissen,
1985) and (Borre, 1990). The very much increased number of unknowns - in our case of the order
of 50000 - is no serious problem, because an elimination technique in analogy with that is used
for orientation unknowns and photogrammetric model parameters.

The names of the variables in this chapter are slightly different from the names used otherwise
in the present work.

(7.1) Names of Variables

P(T , N, E) = Prediction function
N,, E, = Coordinates in system A
Ny, Eg = Coordinates in system B

N, E = Coordinates with center values N E, subtracted
T,z = Transfer structure for (N,, E,) = (N, Ep)
Ty, = Transfer structure for (Ng, Ep) = (N,, E,)

7.2 Predictions with Complex Polynomials

A conformal coordinate system can be mapped on another conformal system by means of a
complex polynomial, at least if they are on the same datum in the sense defined in Sec. 1.2,
because they are always derived from the same geographical coordinates. This would so far not
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be of interest here because predictions are intended as an emergency when the datum definition
1s unknown or uncertain. Nevertheless, if both systems are reasonably homogeneous, then
complex polynomials should be tried, because the number of parameters is considerably smaller
than for general polynomials.

(7.2) Complex Polynomials

Ng +iEg = P(T,p, N, Ep) ;s General prediction function
d
Ny, +iE, = k);ﬂ((NA - Ny H(E, - EQf R, +il,)
T = {Ryy Tos Riy Ly Ryy Ly « « o « Rp 1}
N,, E, = Center ("mean") value of coordinates

The prediction function will in this case be a computation of a complex polynomial, and the T-
structure will be the coefficients of a complex function and possibly (N,, E,), some centre
coordinates to be subtracted from the input coordinates for numerical reasons.

The summation of a polynomial may give a floating point overflow if the input coordinates are
widely outside of the area covered by the prediction. Therefore some limit for permitted
coordinates may also be included in T,; to be used for trapping a floating point overflow and
calling an alarm routine instead. The prediction functions used in practise are dual, just like the
regular transformation functions.

The summation algorithm, a Horner scheme, is shown as a piece of C-code taken from the KMS
transformation system. The 7 structure may be declared as-"double T[2*(d+1)]". The input
coordimates y, x is relative to a centre. The values of N are also returned as function return values,
so that the function call may be used in arithmetic statements.

TXT 7.2 Functiom cpol

double cpol(double *TC, int g, double y, double x, double *N, double *E)
% %/
{

double  *tcp;
double R=0.0,1=0.0,7;

for (tcp =TC + 2*g + 2; tep > TC; ) {
Z =x*R + y*I + *--tcp;
R = y*R - x*I + *--tcp;

1=2Z;
}
*N=R;
*BE=1;

return (R);
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7.3 Predictions with General Polynomials

Using general polynomials instead of complex polynomials means that the mapping is no longer
assumed to be conformal. The polynomials in two variables used for prediction have only
coefficients up to a maximum degree as shown in the example in (7.3), where the maximum
degree is 3.

(7.3) Polynomium with max. Degree = 3

Qxy) = (po,o & Epu,l ¥ Ezpo,z * E3po,3)
+N (o + Ep, + Ezpm)
+N2(Pz,o * Epy))

Ny,

The common, complex prediction function is replaced by one function for each coordinate, so that
the prediction functions become general polynomials in two variables truncated to a maximum
sum of the powers of the variables as shown in (7.4), where the matrices have zeroes when the
sum of the powers of the variables exceeds the selected maximum degree.

(7.4) Prediction with General Polynomials

Vi ={, NN, N3, .. NG Ve = {1, E, EL E3, ... EY)
Ng = PISY, N, E); E, = P(TY, N, E);
DIM(T) = d+1,d +1) DIM(TE) = @+1,d+1)
r*** .k %k r*** e . K Kk
* ok x ., .. % % { kK ok * %
* kX * 0 0 L T I |
Tiﬁ)z{. . L] L 3 * - - '} TA(?=<I * . - 2 LA ] L] . 0}
* x x ., ., 000 * x % ., ,,0 0
%0 ....000 «*+0....000
«00....00 0] * 00 ....000
Jtksd ) Jrhk<d )
Ny =Vy Ty Vp= L m,NE* E, =VyT®V, - T ¢ NE
=0, k=0 j=0, k=0

The transfer structures T are quadratic matrices, but all elements below the bidiagonal are zero
as indicated in (7.4). The elements with coefficients are marked by a *. Each row in the matrices
contains the coefficients of a polynomial in one of the coordinates, and the values of these
polynomials are the coefficients of a polynomial in the other coordinate. The maximum degree
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of the sub-polynomials is thus less or equal 4. The total number of coefficients is (d+1+1)d+1)2
for each coordinate, i.e. a total of (d+2)(d+1) for a prediction. The matrix is in practise placed in
a one-dimesional array without the given zeroes. The summation can be made by a double Homer
scheme as shown in the piece of C-code.

The coefficients of each polynomial are arranged in a linear array, and as each coefficient only
is addressed once, then a simple backward counting will point at the proper element when it is
needed.

TXT 7.3 General Polinimial Summation

Function call:
Ng = gpol(T,,™, d, N, E); /* Prediction of N, */
E; = gpol(T,;™, d, N, E); /* Prediction of E, */

Function gpol:

double gpol(double *TC, int g, double y, double x)
/% *f
{

double *ptc, hsum, psum;
int r,c

ptc=TC+ (g + 2)*(g + 1)/2;
for ( psum = *--ptc,r=g;r>0; r--) {
for (hsum = *--pte, ¢ = g; ¢ >=r; ¢--)
hsum = y*hsum + *--ptc;
psum = x*psum + hsum;
}

return (psum);

}

7.4 Determination of the Coefficients

The determination of the coefficients of the polynomials uses pairs of coordinates for the same
station in the two systems in a least squares adjustment. Each pair gives two equations, which
may be immediately transferred to the normal equations, so that they do not have to be stored. The
equations are linear, but it may be an advantage to repeat the solution in order to test for errors
and monitor the normal equations for computing noise. The right-hand side of the equations in
(7.3) therefore contains the prediction function, so that the residuals after the first pass through
the normal equations can be compared with the standard deviation from the adjustment.

The C-function cpow will produce the successive powers of y + ix, separate the real part and the
imaginary part and place them in the observation equation matrix.

The degree of the polynomials may be started with a low value, and then increased in steps of 1
until the standard deviation no longer decreases, i.e. when the natural noise of the coordinates
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and the lacking conformity of mapping is apparent. Clearly only a reasonable degree is realistic.
It is found in practise that no more than degree of 5 for complex polynomials is realistic. The
inverse prediction should of course also be found, so that an active control always is available.
The inverse polynomial may be found by repeating the adjustment with swapping of the two sets
of coordinates, or by direct inversion of the polynomials.

(7.5) Observation Equations and Recursion Formulae

5, . . 0

Rk(l U: k(l)+ ARk(I) R;SJ e 0
I+ i 0,

Ier 1) = kﬂ) 3 ‘\f:l) I‘(:) - 0

d
Z((y +ix)) AR, - B(y +ixf) AL) = N, - cpol(T, d, y, %, &N, &E)
k=0

d
kg(my +ix)) AR, + M(y +ix)) AI,) = E, - E,
Recursion for (y +ix)': (v +ix)f =(y +ix) (y +ix)*?

Hy ~ix)) =y My +ix)}) -x Qo +ixfY
Ay +ix)f) =y By +ixf ) +x My +ixkT)

The coefficients of the general polynomials can be found by a simple least squares adjustment.
The observation equations are linear, but it is useful to iterate the solutions, not least if some kind
of error snooping or blunder defence is used. Therefore the word "centre value" instead of
‘mean value” is used, because some of the coordinate data may be down weighted during the
blunder defence actions.

The coefficients of the "observation equations” are y and x in the powers and combinations found
in the polynomials. The normal equation matrix is the same for the finding of the two
polynomials, so only the right-hand sides and the solutions are belonging to the polynomials for
y and x, resp. The standard deviations of unit weight delivered will provide an indication of the
quality of the prediction, and the inverted matrix will give information of how well the
coefficients are determined.

The approach is to start with finding the coefficients for polynomials with a relatively low degree,
say, 3-4, and by and by increase the degree until the standard deviation of unit weight becomes
stationary. This should happen not later than at a degree of 4-6 for complex polynomials and 10-
12 for general polynomials. The condition number of the normal equations increases with the
degree, and finally the matrices become singular. Using the IEEE standard double floating points
with 15-16 decimal digits precision this will occur at a degree of 15. The redundancy of the
material should be very high, and certainly not less than 90%.

Both algorithms shown in TXT 7.4 and 7.5 will map the coefficients on a one-dimensional array.
The mapping for the general polynomials neglects all elements below the bidiagonal of the
matrices shown in (7.4).
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TXT 7.4 Coefficients for Complex Polinimial Determination

void cpow(double y, double x, double *cy, double *cx, int g)
¥ */
( ‘
int i
double R=1.0,1=0.0, Z;
¥(cy++) = R; *ey++) =-I;
*(ex++) = I; *(ex++) = R;

for(i=1lji<=g;i++){
Z = R*y - I*x;
I =R*x + I*y;
R=7;

*(ey++) = R; *(ey++) = -I;
*(ex++) = I; *(ex++) = R;

TXT 7.5 Coefficients in General Polinimial Determination

void gpow(double y, double x, double *cy, int g)
/¥ */
{

int r,c;

double R, C;

for(R=1.0,r=g;r>=0; R *=x, r--)

for(C=R, c=r;c>=0;C*=y, c--)
*eyt+) =G

}

7.5 Examples

Predictions have been used in practise for relating the coordinates in the cadastral Danish System
1934 and the UTM ED50 system used in the topographical mapping. The areas Jylland-Fyn,
Sjelland, and Bornholm have each a set of general polynomials for both ways. The internal
computing consistency is here better than 1 mm, but the standard deviation of a prediction is

about 2 cm.

A similar result for prediction between ED87 and EUREF89 for the whole SCAN block

(Denmark, Norway, Finland, and Sweden) produces a standard deviation of 5 ¢m.
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The last example 3 is the prediction for a special coordinate system dedicated to the Store Bzt
Bridge construction.

1. ED50, utm32 == s34j: utm zone 32, area 400*250km, general pol., degree 11, 2*¥78
coeff, 24000 stations, redundancy: 99.69 %, standard deviation: 2 cm

2. ED87 == EUREF89: utm zone 33, area 2000*2000km, general pol., degree 5, 2*21
coeff, 5000 stations, redundancy 99.58 %, standard deviation 5 cm

3. ED50, utm32 <= SB-projection: area 30*15 km, complex pol. degree 3, 8 coeff, 300
stations, redundancy 98.7 %, standard dev. 2 cm.

7.6 Symmetric Prediction Functions

The observation equations shown above assume that only one of the two sets of coordinates is
treated as observations, while the other is assumed to produce the "exact" coefficients. As two
sets of coefficients are determined independently ("direct” and "inverse"), both sets of coordinates
in turn play the role as observations and coefficient source. It tums out that the standard deviation
for both 1s almost the same. However, it is rather simple to implement the ideas of symmetry put
forward by Teunissen (1985).

(7.6) Non-linear Observation Equations

, . OPOL(.)
n,y £ ay
B . JdPOL (....)
", x
_ OPOL....)
De,y = 2y
, . FPOL(.)
-t ox
D, 4y +D,  Ax + X'C, Ac = Ny- POL(....)
D,Ay +D,_Ax + XC, Ac =E_ - POL(...)
(Al &x e B 4
4y =N, -y
Ax =E, -x

The quantities y and x are then considered as elements in the adjustments. Accordingly there will
be 2 observation equations and unknowns more for each pair of coordinates. In one of the
examples shown about 50000 more unknowns will appear, and for general polynomials both
systems must be solved simultaneously in a2 common set of normals. The observation equations
now must include the partial derivatives of the coordinates with respect to the y and x. It is rather
easy to find the numerical values of the derivatives simultaneously with the Horner summation
of the polinimial.
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The POL,(....) and POL,(...) in (7.6) represents the real part and the imaginary part of the value
of the polynomial in the complex case and the N-part and the E-part for the general polynomials.
The summations of C,4c and C,4c represent the observation equations used in the linear case,
and termns with the partial derivatives is the part corresponding to the elements v and x. Due to the
non-linearity some preliminary value of the polynomial coefficients should be found from the
linear approach described in the preceding sections.

The redundancy is not changed, because the increased number of unknowns is followed by
exactly the same increase of the number of observations.

The normal equations can be handled rather easily by a very simple artifice. When the first
observation equations for each pair of coordinates are formed, the two unknowns corresponding
to v and x can be eliminated, because no further contributions from these observation equations
will appear. This is a well-known artifice for handling unknowns like orientation unknowns and
model parameters in network adjustment. The effective dimension of the normals is therefore
only some few hundreds in the worst case, but it should be noted that the general case can no
longer be treated as two independent sets of normals.

7.7 Concluding Remarks on Predictions

Prediction may be regarded as an emergency method, when more regular methods fail. It may
have been used earlier for producing coordinates from an existing network adjustment in order
to save a re-adjustment in the desired system. The available software for network adjustment
today makes a re-adjustment of some thousands of stations to be a fairly easy and almost
automatic running job, so if the observation data is available then a total re-adjustment will
replace the prediction with production of coordinates from their natural source: observations.

One may in fact regard the observations as the original coordinates - they do actually coordinate
two or more stations - and (in order to increase the confusion) regard the computed coordinates
as a kind of derived observations giving the position of a point relative to an origo.

The most likely application of an established prediction function now and in the future are:

I. Production of preliminary coordinates for the start of a network adjustment in a
desired system when (preliminary) coordinates only are available in different system(s).
The required precision for preliminary coordinates is modest, and prediction is a much
faster method for preliminary coordinates than, e.g. using preliminary, linear observation
equations. Coordinates which should remain fixed in the adjustment should never be
predicted.

2. Producing coordinates in a - possibly obsolete - system when the original observation
data is not directly available for a re-computation. A good prediction between EUREF89
and ED50 could give reasonable ED50 coordinates for a new station determined in
EUREF89.
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8. Datum Shifts

Regular datum shifts can be implemented in several ways, many of them based upon differential
formulae due to Vening Meinez, de Graff-Hunter, and Molodensky (HEISKANEN and MORITZ,
1967), (DOD, 1993). However, the direct method of computing 3-d cartesian coordinates, which
can be transformed by a 3 to 7 parameter linear transformation, has the advantage of rigorous
formulae void of high latitude problems and with an easily obtainable computing precision better
than 50 microns. On the other hand, a datum shift is a "prediction”, where the physical precision
never will be better than the precision of the observation data.

If a datum shift is small then the sequence of translation, rotation, and scaling is irrelevant, but
otherwise one must decide the sequences to be used for "direct” and for "inverse”. The formulae
in (8.1) are simple illustrating approximations of a more precise approach with 3 consecutive
rotations, a scale change and a parallel shift. The practical solution is of course to use the rigorous
7-parameter formulae giving a safe numerical precision in all cases and with contingently unused
parameters kept fixed to the value of nought.

It is recommended that all communications concerning datum shifts are given not only with the
numerical values of the parameters but also with the numerical values of the formulae, because
the sequences of translation, rotation, scaling, and sign conventions are critical Jor the numerical
congsistency,

The subscripts 1,2, and 3 in (8.1) correspond to the conventional X, Y, and Z- axes.

(8.1) 3-d Coordinate Shifts

Given system: X = Xp X X)
Wanted system: Y = ¥, Y, Y)
Translations:  z = (z,, z,, z,)
Rotations: 0y Oy Oy
Scale (change): m
Direct datum shift:
Y, Lt 6, o, X, Z
Gl =ty b am oo X + g
5 ~0, ~&, 1 +m X, 24
Inverse datum shift:
X, L=-m -ey -u Y, =&
X, = o 1-m -q Yo = B,
b, 6 o, o L=m] \¥, -z
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The datum shifts presented in Table 2 are based upon the logical concepts of parent datum and
child datums. The datums are arranged in a parent level, where any datum shift is (virtually)
possible, and a child level, where only datum shifts to or from the parent level are possible. Using
a chain starting from child level, passing the parent level, and ending in a child level, any shift
1s feasible with relatively few definitions of shifts.

As an example of a block of 4 parent datums as used in earlier the KMS-systems we have

1. WGS84 (=W)
2. ED50 (=E)
3. NWLSD (=N)

4. EUREF89 (=1U)

The parent datums can be reached from any datum or reach any other datum. In principle any
parent datum goes to any of the other 3 parent datums, but in order to avoid inconsistencies a
strict sequence control is used - hidden to the ordinary user. The implementation is the usual
state/action technique as shown in table 2.

STATE = 0 1 2 3
INPUT = | WGSS84 ED50 NWL9D | EUREF89
OUTPUT { (W) (E) (N) U)
WGS84 OUT/0 E-W/0 N-W/0 U-W/0
ED50 W-E/1 OUT/1 N-W/0 U-W/0
NWL9D W-N/2 E-W/0 OUT/2 U-W/0
EUREFS9 | W-U/3 E-W/0 N-W/0 OUT/3

Table 2: State/Action Table for a parent datum system.

As an example W-E/1 means do a datum shift from WGS84 to ED50 and go to state 1. OUT and
unchanged state means that the desired datum is reached. It is seen that only 3 dual datum shifts
are needed, wiz. the 3 dual relations to WGS84.

All other datums in the implemented systems have one of the four as a parent datum, so that the
datum chain at most has three steps: (1) the input datum, (2) its parent datums, and (3) the output
datum. The datum shifts operate in 3-d cartesian coordinates, so that any system must be
transformed to that before the datum shift takes place, giving the result in 3-d coordinates, which
if needed should be transformed to the desired output system.

The datum shifts as presented here or by the differential formulae is only a linear approach. A
common datum shift for a whole continent may therefore need local "corrections”, i.e. some kind
of prediction, but not necessarily by the simple methods outlined in Chapter 7.
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9. Implementation

The actual implementation of transformations (since 1988) at the KMS is based upon the
programming language C, but it is assumed that almost any language may be used. The earlier
implementations used algol, but certain parts have also been programmed in FORTRAN, Pascal,
and PL1. Various compilers have been used, for UNIX the ANSI standard versions from SUN,
for Linux the GNU C and for DOS, windows etc. the Turbo-C.

The complete system consists of more than 50 functions with a total of more than 20000 lines of
code, including dedicated input/output functions. The production and maintenance with UNIX
and Linux uses the make-facility supported by awk-code for automatic inclusion of all needed
modules.
The main components of the system are:

1. Coordinate descriptors and the input/output modules.

2. The transformation and prediction modules.

3. Service modules for initialization and error reports.

4. The transformation programme.
The underlying idea is to join the transformation modules as an independent function available

for programmes requiring transformation and to compose the transformation programme with this
same function plus what is needed for input/output and service functions.

9.1 Coordinate System Descriptors

The coordinate systems are described in so-called coordinate labels. A coordinate label contains
a description of all parameters needed for the handling of the coordinates:

1. The name of the coordinate system in short form (the "minilabel”), e. g.
utm32_euref89 for UTM zone 32 coordinates in the EUREF89 system.

2. The internal enumeration of the coordinate system, the ellipsoid, the datum, and the
parent datum. (Users and most programmers will refer to the system names and will not
have to know the enumeration).

3. Parameter values for the ellipsoid, transformation constants, and datum shift
constants, etc.

The size of a coordinate label is about 500 bytes, being defined as a structure in C. The Appendix
IV contains a listing of the structure.
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The coordinate labels are initialized at run time, e.g. from forerunners of a data stream or by user
commands, and an output stream of coordinates is always preceded by a forerunner describing
the coordinates. Similar labels exist for other data. The label system comprises:

1. Coordinate labels.

2. Height labels.

3. Geoid labels.

4. Adjustment result labels.

5. Job definition labels.

6. Observation labels.

7. Identity labels.

8. Stop label.
A label is preceded by a # (except item 4 above) for identification. Only item 1 is used for
transformation, and all other data types may be skipped if they occur in the data stream for the
transformation.
A transformatton may thus be defined by a pair of coordinate labels defining the input system and

the output system. It is then the task of the transformation system to find a sequence of
transformations needed or contingently to reject the transformation as impossible or illegal.

9.2 Internal Transformation Functions

The major parts of the transformations are made by means of three functions:

1. ptg: Mapping Coordinates == Geodetic Coordinates,

2. gtc: Geodetic Coordinates == 3-d Cartesian Coordinates.

3. cte: 3-d Cartesian Coord. == 3-d Cartesian Coord. with Datum Shift.
The first two has no built-in strategy and will simply transform the input coordinates to the output
coordinates, assuming that the coordinates are on the same datum. The functions are dual,
meaning that they will transform both ways as controlled by a direction parameter. The ptg is
called thus:

res = ptg(c_lab, direction, CN_in, CE_in, &CNout, &CEout, text, err_file);
where c_lab 1s a coordinate label for the actual mapping, and the direction parameter is +1 for

mapping = geodetic, and -1 for the opposite. The input coordinates are (CN_in, CE_in), and
(CNout, CEout) 1s the output. The text is a user defined text which will be included in a
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contingent transformation error report in the err_file. The value of the transformation is 0 for a
successful transformation and an error number in case of error. The coordinate units are metres
or radians corresponding to the type of the coordinates.

The gtc is similar, but has 3 coordinates both in input and output. A value of direction > 0 gives
transformation from geodetic coordinates supplemented with an ellipsoidal height to 3-d cartesian
coordinates. A value < 0 gives the reverse transformation. The label need not be a descriptor of
a geodetic coordinate system or a 3-d system. A label describing the mapping (on the same
datum) suffices, because only the equatorial radius and the flattening are needed. The default
action in case of a missing input height is to assume that the point is on the ellipsoid, i.e. the
ellipsoidal height is zero. If only orthometric heights or normal heights are available, a conversion
to ellipsoidal heights by means of geoid tables is automatically invoked (if possible).

The ctc function has a certain built-in strategy using the datum shift parameters of the coordinate
label, which will transform to/from the parent datum defined in the label. The call is:

res = cte(in_lab, outlab, X_in, Y_in, Z_in, &Xout, &Yout, &Zout, text, err_file);
The ctc has a strategy and the needed constants for transformation between the parent datums of
the input and the output systems. The function can hardly be called dual, but it will nevertheless
always reverse the transformation so that the reverse result can be compared with the input.
The mappings handled in this way comprise:

1. Transversal Mercator (UTM, Gauss-Kriiger)

2. Co-axial Conformal Mappings (Mercator, Lambert, and Polar stereographic)

3. The Gauss-Kriiger stereographic mapping (with an arbitrary central point)

4. Equivalent mappings (Sansom-Flamsteed, Mollweide, Lambert cylindric)

A transformation from a given mapping on a given datum to a wanted mapping on a wanted
datum can be performed in this way:

res = ptg(in_lab, +1, ... /* mapping = geodetic */
res I= gte(in_lab, +1, ...  /* geodetic = cartesian */
res = ctc(in_lab, outlab, ... /* datum shift */

res I= gtc(outlab, -1, ... /* cartesian = geodetic */
res I= ptg(outlab, -1, ...  /* geodetic = mapping */

The very simple transformation between two conformal mappings on the same datum {e.g. from
one UTM zone to another one) can utilize the fact that the internal transformation between
Gaussian coordinates and geodetic coordinates can be skipped. This is signalled by using 2
instead of 1 for the direction parameter.

res = ptg(in_lab, +2 ... /* mapping = Gaussian */
res |= ptg(outlab, -2, ... /* Gaussian = mapping */
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The input coordinates are always called by value and the output coordinates are called with
reference (therefore the &-operator), so that the same coordinate variable names may be used for
input and output in a call.

9.3 Local Subsystems (dk_trans etc.)

The predictions between the non-regular systems are carried out in local subsystems, which are
implemented with a state/action table for the selection of legal sequences of transformations and
predictions (and alarms for illegal sequences). One specific coordinate system for each subsystem
is the gateway to the regular systems, and the subsystem function may also be used as a
freestanding transformation system, but they are of course also included in the unitrans function.

The local subsystems comprise:

1. dk_trans
(1Y utm32_ed50 (Gateway)
(2) utm33_edS0
(3) geo_ed50
(a) s34; = System 1934 Jylland
(b) s34s = System 1934 Sj=zlland
(c) gs = General staff conical mapping (Jyll. + Sjzll.)
(d) geogs = General staff geographical crd. (J + S)
(e) kk = Local system for Copenhagen
(f) os = Old cadastral system in Sgnderjylland

2. bo_trans
(1) utm33_ed50
(2) utm32_ed50 (Gateway)
(3) geo_ed50
(a) s45b = System 1945 Bornholm
(b) gsb = General staff conical mapping (Bornh.)
(c) geogsb = General staff geograph. crd. (Bornh.)

3. fe_trans
(1) geo_euref89
(2) utm29_euref89  (Gateway)
(a) fk54 = Conformal Conical, Farg Datum 1954
(b) fu50 =UTM zone 29, European Datum 1950

9.4 The Universal Transformation Function

The individual transformation and/or prediction functions are modules in a common function
unitrans. This function may be called in the various programmes needing transformations, and
of course also in a transformation programme as the kmstr{x], where x is the version mumber,
at present 4, going to be replaced by version 5.
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Fig. 9.1 Parent and Child Structure

Parant

{geoc)

Child 1 Child 2

(utm 32) {dm)

The unitrans and all the subsystemns are based upon a tree structure for the transformations. The
background for this is that any transformation must have only one common specific path of
transformation sequence connecting the two coordinate systems for both directions of
transformation. Predictions will generally not have a physical precision better than 2 cm (in spite
of an internal precision between direct and reverse prediction better than 1 mm), so if two
different paths were used, then coordinates moved around in the transformation system could
accumulate the systematic errors in the prediction functions (Poder, 1992).

Fig. 9.1 shows in a very simple example a detail of the tree structure used for two regular systems
on the same datum (EUREF89). It is seen that a transformation from UTM zone 32 to a Mercator
mapping (dm) is done in two steps:

1. UTM zone 32 = Geodetic coord.
2. Geodetic coord = dm.

The input label is here #utm32_euref89 and the output label is #dm_euref89. As each label
contains all constants needed for transformation to/from geodetic coordinates, a call for
transformation with the input label as a parameter may give geodetic coordinates. A subsequent
call with the output label as parameter will produce the dm coordinates.

If the input and the output are on different datums then a datum shift is needed. Therefore 3-d
coordinates (X, Y, Z) are computed from the geodetic coordinates and the actual height if
available (or a default value of zero).

Unitrans has a table of the regular systems used as the gateway to the subsystems enabling it to
find a path leading to the proper prediction function in the subsystem. Unitrans also includes
service functions for computing the geoid height (or more precisely the height anomaly), so that
normal heights or orthometric heights may be used or computed instead of ellipsoidal heights,
which also may be used or computed. If no height is given but nevertheless needed then an input
ellipsoidal height of zero is used as default. The output will then be coordinates of a point which
in general has a finite height over the ellipsoid of the output, but the effect on the horizontal
coordinates (latitude and longitude) is generally less than 1 mm.
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The unitrans is thus the general purpose transformation function, which may be used both in a
general transformation programrme and also may be used in programmes for network adjustment,
data base queries, plotting programmes, etc. The unitrans requires initialized coordinates labels
describing the input and output. All other internal tables are initialized and maintained by unitrans
itself.

9.5 The Transformation Programme

The transformation programme is based upon the unitrans function. It includes input/output
functions for conversion between the text form of the station numbers and coordinates and their
internal representation, The list of input data must be preceded by a coordinate label describing
the input coordinate system. The desired output system is defined by its coordinate label given
as an option in the programme call. Other options include (1) a report of the input coordinates
(placed in "reading brackets"), (2) geoid heights, (3) names of non-standard geoids, (4) number
of decimals (other than the default), etc. Transformation errors are reported in a special file, and
option errors or omissions will release some short examples of how to use the programme, so a
call without options will be a short introduction for the user.
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Appendix 1. Clenshaw Summation

I.1 Recurrence Relations

Clenshaw summation is used for the computation of the trigonometric series expansions of the
Gaussian latitude and of the transversal conformal mappings. Clenshaw summation is based upon
the existence of a recurrence relation of the functions occurring in series expansions.

(I.1) Recurrence Relations

Series expansion: Xc, f,(z)
k=K
Recurr. relation : a, f,(z) + a, ,f, @ + . =0

Note that the recurrence relation coefficients ¢, has no relation to the series expansion coefficients
¢, in form or quantity.

The sine function has the recurrence relation

(I.2) Real Recurrence Relations

sin(fn+1)z - 2¢cosz sinnz + sin(n-1)z = 0

which also is valid for a complex argument z.

(I.3) Complex Recurrence Relations
sin((2k+2)(y+ix)) - 2 cos(2(y +ix)) sin((2k(y+ix)) + sin((2k-2)(y+ix))
=R(k+1) + iI(k+1) - (R, + iI)(R(k) + iI(k})) + R(k~1) + iI(k-1)

=
e

el
1l

sin(2ky) cosh(2kx) Ik)
" +2co0s 2y cosh 2x I;

cos(2ky) sinh(2kx)
-2sin 2y sinh 2x

([

~
i

The treatment of the complex numbers requires a simple extension of the recursion matrix and
the solution vector. The real part and the imaginary one must be collected at each step of their
summation.
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1.2 Geodetic Latitude == Gaussian Latitude

The summation is carried out by solving a simple set of equations with the coefficients of the
series as right-hand sides and a coefficient matrix with the recurrence relation coefficients placed
strategically in the columns,

(I.4) The Clenshaw Equations

4
Ye, sin2x¢ = S'E = S (TQ) = (§'TQ (using E =TQ)
x=1

sin8 ¢ €s 1 0 0 0 75
sin 6 € -2cos2 1 0 0 q
g=|" 2 g% - ? g ="
sind ¢ é, 1 -2c0s2¢ ! 0 q,
sin2 ¢ e, 0 1 -2cos2¢ 1 2

The product vector ST has only the last element different from zero, so the whole sum is found
very simply.

The matrix T is a lower triangular matrix with columns containing the recurrence relation
coefficients, always starting with the diagonal element. The determinant is therefore non-zero,

and the solution vector Q is found by the artifice of the two additional zero-valued g's.

(L.5) The Clenshaw Sine Solutions

S'T =(0,0, sind¢ - 2cos2 ¢ sin2 ¢, sin2 )
= (0, 0, 0, sin2 ¢)
S'TQ = g, sin2¢

A piece of C-code shows the simple algorithm for the summation, requiring only the sine and
cosine of 2¢.

(£.6) The Clenshaw Sine Algorithm

Initialize:  q,0 = q,, = 0
Loop:
Jor (k =4; kx> 0; x--) {
qu er # 2005(245) q2x+2 - qz x+d

}
Result: g,sin2¢
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The formulae for the transformation geodetic latitude <= Gaussian latitude then is:

(1.7) Geodetic Latitude = Gaussian Latitude

S =g + Ye, sin2xg,
k=1
8 5 6 13
e, = -2n + 2n% + In® - Znt e, = +>n? - 2n? - Zn
3 3 45 3 15 9
: 237
€ = - Bp3 o Hpt ey = + 2 4
15 21 630
(1.8) Gaussian latitude — Geodetic Latitude
@ = @ + LG,sin2kP,
x=1
2 227
G, = +2n - 2n? - 20 + 2on* G, = +In? - in® - Zn?
3 a5 3 5 45
1
Gﬁ = + E‘ins - _3£n4 G8 = + ﬂnd
15 35 630

1.3 Complex Gaussian Coordinates —= Transversal Coordinates

The treatment of the complex numbers requires a simple extension of the recursion matrix and
the solution vector. The real part and the imaginary one must be collected at each step of their
summation.

(1.9) Clenshaw Complex Sine Equations
2cos(2(y +ix)) = Ry +il; R, +2cos(2y) cosh(2x); I, = -2sin(2y) sinh(2x)

1

1]

4
Yu, sin2x(y +ix) = S'C SI(TQ) =8'NQ (using C =TQ)

x=1
sin8(y+ix) A : ¢ i i Ps*ids
. sin6 (y +ix) c Ce . -(Ry+ily) 1 0 0 5 Petig,
T sin4(y+ix) - C‘ h 1 "(RO“‘I'IG) 1 i} - ‘04+iq4
sin2(y+ix) C, 0 1 -(Ry+ily) 1 p,*iq,
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(I.10) Clenshaw Complex Solutions

, 0, sin (4 (y+ix)) - 2cos (2
0, 0, sin (2 (y +ix)) }

s'T={0
0

L)

(y+ix)) sin (2 (y+ix)), sin (2 (y+ix)) }

Using the names in the recursion relation, one gets the algorithm as follows:

(1.11) The Clenshaw Complex Algorithm

Coefficients: C,, C,, C,, C,;
Loop:
Jor (x = 4; x> 0; x~--)
Prx = Cox * RyPyyr
Bo = Royrr *
}
Result:
Realpart:  R(1)p, - I1) q,
Imagpart:  R(1)gq, + I1)p,

Initialize: p,, = p,, = ¢,y =G, =0
R, = +2cos(2y) cosh(2x); I, = -2sin(2y) sinh(2x)
R(1) = sin(2y) cosh(2x); I(1) = cos(2y) sinh(2x)

ok

(Al real)

092x:2 7 Paxed
0P2x2 ~ Qaxea

(I1.12) Complex Gaussian Coordinates =

Normalized Transversal Coordinates

u = U + ):szsinZKU

x=1
5 4
Uy =+:in-2p2+ Zp3 + Zpt
2 3 16 180
Uﬁ = + _‘E_n:" - ._1.92.};4
240 140

13 557
U, = +8p% - 353 & 2 p4
a8 5 1440
UB = - 49561n4
161280

(I.13) Normalized Transversal Coordinates = Complex Gaussian Coordinates

U=u+ Xu, sin2xu

x=1
1
w, = -in +2in? - Tpd . Lpd
2 3 % 360
= LTy, ¥4
480 840

1 1 437

u, = -—n?-=n3+ Zp?
a 15 1440

u. = _ 4w nq

8 161280
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Appendix II: Geodetic Parameters for Mappings

Mapping needs only two parameters giving the size and the shape of the biaxial ellipsoid. The
more recent ellipsoids are rather a complete reference system giving four necessary and sufficient
parameters. The equatorial radius and the flattening as given for the Hayford 1924 Ellipsoid
(actually published by Hayford much earlier) were so far a convenient standard. The two
supplementary physical parameters were added later.

The definition for GRS80 (and GRS67) no longer gives the flattening directly, but is a consistent
system, The claimed system for WGS84 is almost GRS80, but the dynamic form factor J, was
derived with too few digits from a coefficient in a series expansion for the gravity field. The effect
is negligible (less than 0.1 mm for the meridian quadrant), but should of course have been
avoided.

The constants of the ellipsoid given by Bessel in 1841 were certainly not uniquely defined by
Bessel, who gave redundant parameters, with a reasonable consistency at that time (about 8
decimal digits). The dimension was given indirectly as the average length (in Toises) of 1 degree
of latitude and the shape could be found in several ways from the published results. It is therefore
very understandable that the values for Bessels ellipsoid are different, but eventually a reasonable
consensus seems to exist for the equatorial radius and the flattening. It is not likely that Bessels
ellipsoid will be used for Physical Geodesy, but for completeness the GM-values also used in
GRS80 could be used, because the mass of the earth is assumed to be almost constant.

The rotation velocity of the earth is needed for completeness, but the value is known much better
that strictly needed.
(I1.1) Examples of Ellipsoids

Geodetic Reference System (GRS80)
a = 6378 137 m s equatorial radius
J, = 108 263x107 ; dynamic form factor
GM = 3 986 005x10®8 m?® 572 s geoc. gravt. const.
© =7292 115x10°" rad s s angular velocity
(f = 1/ 298.257 222 100 883 ; derived flattening)
Hayford 1924 Ellipsoid (International 1924)
a =6 378 388 m ; equatorial radius
f = 1/297 ; flattening
¥, = 978.049 000 gal ; equatorial gravity
w =7292 11510 rad 57! ; angular velocity
Bessel 1841 Ellipsoid, (Conventional and added constants)
a =62377 3971550 m ; equatorial radius
f = 1177299.1528128 : flattening
GM = 3986 005x10° m’ s7? ; geoc. gravt, const.
w =7 292 115x10°" rad 57! s angular velocity
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The convenient initial parameters for mapping are the equatorial radius a and the flattening f,
although the polar curvature radius ¢ = a/{/-f), the third flattening », and the square of the second
eccentricity e” frequently give more convenient formulae. However, the recent definitions of
reference ellipsoids no longer give the flattening as a direct defining parameter. The rational way
out of this problem is for any desired ellipsoid to start with its original definition and derive the
desired parameters from that definition.

(I1.2) Determination of the Flattening from J,

GEODESIST'S HANDBOOK on GRS80:
2 /
I =21 = 2 me

3 15 ¢,

_Fath
m = ——.
GM

Sy~ X oA DK et

x=1 2x+1) 2K +3)
ae =be' ; b=all-f) ; e*=f2-P
ALGORITHM:

S TP _CJZHB' _ 12 _ 2 - _qO
Initialize: m, = i’ f=e"=0, q, = i ; (g, = e—fj)
Iteration:

foo=3 s om0 g,
o2 = 2N

1~

8
g, - ¥ 2K+2 (_(efz))x
. r0(2x+3)(2Kk+5)

The computation of the eccentricity e for the GRS80 ellipsoid 1s shown in the Geodesists
Handbook, (LA.G. 1980, 1984, 1988, or 1992). The iteration algorithm shown gives directly the
flattening f and the second eccentricity e’.
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Appendix III: Ellipsoid Formulae and Parameters

Some formulae for the ellipsoid are included here for orientation. They can of course also be
found in any geodetic textbook.

Three much used ellipsoids and an algorithm for finding the flattening f from J, are found in
appendix IL

(11L1.1) Ellipsoid Formulae and Parameters

a = Equatorial radius  ; Defining ellipsoid parameter for mapping
f = Flattening ; Defining ellipsoid parameter for mapping
1+n 3
¢ =all -fi =a ; Polar curvature radius
1-n : ..
b =a(l-f)=a ;s Minor semi-axis
1+n
Foi ST . ; For K&W-fans
2 1+n
i o= B 'z - F1C - f) . Third flattening
a +
2 _ g2
¥ =8 b . p. IR
a’ 1 + n)
e,2 =a2-b2=f(2—f)= 4n
b? a-mn a-np
W =41 - e?sin’¢ = F12/(1 + n)
V. =y1+elcos?p =F(1-n)
F =1 +2ncos2¢p +n?=(1 - n)lv? = (1 + n)*W?
=1 +n@z* 2™ +n* =0 +nz®dA + nz
M(@) =c/V3=al-n)? A+n)F ¥ ; Meridian curvature radius
N(@ =c/V = a(l+n) FV2 s Prime vertical curvature radius
(@) = N(@)cosg . ; Latitude parallel radius
0 = -2 (a+1n?sLlpy ; Meridian arc unit
1+n 4 64
G(¢@) = The meridian arc from equator to ¢ ; see (I11,4)
HG) = The latitude for a meridian arc of G ; see (II1,4)
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(II1.2) Series Expansion of Powers of F(z)

z = expli @)
Fo@) = (L +nzd)* (1 + nz )% = ¢? + Te2q% + 29
x=1
~132
cg” =1+ n? + —i“—z—(—t%n" B e
c;m = an + .‘g(—fle}_)ns +
c? - a(a - 1) 2, & - )& - 2,4,
2 6
¢ = it 16)(‘1 "By .
Cs(m - a(a'~1)(a'—2)(a'—3)n4 .
24

Series expansion of F* are very useful tools. They are used here to give formulae for M(¢) and
F'. The formulae are taken from K & W, where the linear quantity mostly was half the sum of

the major semi axis and the minor semi axis, which gave all the relations a uniform appearance.
We shall here prefer the expression a/(1 + n) instead.

(II1.3) Meridian Curvature Radius and 1/F

F¥@y = (1 +azy)™? (1 + ng )™
4 2x ~21x
M = 1 -n?PFp = 2 M + M % _*Z
@ 1+"( : - Lol ¥ el 2
4
_ 4 M, + EMZxcos(Zx;é)] . A)
1+” x=1
Flg) =@ +nzd)? (0 +nzdt =ny + Tny, 2+ 27
x=1
M, =1 *—;-n2+én4 n, = +1/(1 - n?d
M2=_3"+'§”3 n, = -n/(l -n?
= E 2 —"]‘._5' 5 = 2 s 2,
M= To° “me ng = % (1 - n?
MlS: -—-‘:-ss-s-n3 n6=__n3/(1_n2)
My = %f ! ng = +n/(1 - n?
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The formulae for the meridian arc length as a function of the latitude and the inverse problem are

derived from the formulae for the curvature radius of the meridian.

(IT1.4) The Meridian Arc and its Inverse

The scaled meridian arc length unit:

4
x=1
3 9 3 152 154
= -Zp+-=n = +2p“-=p
Py 2” 16 Py 16 32
= - 35 3 = 2}3 4
Ps = a Py Tt

4
HA) = A + Yg,, sin2xA)
r=1

3 27 3 21 2 85 - 4
= +=-p-*n = +=p*-=p
1 2 32 94 16 32
151 ..3 1097 4
= + —n = +—n
96 % s 512

a a 1 1

2, =m01—:—;; M, =m0m (1*;"2“‘;”4)

m, =10 {(Ellipsoid and Gauss-Kriiger)
m, = 0.9996 (UTM)

The scaled meridian arc from equator to the latitude ¢:

The latitude at the normalized arc length A = GIQ

4)

(B)

<

The two series expansions ([11.4.B) and (I[.4.C) are in principle the formulae for the transversal
mapping as given in Chapter 2 and elaborated in Chapter 4. The formulae may be used both for

the ellipsoid and for the transversal mappings by proper choice of m,,.



T

s

Appendix IV

61 Coordinate Label

Appendix IV. The Coordinate Label

A coordinate label contains the parameters for the description of a coordinate system and for the
transformation to other coordinate systems.

IV.1 A Coordinate Label

struct

short
ghort
char
short
short
short
short
short
short
short
short
short
short
short
short
short
short
double
double
double
double
double
double
double
double
double
double
short
short
short
double
double
double
double
double
double

long

cxd lab {
lab_type:;
varsion;
mlb[16];
sepch;
compl;
catm;
mode;
region;
ncoord;
8_1lat;
S _crd;
W_lng;
W_crd;
p_seq;
ellipsoid;
datum;
p_dtm;
ajz
£;
BO;
NO;
LO;
EQ;
gcale;
Bl;
B2;
tol;
zZone;
imit;
init;
On;
Zb;
cP;
tcggl8l;
utgi4];
gtul4d];

ch_ sum;

/*
/*
/*
[*
[*
/*
/*
/¥
/*
[ *
/*
/*
’!*
/*
/*
/1\'
/*
/%
/*
/*
/*
/*®
/*
/*
/*
/*
/*
/*
I/*
/*
/*
/*
/*
/*
/*
/*

struct dsh _str dsh_con;/*

/*

Type of label */

Label version */

Minilabel of the system */
Separator-char in label */
geo_lab definitions compl.*/
Coordinate system */
Coordinate system mode */
Region, see conv_lab.h */
Number of coordinates */

Lat. sgn pos N: 0, pos S: 1 */
Crd. sgn pos N: 0, posg 8: 1 */
Ing. sgn pos E; 0, pos W: 1 */
Crd. sgn pos E: 0, pos W: 1 */
seg. of crd, 0=>N,E, 1=>E,N
Ellipsoid */

Datum #*/

Parent datum */.

Semi major axis of ellipsoid */
Flattening of ellipsoid */
Origin latitude */

Origin northing */

Origin longitude */

Origin easting */

Central scale of the mapping */
Contact lat (lmb), PO (stg) */
Lat. of intersect. for 1mb */
Tolerance of check transf. */
utm zone no. */
mask for non-reg sys. */

init tr. const. O0=>init. */
Merid. quad., scaled */

Radiug vector in p. crd. sys */
Lambert exponent = cos PO */
Const. Gauss <-> Geo lat. */
Consgt. transv. merc. -> geo */
Const. geo -> transv, merc., */
Struct of datum ghift const.*/
Checksum of label */
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