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Summary. Recently Tyler et al. (2003) demonstrated that the magnetic fields generated by the lunar 
semidiurnal (M2) ocean flow  can be clearly identified in magnetic satellite observations. They compared 
their numerical simulations of magnetic fields due to the M2 tide with CHAMP observations and found 
close agreement between observations and predictions. Their three-dimensional (3-D) conductivity 
model consists of a surface thin shell of variable conductance and an insulating mantle underneath. 
Some discrepancies between observations and predictions have been addressed to the absence of a 
coupling between the surface shell and the mantle. Here we performed model studies of the magnetic 
signals due to ocean tidal flow in order to answer the following questions. (1) How does the inclusion of 
a conducting mantle affect the magnetic signals of the M2 tide at CHAMP altitude? (2) Are magnetic 
signals from other tidal components detectable at CHAMP altitude? (3) What amplitude has the 
magnetic M2 tide at Ørsted altitude? The 3-D conductivity model that we consider incorporates a thin 
shell and either a radially symmetric or a 3-D mantle underneath. Our model studies demonstrate that 
including a conducting mantle yields significant changes of the magnetic M2 oceanic signals, with peak-
to-peak values at CHAMP altitude of order 3 nT.  The magnetic signals due to other prominent ocean 
tidal modes (like K1 and O1) are below 0.5 nT at CHAMP altitude. The M2 peak-to-peak magnetic signal 
at Ørsted altitude is of order 1 nT. 
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1 Modelling approach 

To calculate the magnetic fields due to global ocean tides we used the numerical solution of 
Kuvshinov et al. (2002a), but with the modifications introduced by Avdeev et al. (2002). The 
solution is based on a volume integral equation (IE) approach and allows simulating the 
electromagnetic (EM) fields, excited by arbitrary sources in three-dimensional (3D) spherical 
models of electric conductivity. These 3-D models consist of a number of anomalies of 
conductivity 3 ( , , )D rσ ϑ ϕ , embedded in a host section of conductivity . Here ( )b rσ ,ϑ ϕ  and 

 are co-latitude, longitude and the distance from the Earth’s centre, respectively. Maxwell’s 
equations in the frequency domain,  
r
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are reduced,  in accordance with the modified iterative-dissipative method (Singer, 1995), to a 
scattering equation of specific type (cf. Pankratov et al., 1997) 
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which is solved by the generalized bi-conjugate gradient method (Zhang, 1997). In eqs. 
(1)-(3) extj  is the exciting current density, the time-harmonic dependency is e , i tω−

oµ  is the 

magnetic permeability of free space, i = 1- ,  is the angular frequency, Т  is the 
period of variations,  is the model conductivity distribution, 
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ϑ ϕ ϑ ϕ′ ′ ′r = ( ,  ,  r  = ( , , )r ′, ) r mod, V  is the modelling region and  
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where  is Dirac’s delta function,  is the identity operator,  is the volume 
occupied by exciting current 

( ')δ −r r I extV
extj ,  is the scattered electric field,  is the 3×3 

Green’s tensor of the 1-D reference conductivity . Note that, in order to provide 
optimum efficiency of scattering equation solution,  is chosen in a special way (cf. 
Singer, 1995;) and generally differs from  at depths where the anomalies are located.  
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Once χ  is determined from the solution of (3), the scattered electric field, , is obtained 
from (7) and the magnetic field, H , at the observation points, , is calculated as  

sE
obsV∈r

 

mod
o o( , ') ( ') ' ( , ') ( ')

ext

h ext h q

V V

G dv G= +∫ ∫H r r j r r r j r ' ,                    (10) dv

s )
with   

q o
o( )(σ σ= − +j E E .                                                          (11) 

 
The explicit expressions to calculate the elements of Green’s tensors G  and  are 
presented in Appendix of Kuvshinov et al. (2002a). For our problem the exciting current 
density, 

o
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o
hG

extj , is calculated as 
 

ext m )wσ= ×j (V B ,                                                     (12) 
 
where “×” denotes the vector product, = 3.2 S/m is the sea water conductivity,  is the 
water transport (depth integrated velocity) due to ocean tides, taken from the TPXO6.1 global 
tidal model of Egbert & Erofeeva (2002), and B  is the main magnetic field taken from 
IGRF 2000.  

wσ V

m

2 Comparison of two solutions 

To check our integral equation (IE) solution we compare it against the finite difference (FD) 
solution of Tyler et al. (2003). In both cases the conductivity model consists of a surface thin 
shell and an insulating mantle underneath. A realistic distribution of the shell conductance is 
obtained by considering contributions from sea water and from sediments as described in 
Kuvshinov et al. (2002b).  Fig. 1 presents the vertical component of the magnetic field, rB , 
due to the M2 tide (period = 12.42 hours) at ground, as given by Tyler et al. (2003) (upper 



panel) and by IE method (lower panel). Tyler’s results are for a mesh of 2°×2° resolution, 
while our results are for a mesh of 1°×1° resolution. The good agreement between the two 
results verifies both approaches. 
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Fig. 1.  rB (nT) at the ground from M2 tide obtained by Tyler et al. (2003) (upper panels) and with our  
IE solution (lower panels). The results are for an insulating mantle. 

3 Simulations with conducting mantle 

In order to investigate how the inclusion of a conducting mantle affects the magnetic signal of 
the M2-tide at CHAMP altitude we performed simulations using a conductivity model that 
consists of a laterally inhomogeneous surface shell (same as in previous section) and a 1-D 
mantle section underneath. Fig. 2 presents the M2 tide scalar anomalies dF at CHAMP 
altitude (430 km); model resolution is 1°×1°. The upper panels show the results obtained for 
an insulating mantle, whereas the lower ones show those for a 1-D conducting mantle which 
is based on the 3-layer model of Schmucker (1985), but with a 100 km lithosphere of 3000 
Ωm. Comparing the results it is seen that in general the pattern remains the same, but the 
magnitude of the signals decreases when a conducting mantle is incorporated in the model.  

Next were carried out simulations for two other prominent tidal components. Fig. 3 shows 
the scalar anomalies dF at CHAMP altitude due to the diurnal tides K1 (period = 23.9 hours; 
upper panel) and O1 (period = 25.8 hours; lower panel) for a conducting mantle. One can see 
that the magnetic signals due to these tides are below 0.5 nT at CHAMP altitude. 

Finally we calculated the M2 tide scalar anomalies dF at Ørsted altitude (800 km) for the 
same conductivity model. As it is expected (see Fig. 4) the magnitude of the signal is 
decreased and becomes smoother compared with that at CHAMP altitude.  
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Fig. 2.  M2 tide scalar magnetic field  (nT) at = 430 km altitude for the models with insulating 
(upper panels) and conducting (lower panels) mantle, respectively. 
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Fig. 3. Scalar anomaly (nT) at = 430 km altitude due to the dF h 1K  (upper panels) and  (lower 
panels) tidal modes.  
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Fig. 4. M2  tide scalar magnetic field (nT) at = 800 km altitude.  dF h

4 Comparison with CHAMP observations 

Fig. 5 shows the amplitudes of high-pass filtered modelled magnetic M2 scalar anomaly, 
averaged over all latitudes between –60° and +60°, in dependence on longitude. These results 
are for different mantle conductivity models beneath the surface shell. For the “nonuniform 
lithosphere” model, the resistivity of the uppermost 100 km is set to 300 Ωm beneath the 
oceans, whereas that beneath the continents is set to 3000 Ωm. The largest difference in the 
magnetic field at CHAMP altitude is found when comparing the results for an insulating with 
that of a realistic (conducting) mantle. Also shown are the CHAMP results by Tyler et al. 
(2003). Note that they have been derived using a slightly different filtering approach. 
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Fig. 5. Meridionally averaged magnetic signal amplitudes (nT) at CHAMP altitude, calculated for 
various mantle conductivity models. Also shown are observational results, obtained from CHAMP 
scalar data by Tyler et al. (2003).  



5 Conclusions 

We presented the results of 3-D simulations of the magnetic field variations caused by global 
ocean tidal flow. Our model studies demonstrate that considering a conducting mantle yields 
significant changes of the M2 magnetic signals, with peak-to-peak values at CHAMP altitude 
of order 3 nT.  The magnetic signals due to other prominent ocean tidal modes (like K1 and 
O1) are below 0.5 nT at CHAMP altitude. The M2 peak-to-peak magnetic signal at Ørsted 
altitude is of order 1 nT.  
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