

Swarm Level 2 Processing System Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201 By: DTU

Date: 2017-04-10

Abstract and Conclusion

The processes and tests applied in the intermediate validation of the MIO_SHAi2C product

SW_OPER_MIO_SHAi2C_20131201T000000_20170101T000000_0201

and the conclusions on the product quality drawn herefrom are described in this document.

This product contains the representation of a model of the magnetic field of Earth's ionosphere ("MIO" part of product name) using spherical harmonic coefficients ("SHA" part of product name). The model is estimated from Swarm and observatory data using the *Comprehensive Inversion* (CI) scheme within the Swarm Level 2 Processing system ("2C" part of product name). Operational Swarm Level 1b data version 0501, covering the period from 2013-12-01 to 2016-12-31 are used for the model estimation and the product is valid over the same period ("20131201T000000_20170101T000000" part of product name). This is version 0201 of the product (last part of product name), i.e. same baseline (02) version as the previous CI product release and this is the first, minor version of the product. The format of the product is described in "Product Specification for L2 Products and Auxiliary Products", doc. no. SW-DS-DTU-GS-0001.

The assessment of the SW_OPER_MIO_SHAi2C_20131201T000000_20170101T000000_0201 product shows structures in good agreement with ionospheric field models.

The DTU SIL's opinion is that the MIO_SHAi2C product is validated and is therefore suitable for release.

© DTU, DK, 2017. Proprietary and intellectual rights of DTU, DK are involved in the subject-matter of this material and all manufacturing, reproduction, use, disclosure, and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by accepting this material agrees that this material will not be used, copied, or reproduced in whole or in part nor its contents (or any part thereof) revealed in any manner or to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

CM:

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

Table of Contents

1	Int	erme	ediate Validation Report of MIO_SHAi2C	5
	1.1	Inpu	ut data products	5
	1.2	Moo	del Parameterization and Data Selection	5
	1.3	Out	tput Products	5
	1.4	Vali	lidation Results	6
	1.4	.1	Equivalent Current Function	6
	1.4	.2	Data Statistics	.15
	1.5	Crit	teria	.16
2	Ad	ditio	onal Information	.17
	2.1	Moo	del Configuration and Data Selection Parameters	.17
	2.2	Con	mments from Scientists in the Loop	.18
	2.2.	.1	Derivation of Model	.18
	2.2.	.2	Conclusion	.18

Table of Figures

Figure 1-1: Equivalent current function, MIO_SHAi2C, March equinox	7
Figure 1-2: Equivalent current function, CM5, March equinox	8
Figure 1-3: Equivalent current function, MIO_SHAi2C, June solstice	9
Figure 1-4: Equivalent current function, CM5, June solstice	10
Figure 1-5: Equivalent current function, MIO_SHAi2C, September equinox	11
Figure 1-6: Equivalent current function, CM5, September equinox	12
Figure 1-7: Equivalent current function, MIO_SHAi2C, December solstice	13
Figure 1-8: Equivalent current function, CM5, December solstice	14

Table of Tables

Table 1-1: Input data products	5
Table 1-2: Observation Statistics	15
Table 1-3: Validation criteria	16
Table 2-1: Model Configuration	18

Abbreviations

Acronym	Description
AR-2	Acceptance Review 2
CI	Comprehensive Inversion
L2PS	Level 2 Processing System
MIO	Magnetic Ionospheric field
PDGS	Payload Data Ground Segment
SHA	Spherical Harmonic Analysis
SIL	Scientist in the Loop
STR	Star Tracker
TDS	Test Data Set
VAL	Validation
VFM	Vector Field Magnetometer

References

- [Sabaka, GJI, 2015] CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data; Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey; in journal: Geophysical Journal International (ISSN: 0956-540X), doi: <u>10.1093/gji/ggu493</u>, vol: 200, issue: 3, pages: 1596-1626, 2015.
- [Sabaka, GRL, 2016] Extracting Ocean-Generated Tidal Magnetic Signals from Swarm Data through Satellite Gradiometry; Sabaka, Terence J.; Tyler, Robert H.; Olsen, Nils in journal: Geophysical Research Letters (ISSN: 0094-8276), doi: <u>10.1002/2016GL068180</u>, 2016

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

1 Intermediate Validation Report of MIO_SHAi2C

1.1 Input data products

The following input data products were used for the estimation of the MIO_SHAi2C ionospheric field model

Products	Туре	Period	Comment
SW_OPER_Q3D_CI_i200000000T000000_999999999999999999_0101	Q-matrix of Earth's (1-D mantle + oceans)	-	Used for computing induced part of ionospheric field
SW_OPER_AUX_OBS_2_20130101T000000_20131231T235959_0109 SW_OPER_AUX_OBS_2_20140101T000000_20141231T235959_0109 SW_OPER_AUX_OBS_2_20150101T000000_20151231T235959_0109 SW_OPER_AUX_OBS_2_20160101T000000_20161231T235959_0109	Observatory hourly mean values	2013-12-01 - 2016-10-31	A total of 143 observatories are included
SW_OPER_AUX_DST_219980101T013000_20170103T233000_0001 SW_OPER_AUX_F10_219980101T000000_20170101T000000_0001 SW_OPER_AUX_KP219990101T023000_20161215T223000_0001	Indices	As indicated by the file names	
SW_OPER_MAGA_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0501 SW_OPER_MAGB_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0501 SW_OPER_MAGC_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0501	Swarm magnetic data, 1 Hz	2013-12-01 - 2016-12-31	Decimated to 15 second sampling

Table 1-1: Input data products

1.2 Model Parameterization and Data Selection

See Section 2.1.

1.3 Output Products

The products of this validation report are:

Swarm Level 2 Magnetic ionospheric field Product:

SW_OPER_MIO_SHAi2C_20131201T000000_20170101T000000_0201

Swarm Level 2 Intermediate Validation Product:

SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

1.4 Validation Results

The tests were conducted between 2017-02-14 and 2017-03-02. The following tests have been applied to the ionospheric field model product.

1.4.1 Equivalent Current Function

The figures on the following pages show the equivalent current function of the primary ionospheric currents for the MIO_SHAi2C product and for the CM5 model [Sabaka, GJI, 2015] for four different epochs, for the equinoxes and the solstices. Each plot shows the current system for four different UT times, morning (06h), noon, evening (18h), and midnight. The blue line indicates the magnetic dip equator, which gives an indication of the separation between northern and southern current functions. Also shown are the 55°N and 55°S magnetic quasi dipole latitudes in red corresponding to the transition of the use of vector field information. The current function is shown as iso-lines with 10 kA separation.

Figure 1-1: Equivalent current function, MIO_SHAi2C, March equinox

Figure 1-2: Equivalent current function, CM5, March equinox

Figure 1-3: Equivalent current function, MIO_SHAi2C, June solstice

Figure 1-4: Equivalent current function, CM5, June solstice

Figure 1-5: Equivalent current function, MIO_SHAi2C, September equinox

Figure 1-6: Equivalent current function, CM5, September equinox

Figure 1-7: Equivalent current function, MIO_SHAi2C, December solstice

Figure 1-8: Equivalent current function, CM5, December solstice

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

1.4.2 Data Statistics

The statistics of the measurement data obtained by the CI modelling is given in Table 1-2 below. Grey cells indicate data from night side, white cells indicate data from sunlit regions. Crossed cells indicate data which are not used in the inversion process. "Field" indicate the pure vector and scalar measurements, whereas "NS diff" and "EW diff" indicate the North-South (along-track) respectively East-West differences. The standard deviations (of the residuals between the observations and the estimated model) of the differences are quite impressive; the standard deviations of the direct field measurements from the satellites are also quite excellent whereas the ground observatories show slightly higher residuals than previously recorded. Note also the expected similarity between Swarm A and C (side-by-side flying pair) and North-South differences for all three satellites. Swarm B shows slightly higher residuals in the Field components at low and mid latitudes and slightly lower residuals at high latitudes likely due to its higher altitude.

		Geomagnetic quasi-dipole latitude											
		Low, $\leq 10^{\circ}$				Mid,]10°55°]			High, $> 55^{\circ}$				
Swarm/			Standard deviations of data residuals, Huber weighted, [nT]										
Obs.		$\sigma(B_r)$	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	σ (F)	$\sigma(B_r)$	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	$\sigma(F)$	$\sigma(B_r)$	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	σ(F)
А	Field	1.77	3.30	1.98	3.21	2.73	3.62	2.86	2.06	\ge	\succ	\succ	5.97
	NS diff	0.38	0.18	0.37	0.19	0.26	0.33	0.39	0.20	\succ	\triangleright	\triangleright	1.84
		1.30	0.98	1.20	0.85	0.61	0.72	1.27	0.33	\ge	\triangleright	\succ	2.59
В	Field	1.95	4.07	2.84	4.00	3.14	4.48	3.77	2.71	\succ	\triangleright	\succ	5.78
	NS diff	0.38	0.18	0.36	0.19	0.26	0.34	0.40	0.22	\succ	\triangleright	\succ	1.61
		1.10	0.79	1.06	0.66	0.58	0.68	1.21	0.31	\times	\succ	\succ	2.28
С	Field	1.78	3.33	2.02	3.27	2.79	3.66	2.83	2.11	\succ	\triangleright	\succ	5.98
	NS diff	0.40	0.19	0.38	0.19	0.28	0.35	0.41	0.21	\ge	\triangleright	\succ	1.85
		1.30	0.98	1.21	0.89	0.63	0.74	1.29	0.33	\ge	\triangleright	\succ	2.59
A-C	EW	0.83	0.36	0.99	0.29	0.43	0.49	0.94	0.28	\ge	\triangleright	\succ	0.62
	diff	2.10	0.78	2.52	0.55	0.96	1.10	1.64	0.44	\times	\succ	\succ	0.75
Magnetic		5.70	5.32	4.43	4.81	5.55	5.14	4.44	4.79	16.82	14.01	10.53	17.61
observatories		12.38	13.02	10.88	11.79	8.32	8.93	10.15	8.39	23.42	22.58	16.94	26.04

Table 1-2: Observation Statistics

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

1.5 Criteria

Table 1-3 below summarizes the criteria used to check the validity of the MIO_SHAi2C product:

Input	Test	Criteria	Pass?	
Observations	Residual statistics	Standard deviation of vector data below 7 nT.		
Alternative model	Comparison with model	CI model agrees with alternative model	Ok	

Table 1-3: Validation criteria

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

2 Additional Information

2.1 Model Configuration and Data Selection Parameters

The MIO_SHAi2C product is obtained as a comprehensive co-estimation of the core, lithosphere, ionosphere, and magnetosphere field contributions including induced contributions similar to the method described in [Sabaka, GRL, 2016]. The complete model configuration used is given in Table 2-1 below; the MIO_SHAi2C product is the green part:

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Core	16/16	Order 5 B-spline with knots every 6 months	Damping of the mean-square, second and third time derivatives of B_r at the coremantle boundary (at 3480 km radius).
Lithosphere	90/90	Static	Degree 17-90 purely determined by North- South differences from all satellites and East-West differences of lower pair satellite (A and C). Damping of B _r at the poles to reduce effect of lack of data at the poles (" <i>polar gap</i> ")
Ionosphere	45/5 (dipole coordinates)	Annual, semi-annual, 24- , 12-, 8- and 6- hours periodicity	 Spherical harmonic expansion in quasi- dipole (QD) frame, underlying dipole SH n_{max} = 60, m_{max} = 12. Scaling by 3-months averages of F10.7 plus induction via a priori 3-D conductivity model ("1-D mantle + oceans") and infinite conductor at depth. Regularisation of: Mean-square current density J in the E-region within the night-side sector (magnetic local times 21:00 through 05:00) Mean-square of the surface Laplacian of J multiplied by a factor of sin⁸(2θ) over all local times, where θ is co-latitude.

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_VALi2C_20131201T000000_20170101T000000_0201

Page 18 of 18

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Magnetosphere, external	3/1	One hour bins	
Magnetosphere, induced	3/3	One hour bins	
M2 Tidal	36/36	Periodicity: 12.42060122 hr, phase fixed with respect to 00:00:00, 1999 January 1 GMT	

Table 2-1: Model Configuration

The data selection criteria are:

- Coarse agreement with CHAOS-6 field model: $\Delta B_c \le 500 \text{ nT}$ for all components $c=r, \vartheta, \varphi$, and $\Delta F \le 100 \text{ nT}$.
- $Kp \le 3^0$
- Time-derivative of Dst: $|dDst/dt| \le 3 nT/hour$
- 15 second satellite sampling period
- core and tidal fields determined from night-side data only, i.e. with $Sun \ge 10^{\circ}$ below the horizon

2.2 Comments from Scientists in the Loop

2.2.1 Derivation of Model

The final Comprehensive Inversion model for the first three years of Swarm data shows good agreement with alternative models and exhibits very good data residual statistics (Table 1-2).

2.2.2 Conclusion

The estimated model is assessed to be of good quality with very good agreement with the general structures of the ionospheric field.