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ABSTRACT/RESUME 

This paper presents, in a simple manner, the basic 
physics that lies behind the ‘+diamagnetic’ and ‘gravity 
drift’ magnetic field corrections that are beginning to be 
used in analysis of CHAMP data taken when it is in the 
night-time equatorial F-region ionosphere.  The results 
are obtained by considering the detailed trajectories of 
ions and electrons subject to combined fields, as well as 
by the conventional force-density macroscopic 
approach.  The resulting electric currents give magnetic 
perturbations outside as well as inside the ionosphere.  It 
is also pointed out that magnetometers are calibrated for 
use in ‘free space’, so that using them inside the 
‘diamagnetic’ ionosphere could lead to incorrect 
readings; the resulting errors could be of the same 
magnitude as that of the field perturbations themselves. 
 
1. INTRODUCTION 

In between collisions, ions and electrons have their 
trajectory determined by the force equation   
 

F = mdv/dt = evxB + mg + eE.  (1) 
 
The resulting motion of each ion is complicated, and it 
would be difficult to determine the resulting magnetic 
field.  However the contribution to the local E and B 
produced by any one ion will give no force on that ion, 
so these contributions can be ignored, making the 
equation linear in v.  The mg and eE terms make the 
equation inhomogeneous, but a general solution can be 
obtained by adding a particular solution of the whole 
equation to the general solution of the homogeneous 
part.  It is therefore possible to add the velocity 
solutions of simpler sub-problems, which themselves 
have simple physical interpretations.  In particular, once 
B is given, it is possible to treat separately the effects of 
adding the fields g and E.  And in the present context 
one can then simply add the magnetic fields given by 
each separate sub-problem. 
 
In the next two sections I look at the trajectory of 
‘thermal’ positive ions and electrons in a B field, and 
the corresponding magnetic field perturbation – the 
‘adiabatic’ term.  Then I look at the trajectories, and 
associated magnetic fields, for ions/electrons initially at 
rest in B and g, or B and E, fields.  The magnetic field 
of the overall motion of thermal electrons/ions in B, g, 
and E fields is (in the present situation) simply the sum 
of these separate contributions 
 

2. THE DIAMAGNETIC TERM  ev�B 

For an ion moving with velocity v in the presence of a 
magnetic field B, in otherwise field-free space, the force 
equation is just F = ev�B.  The magnetic force on the 
ion is perpendicular to its motion, so that vpar, the 
component of velocity v along B, is unchanged.  The 
component vperp of v perpendicular to B gives a circular 
motion in the perpendicular plane, having speed vperp, 
and gyro-radius and period given by  
 

rd = mvperp/eB, τ = 2πm/eB.  (2) 
 

Thus the ion has a helical trajectory, with the axis of the  
(clockwise) circular motion anti-parallel to B.  (In this 
situation, the only combination of the relevant variables 
that has the dimension of time is (m/eB); most 
treatments work in terms of the (angular) frequency 
(eB/m).  The velocity scale is given by the ion’s vperp.) 
 
The circular part of the motion looks like an electric 
current of strength e/τ flowing round a loop of area πrd

2.  
At distances large compared with its radius it therefore 
looks like a magnetic dipole of moment 

 
pd = (e/τ) π rd

2 = mvperp
2/2B, (3) 

 
oriented anti-parallel to B.  (Note that the dipole 
moment cannot be increased indefinitely; as B decreases 
the gyro-frequency also decreases, and eventually the 
‘collisionless’ approximation breaks down.) 
 
Now consider all the ions in a region in which there are 
n ions per unit volume; the region is large compared 
with rd, but small enough that B is uniform within it.  
Unless there is some deliberate injection of a stream of 
ions, the vpar part of the ion velocities will be random in 
sign, so that on average they will give no resultant 
current.  But the vperp parts of their velocities all give 
anti-parallel moments pd.  The ion ‘gas’ therefore looks 
(in some respects) like a diamagnetic material, having a 
magnetisation M (dipole moment per unit volume) 
given by 

 
M = -(1/B)(½nmVperp

2) b,   (4) 
 
where Vperp is the rms value of vperp, and b is a unit 
vector in the direction of B.  Treating the ions as a gas 
in thermal equilibrium, the initial ion velocities will be 
random in direction, so Vperp

2 will be (2/3)V2, where V is 
the total (3-dimensional) rms ion speed.  We also have 
½mV2 = 3kT/2, where k is Boltzmann’s constant, and T 



 

is the ion ‘temperature’.  Alternatively we can put P = 
(nmV2/3), where P is the ion ‘gas pressure’ P.  So we 
have the various forms 
 

M = -(1/B)(½nmVperp
2) b = -(1/B) nkT b    

= -(1/B2) nkT B  = -(1/B) P b = -(1/B2) P B. (5) 
 
Note that the direction of the magnetisation is 
independent of (the sign of) the charge e, so that both 
ions and electrons give the same anti-parallel direction 
of M.  For electrons the ‘pressure’ P = nmV2/3 will be 
comparable to that for the ions, so both ions and 
electrons contribute to the diamagnetism. 
 
For simply shaped regions of uniform magnetisation, 
the resultant field perturbation can be obtained 
analytically.  However for more complicated 
geometries, the magnetic field has to be determined by 
numerical integration.  For an individual dipole moment 
p at the origin, it is simple to calculate the resulting 
magnetic field at position r: 
 

    B = μ0[p + 3(p•r)r/r2]/4πr2.           (6) 
 
Similarly, for a distribution of magnetisation M, 
integration over the distribution can be used to give the 
magnetic field outside the distribution.  But this integral 
is not uniquely convergent inside the distribution; and 
while the integrals for magnetic scalar potential ϕ, or 
vector potential A, are convergent inside, differentiating 
them to give H or B leads to the same non-convergent 
integral.  One way of obtaining a convergent integral is 
to use an appropriate (purely mathematical) vector 
transformation on the integrand.  One such 
transformation is equivalent to replacing the distribution 
of magnetisation M(x,y,z) by a distribution of current 
density (current/unit area) jd(x,y,z), 
 

jd = curl M,    (7) 
 
and then to calculate the vector potential A, and hence 
magnetic field B, given by this jd; see any standard text, 
or e.g.[1].  (In the ionosphere this is equivalent to using 
Ampere’s law for B rather than for H, as the current 
density is assumed to be in free space – see the next 
paragraph.) 
 
When dealing with conventional microscopic 
magnetisation (coming from nuclear and electron spins 
and/or orbits) this equivalent macroscopic current 
density is fictitious, so does not contribute to curl H.  
However, in the ionosphere the orbits are themselves of 
macroscopic scale.  In a region of uniform M, at any 
one instant the ions are moving in random phase in their 
orbits, so there is no overall linear current.  But in a 
region where M is varying in space, the cancellation is 
not perfect, giving a local curl M real current density.   
 

Using the gas pressure approach, and making the 
assumption that B is uniform in strength and direction, 
we finally get 

 
jd = (1/B) curl(-Pb) = -(1/B)(grad P)�b  
 

= -(1/B2)(grad P)�B.  (8) 
 
This current jd flows in planes perpendicular to B, in 
closed loops along the contours of P in that plane. The 
integrated current flow (ampere/metre) in going from 
outside to the centre of the ionised region is P/B.  Where 
grad P is large (e.g. top boundary), this current is 
concentrated into a thin region of high current density, 
but where grad P is small (side boundaries) the current 
flows in a thick region of low current density.  (If there 
is a discontinuous change δM in M, then the volume 
current density curl M is replaced by a surface current 
density δM�n.) 
 
If we know, or can model, P, and hence deduce jd, a 
straightforward, if messy, integration can be used to 
calculate the resultant δB everywhere, both outside and 
inside the ionosphere.  Ideally this would mean that for 
each measurement time an integration would be needed 
over the whole of the ionised region (which would 
probably involve using a model).  So far, to avoid such 
an integration, an approximate calculation has been 
used, with the advantage that only the local ion pressure 
needs to be known, but unfortunately it is a rather poor 
approximation.  This approximation, used by [2], is to 
assume that the sum of the ion ‘pressure’ P and the 
magnetic ‘pressure’ ½B2/μ0 is constant. 

 
Putting B = BB0 + δB, where δB is the perturbation 
caused by the diamagnetism, and remembering that 
δB�B0B , the approximation gives B.δB = -Pμ0.  
Assuming that δB is anti-parallel to B, this gives δB = 
-μ0P/B for the reduction in B when going from outside 
the ionosphere to a point inside where the ion pressure 
is P.  (For the night-time F-region values used by [2], M 
is about 2x10-3 A/m, corresponding to P about 6x10-8 
Pa, giving μ0M = μ0P/B = 2.5 nT.)  That δB is anti-
parallel to B is probably a good approximation inside 
the ionosphere.  But the discussion below on the 
magnetostatics of simple bodies shows that for a finite 
(uniformly) magnetised region this value for δB is the 
maximum possible, and would be valid only for a ‘long 
thin’ region. 

 
Another problem is that this magnetic pressure approach 
completely ignores the corresponding field change 
outside the ionosphere; for the geometry of the CHAMP 
orbit this will be a gradual reduction in field intensity as 
the plasma region is approached, and not an abrupt drop 
at the boundary.  Of course the real ionosphere does not 
have sharp boundaries, but the approximation inevitably 
predicts zero field perturbation outside the ionosphere.   



 

3.  FIELD PRODUCED BY VOLUME OF 
DIAMAGNETIC MATERIAL 

 

 
 

Figure 1.  Magnetic field is produced both inside and 
outside the diamagnetic ionosphere. 

 
 
For some simply shaped regions of uniform 
magnetisation, the resultant field perturbation can be 
obtained analytically.  For example, think of inserting a 
uniform diamagnetic ellipsoid (having one axis parallel 
to BB0) into a previously uniform B0 in a vacuum – Fig. 
1.  Inside this ellipsoid there is now a uniform backward 
M, and so the B inside is reduced.  But this is not the 
only effect.  Because B is continuous at a normal 
boundary, this means that B is also reduced outside the 
ellipsoid on the axis parallel to B0B .  Conversely, around 
the ‘equator’ of the ellipsoid, the B outside is slightly 
increased.  We can think of the diamagnetic body as 
repelling the lines of force of B, and diverting some of 
them to now flow outside the body.  Quantitatively, we 
have to everywhere add to the original uniform BB0 the 
δB produced by the induced magnetisation.  Inside the 
ellipsoid this is a uniform backward field, while outside 
it resembles that of a (backward) dipole.  The reduction 
of internal B field will be in the range (0-1)μ0M; the 
fraction is large for an ellipsoid which is long and thin 
with respect to the direction of B0B , (2/3) for a sphere, 
and small for a short fat ellipsoid.  The larger the 
reduction of internal B, the larger the reduction of on-
axis external B. Clearly the real ionosphere is not 
ellipsoidal, but whatever its shape the situation will be 
similar. 

 
This discussion has been in terms of the field B 
(measured in tesla), for which it does not matter if the 
backward ‘magnetisation’ M is produced in a physical 
material filling the ellipsoid (magnetisation that can be 
replaced/represented by ‘fictitious’ surface currents), or 
by real surface currents flowing on the surface of the 
ellipsoid (with there being a vacuum both inside and 
outside the ellipsoid); in both cases B is decreased 
inside the ellipsoid.  But if what we measure is the field 
H (ampere/metre) there is a difference; for a material 
diamagnetic, B = μ0(H + M), so H is increased inside 
the material, but for our, real-current, ‘vacuum’, 
ionosphere, B = μ0H everywhere, and H is decreased 
inside.  In this context, saying that the plasma is 
diamagnetic can be confusing! 
 

Inside the plasma, the relation between M and H is non-
linear, but in a particular situation we can define an 
effective susceptibility χe, valid for that particular point 
on the M/H curve, as  

 
χe = M/H = (very nearly) μ0M/B = -μ0P/B2; (9) 

 
for our ions χe is about -8x10-5, which is about 10 times 
that of water. 
 
4.  THE GRAVITATIONAL TERM  mg 
If we introduce gravity, the force equation for our ion is 
now 
 

F = ev�B + mg.   (10) 
 

To investigate the effect of adding gravity, it is 
convenient to consider a situation in which the ion is 
initially at rest.  The gravitational field g is vertical; for 
the time being assume that the magnetic field B is 
horizontal and northward.  The ion starts to accelerate 
downwards with acceleration g, but as its downward 
speed builds up it is deflected more and more towards 
the east, until it is travelling horizontally.  It then travels 
a mirror image path, eastwards and upwards, until it is 
at rest again at its original height, but displaced 
eastward, see Fig. 2.  This is a cycloid, the path of a 
point on the rim of a wheel rolling eastward under a 
horizontal line through the starting point. 
 
 
 
 
 
Figure 2.  Cycloidal trajectory of a positive ion initially 

at rest. 
 
 
For a more general direction of B, we can resolve g into 
parts parallel and perpendicular to B, as g = gpar + gperp.  
The gpar part is not affected by the magnetic field, so 
that, in our approximation of ‘free’ ions, the ions will 
experience uniform acceleration in this direction.  (In 
practice, the acceleration will end at a collision.)  But 
the electrons will experience the same acceleration, so 
there will be no net electric current.  The gperp part will 
lead to a sideways drift (m/eB)gperp×b, together with a 
circular motion. 
 
The circular part of the sideways ion motion again 
corresponds to ‘diamagnetic’ magnetisation, but for our 
weak gravity this is completely negligible compared 
with the diamagnetic dipole moment pd of Section 2. 
 
However the average sideways drift corresponds to a 
linear current which is much more efficient at 
producing a magnetic field.  For an ion density n, the 
average ‘eastward’ drift gives a current density of 



 

 
jg = (nm/B) gperp×b = (nm/B2) gperp×B. (11) 

 
Note that (like the diamagnetic magnetisation/current 
density) this current density is independent of the 
magnitude or sign of the charge.  Negative charges drift 
westward, giving a conventional current eastward.  But 
now, because of the isolated factor m, the contribution 
from the electrons is trivial. 
 
But this situation is much more complicated than that in 
the diamagnetic case.  Their, once the distribution of P 
(or nV2) is given, the equivalent jd is immediately 
defined uniquely.  The boundary of the ionosphere 
matters only in that it is inherent in the way the number 
density n varies in space.  But for the gravity term, 
while we can think of the corresponding jg as ‘source’ or 
‘driving’ currents, these jd are in themselves not 
consistent with the ionosphere being finite in extent, and 
having boundaries.  In practice, charge distributions are 
built up (very quickly) on the boundaries (more 
generally, in regions where there is a gradient of 
electrical conductivity), the electrostatic field of which 
is such as to deflect the currents into closed paths.  So 
before the resultant magnetic field perturbation δB can 
be calculated, the resulting, compromise, current 
distribution has to be determined.  (In some respects the 
situation is analogous to that of the electric currents 
induced in the oceans by the interaction of ocean 
velocities with the geomagnetic field; in that case (v×B) 
acts like a local forcing voltage gradient, but the 
eventual current distribution depends also on the 
ocean/land boundaries where there are conductivity 
contrasts.  But in the ionosphere there is the extra 
complication that the electrostatic field, like the 
gravitational forcing term, results in perpendicular 
currents.)  And then the resulting magnetic field has to 
be determined by integrating over the current system. 
 
So far only a comparatively crude approximation of the 
resulting current flow has been tried [3], but the field 
perturbation (a few nT) produced by this approximate 
current distribution has been calculated both inside and 
outside the ionosphere. 
 
5.  THE ELECTROSTATIC TERM  eE 

If instead of introducing gravity we introduce E, we 
have 
 

 F= ev�B + eE.   (12) 
 
This is essentially the same situation as in Section 4, but 
with mg replaced by eE. 
 

The part Epar of E which is parallel to B will 
accelerate the ions (until the next collision), and look 
like a (varying) current in the direction of Epar.  
Electrons will be accelerated (greater acceleration, but 

more frequent collisions) in the opposite direction, 
giving a current in the same direction; so there could be 
a significant field-aligned current.  But this contribution 
really needs to be considered in a larger-scale context, 
where collisions are taken into account; it does explain 
why the macroscopic electrical conductivity along the 
magnetic field lines is so much larger than the 
transverse conductivity. 

 
The part Eperp of E, in the plane perpendicular to B, will 
give the same type of cycloidal motion as above.  The 
average sideways drift speed is Eperp/B, and the 
corresponding current density is 

 
jE = (ne/B) Eperp×b = (ne/B2) Eperp×B. (13) 

 
This current density is independent of m, so has the 
same magnitude (but opposite sign) for electrons as for 
ions, and this magnitude is very much greater than for 
the gravity induced drift.  However the very fact that the 
electrostatic forces are so comparatively large does 
mean that the number density of ions and electrons are 
essentially identical, and as the corresponding currents 
are in opposite directions, there is no net magnetic field.   
 
Although the electrostatic field does not in itself 
produce a magnetic field, it is an important factor in 
determining the actual current flow (and hence magnetic 
field), produced by gravity.  There is also the 
complication that, because of the very high electrical 
conductivity along the magnetic field lines, conjugate 
points north and south of the equator tend to have the 
same electrostatic potential. 
 
6.  THE MACROSCOPIC FORCE-DENSITY 
EQUATIONS 

So far I have deduced the magnetic field contributions 
from the ‘diamagnetic’ and gravitational-drift effects by 
considering the motion of individual ‘free’ or 
‘collisionless’ ions and electrons.  But the individual 
trajectories are complicated, and most workers prefer to 
work with the macroscopic situation, starting with the 
force density (force per unit volume), obtained by taking 
an average over a volume small compared with the 
mean free path between collisions, but large compared 
with the gyro-radius.  Equating this force density to zero 
for equilibrium for a particular ion species, then gives 
(see e.g.[4], eqn. (2.34), though this approximates grad 
nkT by kT grad n) 
 

0 = -grad P + nmg + neE + ne(UxB); (14) 
 
here U is the average (arithmetic mean) local velocity 
of the ions, and it is assumed that this adjusts itself until 
the ne(UxB) Lorenz force exactly cancels all the other 
forces.  (I am ignoring any overall convective drift 
velocity of the atmosphere, carrying the plasma with it.)  
If this force density equation is solved for Uperp (by 
taking the vector product with B throughout), we get for 



 

the average perpendicular current neUperp the same 
expression as is given by the ‘trajectory’ treatments 
above: 
 

neUperp = (-grad P + nmg + neE)xB/B2. (15) 
 

In Eq. (15), the origin of the last two terms in the 
parentheses is obvious, but that of the first, diffusive, 
term is perhaps more subtle.  If P were the pressure in a 
neutral atmosphere, then the balance between the 
upward diffusion driven by -grad P, and the downward 
gravitational nmg, is what gives the conventional scale-
height exponential reduction of density with height.  For 
the ions in the F-region ionosphere, there is a similar 
situation in the higher parts, above the region of ion 
production.  But there can be no such balance at the 
bottom and side ‘boundaries’ of the ionosphere.  In a 
region of uniform ion density (more strictly grad P = 0) 
the ion density is given by an equilibrium between local 
ion production (from incoming radiation of various 
sorts) and local ion/electron recombination via 
collisions; any diffusion of ions into and out of any part 
of this region will cancel.  If the ionisation rate changes 
with position, then, to first order, the ion density will 
change appropriately.  But in a region where the ion 
density changes with position, there will be now be a 
net diffusion of ions (and electrons) down the density 
gradient; it is this net, macroscopic, diffusive motion 
which is being driven by the -grad P force density.  
Then, as with the other components of the perpendicular 
force density, this results in a (-grad P)xB type 
sideways current. 
 
So the force density approach gives the same current 
distribution as the trajectory approach.  But the force-
density approach gives no physical insight (to me at 
least) as to why forces perpendicular to B give rise to 
sideways velocities; these velocities just arise in the 
mathematics.  And in this approach the ‘diamagnetic’ 
behaviour of the plasma is not mentioned explicitly. 

 
7.  MEASURING MAGNETIC FIELD INSIDE THE 
IONOSPHERE 

 
There is another major complication!  As was pointed 
out in [5], even if magnetometers used only perfectly 
non-magnetic material, they are (in effect) calibrated as 
though they were working in a vacuum.  If they are 
placed in a permeable medium they will displace the 
medium, and the field value they give will depend 
slightly on the permeability of the medium and the 
shape of the magnetometer.  At that time the only 
medium of interest was water, of susceptibility only 
about -10-5, and we were measuring  to about 1 nT, so 
this did not matter.  But now we are flying 
magnetometers through a medium with effective 
susceptibility about -10-4, so the effect will be 
significant; the following discussion suggests that the 

effect will be comparable to the magnitude of the δB 
produced by the adiabatic ionosphere! 
 

Figure 3.  If a magnetometer (in a cavity) is inserted 
into the ‘diamagnetic’ ionosphere, the field inside the 

cavity will differ from that in the ionosphere. 
 
 
The algebraic theory of [1,5] assumed a magnetic 
medium which had a linear M/H curve, so cannot be 
applied directly here.  But qualitatively there will be a 
similar effect.  For simplicity, think of the 
magnetometer as a physically small detector at the 
centre of a vacuum container (small detector, so that its 
own shape and materials do not affect the field near the 
surface of the container).  Then put this magnetometer 
in the ionosphere, in a region where there is uniform 
ionisation, and hence uniform magnetisation M, which 
is excluded by the magnetometer - see Fig. 3. 
 
For the time being assume that the gyro-radii are small 
compared with the size of the magnetometer..  The field 
seen by the magnetometer can then be obtained in two 
ways. 
 
7.1  Magnetisation approach 
 
The magnetometer will exclude the ionospheric plasma. 
As a first, crude, approximation assume that the change 
from the M in the main part of the ionosphere to zero 
inside the magnetometer is abrupt; magnetically this is 
equivalent to adding a material having magnetisation 
-M inside the magnetometer.  So the field inside the 
magnetometer is now the original field B* (= BB0 + δB = 
B0B  + (0-1)μ0M) in the ionosphere, together with the field 
given by the reverse magnetisation inside.  This is 
simply the situation of Section 3 again, though with 
reversed sign.  The field inside the magnetometer will 
be (B+ΔB) where ΔB is in the range -(0-1)μ0M, with the 
factor being large for a magnetometer which is long and 
thin with respect to the direction of B, (2/3) for a sphere, 
and small for a short fat magnetometer.  (The same 
argument can be presented in terms of the equivalent 
(real) surface current M�n on the outside of the 
magnetometer.) 
 
7.2  grad P approach 
 
On this approach the currents producing the 
diamagnetic δB are some distance away from this 



 

region of uniform magnetisation, so are not affected by 
the magnetometer.  But the ion/electron pressure is zero 
inside the magnetometer, so there must be local -grad P 
forces and currents around the surface of the 
magnetometer (for our assumed abrupt density change 
these will give the same M�n surface current density as 
above), and it is these local currents which will give the 
ΔB field change inside the magnetometer 
 
7.3  Discussion of magnetometer results 
 
The above discussions use a very crude approximation, 
which also ignores the fact that the detector might 
occupy most of the ‘container’, and also the effect of the 
magnetometer materials.  However it does indicate that 
the fact that the magnetometer excludes the plasma 
means that the field seen by the magnetometer could 
differ by a significant amount from the ambient field.  
An accurate calculation could be made for an idealised 
spherical magnetometer of uniform material, e.g. the 
water of a proton precession magnetometer.  (The 
situation is complicated by the fact that for small 
differential changes of H the differential susceptibility 
is χd = ∂M/∂H = +μ0P/B2; note the change of sign!)  But 
I suspect that the only way to estimate the effect of the 
shape and materials of the magnetometer will involve 
laboratory experiments with the actual magnetometers 
being immersed in fluids of different susceptibilities. 
 
However Section 7.1 assumed that the magnetic effect 
of the local plasma corresponded to a local 
‘magnetisation’, and Section 7.2 assumed that because 
the ion pressure P was zero inside the magnetometer 
this gave rise to surface currents.  These assumptions 
are very dubious for the ions, which have a gyro-radius 
of about 6 m, considerably larger than the size of the 
magnetometer.  So the concept of a local 
‘magnetisation’ is probably not valid.  Similarly, while 
there will certainly be no ions inside the magnetometer, 
so there will be a local -grad P, the conversion from a -
grad P force to a -(grad P)xB/B2  average current 
density is probably valid only for length-scales large 
compared with the gyro-radius. 
 
The electrons in this region have a much smaller gyro-
radius, about 30 mm, so it is more likely that the 
arguments of Sections 7.1/7.2 are valid to some extent; 
the larger the mechanical/thermal shielding round the 
magnetometer, the more nearly these arguments will 
hold. 
 
At present I have no idea how the presence of the 
spacecraft affects the trajectories of local ions and 
electrons.  The spacecraft orbital speed is large 
compared with the ion thermal speeds, but small 
compared with the electron thermal speeds.  There must 
have been a lot of work on the electrostatic charging of 
spacecraft when flying through the ionosphere, and the 

effect this has on ion trajectories; has any of this work 
considered the effect on local magnetic fields? 
 
7.4 The effect of the gravity-drift current 
 
My guess is that there will not be any error in measuring 
that part of the field coming from the mg and eE forces.  
These have (essentially) all their sources far from the 
magnetometer; I think that the resultant currents will 
simply be slightly deflected around the spacecraft, and 
that this deflection will not produce significant magnetic 
field perturbations. 
 
7.5 The effect of the main spacecraft body 
 
This provides another, much larger, nearby ‘vacuum’ 
cavity, in the medium.  Its volume is about 5 m3, and it 
is replacing a magnetisation of about 0.002 A/m by 
zero, so its effective dipole moment is 0.01 Am2.  At a 
distance R this will give a field of (2/R3) nT, so this 
should not be a problem. 
 
8.  DISCUSSION 
 
I have shown how a simple approach can lead to the 
‘adiabatic’ and ‘gravity drift’ electric currents in the 
ionosphere.  But the calculation of the resulting 
magnetic field disturbance is significantly more 
complicated than the rather crude approximations used 
so far. 
 
A problem that does not seem to have been appreciated 
so far is that the spacecraft magnetometers are (in 
effect) calibrated for use in ‘free space’ conditions.   
When they are flying through the ‘adiabatic’ 
ionosphere, and excluding the gyrating electrons (and 
possibly ions), it is likely that the field they indicate is 
not quite the same as the field actually present in the 
ionosphere. 
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