

Swarm Level 2 Processing System Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201 By: DTU Date: 2017-04-10

Abstract and Conclusion

The processes and tests applied in the intermediate validation of the MMA_SHAi2C product

SW_OPER_MMA_SHAi2C_20131201T000000_20170101T000000_0201

and the conclusions on the product quality drawn herefrom are described in this document.

This product contains the representation of a model of the magnetic field of Earth's magnetosphere ("MMA" part of product name) using spherical harmonic coefficients ("SHA" part of product name). The model is estimated from Swarm and observatory data using the *Comprehensive Inversion* (CI) scheme within the Swarm Level 2 Processing system ("2C" part of product name). Operational Swarm Level 1b data version 0501, covering the period from 2013-12-01 to 2016-12-31 are used for the model estimation; the product is valid over the same period ("20131201T000000_20170101 T000000" part of product name). This is version 0201 of the product (last part of product name), i.e. same baseline (02) version as the previous CI product release and this is the first, minor version of the product. The format of the product is described in "Product Specification for L2 Products and Auxiliary Products", doc. no. SW-DS-DTU-GS-0001.

The assessment of the SW_OPER_MMA_SHAi2C_20131201T000000_20170101T000000_0201 product shows good agreement with the magnetic indices *Dst* and *RC*, and with existing mantle conductivity models.

The DTU SIL's opinion is that the MMA_SHAi2C product is validated and is therefore suitable for release.

© DTU, DK, 2017. Proprietary and intellectual rights of DTU, DK are involved in the subject-matter of this material and all manufacturing, reproduction, use, disclosure, and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by accepting this material agrees that this material will not be used, copied, or reproduced in whole or in part nor its contents (or any part thereof) revealed in any manner or to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

Table of Contents

1	Inte	erme	ediate Validation Report of MMA_SHAi2C	4
	1.1	Inpu	ut data products	4
	1.2	Mod	del Parameterization and Data Selection	4
	1.3	Out	put Products	4
	1.4	Vali	idation Results	4
	1.4.	1	Correlation with Dst Index	5
	1.4.2	2	Coherency with RC Index	б
	1.4.	3	C_Response	7
	1.4.4	4	Data Statistics	8
	1.5	Crit	eria	8
2	Ado	ditio	nal Information	9
	2.1	Mod	del Configuration and Data Selection Parameters	9
	2.2	Con	nments from Scientists in the Loop10	0
	2.2.	1	Derivation of Model	0
	2.2.2	2	Conclusion1	1

Table of Figures

Figure 1-1: Correlation between q_1^0 and g_1^0 of MMA_SHAi2C and Dst index	5
Figure 1-2: Coherency between dipole terms, RC index, and $F^T q_1^0$ of MMA_SHA_2F	6
Figure 1-3: C-Response estimated from q_1^0 and g_1^0	7

Table of Tables

Table 1-1: Input data products	4
Table 1-2: Observation Statistics: standard deviations of data residuals, Huber weighted, [nT]	8
Table 1-3: Validation criteria	8
Table 2-1: Model Configuration	10

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

Abbreviations

Acronym	Description
AR-2	Acceptance Review 2
CI	Comprehensive Inversion
L2PS	Level 2 Processing System
MMA	Magnetic Magnetospheric field
PDGS	Payload Data Ground Segment
SHA	Spherical Harmonic Analysis
SIL	Scientist in the Loop
STR	Star Tracker
TDS	Test Data Set
VAL	Validation
VFM	Vector Field Magnetometer

References

[Grayver, GRL, 2017] *Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone*; Grayver, A. V.; Munch F. D.; Kuvshinov, A. V.; Khan, A.; Sabaka, T. J.; Tøffner-Clausen, L.; under review for Geophysical Research Letters, 2017.

[Sabaka, GJI, 2015] *CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data*; Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey; in journal: Geophysical Journal International (ISSN: 0956-540X), doi: 10.1093/gji/ggu493, vol: 200, issue: 3, pages: 1596-1626, 2015.

[Sabaka, GRL, 2016] *Extracting Ocean-Generated Tidal Magnetic Signals from Swarm Data through Satellite Gradiometry*; Sabaka, Terence J. ; Tyler, Robert H. ; Olsen, Nils in journal: Geophysical Research Letters (ISSN: 0094-8276), doi: 10.1002/2016GL068180, 2016

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

1 Intermediate Validation Report of MMA_SHAi2C

1.1 Input data products

The following input data products were used for the estimation of the MMA_SHAi2C magnetospheric field model

Products	Туре	Period	Comment
SW_OPER_Q3D_CI_i20000000000000000000000000000000000	Q-matrix of Earth's (1-D mantle + oceans)	-	Used for computing induced part of ionospheric field
SW_OPER_AUX_OBS_2_20130101T000000_20131231T235959_0110 SW_OPER_AUX_OBS_2_20140101T000000_20141231T235959_0110 SW_OPER_AUX_OBS_2_20150101T000000_20151231T235959_0110 SW_OPER_AUX_OBS_2_20160101T000000_20161231T235959_0110	Observatory hourly mean values	2013-12-01 - 2015-12-31	A total of 143 observatories are included
SW_OPER_AUX_DST_219980101T013000_20170103T233000_0001 SW_OPER_AUX_F10_219980101T000000_20170101T000000_0001 SW_OPER_AUX_KP219990101T023000_20161215T223000_0001	Indices	As indicated by the file names	
SW_OPER_MAGA_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0501 SW_OPER_MAGB_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0501 SW_OPER_MAGC_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0501	Swarm magnetic data, 1 Hz	2013-12-01 - 2016-12-31	Decimated to 15 second sampling

Table 1-1: Input data products

1.2 Model Parameterization and Data Selection

See Section 2.1.

1.3 Output Products

The products of this validation report are:

Swarm Level 2 Magnetospheric field Product:

SW_OPER_MMA_SHAi2C_20131201T000000_20170101T000000_0201

Swarm Level 2 Intermediate Validation Product:

SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

1.4 Validation Results

The tests were conducted between 2017-02-14 and 2017-03-17.

The following tests have been applied to the magnetospheric field output product.

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

1.4.1 Correlation with Dst Index

Figure 1-1 below shows the correlation between the main dipole coefficients of the external (inducing), q_1^0 , and internal (induced), g_1^0 , parts of the magnetospheric model and the respective parts, Est and Ist, of the geomagnetic index, Dst. The high correlation above 0.92 demonstrates a good estimation of q_1^0 and g_1^0 .

CI Year3 - MMA Dipole vs Dst Correlations

Figure 1-1: Correlation between $\,q_1^{\,0}\,$ and $\,g_1^{\,0}\,$ of MMA_SHAi2C and Dst index

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

1.4.2 Coherency with RC Index

In Figure 1-2 below, the squared coherences between the external and the induced dipole coefficients of MMA_SHAi2C, MMA_SHA_2F, and of the RC index are shown; in red q_1^0 vs RC_e, in blue g_1^0 vs RC_i, in purple q_1^0 vs g_1^0 , and in cyan q_1^0 vs ${}^{FT}q_1^0$ of the *Fast-Track* magnetospheric product, MMA_SHA_2F. Coherencies are almost everywhere above 0.8 (except vs. RC for very short/long periods) with q_1^0 vs ${}^{FT}q_1^0$ showing the highest coherency despite the fact that they are derived in two quite distinct ways.

Figure 1-2: Coherency between dipole terms, RC index, and $\,^{\rm FT}q_1^0\,$ of MMA_SHA_2F

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

1.4.3 C_Response

Figure 1-3 below shows the C-response estimates based on q_1^0 and g_1^0 in red circles with estimated error bars. The blue dashed curve shows theoretical values based on the conductivity model of Utada et al., whereas the green curves are based on a recent conductivity model of [Grayver, GRL, 2017]; both are in good agreement with the results from the CI MMA dipole terms.

Figure 1-3: C-Response estimated from $q_1^{\,0}$ and $\,g_1^{\,0}$

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

1.4.4 Data Statistics

The statistics of the residuals between the measurement data and the complete CI model are given in Table 1-2 below. Note that the measurements encompass all data (quiet and disturbed) from both day (sunlit) and night side but only at low and mid latitudes.

	Geomagnetic dipole latitude								
	Low, $\leq 10^{\circ}$		Mid,]10°55°]			High, $> 55^{\circ}$			
	σ(B _r)	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	σ(B _r)	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	$\sigma(B_{\rm r})$	$\sigma(B_{\theta})$	$\sigma(B_\phi)$
Swarm A	5.03	6.12	7.78	4.74	7.85	7.68	26.12	56.71	62.47
Swarm B	4.62	5.93	7.60	4.13	7.65	7.57	24.58	55.69	62.11
Swarm C	5.64	6.19	7.76	5.22	7.95	7.71	26.30	56.87	62.69
Observatories	5.41	7.38	6.92	4.99	7.68	7.35	30.23	44.25	30.16

Table 1-2: Observation	Statistics: standard	deviations of data	residuals,	Huber weighted,	[nT]
			,	J ,	

1.5 Criteria

Table 1-3 below summarizes the criteria used to check the validity of the MLI_SHAi2C product:

Input	Test	Criteria		
Observations	Residual statistics	Standard deviation of quiet time vector data below 7 nT.	Ok	
Alternative model	Comparison with model	CI model agrees with alternative model	Ok	

Table 1-3: Validation criteria

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

2 Additional Information

2.1 Model Configuration and Data Selection Parameters

The MMA_SHAi2C product is obtained as an estimation of the residual magnetic vector field after subtraction of a comprehensive co-estimated model of the core, lithosphere, ionosphere, and magnetosphere field contributions including induced contributions based on quite time data similar to the method described in [Sabaka, GRL, 2016]. The complete model configuration used is given in Table 2-1 below; the MMA_SHAi2C product is the green part:

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Core	16/16	Order 5 B-spline with knots every 6 months	Damping of the mean-square, second and third time derivatives of B_r at the coremantle boundary (at 3480 km radius).
Lithosphere	90/90	Static	Degree 17-90 purely determined by North- South differences from all satellites and East-West differences of lower pair satellite (A and C). Damping of B _r at the poles to reduce effect of lack of data at the poles (" <i>polar gap</i> ")
Ionosphere	45/5 (dipole coordinates)	Annual, semi-annual, 24- , 12-, 8- and 6- hours periodicity	 Spherical harmonic expansion in quasi- dipole (QD) frame, underlying dipole SH n_{max} = 60, m_{max} = 12. Scaling by 3-months averages of F10.7 plus induction via a priori 3-D conductivity model ("1-D + oceans") and infinite conductor at depth. Damping of: Mean-square current density J in the E-region within the nightside sector (magnetic local times 21:00 through 05:00) Mean-square of the surface Laplacian of J multiplied by a factor of sin⁸(2θ) over all local times where θ is co-

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

Page 10 of 11

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Magnetosphere, quiet time, external	3/1	One hour bins	
Magnetosphere, quiet time, induced	3/3	One hour bins	
Magnetosphere, all data, external	2/1	Axial dipole term: 1½ hour bins Other terms: 6 hour bins	Determined from vector (residual) data
Magnetosphere, all data, induced	3/3	Axial dipole term: 1½ hour bins Other terms: 6 hour bins	below 55° magnetic dipole latitude.
M2 Tidal	36/36	Periodicity: 12.42060122 hr, phase fixed with respect to 00:00:00, 1999 January 1 GMT	

Table 2-1: Model Configuration

The data selection criteria for the quiet time data are:

- Coarse agreement with CHAOS-6 field model: $\Delta B_c \le 500 \text{ nT}$ for all components $c=r, \vartheta, \varphi$, and $\Delta F \le 100 \text{ nT}$.
- $Kp \leq 3^0$
- Time-derivative of Dst: $|dDst/dt| \le 3 nT/hour$
- 15 second satellite sampling period
- Core and tidal fields determined from night-side data only, i.e. with $Sun \ge 10^{\circ}$ below the horizon

2.2 Comments from Scientists in the Loop

2.2.1 Derivation of Model

The final Comprehensive Inversion model for the first three years of Swarm data show improved agreement with alternative models compared to previous CI models.

Intermediate validation of Swarm Level 2 Magnetospheric Field Product SW_OPER_MMA_VALi2C_20131201T000000_20170101T000000_0201

The estimated model is assessed to be of good quality with good agreement with the magnetic indices Dst and RC, with the MMA_SHA_2F product, and of the C-response of an alternative induction model.

Further analyses from the derivation of the 3-D mantle conductivity indicate some problems using the nondipole terms for such studies. This will be pursued in future CI models.