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ABSTRACT

So far, time dependent main field models do not consider
external field variation in terms of spherical harmonics.
In the CM4 [1] external field variations are modelled as
functions of geomagnetic activity indices like the DST in-
dex. Such parameterisation boosts the model complexity,
but disregarding external field variation bears the risk that
such variation is interpreted as secular variation. Here we
present a simple method to avoid this fault behaviour.

In order to estimate the Gauss coefficients from geo-
magnetic observations a least-squares scheme is applied.
Here, a crucial point is the set up of the error covari-
ance matrix. Up to now the error has been treated as
isotropic. In this study we apply a method developed by
[2; 3], which allow for error covariances to regard exter-
nal field variation. In principal, such a more sophisticated
modelling of the error correlations produce an improved
model. A comparison between these methods are given
and results discussed.
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1. INTRODUCTION

The PUFM [4] is a continuous model of the geomagnetic
field and its secular variation for the period 1980 to 2000.
In this approach the magnetic potential V is decomposed
into spherical harmonics up to degree and order 15.

V = a
∑

l,m

(a

r

)l+1

(gm
l cosmφ + hm

l sin mφ)

× Pm
l (cos θ)

(1)

and expand each harmonic coefficient gm
l on a basis of

cubic B–Splines Mn(t) in time [5]

gm
l (t) =

N
∑

n=1

gmn
l Mn(t) . (2)

Further, our model is constrained to fit satellite field mod-
els in the end points MAGSAT and ØRSTED for 1980.0

and 2000.0. The solution m = {g00
1 , g10

1 , h10
1 , . . .} of this

least square problem is given by

m = (AT
Ce

−1
A + Cm

−1 + Γ−1)−1
A

T
Ce

−1γ , (3)

where Cm is the a priori model covariance matrix (spa-
tial and temporal smoothness of the model), Γ controls
the departure of the model from the satellite field model
and γ the data vector. The data are annual differences of
observatory annual or monthly means (secular variation
estimates)

The solution is sought in an iterative re-weighting scheme
comprising eight steps:

1. A initial model is computed weighting all data with
the same uncertainty (5 nT/yr).

2. The deviations of the data from the initial model are
calculated, and adopted as new weights for the data.
Data with large scatter from the model are therefore
down-weighted.

3. A model is derived from the newly (re-) weighted
data set.

4. Data are discarded which deviate by more then 2 σ
from the second model.

5. A interim model is derived from this reduced data
set.

In steps 6 to 8 we generalized step 2 (the estimation of
the data weighting) by further considering the covariance
between the different field components (X,Y,Z) at each
location, in order to allow for possible correlated errors.
For example, in mid-latitudes, we might expect that the
error would be dominated by the unmodelled signal from
external field variations, in particular the ring current,
leading to a particularly strong error correlation between
the X and Z components.

In this study we discuss the different results of the model
with no error correlation (the interim model) and the
model, where we consider error correlation (the final
model).



2

2. RESIDUALS ANALYSIS

The residuals between the interim model and the mea-
surements in Niemegk (Fig.1a) are analysed by means of
autocorrelation and cross correlation functions.

The autocorrelation function is defined by

A(τ) = c
N−τ
∑

t=1

(xt−〈xt〉) (xt+τ −〈xt+τ 〉)/(xt−〈xt〉)
2 ,

(4)
where xt is time series of the residuals, τ is the shift and
c = 1/(N − τ). Variations with periods multiple of τ
will have a local maximum in A(τ).

Apparently the dip at τ = 12 in all curves of Fig.1b is
due to the processing of the data, to derive the secular
variation estimates. There are no further obvious peaks
in. The cross correlation function is defined as
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Figure 1: (a) Residuals between model and the secular
variation estimates for Niemegk. Residuals for X (red), Y
(green) and Z (blue) (b) Autocorrelation function of the
residuals using the same line styles as for the residuals.
(c) Cross-correlation functions of the residuals between
Ẋ and Ẏ (red), between Ẋ and Ż (blue) and between Ẏ
and Ż(green). The horizontal black lines represent the 95
% significance level for not being white noise.

C(τ) = c

∑N−τ

t=1
(xt − 〈xt〉)(yt+τ − 〈yt+τ 〉)

√

(
∑

t(xt − 〈xt〉)2)
√

(
∑

t(yt+τ − 〈yt〉)2)
.

(5)

It shows the common correlations of two independent
time series xt and yt.

The cross correlation function of the residuals against
each other for Niemegk are shown in Fig.1c. The maxima
at a lag of zero, which are evident in all graphs, indicate
that the variation of the residual components are corre-
lated or anti–correlated, respectively. This could mean
that the effect of variations, i.e. the semi–annual varia-
tion, causes a increase of the residuals lets say in X and
Y, what gives a correlation, an increase in the residuals
of X and a decrease of the residuals of Y signify an anti–
correlation. In detail; the residuals of Ẏ and Ż are cor-
related, Ẋ and Ẏ are anti–correlated and Ẋ and Ż are
anti–correlated. The situation changes form observatory
to observatory. This behaviour is mainly due to the dif-
ferent geometries of the ring current at different location
and due to different interaction with the distinct magneti-
sation of the crust at each observatory site.

3. METHOD

In order to determine the Gauss coefficients we have to
minimise the misfit

e
T
Ce

−1
e , (6)

where Ce is the data error covariance matrix

(Ce)ij = cov(ei, ej) , (7)

and e = γ−Am the error vector. If the data error are un-
correlated, then the covariance matrix is diagonal, if not
the inversion requires a factorisation of a sparse matrix
whose dimension is the number of data. For simplicity,
we consider the data errors to be correlated at the same
site only, then the covariance matrix is a 3×3 matrix and
can easily be inverted [2].

Linear algebra provides: the eigenvalue of a real symmet-
ric matrix are real and orthogonal and if the eigenvectors
ν and the eigenvalues λ are known, then the normal equa-
tions matrix can be derived as

A
T
Ce

−1
A = A

T
∑

i

λiνiν
T

i A (8)

The eigenvectors and eigenvalues are computed from the
covariance matrix of the residuals of each observatory
site.

4. RESULTS

Figure 2 (a-c) show a comparison between the data and
two models, one derived with the covariance matrix of
uncorrelated data errors, and the other with the covari-
ance matrix of correlated data errors for Niemegk obser-
vatory. Figure 2 (d-f) show the same comparison, but now
in the three individual covariance directions. The same
comparison as above for Gnangara observatory. The dif-
ferences between both methods is particularly clear in Ẏ
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Figure 2: Sub-figures (a) – (c) show a comparison be-
tween data (black dashed line), the model with no error
correlation (green), the model with error correlation (red)
and the prediction of CM4 (blue) for Niemegk, the fig-
ures (d) – (f) on the right side show this comparison for
the three individual covariance directions using the same
line style.

component of Niemegk. Without considering the covari-
ances, temporal details in Ẏ variation are very closely fit,
but when the covariance is considered, the behaviour is
much simpler.

5. DISCUSSION

The sub-figures (d-f) of Fig.2 and Fig. 3 show plots the
predictions of both models against the data in the di-
rections of the eigenvectors of the Niemegk and Gnan-
gara data covariance matrix, respectively. For Niemegk,
the eigenvector with the lowest noise is predominantly
made up of the Ẏ component. The other two directions
are combinations of Ẋ and Ż respectively approximately
perpendicular to and parallel to the mean effect of the
ring current (including induced field). When the raw
(Ẋ, Ẏ , Ż) data are fit, both Ẋ and Ż are noisy, but re-
solved into the frame of the eigenvectors, the direction
perpendicular to the ring current effect has much lower
noise, and therefore the model attempts a much closer
fit to the data in this direction, as is clearly seen in the
figure. This closer fit provides a strong constraint on
model behaviour, as two components must be fit closely.
This allows differentiation between internal and external
sources, and so the very fine scale detail in Ẏ is no longer
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Figure 3: Same comparison as Fig. 2 but for Gnangara
observatory (Australia) using the same line style.

fit, as to do so is inconsistent with fitting the intermediate
eigenvector direction. Without this constraint, we might
erroneously fit far too much detail in Ẏ , leading to an in-
appropriate interpretation as to what part of the secular
variation can be explained by an internal field. Further,
this constraint seems to simplify the detection of geomag-
netic jerks, where they were not obvious before. Fig.3d
provides evidence for 4 geomagnetic jerks in Gnangara
happened between 1980 and 2000.
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